
On theories of bounded arithmetic for NC 1

Emil Jeřábek∗

Institute of Mathematics of the Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

December 9, 2008

Abstract

We develop an arithmetical theory VNC 1
∗ and its variant VNC 1

∗, corresponding to
“slightly nonuniform” NC 1. Our theories sit betweenVNC 1 and VL, and allow evaluation
of log-depth bounded fan-in circuits under limited conditions. Propositional translations
of ΣB

0 (LVNC1
∗
)-formulas provable inVNC 1

∗ admit L-uniform polynomial-size Frege proofs.

1 Introduction

In proof complexity, there is a well-known general correspondence between theories of bounded
arithmetic, complexity classes, and propositional proof systems (see e.g. [12, 6, 8, 9]). A
theory T corresponds to a complexity class C if the provably total computable functions of
T are the C-functions. A propositional proof system P corresponds to T if the propositional
translations of theorems of T of certain complexity have polynomial-size proofs in P , and T

proves a reflection principle for P .
Here we are particularly concerned about theories corresponding to variants of the class

NC 1. Several theories corresponding to uniform NC 1 (i.e., ALOGTIME , UE-uniform NC 1)
and to the Frege propositional proof system have been described in the literature: an equa-
tional theory ALV by Clote [5], theories AID and AID+Σb

0-CA by Arai [1], and a second-order
theoryVNC 1 by Cook and Morioka [7]. (All these theories are more or less equivalent: VNC 1

is RSUV -isomorphic to AID + Σb
0-CA, which is in turn a conservative extension of ALV .)

Uniform NC 1 is a robust and well-behaved complexity class, but it is too strict for cer-
tain applications, namely those involving circuit evaluation. Nonuniform complexity classes
usually consist of languages definable by a family of polynomial-size Boolean circuits sat-
isfying certain requirements (e.g., concerning their depth, fan-in, or available connectives):
this holds for example for nonuniform AC k, NC k, TC 0, P ; in particular, nonuniform NC 1-
languages are given by a family of bounded fan-in circuits of logarithmic depth. Typically, the
corresponding uniform class consists of languages definable by a sufficiently uniform family
of the same kind of circuits, and moreover, the class includes the universal language which

∗Supported by grant IAA1019401 of GA AV ČR, and grant 1M0545 of MŠMT ČR.

1

evaluates circuits of this kind described in a natural way by binary strings. This is not true
for NC 1. Even DLOGTIME -uniform (i.e., UD-uniform) families of log-depth circuits define
a class (presumably) still larger than uniform NC 1; we can only define uniform NC 1 using
circuits by employing the artificial description by so-called extended connection languages of
Ruzzo [13]. Likewise, the universal evaluator for log-depth circuits is (presumably) not in
NC 1 (even nonuniform).

Consequently,VNC 1 (and friends) do not prove that one can evaluate log-depth circuits, or
even a uniformly given (say, definable by a ΣB

0 -formula) sequence of log-depth circuits. There
are situations where evaluation of such circuits would be desirable in an NC 1-theory. The
particular application we have in mind, and the main motivation for this work, is the paper
[11], which aims at formalizing a version of the Ajtai–Komlós–Szemerédi sorting network in
bounded arithmetic (under the assumption that we can formalize construction of suitable
expander graphs). On the one hand, we need the formalization to proceed in an NC 1-theory,
and in particular, in a theory which translates to polynomial-time Frege proofs: the point is
that this implies polynomial simulation of the sequent calculus (i.e., Frege) by the monotone
sequent calculus MLK , using results of Atserias et al. [2]. On the other hand, the sorting
network is essentially a monotone log-depth circuit which we need to evaluate; it is uniformly
described, but its extended connection language is not available.

To address these issues, we introduce new theories VNC 1
∗ and VNC 1

∗, corresponding to
a subclass of NC 1 slightly larger than uniform NC 1, which allow evaluation of sufficiently
uniform families of log-depth circuits. We work with second-order theories in the spirit of
Zambella [14]. The theoryVNC 1

∗ is formulated in the usual language of second-order bounded
arithmetic; it includes V 0, and a derivation rule allowing to evaluate a kind of monotone log-
depth bounded fan-in circuits described by formulas without second-order parameters which
are provably ∆B

1 . The theory VNC 1
∗ has a richer language LVNC 1

∗
including comprehension

function symbols for ΣB
0 -formulas, and function symbols for evaluation of monotone log-

depth bounded fan-in circuits described by open formulas (in the extended language) without
second-order parameters.

