Nanočástice oxidů železa připravené reakcí v pevné fázi : mechanismus tvorby, vlastnosti, aplikace

Proč nanočástice oxidů železa?

katalyzátory, nanopigmenty, sorpčně-purifikační procesy, plynové senzory kontrastní látky při zobrazování metodou MRI, biomagnetické separace léčba nádorových onemocnění metodou hypertermie magnetické nosiče léčiv a cytotoxických látek ferofluidní kapaliny – audio technologie magnetická záznamová media magnetokalorické chlazení

Proč reakce v pevné fázi?

Výhody "prekurzorových syntéz":

levné a jednoduché metody

možnost přípravy (výroby) velkého množství nanomateriálu

Ize připravit nanokompozity s vodorozpustnou matricí

dovolují připravit nanočástice vzácných strukturních forem a extrémně malé amorfní nanočástice

> umožňují řídit chemické složení, strukturu a velikostní distribuci nanočástic pomocí vlastností prekurzoru (struktura, morfologie, velikost částic) a reakčních podmínek (teplota, atmosféra, difúzní podmínky, vrstva materiálu, vnější magnetické pole..)

fáze	prekurzor	teplota	velikost	reference
α-Fe ₂ O ₃	Mg _{3-x} Fe _x Al ₂ Si ₃ O ₁₂	1100 °C	15-20 nm	R. Zboril, M. Mashlan, K. Barcova, J. Walla,E. Ferrow, P. Martinec: <i>Phys. Chem. Miner</i>.30 (2003) 620-627.
β-Fe ₂ O ₃	NaCl, Fe ₂ (SO) ₃	400 °C	15-22 nm	R. Zboril, M. Mashlan, D. Petridis: Chem. Mater. 14 (2002) 969
β-Fe ₂ O ₃	$Fe_2(SO)_3$	600 °C	40-50 nm	R. Zboril, M. Mashlan, D. Krausova, P. Pikal: <i>Hyperfine Interact.</i> 121-122 (1999) 497.
γ-Fe ₂ O ₃	$Fe_2(C_2O_4)_3$	250 °C	7-12 nm	A. Bourlinos, R. Zboril, D. Petridis: <i>Micropor. Mesopor. Mater.</i> 58 (2003) 155.
γ-Fe ₂ O ₃	Fe _{3-x} Mg _x Al ₂ Si ₃ O ₁₂	900 °C	4-7 nm	R. Zboril, M. Mashlan, K. Barcova, M. Vujtek: <i>Hyperfine Interact.</i> 139 , (2002) 597.
ε-Fe ₂ O ₃	Fe ₂ (SO ₄) ₃	530 °C	40-60 nm	R. Zboril, M. Mashlan, V. Papaefthymiou, G. Hadjipanayis: <i>J. Nucl. Radioanal. Chem.</i> 255 (2003) 413.
amFe ₂ O ₃	Fe ₄ [Fe(CN) ₆] ₃	230 °C	1-3 nm	R. Zboril, L. Machala, M. Mashlan, V. Sharma: <i>Crystal Growth & Design</i> 4 , (2004) 1317.
amFe ₂ O ₃	FeC ₂ O ₄	180 °C	1-2 nm	M. Mashlan, R. Zboril, et al. J. Metastab. Nanocryst. Mater. 20-21 (2004) 641.
Fe ₃ O ₄ /MgO	am. Fe ₂ O ₃ , Mg	300 °C	30-40 nm	O. Schneeweiss, R. Zboril, N. Pizurova, M. Mashlan, E. Petrovsky, J. Tucek: <i>Nanotechnology</i> 17 (2006) 607.
Fe ₃ O ₄	FeC ₂ O ₄	230 °C	8-12 nm	M. Hermanek, R. Zboril, et al., <i>J. Mater. Chem.</i> 16 (2006) 1273.

Zboril et al. *Hyperfine Interact.* **139**, 597-606 (2002).

Kluwer Academic Publishers, Dordrecht, 2003, pp 21-30.

Nanočástice β-Fe₂O₃ připravené reakcí síranu železitého s chloridem sodným na vzduchu

400 °C, vzduch, postprocesní chemická separace

 $30\text{NaCl} + 10\text{Fe}_2(\text{SO}_4)_3 + 15/2\text{O}_2 \rightarrow$ $6\text{Na}_3\text{Fe}(\text{SO}_4)_3 + 4\text{NaFe}(\text{SO}_4)_2 + 5\beta\text{-Fe}_2\text{O}_3 + 4\text{Na}_2\text{SO}_4 + 15\text{Cl}_2$

AFM vertikální rozměry: 14-22 nm TEM laterální rozměry:15-25 nm

Nanočástice β -Fe₂O₃ připravené reakcí síranu železitého s chloridem sodným na vzduchu

Mössbauerova spektra

 $T_N \sim 115 \text{ K}$

Zboril et al: Chem. Mater. 14, 969-982 (2002).

kubická struktura se dvěma neekvivalentními pozicemi Fe(III)

- jediná strukturní forma oxidu železitého paramagnetická při pokojové teplotě
- mimořádně nízká teplota magnetického přechodu
- nanočástice termicky stabilní až do 550 °C, úzká
 velikostní distribuce ⇒ nanopigmenty

Nanočástice amorfního Fe₂O₃ z teplotní konverze Fe₄[Fe(CN)₆]₃

k=1,8·10⁻² min⁻¹ vs. literární data (k=0,9·10⁻² – 8,3·10⁻⁵ min⁻¹) Huang *et al.*, *Wat. Res.* 35, 2291-2299, 2001

> excelentní katalytické vlastnosti
 > nejvyšší dosažená plocha povrchu
 ⇒ sorpčně - purifikační procesy

magnetické separace

Nanočástice E-Fe₂O₃ ze síranu železitého

Zboril et al., J. Nucl. Radioanal. Chem. 255 (2003) 413.

magnetická záznamová média

O. Schneeweiss, R. Zboril, et. al: Nanotechnology 17, 607-616 (2006).

Výhody použité matrice:

 nanokrystalický charakter, nízká molární hmotnost, vysoká chemická a termická stabilita, netoxicita, biokompatibilita

Aplikace:

- > biomagnetické separace
 - magnetické nosiče

Nanočástice γ-Fe₂O₃ připravené teplotní transformací šťavelanu železnatého

 $2FeC_2O_4 + 3/2O_2 \xrightarrow{180 \text{ °C, vzduch, tenká vrstva}} \gamma Fe_2O_3 + 4CO_2$

superparamagnetické nanočástice ⇒ výborný kontrastní účinek při zobrazování metodou magnetické rezonance

A,D,E,F...superparamagnetické nanočástice γ-Fe₂O₃ srovnatelné koncentrace připravené roztokovými syntézami

B...slepý vzorek

C.. nanočástice γ-Fe₂O₃ připravené prekurzorovou syntézou z FeC₂O₄

M. Hermanek, R. Zboril, et al., *J. Mater. Chem.* **16** (2006) 1273.

Zboril et al., in: Industrial Applications of the Mössbauer Effect, Proceedings of the American Institute of Physics (AIP), Vol. 765, eds. M. Gracia, J.F. Marco, F. Plazaola, AIP, Melville, New York, 2005, pp. 257-262.

Nanokompozit – Fe₃O₄- montmorillonite

Nanočástice Fe₃O₄ na montmorilonitové matrici

Rozměr Fe₃O₄ nanočástic cca 30 nm

MRI zobrazení střevního traktu

500 n

Perspektivy nanovýzkumu v CVN bionanomateriály

