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m Conduction electrons — kinetic energy (band structure, hopping t)

B Screening — short-range interaction (Coulomb interaction U)

Interplay between extended kinetic energy t and local interaction U J
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Three regimes of correlated electrons in metals

m Low-energy & low temperature physics (T = 0)
m Conduction electrons — kinetic energy (band structure, hopping t)

B Screening — short-range interaction (Coulomb interaction U)

Interplay between extended kinetic energy t and local interaction U J

Naive (static) classification

m U <t —weak coupling

m U = t —intermediate coupling
m U > t —strong coupling

Interaction acts dynamically due to quantum fluctuations
— static classification affected by spatial diemensionality J




Fermi /iquid

Adiabatic (continuous) transition from Fermi gas

Dominance of Fermi energy — the only relevant energy scale
Elementary excitations — quasiparticles near the Fermi surface

[
|
m Particle interaction — weak scattering of quasiparticles
[

Renormalization of Fermi-gas parameters (densities), inherent mass
renormalization, no space for charge renormalization




Intermediate coupling

Presence of strong fluctuations

m Emergence of new energy (length) scales — long-range correlations
m Quantum critical behavior — with or without (classical) long-range order
m Cooperative phenomena — avalanche-type changes in equilibrium state

m Actual interaction — dynamical and strongly renormalized

m Vertex function — critical, vertex corrections & charge renormalization
indispensable




Strong coupling

Long-range scales

m  Heavy-fermion liquid — —no critical point from weak coupling
— Kondo strong-coupling asymptotics
(impurity models, SIAM)
m  Electron-hole liquid  — critical transition from weak copupling
(MIT or magnetic LRO)

— insulator with satellite bands
(lattice models, 1d Hubbard)
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Ultimate objective of theoretical research

Theoretical challenge

Construct an approximation that qualitatively
m reproduces Fermi-liquid properties in weak coupling,

m captures dominant dynamical fluctuations due to electron
correlations,

m controls analytically emerging singularities,

m reproduces the Kondo asymptotics in SIAM.
The resulting theory must be

m thermodynamically consistent and controllable,

m viable with available analytic-numerical methods,

m universal — applicable to various models and dimensions.
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Hubbard & Single Impurity Anderson Models

One-band model Hamiltonian
I/‘\IH = Z (E(k) = [ aF JB) CJUCkg + U Zﬁnﬁu
ko i
Single-impurity Anderson Model

Hsiam = > (e(k) 1) &}, 6, + Ea » dfd,
ko o

¥ x 1 ~d~d

+ > (Vidfc, + Wal,d,) + URAS
ko

Calculational simplifications: = Eq=-U/2, n? =1,
Ae) = > |Vil?6(e — e(k)) = A
k
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One-band model Hamiltonian
I/‘\IH = Z (E(k) = [ aF JB) CJUCkg + U Zﬁmﬁu
ko i
Single-impurity Anderson Model

Hsiam = > (e(k) 1) &}, 6, + Ea » dfd,
ko o

¥ x 1 ~d~d

+ > (Vidfc, + Wal,d,) + URAS
ko

Calculational simplifications: = Eq=-U/2, n? =1,
Ae) = > |Vil?6(e — e(k)) = A
k

Conduction electrons can be integrated out
— single-site theory with dynamical fluctuations J




Many-body perturbation theory

Grand partition sum

p
Z= wabw* exp {Z Wh(iwn + isigh(wn)A)w, — UJ dr 7f (v)Af (u)}
n 0
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Many-body perturbation theory

Grand partition sum
p
Z= wabw* exp ZW?(’@" + isigh(wn)A)w, — UJ dz nf (v)A] (v)
n 0

m Perturbation expansion in the interaction strength U
m Bare propagator

1
x + isign(y)(A + |y])

GQ(X + iy) =

m Crand potential — (huge) sum of connected diagrams

Q= —kBTInZ = Q[Go, U]

Renormalization of perturbation expansion —
reorganization of the sum of elementary diagrams
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E quations of motion

m  Dyson equation —  full one-particle propagator via the self-energy
(one-particle vertex)

G(k) = Go(k)[1 + 2(k)G (k)]

four-vector notation: k = (k, iwy,)
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E quations of motion

m  Dyson equation —  full one-particle propagator via the self-energy
(one-particle vertex)

G(k) = Go(k)[1 + 2(k)G (k)]
four-vector notation: k = (k, iwy,)
m Bethe-Salpeter equations — full two-particle vertex via irreducible
vertices (channel dependent), generically