In Section 4, we prove basic properties of our new theories: VNC 1
∗ contains VNC 1 and is

contained in VL,VNC 1
∗ is an open theory conservatively extendingVNC 1

∗ (more precisely, it is
an extension ofVNC 1

∗ by ΣB
1 -definitions),VNC 1

∗ is ΣB
1 -axiomatizable, ∃ΣB

1 -formulas provable
in VNC 1

∗ are witnessed by terms in VNC 1
∗ (in particular, provably ∆B

1 -formulas of VNC 1
∗

are equivalent to open formulas), the provably total computable functions of VNC 1
∗ include

uniform NC 1-functions, and are included in L-uniform NC 1-functions, andVNC 1
∗ extended by

the axiom of choice for ∃ΣB
1 -formulas is ∃ΣB

1 -conservative overVNC 1
∗. To show the latter, we

prove a general theorem on conservativity of the axiom of choice over theories meeting certain
requirements. In Section 5 we show that propositional translations of ΣB

0 (LVNC 1
∗
)-theorems

ofVNC 1
∗ have L-uniform polynomial-size Frege proofs.

2

2 Complexity classes

We recall that a (bounded fan-in) circuit in n inputs is a directed acyclic graph whose nodes
are labelled by gate types ∧, ∨, ¬, or input variables xi, i < n. Input nodes have fan-in 0,
¬-gates have fan-in 1, and ∧ and ∨-gates have fan-in 2. One node of the circuit is designated
as the output node. The circuit computes a Boolean function f : 2n → 2 in the obvious way.
The depth of a circuit is the maximal length of a path in the circuit. A formula is a circuit
in which all nodes save the output have fan-out 1.

If C is any class of languages, we define FC to be the class of functions f(~x) such that
|f(~x)| is at most polynomial in |~x|, and the bit-graph

{〈~x, i〉 | the ith bit of f(~x) is 1}

is in C. We will sometimes call functions f ∈ FC just C-functions.
A language L is in nonuniform NC 1 if there exists a family {Cn | n ∈ ω} of circuits such

that Cn computes the characteristic function of L ∩ 2n, and the depth of Cn is O(log n) (in
short, Cn is a log-depth circuit). Equivalently, L is in nonuniform NC 1 if it is computable in
a similar way by a family of polynomial-size formulas.

Let U be a complexity class. A language L is in U -uniform NC 1 if it is computable by
a sequence {Cn | n ∈ ω} of log-depth circuits such that given n in unary, we can compute
the description of Cn by a U -function. Since this definition may be sensitive to details of the
chosen representation of circuits, we make it more precise using the terminology of Ruzzo [13].
Given a node x in a circuit C, we fix an ordering of its input nodes, and denote by x(i) the ith
input of x. The direct connection language LDC(C) of a family of circuits C = {Cn | n ∈ ω},
where Cn has n inputs, is a set of tuples 〈n, x, p, y〉, where n is an integer given in unary, x
is a binary string identifying a node in a circuit, p ∈ {ε, 0, 1}, and y is either another string
denoting a node, or a gate type from {xi,∧,∨,¬}. It is defined by

LDC(C) = {〈n, x, ε, t〉 | node x in Cn is a t-gate} ∪ {〈n, x, p, y〉 | p ∈ {0, 1}, x(p) = y in Cn}.

We define U -uniform NC 1 to consist of languages L computable by a family C of log-depth
circuits with node labels of length |x| = O(log n) such that LDC(C) ∈ U .

Fully uniform NC 1 is defined as ALOGTIME , the languages computable by an alternating
Turing machine in O(log n) steps. Here and below, Turing machines supposed to work in
sublinear time do not have the usual input tape. Instead, there is a special index type, and
read states. If the machine enters a read state with a, k written on the index tape, where a
is a symbol of the input alphabet, and k is a binary integer, it continues in one of two given
states according to whether the kth symbol of the input is a.

