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Introduction. 1D Model

Applications:
–protein synthesis
–conductivity in zeolites
–traffic flow



  

Parameters of the model:
– α - density of the particles at the source 

reservoir
– β – density of the particles at the sink 

reservoir
– ρ – density of the particles in the system
– j – current density (defined as the number of 

particles that cross vertical cross-section of 
the lattice)

Introduction. 1D Model



  

Phase diagram:

High density phase 

(                )

Low density phase   

(                  )

Max. current phase 

(                    )

Introduction. 1D Model

1/2,
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1/2,1/2

Current – density 
relationship: j = ρ(1-ρ)



  

● Square NxN lattice
● Particles move 

upward-right or 
downward-right

● Particle supply on the 
left edge and particle 
extraction on the 
right edge

● Periodic boundary 
conditions in vertical 
direction

Introduction. 2D Model



  

Applications:
– useful instrument to describe different flow 

models
– gel electrophoresis
– models of traffic flow and traffic jams

Two-dimensional model is not studied as deeply 
as one-dimensional.

Introduction. 2D Model



  

Assumptions:
– no correlations between the particles 
– replace actual particle density (0 or 1) by 
ensemble average

– system is in the steady state (current of 
particles is constant)

– density of the particles slowly changes with 
distance in horizontal direction

– density is uniform along the vertical direction

2D Regular Model



  

The change of the particle density due to 
imbalance in arrival and departure of the 
particles:

2D Regular Model

∂

∂ t
=

1
2
 x−1, y−1x−1, y11− x , y 

−
1
2
 x , y1− x1, y11− x1, y−1



  

Expand density into a power series, 
ignoring terms of order O(3):

2D Regular Model

∂

∂ t
=−x2x

1
2
xx

Continuity equation:
∂

∂ t

∂ j
∂ x

=0

j=−
1
2
x1−

Homogeneous system 
j=1−



  

Solving previous equation for        

for

2D Regular Model
 x

j1
4

 x=1
2


1
2
1−4j tanh [2 x−C 1−4j]

Describes density in high or low density 
phases or on the coexistence line

1
2
x=−2− j

for j
1
4

 x=1
2
−

1
2
4j−1 tan [ x−C 4j−1]

 Describes the phase of maximal current



  

Low density phase

2D Regular Model

For =0.2,=0.6

MFT:
Simulation:

MFT==0.2, jMFT=−
1
2
 '1−≈0.158

S≈0.207, jS≈0.159±0.0099



  

High density phase

2D Regular Model

MFT:

=0.3,=0.2

=1−=0.8

j=−
1
2
 '1−

Simulation:
S=0.79±0.0037

jS=0.16±0.004

j≈0.1575



  

Maximal current phase

2D Regular Model



  

2D Regular Model

Dependency of current on the particle density



  

Coexistence line in closed systems 
with a barrier.

2D Regular Model

Barrier – there is a probability        that a 
particle at the right edge will hop to an 
empty site on the left edge.  

Density at the left side - 

Density at the right side - 

≤1



1−

1−=1−1−

=


1



  

2D Regular Model



  

Particles occupy two 
horizontal adjacent 
cells 

There are no two 
different sub lattices

Three possible 
directions of jump

Extended part ic les. Model 1



  

Mean-field theory:
– no correlations between particles
– replace actual particle density with its average 
value
– define             as probability that particle 
occupies sites (x, y) and (x+1,y)
– define two types of density: 

- density of the particles

- coverage density (              )

Extended part ic les

 x , y

c=2p



  

Extended part ic les

Define functions:
– F(n) – probability that the particle is followed by 
n or more vacancies:

– Q(n) – probability that there is a row of exactly  
n vacancies:

F 0=1

F n1=qF n

F n=qn

Q n=F n−F n1=1−qqn



  

● Average spacing between particles:

Extended part ic les

D=2∑
n=0

∞

nQ n=2−q
1−q

● By definition D= 1


q=1−2
1−



  

Extended part ic les

Probability to jump to 1: F 1



  

Jump to positions 2 and 3  requires two 
adjacent vacancies. Probability of this 
configuration:

Extended part ic les

P=∑
m=0

∞

F 2m=
1−22

1−



  

Current density:

Extended part ic les

j=
1
3
F 1

2
3
P=

1−23−4
31−

Since extended particles are twice as 
massive as regular particles:

j=
21−23−4

31−



  