M(k;q.q") = Nk;q,q") = [AGG OT](k;q.q")

m Schwinger-Dyson equation — Schrodinger equation for Green functions
— connects 1P & 2P vertices

(k) = % Z G, (K"

p2/v2 Z Go(k + q)G_op (K + @) ook + q: q. k' — k) G_o(K')




Outline

Introduction

m Renormalizations in perturbation theory




Mass renormalization — Baym-Kadanoff approach |

Perturbation expansion in renormalized quantities only (one-particle level) J

Free energy
Q{GO " U} =—p"In[Z{J: GO, U}]
=—p"In J D" exp{" [¢7F — J] @+ U [ o]}

Replacement in PT: GO™1 — G~! + %, (Dyson equation) in Q

Variational approach: new functional W[ G, 2] defined from

5V 60 P
5x = sgom tL60 7
opv_ 1 o0

6G  G?6GOT




Mass renormalization — Baym-Kadanoff approach Il

Explicit functional

WG UI=Q{G " +5 U} -ptrinG —p " orin[GO — 5 — J]

Variational conditions:

o0v[G.7] _, 6WG,5] _

oG (3 0

Approximations expreseed entirely in terms of
renormalized quantities G, X




Dynamical Mean-Field Theory (one particle)

Separation of diagonal and off-diagonal parte
6= Gdiag [dO] + Goff [d~1/2]’ F = Zdiag [dO] + Zoff [d~3/2]

Mean-field functional

W[G.5] = Q{G -1 1 z928] _ plorn GIo8
~pYtrIn [GOT — 5% _ ]

where G(k, iw,) — G (jw),), Z(k, iw,) — 298 (iw,)
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Dynamical Mean-Field Theory (one particle)

Separation of diagonal and off-diagonal parte
6= Gdiag [dO] + Goff [d~1/2]’ F = Zdiag [dO] + Zoff [d~3/2]

Mean-field functional

W[G.5] = Q{G -1 1 z928] _ plorn GIo8
~pYtrIn [GOT — 5% _ ]

where G(k, iw,) — G (jw),), Z(k, iw,) — 298 (iw,)

Only correlations matter in the generating functional
—all irreducible vertices local in DMFT

Problems with two-particle functions — ambiguous way to define
nonlocal correlation functions J




Three types of two-particle irreducibility

Ambiguity in the choice of the relevant Bethe-Salpeter equation
with the local mean-field irreducible vertex J

2F irreducibility — — three (independent) two-particle ecattering channels
— beyond static local theory (atomic limit)

eh ladders g - g g + o

ee ladders g - g g + o




Three elementary Bethe-Salpeter equations

m Ring diagrams (GWA) (/\%jl =U)

U
1 - U2X1(9)X)1(q)

reM(k k', q) =

Xoor(q)

Z Gy (k") Gy (K" + q)

k'

/3N




Three elementary Bethe-Salpeter equations

m Ring diagrams (GWA) (/\%jl =U)

U
1 - U2X1(9)X)1(q)

reM(k k', q) =

Xy0r(q) = Z G,(k")Gy (K" + q)

k'

PN

U v Af=U

m Ladder diagrams (RPA, TMA)  ASh = =

=
v
1+UXH(/(~/(”)

U
FTMA (k. g. ) =
n K99 = T v kT q)

V(@) = PNZG (k)G (q — k")
k//




Full Bethe—Salpeter equations |

Vertical electron-hole scattering channel (GWA)

ok ok+q
AY

DNggn

Lo - A2, b Q) K P

Te0

o'k o'k'+q




Full Bethe—Salpeter equations |

Horizontal electron-hole scattering channel (RPA)

ok ok+q
k+q"
Coor = Ach, - (1+46,0) Agh, Loor
Pt
o'k’ o'k’ +q
Horizontal electron-electron scattering channel (TMA)
ok ok +q
k+q—q"
oz e i Az, Tow
= = (1+de)
o'k dk +q

B +q" i

&7
&
%

emie v

" e

A
&




Beyond FLEX — two-particle selfconsistency

m Completely 2P irreducible function I: irreducible in all 2P channels
(disconnected by cutting at least three fermion lines)

m FParquet approach: | determined diagrammatically, A” from defining
equations

m Topological nonequivalence of different 2F channels (beyond local
static theory, atomic limit)

