

Diamond in Nanoscale Biosensing

Bohuslav Rezek

Institute of Physics AS CR

Acknowledgements

Dr. Christoph Nebel Dr. Dongchan Shin Dr. Hideyuki Watanabe Diamond Research Center AIST, Tsukuba, Japan

Outline

- Why nanoscale biosensing?
- Why diamond?
 - Hydrogen-terminated and oxidized diamond surfaces
- Attachment of DNA to diamond
 - Photo- and electrochemical methods
 - Fluorescence microscopy
- Structural and mechanical properties of DNA
 - Atomic force microscopy in liquids
 - Optimized detection of DNA thickness (phase shift)
 - Detailed DNA morphology
 - Geometric model → DNA orientation and density
 - Mechanical stability of DNA bonding
- Comparison with other substrate materials
- Conclusion

Biosensing

- **Crucial** for health care, medical treatment, drug development, ...
- Typical: recognition of DNA sequences
 - Encoded genetic information and functions
 - Unique matching of base pairs (A-T,C-G)
- Big machines can do it well, but...
- Nanoscale biosensing
 - higher sensitivity (<fM), lower cost
 - portable and remote diagnostics (aging society!)
 - Needs substrate to carry DNA
 - Needs new ways of detection

Diamond and biosensing

- Diamond is very interesting for bio-sensors
 - semiconductor (wide band gap)
 - considered highly biocompatible
 - transparent (optical sensing)
 - hard, durable, and stable...
 - well accepted by public

Diamond surface functionalization

- How to make diamond?
 - from methane using plasma assisted chemical vapor deposition (CVD)
 - polycrystalline: on silicon or glass
 - monocrystalline: on diamonds (homoepitaxy), advantageous for research

- How to attach molecules to "inert" diamond?
- Surface can be functionalized by atoms
 - plasma techniques, wet chemical techniques
 - we use H-terminated and oxidized surfaces
- Atoms can be replaced by organic molecules
 - Photochemical reactions
 - Electrochemical reactions

Attachment of linker molecules to diamond

1 minute

reaction with hydrogen atoms

conductive substrate required

Linking of DNA molecules

Probing DNA by Fluorescence Microscopy

common technique

fluorescence (FAM)

fluorescence (Cy5)

μ 100 μm

→ DNA present on H-terminated!

(oxidized areas not fully dark)

→ DNA present!

Crucial for bio-sensor functionality: morphology, arrangement, and stability of DNA

beyond abilities of fluorescence

AFM in buffer solutions

BUFFERS	SSPE/SDS buffer 2x SSPE/ 0.2% SDS buffer, pH=7.4 by NaOH
	advantages: bio-environment, no meniscus at tip
AFM TIPS	silicon cantilevers (~75kHz in air, ~29kHz in liquid) force calibration: 56 nN/V
REGIMES	contact (CM-AFM), oscillatory (OM-AFM), phase detection

Thickness of DNA layers

- step in height ~ 70-80 Å resolved
- but DNA is soft matter \rightarrow true DNA layer thickness?
- ➔ AFM measurement optimized by monitoring phase contrast

Phase contrast in OM-AFM

diamond-DNA: phase contrast ~ difference in elastic properties

phase contrast influenced by strength of tip-surface interaction

 \rightarrow adjusted by **AFM setpoint ratio** (A_{SP}/A₀)

AFM phase images

diamond DNA

 $A_{SP}/A_0 = 0.40$

Z range 27° H 100 nm

material contrast diamond – DNA

 $A_{SP}/A_0 = 0.95$

Z range 1.6° H 100 nm

no contrast, DNA not affected by tip \rightarrow thickness?

Extrapolated DNA thickness

As tip-surface distance increases (setpoint ratio \rightarrow 1)...

- → DNA/diamond phase contrast decreases (less tip-DNA interaction)
- \clubsuit thickness increases \rightarrow extrapolated DNA thickness

(error bar ~ RMS surface roughness)

DNA layer morphology

OM-AFM image in liquid

Z range 3 nm

H 10 nm

Z range 3 nm

Features

- surface modulations ~ 30 nm width (typical for closely packed DNA)
- roughness RMS ~ 6-8 Å << thickness

closely packed layer, no pinholes

- fine structure ~ DNA?

substrate ->

Mechanical stability of DNA on diamond

Mechanical stability of DNA on diamond

2.5

2.5

Comparison of DNA removal forces

diamond superior with regard to DNA bonding stability, important for bio-sensor reproducibility

<u>note:</u> only approximate comparison, because the parameters and threshold values not clearly specified in the literature

18

Conclusions

- DNA attached to mono-crystalline diamond
 - by photochemical and electrochemical methods
- Functionality as DNA-sensor demonstrated
 - by fluorescence images of complementary DNA
- Properties of DNA layers on diamond resolved by AFM in liquids:
 - closely packed, no pinholes, RMS roughness < 1 nm
 - DNA molecules inclined, under angle of 29-36°
 - mechanically stable for forces up to 76 nN (good!), indicates covalent bonding

	threshold force	DNA thickness	angle	DNA bonding
photochemical process				
H-terminated surface	(45 ± 12) nN	(76 ± 8) Å	31°	covalent
oxidized surface	< (6 ± 4) nN	(20 ± 4) Å	n/a	non-covalent
electrochemical process				
H-terminated surface	(76 ± 18) nN	(82 ± 5) Å	36°	covalent
oxidized surface	(34 ± 9) nN	(69 ± 5) Å	29°	covalent

[B. Rezek et al., J.Am.Chem.Soc. 128 (2006) 3884]