Methods of electronic structure mapping in real space

Martin Švec

Structure and dynamic properties of surfaces group, dpt. of Thin Films, Institute of Physics, Academy of Sciences of the Czech Republic

Team members:

Pavel Shukrinov, Pavel Jelinek, Viktor Dudr, Pingo Mutombo, Vladimír Cháb

Background: STM

History

1971 Topografiner: Russel D. Young

1981 STM: G. Binnig & H. Rohrer => Nobel Prize 1986

SCANNING TUNNELING MICROSCOPY HIGH VOLTAGE DAI PC VAR.GAIN VI Vref Vref

Properties of STM

- Small tunnel junction area, provides atomic resolution ..nanotechnology
- Primary measured quantity is total flux of electrons
- The tip height is regulated or not (topography or current)

Applications in surface science

- Crystal surfaces: semiconductor, metal, etc.
- Adsorption of anorganic and organic materials
- Study of diffusion
- Nanomanipulation
- Local spectroscopies (LDOS, spin-resolved, workfunction, molecule vibrations, electroluminiscence)

Electron spectroscopy

Basic expression:

$$dI/dV \propto \rho_{sample}(\vec{r}\,,E_F\!-\!eV)D(E_F\!-\!eV)$$

=> I-V or dI/dV measurement is crucial for LDOS mapping

Two elementary techniques:

digital dI/dV: an I-V curve taken in every "pixel" of scanning, derivative calculated

phase-sensitive **lock-in**: dI/dV retrieved directly without interrupting the scanning process

Note: In an ideal case, STS is comparable with photoemission valence band & inverse photoemission spectra

Lock-in technique

Response of the tunneling junction

response:

modulation:

Taylor series of the response:

$$I(V) = I(V_0) + \frac{dI}{dV}\Big|_{V_0} \cdot A \cdot \sin(\omega t) + \frac{d^2I}{dV^2}\Big|_{V_0} \cdot A^2 \cdot \frac{\cos(2\omega t)}{4} + \dots$$

Block diagram

Examples: Si(111)-7x7

Examples: Si(111)-7x7

STS constructed of the lock-in maps

ARUPS: Losio et. al. Phys. Rev. **B 61**, 10845

Pb/Si(111) < 1ML

Pb evaporation on Si(111)-7x7 + heating up to 600K

incomplete layer+ 1x1 islands

U=-1.1V, I=0.5nA, standard topography, size of 100x100 nm²

Pb/Si(111) < 1ML

1x1 islands: vanishing island boundary

Pb/Si(111) 1/6ML: mosaic

Pb evaporation on Si(111)-7x7 + heating up to 700K

= mosaic structure

U=-1.5V, I=0.5nA, standard topography, size of 200x200 nm²

Mosaic: 100x100nm²

Mosaic: LDOS study

Summary & Conclusion

Real-space LDOS probing

- sensitive to chemical states, even of identical atoms
- distinguishes different species
- provides a complete view of system's electronic behaviour
 ...nanoelectronics
- a complementary method to angle-resolved photoemission
- at most localized among other methods

Outlook:

co-adsorbed systems LDOS (improved atom identification)