Uniform NC 1 (presumably) does not coincide with U -uniform NC 1 for any class U . How-
ever, we can define it using circuits as follows. We extend the x(i) notation so that if p is a
binary string, x(p) is the node we obtain by following the path which starts in x, and moves
to the left or right input according to successive bits of p. The extended connection language

3

LEC(C) of a family C = {Cn | n < ω} of circuits is defined by

LEC(C) = {〈n, x, ε, t〉 | node x in Cn is a t-gate}
∪ {〈n, x, p, y〉 | p ∈ {0, 1}∗, 0 < |p| ≤ log n, x(p) = y in Cn}.

Then a language L is in uniform NC 1 if and only if it is computable by a family C of log-
depth circuits such that LEC(C) is computable in DTIME (O(log n)). The class does not
change if we allow LEC(C) to be in AC 0 or ATIME (O(log n)). Here, (uniform) AC 0 can
be defined as languages computable by an alternating Turing machine in time O(log n) with
O(1) alternations.

Buss [3] has shown that one can evaluate in uniform NC 1 Boolean formulas represented
as strings in the usual infix notation. We can define the extended connection language for a
single circuit (rather than sequence) in a natural way, and represent it as a polynomial-size
string. Log-depth circuits in this representation can be also evaluated in uniform NC 1 (this
is implicit in Ruzzo [13]). On the other hand, evaluation of log-depth circuits represented
by the direct connection language (or equivalent form) is not known to be possible even
in nonuniform NC 1, but it can be done in logarithmic space (L). Regarding the former,
we observe the following reduction of a combinatorial problem which is apparently not in
nonuniform NC 1:

Proposition 2.1 The following problem is AC 0-reducible to evaluation of bounded fan-in
log-depth circuits (described by LDC). Given a directed graph G on n vertices with bounded
out-degree, vertices x, y ∈ G, and a number d ≤ log n, determine whether y is reachable from
x in at most d steps.

Proof: Without loss of generality assume that G contains all self-loops. We construct a
circuit with d + 1 layers, where each layer is labeled by nodes of G. Every node u on layer
l+ 1 is a disjunction gate, and its inputs are nodes v on layer l such that u→ v is an edge of
G. We initialize the bottom layer by assigning 1 to node y, and 0 to all other nodes, and we
evaluate the circuit. Then the value of node x on the top layer is 1 iff y is reachable from x

in d steps. �

A kind of converse also holds: it can be shown that an algorithm for the problem described in
Proposition 2.1 can be used to transform a direct connection language of a log-depth circuit
to its extended connection language, which can be evaluated in uniform NC 1.

3 Theories

We will work with second-order (i.e., two-sorted) arithmetical theories as in [14, 9], but
for convenience we include the function |x| = dlog2(x + 1)e among the basic symbols. Our
theories thus have two sorts of variables: numbers, denoted by lowercase letters, and finite sets
or strings, denoted by uppercase letters. The basic language is L0 = 〈0, s,+, ·, |x|,≤,∈, |X|〉.

4

The theory BASIC consists of the axioms

x+ 0 = x x+ s y = s(x+ y)

x · 0 = 0 x · s y = x · y + x

s y ≤ x→ y < x x 6= 0 → ∃y x = s y

x ∈ X → x < |X| sx = |X| → x ∈ X
|0| = 0 x 6= 0 → |x+ x| = s|x|
∀x (x ∈ X ↔ x ∈ Y) → X = Y |s(x+ x)| = s|x|

where x < y is an abbreviation for x ≤ y ∧ x 6= y. We also write X(x) for x ∈ X. We define
the constants 1 = s 0, 2 = s s 0, 3 = s s s 0, . . . , and we will often write x+ 1 for sx (the two
expressions being equal by the BASIC axioms). We introduce the bounded quantifiers

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ⇔ ∀x (x ≤ t→ ϕ),

∃X ≤ t ϕ⇔ ∃X (|X| ≤ t ∧ ϕ),

∀X ≤ t ϕ⇔ ∀X (|X| ≤ t→ ϕ),

where t is a term not involving x or X (respectively), and similarly for strict inequalities. A
formula is bounded if it uses only bounded quantifiers. A bounded L0-formula without set
quantifiers is called ΣB

0 or ΠB
0 . Inductively, ΣB

i+1 consists of formulas of the form

∃X1 ≤ t1 . . .∃Xn ≤ tn ϕ

for ϕ ∈ ΠB
i , and ΠB

i+1 consists of formulas of the form

∀X1 ≤ t1 . . .∀Xn ≤ tn ϕ

for ϕ ∈ ΣB
i . A formula is Σ1

1 if it consists of a block of second-order existential quantifiers
followed by a ΣB

0 -formula. A predicate is ΣB
0 -definable in the standard model iff it is com-

putable in AC 0, and for i > 0, the ΣB
i -definable (ΠB

i -definable) predicates coincide with the
levels ΣP

i (ΠP
i) of the polynomial hierarchy. Note that we use ΣB

i and ΠB
i to denote formulas

of the basic language L0 only. If we expand the definition to allow atomic formulas in a richer
language L, we will call the corresponding classes ΣB

i (L) and ΠB
i (L), respectively.

