APPLICATIONS OF MATHEMATICS, Vol. 50, No. 4, pp. 341-353, 2005

On fully developed flows of fluids with a pressure
dependent viscosity in a pipe

Macherla Vasudevaiah, Kumbakonam R. Rajagopal

M. Vasudevaiah, Department of Mathematics, Anna University, Chennai, India; K. R. Rajagopal, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, U.S.A., e-mail: krajagopal@mangr.tamu.edu

Abstract: Stokes recognized that the viscosity of a fluid can depend on the normal stress and that in certain flows such as flows in a pipe or in channels under normal conditions, this dependence can be neglected. However, there are many other flows, which have technological significance, where the dependence of the viscosity on the pressure cannot be neglected. Numerous experimental studies have unequivocally shown that the viscosity depends on the pressure, and that this dependence can be quite strong, depending on the flow conditions. However, there have been few analytical studies that address the flows of such fluids despite their relevance to technological applications such as elastohydrodynamics. Here, we study the flow of such fluids in a pipe under sufficiently high pressures wherein the viscosity depends on the pressure, and establish an explicit exact solution for the problem. Unlike the classical Navier-Stokes solution, we find the solutions can exhibit a structure that varies all the way from a plug-like flow to a sharp profile that is essentially two intersecting lines (like a rotated V). We also show that unlike in the case of a Navier-Stokes fluid, the pressure depends both on the radial and the axial coordinates of the pipe, logarithmically in the radial coordinate and exponentially in the axial coordinate. Exact solutions such as those established in this paper serve a dual purpose, not only do they offer solutions that are transparent and provide the solution to a specific but simple boundary value problems, but they can be used also to test complex numerical schemes used to study technologically significant problems.

Keywords: pressure dependent viscosity, implicit constitutive theory, Poiseuille flow

Classification (MSC 2000): 76A99


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
Subscribers of Springer need to access the articles on their site, which is http://www.springeronline.com/10492.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Applications of Mathematics]