Extended part ic les. Model 2

Particles occupy sites (x, y)  and (x, y+1)



  

Using functions defined earlier – F(n) and 
Q(n):

Extended part ic les

j=
1−22

1−

In order to get mass current density we 
multiply this equation by 2:

j=2
1−22

1−



  

Extended part ic les
Horizontally extended particles:



  

Extended part ic les



  

Extended part ic les
Vertically extended particles:



  

Extended part ic les



  

Particles occupy one lattice site

Breaking          symmetry of particle flow:
– probability to jump upward-right is p
– probability to jump downward-right is 1-p 

Vertical part ic le drift

y− y



  

Assumptions:
● No correlations between particles
● Substitute probability of the site to be 
occupied by its average value (average 
density)
● Density slowly changes in space
● To get current through (x, y):

– calculate current components through the 
planes located half a lattice spacing away

– calculate average

Vertical part ic le drift



  

Right plane:

Vertical part ic le drift

j x x
1
2
 = 1− p x , y1− x1, y1

 p x , y1− x1, y−1

j y x
1
2
 = 1− p x , y1− x1, y1

− p x , y1− x1, y−1
Left plane:
j x x−

1
2
 = 1− p x−1, y−11− x , y 

 p x−1, y11− x , y

j y x−
1
2
 = 1− p x−1, y−11− x , y 

− p x−1, y11− x , y



  

Horizontal component of the current:

Vertical part ic le drift

j x=1−−
1
2
∂

∂ x
−

1
2
1−2p ∂

∂ y

Vertical component of the current:

j y=1−2p1−−
1
2
∂

∂ y
−

1
2
1−2p ∂

∂ x



  

Away from the boundaries and domain walls:

Vertical part ic le drift

j x=1−

j y=1−2p1−

Critical values:

c=
1
2

j x
max=

1
4,

j y
max=

1
4
1−2p



  

Vertical part ic le drift.  

Horizontal current 
component

Vertical current 
component



  

● Introduce an obstacle into the system – 
set of fixed particles:
● Spatial inhomogeneity     current 
inhomogeneity
● Non-uniform density distribution: 

–“traffic jam” in front of the obstacle
–“shadow” behind the obstacle

System with an obstacle





  

Using the same MFT assumptions:

System with an obstacle

∂

∂ t
= [ x−1, y−1x−1, y1][1− x , y ]

−  x , y[2− x1, y−1− x1, y1]

Assume that system is in steady state and 
expand density into the power series:

0=
∂

2


∂ x2
∂

2


∂ y2−2
∂1−

∂ x



  

Density is uniform far from an obstacle (   ):

System with an obstacle
∞

−S
∂ x y

∂ x
=
∂

2 f

∂ x2 
∂

2 f

∂ y2 −2c
∂ f
∂ x

f =−∞ c=1−2∞Where and
LHS – dipole source of strength S

 x , y=∞S
∂

∂ x
ecxK 0c x

2 y2

K 0=∫
0

∞
cosrt dt

 t21
modified Bessel function of the 
second kind

For large argument:K 0r ≈
e−r

r



  

For x < 0:

For x > 0:

In transverse direction:

In front of the obstacle density changes 
from          to         . There is characteristic 
length:  

System with an obstacle

 x ,0≈∞Sce
−2c∣x∣

 x ,0≈∞−Sc cx
−3 /2

0, y≈∞Sce
−∣cy∣

1/21/2

=
1
c
=

1
1−2∞



  

System with an obstacle



  

System with an obstacle



  

● Regular 2D ASEP model:
– relationship between current and density
– expressions for density profiles in all three 

phases and on the coexistence line
– results closely resemble results for 1D 

model

● 2D ASEP with large particles:
– relationship between current and density
– because of the broken particle – hole 

symmetry, results differ from those of 
regular 2D model

Summary:



  

● 2D ASEP with vertical particle drift:
– relationship between current and density 

for both current components (vertical 
and horizontal)

● 2D ASEP with immovable obstacle:
– density profiles in the vertical and 

horizontal directions

Summary:



  

● Regular 2D ASEP: behavior and width of the 
domain wall

● System with the extended particles: 
particles of different size; mixture of particles 
with different size.

● System with the immovable obstacle. 
shape and characteristic dimensions of the 
region of increased density in front of the 
obstacle and “shadow” behind it; current in 
the system.

Open questions:
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