If Γ is a set of formulas, the Γ-comprehension axiom is the schema

(Γ-COMP) ∃X ≤ x∀u < x (u ∈ X ↔ ϕ),

where ϕ ∈ Γ has no free occurrence of X. We define the theory V 0 as BASIC + ΣB
0 -COMP .

The theoryVNC 1 is axiomatized over V 0 by

∃Y ≤ 2a∀x < a [(Y (x+ a) ↔ I(x))

∧ (Y (x) ↔ ((G(x) ∧ (Y (2x) ∨ Y (2x+ 1))) ∨ (¬G(x) ∧ Y (2x) ∧ Y (2x+ 1))))].

5

The meaning is that we can evaluate a monotone formula laid out in a balanced binary tree,
represented by nonzero numbers below 2a so that nodes x < a are conjunction or disjunctions
(according to G(x)) of nodes 2x and 2x+ 1, and nodes x ≥ a are truth constants given by I.

The theory VL is axiomatized over V 0 by the axiom

∀x < a∃!y < aF (x, y) → ∃P ((P)0 = 0 ∧ ∀v < aF ((P)v, (P)v+1)),

where P encodes a sequence of numbers, and (P)v is the vth member of the sequence (see [9]
for details of the sequence coding). The meaning is that we can iterate a number function, or
equivalently, that we can trace a path in a directed graph where each node has out-degree 1.

Let ϕ(d, x, y) be a formula, possibly with other free variables. We put

ϕ∗(d, x, y) ⇔ ϕ(d, x, y) ∧ (∀z < y ¬ϕ(d, x, z) ∨ ∀z > y ¬ϕ(d, x, z)),

eval(n,m,ϕ, I, Y) ⇔ ∀x < n [(Y (0, x) ↔ I(x))

∧ ∀d < m (Y (d+ 1, x) ↔ ((2 | d ∧ ∃y < n (ϕ∗(d, x, y) ∧ Y (d, y)))

∨ (2 - d ∧ ∀y < n (ϕ∗(d, x, y) → Y (d, y))))],

where Y (d, x) stands for dn+x ∈ Y . (By abuse of notation, we include ϕ among the arguments
of eval to indicate the dependence of eval on ϕ, even though ϕ is a formula, not a variable.
Note that free variables of eval include parameters of ϕ, i.e., its free variables other than
d, x, y.) The meaning of eval is that Y is the evaluation of a bounded fan-in monotone circuit
described by ϕ on input I. The circuit consists of m+ 1 layers, each with n nodes. Nodes on
layer 0 are truth constants given by I. Layers d > 0 consist of alternating disjunction (odd d)
and conjunction (even d) gates. Gates on level d can only use nodes on level d− 1 as inputs.
The formula ϕ(d, x, y) means that node x on level d+ 1 uses node y on level d as input. The
formula ϕ∗ is actually employed instead of ϕ to force each gate to have at most two inputs.

We defineVNC 1
∗ to be the closure of V 0 under the derivation rule

(∆B
1 -SCV)

ϕ↔ ¬ϕ′

∃Y ≤ (|m|+ 1)n eval(n, |m|, ϕ, I, Y)
,

where ϕ and ϕ′ are ΣB
1 -formulas with no free set variables. (A ΣB

1 -formula provably equivalent
to a ΠB

1 -formula in a theory T will be called a ∆B
1 (T)-formula.)