F=A"+K,  AM=1+ ) K7
a'#a
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Beyond FLEX — two-particle selfconsistency

m Completely 2P irreducible function I: irreducible in all 2P channels
(disconnected by cutting at least three fermion lines)

m FParquet approach: | determined diagrammatically, A” from defining
equations

m Topological nonequivalence of different 2F channels (beyond local
static theory, atomic limit)

F=A"+K,  AM=1+ ) K7
a'#a

m FParquet equations — Reducible functions K replaced by the solutions of
the respective Bethe-Salpeter equations
m Genuine charge renormalization U — A in perturbation theory:

A= L[ILU; G, AL A, G]




Intermediate & strong coupling
[ | One‘particle renormalizations — FLEX




Hatree & GWA

m  Static mean-field spin-polarized solution : X, = oUm/2

1[0 A
)= 2| o
T o (w+ozm)+ A

2 (Um)
m = —arctan | ——

T 2A
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Hatree & GWA

m  Static mean-field spin-polarized solution : X, = oUm/2

<ng>:J1JO do- A

w+oYm)? + A2

2 Um
m = —arctan | ——
T 2A

m Critical interaction strength U, = A — unphysical in SIAM

m Satellite split bands:  +Um /2 —no Fermi liquid in weak coupling,
insulator in strong coupling

B GWA vertex function AV = U  (Hartree 1P propagators)

B )
1= U2m(@)xu(2)

0
d
Xoor(2) = J (6o (@ + 2)FGo (1) + Go 0 = 2)5Gr (4]

M(z)

diverges at the critical point  Uc = A




FLEX-type approximations (1F self-consistency)

m Intermediate coupling — dynamical fluctuations shift the spurious MIT
to U, =
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FLEX-type approximations (1F self-consistency)

m Intermediate coupling — dynamical fluctuations shift the spurious MIT
to U, =
m DOS at the Fermi energy (half filling) does not depend on interaction
(Fermi liquid)
m Electron-electron channel (TMA) — noncritical, bounded 2P vertex
m Electron-hole channels (RPA, GWA) — critical, diverging 2F vertex
FLEX-type self-energy  C(z) := x11(2)I11(2)
U? "
RE(wy) = ~7de {P(R[C(x —wy) = C(x + w4)]

+éSC(X+>R [G(x—ws)— G(x+ a)+)]} ,
leo]

$E(wy) = U? J dxp(x — ||)SC(x:)
0




Strong-coupling asymptotics in FLEX |

Low-frequency behavior of 2P vertex I decisive (electron-hole part dominant)

U
© 1+ Uy(0) - imUgdw

Mwy)

Self-energy for a=1+ Uy(0) — 0

2.2
T°Po

c 2 2
S5 (w,) = “2G(2‘”;) In [1 + (ﬁuf°w> ]
Lo

. & 2 2, 2
R (t0,) = sign(w)S G (w4) arctan (JtUpOD> N RG(wy) In [1 N (JuUpow) ]

27203

a a




Strong-coupling asymptotics in FLEX I

m Electron-hole bubble x(0) = L [ dwSG(w,)RG(w) — —52-

T m

m Critical interaction strength

U 2
= 20 :E i , a:JtUpgDexp —<2Upo>
3w 3 | [nUpgD] 3
n a

Neither Kondo asymptotics nor satellite peaks J




What is wrong with FLEX?

Positive features

m Dynamical fluctuations & mass renormalization included

m Fermi liquid & quasiparticles in weak coupling
m No spurious MIT in SIAM

m No Kondo asymptotics
m Quasiparticle peak either too narrow (RFA, GWA) or too broad (TMA))
m MIT removed only due to mass renormalization

m No charge renormalization & screening of electron-hole scatterings
(bare 2P irreducible vertex U)




Intermediate & strong coupling

m Two-particle renormalization — Parquet approach




Need for a charge renormalization

What is needed in strong coupling

m Electron-hole scatterings to drive the system toward MIT

m Electron-hole scatterings must be screened by electron-electron
sctatterings

m Two-particle self-consistency — eh and ee scatterings self-consistently
mixed up




Need for a charge renormalization

What is needed in strong coupling

m Electron-hole scatterings to drive the system toward MIT

m Electron-hole scatterings must be screened by electron-electron
sctatterings

m Two-particle self-consistency — eh and ee scatterings self-consistently
mixed up

What is sufficient in strong coupling

m Two-channel parquet approximation — RPA (GWA) & TMA channels

m Irreducible vertices A®" and A% determined self-consistently from
nonlinear equations




Two-channel parquet approximation

m Electron-hole Bethe-Salpeter equation

Tru(n, n’sm) = /\H(n n’; m)

