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Definition of graph coloring

e State: each node has a color

e Rule (energy cost): neighbors have dif-
ferent colors



Less trivial example
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How difficult is to color a graph?”

Planar graphs:

e 10 minutes by hand for the CZ regions map ...

e Proof of 4-colorability: Appel-Haken (1976) ... probably never entirely
checked.

e New proof: Robertson, Sanders, Seymour, Thomas (1994), N? algo-
rithm follows.

e Checking 3-colorability for planar graphs is NP-complete, Dailey (1980)
General graphs: given a graph G(V, F), |V| = N, and number of colors ¢

e Is it possible to color the graph? NP-complete



What does it mean NP-complete?

e NP problem: If you give me a solution, I can check it in polynomial
time (polynomial in size of the graph)

e P problem: I can find solution in polynomial time for every instance of
the problem (for every possible graph)

e NP-complete problem (Cook 1971): If this problem would have a poly-
nomial time solution, all the NP problems do!

The “million” problem: P=NP7
Is there a polynomial algorithm for any of the NP-complete problems?

TOP 3: K-satisfiability, coloring, traveling salesman



Worst versus average

Erdés-Rényi random graphs G(N, p): p probability that two vertexes are con-
nected. Average degree a = p(N — 1).

What is the relevant (nontrivial) value of a?

First moment argument: (\') > Prob(N > 0).

pN(N—1)/2 B B
<N>:qN (1—%) = exp [N (logq—l—p(N2 D logqql)]

The limit of large graphs N — o0; interesting region

2logq
log ¢ —log (¢ — 1)

l<a< —q¢=3 5.42.



The COL/UNCOL transition
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In N — oo the transition is sharp. Discontinuous even in entropy.

Idea of phase transitions in purely mathematical problems - back to 1961,
Erdés-Rényi — giant component (percolation) in random graphs.



Where the Really Hard Problems are?

Cheeseman, Kanefsky, Taylor (1991); Computational cost of the Davis-Putnam
branch and bound algorithm
We want to understand independently of any algorithm!

To know where the hard problems are
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Properties of random graphs

e Erdos-Rényi random graph ensemble: each edge present with probabil-
ity p=a/N. For N — oo, « fixed, the degree distribution is Poissonian
k

—

Pr =€

e Regular random graphs: fixed degree r. Special simplification of the
cavity equations.

e Both: loops length is or order log IV - locally tree-like structure!



Statistical physics formulation

Hamiltonian (energy function) of antiferromagnetic Potts model
H — Z (5(81, Sj)
(4,)€EE

Graph: quenched disorder.
Average free energy

(log Z) = —BF(8) = —BE + S(E)

We want to compute average (over graphs) ground state energy
O(BF)
Feo = lim ——=
S el of3

If E, also average ground state entropy

Ses = — lim (BF)

B— 00



Bethe approximation

e Approximation for lattice models, equivalent to mean field theory.

e [ixact for models on random graphs, at least in presence of one or only
few phases (e.g. ferromagnet)

Cavity method

Formulation of the Bethe approximation, which is generalizable to glassy sys-
tems (many phases, pure states).

Developed by Mézard, Parisi (1999).



Cavity method on trees
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Cavity free energy on trees

After addition of spin ¢ and all the edges (ik) the free energy is changed by
AF'J which is given by the normalization

71— — o= BAF'T

In analogy the total free energy is
F(B) =) AF' =) AFY;
¢ (i5)

where AF" is a free energy shift after addition of node 7 and all the edges
around, AFY is shift after addition of edge (7).



From trees to sparse random graphs

The above equations are also correct on graphs with loops if the loops are long
enough so that the clustering property holds (spins k£ are independent)

wkl,kg—)i L ,(pkl—)zwkg—)l — 0

SkqsSkg Skq Sko

Does it hold?

e Math: proof for matching, coloring for a@ < g, SAT for small « etc.

e Physics: local self-consistency (stability) check, computation of the spin
glass susceptibility



Average over graphs

Final order parameter is distribution P (¢! /) of 4.7 over the graph, that
is self-averaging (i.e. large graph is like average over graphs).