The language LVNC 1
∗

contains L0, and a function symbol Cϕ(n, ~x, ~X) for each ΣB
0 -formula

ϕ(u, ~x, ~X) (with all free variables indicated). Moreover, it is closed under the following rule:
for each open LVNC 1

∗
-formula ϕ(~p, d, x, y) without free set variables, we include a function

symbol Yϕ(~p, n,m, I). We will usually denote Cϕ(n, ~x, ~X) by {u < n | ϕ(u, ~x, ~X)}.
VNC 1

∗ is a theory in LVNC 1
∗

consisting of the axioms of BASIC , the axiom

(ΣB
0 -COMP) u ∈ Cϕ(n, ~x, ~X) ↔ u < n ∧ ϕ(u, ~x, ~X)

for each ΣB
0 -formula ϕ(u, ~x, ~X), and the axiom

(Open-SCV) |Yϕ(~p, n,m, I)| ≤ (|m|+ 1)n ∧ eval(n, |m|, ϕ, I, Yϕ(~p, n,m, I))

for each open LVNC 1
∗
-formula ϕ(~p, d, x, y).

Notice thatVNC 1
∗ contains V 0.

6

4 Properties of VNC 1
∗ and VNC 1

∗

The ∆B
1 -SCV and Open-SCV axioms provide evaluation of a certain type of circuits, but

they were designed to be formally simple rather than feature-rich. We will introduce a more
elaborate setting for convenient evaluation of log-depth circuits.

We will describe circuits using the following data:

• Numbers k, m, and s, where k is the number of inputs, m is the number of layers, and
s is the size of each layer.

• A function T : m × s → {p∨q, p∧q, p¬q} ∪ {pxiq | i < k} indicating the type of each
node, where we put e.g. p∨q = 0, p∧q = 1, p¬q = 2, and pxiq = i+ 3, and we represent
T by its graph, i.e., as a set T ≤ ms(k + 3).

• A formula ϕ(d, x, d′, x′) (possibly with other parameters) which states that node x′ on
layer d′ is an input of gate x on layer d.

In order for a circuit to be well-formed, we demand that any gate uses only nodes on lower
layers as inputs (but not necessarily from the adjacent layer), and all nodes have the correct
number of inputs: 1 for negation nodes, 0 for input nodes, and at most 2 for conjunction and
disjunction gates. Notice that we allow ∧ and ∨ gates with no inputs, which compute the
truth constants ⊥ and >, or with one input, which act as the identity function. The formula

Circ(k,m, s, T, ϕ) ⇔ ∀d < m∀x < s∃!p < k + 3T (d, x, p)

∧ ∀d, d′ < m∀x, x′ < s (ϕ(d, x, d′, x′) → d′ < d)

∧ ∀d, d0, d1, d2 < m∀x, x0, x1, x2 < s(∧
i<3

ϕ(d, x, di, xi) →
∨
i<j

(di = dj ∧ xi = xj)
)

∧ ∀d, d0, d1 < m∀x, x0, x1 < s(
T (d, x, p¬q) ∧

∧
i<2

ϕ(d, x, di, xi) → d0 = d1 ∧ x0 = x1

)
∧ ∀d < m∀x < s (T (d, x, p¬q) → ∃d′ < m∃x′ < sϕ(d, x, d′, x′))

∧ ∀d, d′ < m∀x, x′ < s∀i < k (T (d, x, pxiq) → ¬ϕ(d, x, d′, x′)).

formalizes these requirements. The formula

Eval(k,m, s, T, ϕ, I, Y) ⇔ ∀d < m∀x < s
(
Y (d, x) ↔

(T (d, x, p∨q) ∧ ∃d′ < m∃x′ < s (ϕ(d, x, d′, x′) ∧ Y (d′, x′)))

∨ (T (d, x, p∧q) ∧ ∀d′ < m∀x′ < s (ϕ(d, x, d′, x′) → Y (d′, x′)))

∨ (T (d, x, p¬q) ∧ ∃d′ < m∃x′ < s (ϕ(d, x, d′, x′) ∧ ¬Y (d′, x′)))

∨ ∃i < k (T (d, x, pxiq) ∧ I(i))
)

states that Y is an evaluation of the circuit described by k,m, s, T, ϕ on input I ≤ k.

7

Remark 4.1 Note that any ΣB
0 -formula ϕ is equivalent in VNC 1

∗ to an open formula, e.g.,
0 ∈ {u < 1 | ϕ} (where u is not free in ϕ). We will prove later (Corollary 4.7) that the same
also holds for ΣB

0 (LVNC 1
∗
)-formulas.

Theorem 4.2

(i) If ϕ is a ∆B
1 (VNC 1

∗)-formula without free set variables, then VNC 1
∗ proves

Circ(k, |m|, s, T, ϕ) → ∃!Y ≤ |m|s Eval(k, |m|, s, T, ϕ, I, Y).