ZAH (n,n”; m)Gy(n”)G(n” + m)y (n”, n'; m)

n”




Two-channel parquet approximation

m Electron-hole Bethe-Salpeter equation

Tru(n, n’sm) = /\H(n n’; m)

ZAH (n,n”; m)Gy(n”)G(n” + m)y (n”, n'; m)

7
m Electron-electron Bethe-Salpeter equation

I’H(n n’;m) = Af{(n,n’; m)

—= Z/\” (n,n”;n"+n"+m)Gy(n”) G (n+n"+m—n" )7 (n”, n’; m+n—n")

n’




Two—channe/parquet(approxﬁnatkwv

m Electron-hole Bethe-Salpeter equation

Tru(n, n’sm) = /\H(n n’; m)

ZAH (n,n”; m)Gy(n”)G(n” + m)y (n”, n'; m)

7
m Electron-electron Bethe-Salpeter equation
I’H(n n’;m) = Af{(n,n’; m)

—= Z/\” (n,n”;n"+n"+m)Gy(n”) G (n+n"+m—n" )7 (n”, n’; m+n—n")

n’

Parquet equation to exclude vertex I'7):

M= A+ A - U




5imp/iﬁed parquet equations
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m Singulariry in the two-particle vertex only in Bethe-Salpeter equations

m Only electron-hole scatterings contribute to the singularity
(due to the combination of the summed frequency)

m Af] — A(w) diverges at w = 0 — remains dynamic,
frequency-dependent
] /\ﬁ7 — U finite — replaced by a static effective interaction

Simplified parquet equations (zero temperature & half filling)
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5imp/iﬁed parquet equations

m Singulariry in the two-particle vertex only in Bethe-Salpeter equations

m Only electron-hole scatterings contribute to the singularity
(due to the combination of the summed frequency)

m Af] — A(w) diverges at w = 0 — remains dynamic,
frequency-dependent
] /\ﬁ7 — U finite — replaced by a static effective interaction

Simplified parquet equations (zero temperature & half filling)

U= 7U AG Gy = 71 ’ do S [A(ws)G(w,)?
1+</\GTGL>, < ! l> J J_m \y[ (@46 +)]
Nwy) 7U (w4) *1 JO dxp(x) [G(x + wi) + G(x — wy)]
o 1+U?CT1(O~)+), e T d - f " ’

One-particle propagators may be bare or renormalized
( for simplicity we restrict only to the bare ones) J




Strong-coupling asymptotics |

Low-frequency singularity in the vertex A(w)

V)

a—inUgiw

witha =14 Uy(0)=1-U/xA— 0, po = 1/mA independent of U

Solution

(AGGy) =1n [U]

4 2 2
R)((w) = —# arctan g iy % In (1 iy w)

Tw(4A? + w?) A m(4A2 + w?




Strong-coupling asymptotics Il

Kondo asymptotics

Compare with the exact (Bethe-ansatz) solution

7z U
a = exp _§E

Full vertex function




Self-energy and 1F propagator in the parquet approach |

Self-energy from 2F vertex —  non-self-consistent Schwinger-Dyson equation
with bare 1P propagators

U O
RE(wy) = = J_ dx {S[(G(x; + w) — G(x3 — W)A(x:)x(x4)]

=S A )X()TRIG (x4 — w) — G (x4 + W)}

U rlel
szm):_xjo GG (x, — [0S [AXx,)1(x,)]

Analytic approximation with an interpolated bubble

1 1
CxA 1—iow/A
1 1

A w/A+io

¥(w+ic0) =

G(x + io0) =




Self-energy and 1F propagator in the parquet approach |l

Explicit solution for the self-energy

Ul -a) A2 A?
93 —
RSO 21 (A2(1 —a)2 + 2 - A2(1 + a)2 + w?