The self-consistent equation for P(277) have to be solved numerically in
general (population dynamics).

Simplifications for coloring:
o Color symmetry not broken: P(v; 7/) symmetric under color permuta-
tion.

e lactorization for regular graphs: w;'jj the same for every edge, locally
every edge have the same neighborhood.



1RSB: General idea

What if the clustering property does not hold?

e Simple case (ferromagnet): the pure phase decompose into few of them
(magnetization positive, negative), within those the clustering property
holds again!

e Less simple case (1RSB glass): the pure phase decompose into (expo-
nentially) many, within those the clustering property holds again!

Is that correct?

e Math: No proof yet, the standard techniques for thermodynamical limit
difficult, since with addition of one spin the system changes a lot. Less
standard techniques are not far from success (Montanari, Semerjian,
reconstruction on trees).

e Physics: local self-consistency (stability) check, computation of the spin
glass susceptibility within states and in between states.



1RSB: What do we compute

Complexity function X(F') is entropy of states of internal free energy F.
For computational reasons define “replicated” free energy as Legendre trans-
form of the complexity

—pm®(m, ) = —pmF () + X(F)

What is m?
e Legendre parameter, the same as temperature or chemical potential

e The Parisi replica symmetry breaking parameter

e Number of real replicas
What is the value of m?

e To minimize the total free energy of the system F'+ 3 (F') and keep the
complexity X (F') positive = m = 1 or maximize the “replicated” free
energy P.



1RSB: Cavity equations

Order parameter on a single graph is survey (distribution) P(4%7) of proba-
bilities v, 77 for every edge (ij). Self-consistent equation

. 1 i
PO = gy I1 [P — F((ukpemar

keV(i)—j

Average over graphs: Distribution of distributions

Computational simplifications

e Zero temperature, only energetic terms - integer fields! (Mulet, Pag-
nani, Weigt, Zecchina, 2002)

e At m =1, analogy with reconstruction on trees.

e Regular graph - factorized case



Hurraaaaayyyyy

End of the Technical Part



Results for coloring
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Only one cluster, replica symmetry correct

Few entropically unimportant clusters appear, replica symmetry still
correct

The large cluster truly splits into exponentially many small ones; m = 1,
complexity X(m = 1) > 0, RS free energy still exact, dynamically glassy
phase

The entropy condensed in a few clusters, m* < 1, complexity X(m =
m*) = 0, the true free energy larger than the RS one

No solutions anymore



Algorithmic implications
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1)+2) Monte Carlo like (simulated annealing, random walker search) algo-
rithms work

3) Monte Carlo like algorithms fails, Belief Propagation, the RS update of
probabilities 1277 works!

4) BP fails, Survey Propagation (Mézard, Zecchina, 2002), 1RSB update,

works!

5) No solutions anymore, different strategies for proving nonexistence of
solution



Few numbers and large ¢ expansion

Regular graphs
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Results for coloring

Temperature

PHASE DIAGRAM
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Stability towards 2RSB (FRSB)

Except the case of 3-coloring, the thermodynamically dominant clusters
in the COL phase are stable (also at finite temperature)

Intrinsically simpler than e.g. Sherrington-Kirkpatrick model, where
FRSB holds, yet wide variety of unexpected transitions (given above,
Back-bone like structures ...)



Things we do not know yet

Graphs with short loops!

The region in 3-coloring which is not 1RSB stable

The dynamics of decimation of the BP or SP

More efficient solution of the non-simplified functional equations

Clarify few things about the back-bone (hard fields), whitening proce-
dure



Conclusions

e In coloring (K-SAT etc.) variety of structural phase transitions

e Cavity method describes transitions exactly on random graphs, inde-
pendently on any algorithm!

e Direct implication for design of efficient algorithms!

e The path towards a rigorous proof is quite advanced.
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