(ii) If ϕ is an open LVNC 1
∗
-formula without free set variables, then there exists an LVNC 1

∗
-

term Y such that VNC 1
∗ proves

Circ(k, |m|, s, T, ϕ) → Eval(k, |m|, s, T, ϕ, I, Y (~p, k,m, s, T, I)),

where ~p are the parameters of ϕ.

Proof: Uniqueness of Y can be proved by straightforward ΣB
0 -induction, the problem is to

show its existence. We will reduce evaluation of the circuit to another circuit in the simplified
framework of eval, which can be evaluated using the axioms ∆B

1 -SCV or Open-SCV . We
subject the circuit to the following transformations:

• The input layer of the new circuit will consist of bits I(j) of the original input string I,
their negations ¬I(j), and bits T (d, x, p) of T .

• We introduce a dual node x¬ to each node x in the circuit, in order to allow making
the new circuit monotone.

• We replicate each node on all layers to overcome the restriction that each gate may only
use nodes of its immediately preceding layer as inputs in the new circuit.

• If x is a node with possible inputs y0, y1, we include in the new circuit the following
gadgets (omitting the mention of layers for simplicity):

x =
∨
j<k

(T (x, pxjq) ∧ I(j)) ∨ (T (x, p¬q) ∧ y¬0)

∨ (T (x, p∧q) ∧ y0 ∧ y1) ∨ (T (x, p∨q) ∧ (y0 ∨ y1)),

x¬ =
∨
j<k

(T (x, pxjq) ∧ ¬I(j)) ∨ (T (x, p¬q) ∧ y0)

∨ (T (x, p∨q) ∧ y¬0 ∧ y¬1) ∨ (T (x, p∧q) ∧ (y¬0 ∨ y¬1)).

More precisely, we put O(|k|) layers to the bottom of the circuit which compute the
disjunctions

∨
j<k(T (x, pxjq) ∧ (¬)I(j)) arranged in a balanced binary tree, and we

replace each node in the original circuit with the constant-size remaining part of its
gadget.

• We introduce padding to shift the nodes so that odd layers consist of disjunctions, and
even layers of conjunctions.

8

We proceed with the formal details to verify that we can arrange the result in such a way
that the wires of the new circuit are described by a ∆B

1 -formula or an open LVNC 1
∗
-formula

without set parameters, as required by the axioms.
Our new circuit will have m′+1 := 2+2|k|+6|m| layers, each containing n′ := 2k+(5k+

7)|m|s nodes.
Nodes i(x) := x < k on each layer represent the input bits I(x), nodes i¬(x) := k + x

give ¬I(x), and nodes t(d, x, p) := 2k + (ds+ x)(k + 3) + p give T (d, x, p) for d < |m|, x < s,
p < k + 3. Nodes

o(ε, d, x, u) := 2k + (k + 3)|m|s+ ((ε|m|+ d)s+ x)(2k − 1) + u

for ε < 2, d < |m|, x < s, and u < 2k − 1 are used to compute
∨
j<k(T (d, x, pxjq) ∧ Iε(j)),

where I0 = I, I1 = ¬I. Finally, nodes

n(ε, d, x, u) := 2k + (5k + 1)|m|s+ ((ε|m|+ d)s+ x)3 + u

for ε < 2, d < |m|, x < s, u < 3 represent node x (if ε = 0) or x¬ (if ε = 1) on layer d in the
original circuit, as well as its associated gadget.

The layers are laid out as follows. Layer 0 is the input layer, initialized to

I ′ = {i(x) | I(x)} ∪ {i¬(x) | ¬I(x)} ∪ {t(d, x, p) | T (d, x, p)}.