X lln 1+w—2 1+&i2 +garctan9
2 a2A? A2 A A

Ao = - Y= 5 . A2

2n L A(1-ca)? +o?
| 2 (i ﬁ +oln w—2 + a® +(1 —-ca) (arctan L arctan 8)]
2A w? + A? A? aA A
Kondo asymptotics (not in FLEX!) : a =exp {— %

Full 1P propagator G(wy) = [w—RE(w4) + i(A —SZ(wy )]t




Self-energy and 1F propagator in the parquet approach Il
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Self-energy and 1P propagator in the parquet approach V




Self-energy and 1P propagator in the parquet approach VI




Numerical solution — non-self-consistent

Numerical solution with the full form of the two-particle bubble
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Numerical solution — 1P self-consistency |

Bare 1P propagator in the parquet equations is replaced by the
renormalized one  G(z) — G(z — 2(2))

—— U =5 nonself
0,35 - —— U =5self
0,30

0,25 4

0,20

DOS

0,15

0,10

0,05+




Numerical solution — 1P self-consistency |l

1P self-consistency smears out the satellite peaks

0,35+

U = 10 nonself
—— U =10 self

0,30 4
0,25 4

0,20 4

DOS

0,154

0,104

0,05+

0,00 +¥——F—+—F—F—""F—"—"TF—"—F—"—T——7——1




Numerical solution — 1P self-consistency Il

Quasiparticle peak magnified

0357 ——U =10 nonself
——U =10 self

0,30

0,25 4

0,20

DOS

0,15

0,10

0,05

0,00 T T T T T T T T T 1

-05 -04 -03 -02 -01 00 01 02 03 04 05




Numerical solution — 1P self-consistency IV

The weight of the low-frequency states is suppressed — electrons expelled
from the Fermi surface

—— U =10 nonself
U =10 self

Rex




Conclusions
m Two-particle ve. one-particle self-consistency




Two-particle scatterings in strong coupling

What is relevant for the Kondo asymptotics?

m Electron-hole scatterings

m Irreducible vertex A regular — effective interaction U
m Only low-energy behavior of the electron-hole bubble matters

2w+) ~ x(0) + impyw
m One-particle density py does not depend on interaction (Fermi liquid)
m Electron-electron scatterings
m Irreducible vertex singular due to eh scatterings
U

A = e

m Effective interaction from electron-electron scatterings

— U e,
U = — s %
1+ </\ee GT GJ,) s‘%ﬁf




Self-energy & one-particle self-consistency

Self-energy & one-particle self-consistency

m Self-energy from the Schwinger-Dyson equation with bare or full 1P
propagators

m Asymptotic algebraic fit of the self-energy for low & high frequencies
(w > aA — Kondo peak irrelevant)

. UA T W
S(wy) = A [| Inal — — %ign A]

where a =1+ Uy(0) — 0
m One-particle and two-particle critical behavior interconnected

m General trend of 1P self-consistency:

m Slows down the drift to the two-partical criticality
m Smears out the satellite peaks




What is missing yet?

What yet influences the critical Kondo behavior?

Inclusion of the vertical electron-hole channel (GWA) — triplet
scatterings of virtual electron-hole pairs drive the system toward MIT

One-particle self-consistency — changes the low-frequency behavior of
1P propagator — slows down the drift toward MIT

Electron-hole asymmetric case — pg depends on interaction
Lattice models ( DMFT) — 1P propagator must be renormalized

Beyond the (simplified) parquet approximation — electron-hole &
electron-electron scatterings in a balanced manner




Conclusions

m Summary

N P,

o

4,

Bt

o n

Gemie <

@




Conclusions

Correct extrapolation to the strong-coupling limit

Singularity in the electron-hole Bethe-Salpeter equations

]
m Two-particle vertex — only low frequency behavior relevant

m Mass renormalization only (FLEX) — insufficient

m Charge renormalization needed — self-consistent binding of
electron-hole amd electron-electron scatterings

Three relevant static parameters — po, x(0), (AGG)

Simplified parquet equations — capture the proper strong-coupling
Kondo asymptotics within the complexity comparable with FLEX




Conclusions

Correct extrapolation to the strong-coupling limit

Singularity in the electron-hole Bethe-Salpeter equations

]
m Two-particle vertex — only low frequency behavior relevant

m Mass renormalization only (FLEX) — insufficient

m Charge renormalization needed — self-consistent binding of
electron-hole amd electron-electron scatterings

Three relevant static parameters — po, x(0), (AGG)

Simplified parquet equations — capture the proper strong-coupling
Kondo asymptotics within the complexity comparable with FLEX

Simplified parquet approximation — a manageable impurity solver
interpolating qualitatively correctly between the Fermi-liquid and the
strong-coupling regimes




What do we plan to do next

Add the vertical (GWA) channel

Clear (analytically) the role of 1P self-consistency onto the Kondo
behavior

Hubbrad model in d = oo — existence of the Mott-Hubbard MIT
Electron-hole asymmetric situation & general band structure
Multi-band Hubbard & other models of strongly correlated electrons

Parquet approximation in low spatial dimensions — beyond mean field
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