Layer 1 is a copy of layer 0 (as we need conjunctions at the bottom of our new circuit, and odd
layers are disjunctions). Layers 2 to 2|k|+ 1 are used to compute

∨
j<k(T (d, x, pxjq)∧ Iε(j))

in node o(ε, d, x, 0). On layer 2, we put T (d, x, pxjq)∧ Iε(j) to node o(ε, d, x, k− 1 + j). Odd
layers 3 to 2|k|+ 1 then consist of disjunctions arranged in a balanced binary tree, where the
children of node o(ε, d, x, u), u < k− 1, are o(ε, d, x, 2u+1) and o(ε, d, x, 2u+2). Even layers
4 to 2|k| copy the previous layer. The remaining layers 2|k|+2 to 2|k|+1+6|m| do the main
simulation of the original circuit. Let l(d, u) = 2|k| + 2 + 6d + u for d < |m|, u ≤ 5. Node
x on layer d of the original circuit is simulated by node n(0, d, x, 0) on layers l(d′, 5) for all
d′ ≥ d, and its negation x¬ is in node n(1, d, x, 0). They are also replicated on the next layer
l(d′ + 1, 0) as n(ε, d, x, 2). Other nodes n(ε, d, x, u), u ≤ 2, on layers l(d′, v), v ≤ 4, are parts
of the gadget need to compute x or x¬.

The wires of the new circuit are thus described by the following formula, where we abbre-
viate the modulo operation by %:

ϕ′(d, x, y) ⇔
(x < o(0, 0, 0, 0) ∧ y = x)

∨ (o(0, 0, 0, 0) ≤ x < n(0, 0, 0, 0) ∧ (d = 0 ∨ 2 - d 6= 1 ∨ d ≥ 2|k|+ 1) ∧ y = x)

∨ (o(0, 0, 0, 0) ≤ x < n(0, 0, 0, 0) ∧ d = 1 ∧ (x− o(0, 0, 0, 0)) % (2k − 1) ≥ k − 1

∧ (y = (x− o(0, 0, 0, 0)) % (2k − 1)− (k − 1) + bx/((2k − 1)|m|s)ck
∨ y = 2k + (bx/(2k − 1)c% |m|s)(k + 3)

+ (x− o(0, 0, 0, 0)) % (2k − 1)− (k − 1) + 3))

∨ (o(0, 0, 0, 0) ≤ x < n(0, 0, 0, 0) ∧ 0 < d ≤ 2|k| ∧ 2 | d ∧ y = x

9

∧ (x− o(0, 0, 0, 0)) % (2k − 1) ≥ k − 1

∨ (o(0, 0, 0, 0) ≤ x < n(0, 0, 0, 0) ∧ 0 < d ≤ 2|k| ∧ 2 | d
∧ (x− o(0, 0, 0, 0)) % (2k − 1) < k − 1

∧ 1 ≤ y − x− ((x− o(0, 0, 0, 0)) % (2k − 1)− (k − 1)) ≤ 2)

∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = x

∧ 〈(x− n(0, 0, 0, 0)) % 3, (d− 2|k|) % 6〉
∈ {〈0, 1〉, 〈1, 1〉, 〈0, 2〉, 〈1, 2〉, 〈2, 2〉, 〈0, 3〉, 〈1, 3〉, 〈0, 4〉, 〈1, 4〉, 〈0, 5〉})

∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = x+ 1

∧ 〈(x− n(0, 0, 0, 0)) % 3, (d− 2|k|) % 6〉 ∈ {〈1, 3〉, 〈0, 5〉})
∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = x− 2

∧ (x− n(0, 0, 0, 0)) % 3 = 2 ∧ 6 | (d− 2|k|))
∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = 2k + (k + 3)|m|s+ b(x− n(0, 0, 0, 0))/3c(2k − 1)

∧ 3 | (x− n(0, 0, 0, 0)) ∧ (d− 2|k|) % 6 = 3)

∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = 2k + (b(x− n(0, 0, 0, 0))/3c% |m|s)(k + 3) + p¬q

∧ 3 | (x− n(0, 0, 0, 0)) ∧ (d− 2|k|) % 6 = 2)

∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = 2k + (b(x− n(0, 0, 0, 0))/3c% |m|s)(k + 3) + p∧q

∧ (x− n(0, 0, 0, 0)) % 3 = 1 + b(x− n(0, 0, 0, 0))/3|m|sc ∧ (d− 2|k|) % 6 = 2)

∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y = 2k + (b(x− n(0, 0, 0, 0))/3c% |m|s)(k + 3) + p∨q

∧ (x− n(0, 0, 0, 0)) % 3 = 2− b(x− n(0, 0, 0, 0))/3|m|sc ∧ (d− 2|k|) % 6 = 2)

∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y ≥ n(0, 0, 0, 0) ∧ 6 | (d− 2|k|)
∧ 3 | (x− n(0, 0, 0, 0)) ∧ 3 | (y − n(0, 0, 0, 0))

∧ (x ≥ n(1, 0, 0, 0) = y ≥ n(1, 0, 0, 0))

∧ ϕ+(b(x− n(0, 0, 0, 0))/3c% |m|s, b(y − n(0, 0, 0, 0))/3c% |m|s))
∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y ≥ n(0, 0, 0, 0) ∧ 6 | (d− 2|k|)

∧ (x− n(0, 0, 0, 0)) % 3 = 1 ∧ 3 | (y − n(0, 0, 0, 0))

∧ (x ≥ n(1, 0, 0, 0) ↔ y ≥ n(1, 0, 0, 0))

∧ ϕ+(b(x− n(0, 0, 0, 0))/3c% |m|s, b(y − n(0, 0, 0, 0))/3c% |m|s))
∨ (x ≥ n(0, 0, 0, 0) ∧ d ≥ 2|k|+ 1 ∧ y ≥ n(0, 0, 0, 0) ∧ (d− 2|k|) % 6 = 1

∧ (x− n(0, 0, 0, 0)) % 3 = 2 ∧ (y − n(0, 0, 0, 0)) % 3 = 2

∧ (x ≥ n(1, 0, 0, 0) ↔ y ≥ n(1, 0, 0, 0))

∧ ϕ+(b(x− n(0, 0, 0, 0))/3c% |m|s, b(y − n(0, 0, 0, 0))/3c% |m|s)),

where
ϕ+(u, v) ⇔ ϕ(bu/sc, u% s, bv/sc, v % s).

Note that integer division and % are ΣB
0 -definable. It is thus easy to see that ϕ′ ∈ ∆B

1 (VNC 1
∗)

if ϕ ∈ ∆B
1 (VNC 1

∗), and, using Remark 4.1, that ϕ′ is equivalent to an open LVNC 1
∗
-formula if ϕ

is. By ∆B
1 -SCV or Open-SCV , there exists Y ′ such that eval(n′,m′, ϕ′, I ′, Y ′). It is tedious,

10

but completely straightforward, to verify that parts of Y ′ correspond to an evaluation of the
original circuit as described above, hence Eval(k, |m|, s, T, ϕ, I, Y), where

Y = {〈d, x〉 | Y ′(m′, n(0, d, x, 5))}.

In the case of VNC 1
∗, we can compute I ′ from I and T by a comprehension function sym-

bol, compute Y ′ using the Yϕ′ function, and compute Y from Y ′ by another comprehension
function, hence Y is given by a term in the original data. �

Corollary 4.3 VNC 1
∗ and VNC 1

∗ contain VNC 1. �

Definition 4.4 Let Γ be a set of formulas. A set function F (X0, . . . , Xc−1) is computable
by a family of Γ-definable shallow circuits (computable by Γ-circuits for short) if there are
L0-terms s(n), m(n), and o(n), a ΣB

0 -formula τ(n, d, x, p), and a Γ-formula ϕ(n, d, x, d′, x′),
such that

• s(n) ≥ cn, s(n) ≥ o(n), m(n) > 0

• Circ(cn, |m(n)|, s(n), T (n), ϕ), where T (n) = {(s(n)d+ x)(cn+ 3) + p | τ(n, d, x, p)},

• if ~X are sets such that |Xi| ≤ n, I = {in+ u | i < c, u ∈ Xi}, and

Eval(cn, |m(n)|, s(n), T (n), ϕ, I, Y),

then

(∗) F (~X) = {u < o(n) | Y (|m(n)| − 1, u)}.

A function F (~u, ~X) or f(~u, ~X) with number inputs and/or output is computable by Γ-circuits,
if the same holds for the set function F ′(~U, ~X) which we obtain by representing every number
x by the set {u | u < x}. A predicate ψ(~u, ~X) is computable by Γ-circuits if its characteristic
function

χψ(~u, ~X) =

{
{0} if ψ(~u, ~X),

∅ if ¬ψ(~u, ~X)

is. In other words, if we can fix o(n) = 1 in the above definition, and replace (∗) with

ψ(~u, ~X) ↔ Y (|m(n)| − 1, 0).

The next lemma is a key technical result needed to show various properties ofVNC 1
∗ and

VNC 1
∗, e.g., thatVNC 1

∗ is a conservative extension ofVNC 1
∗.

Lemma 4.5 Let α(~X, ~x) be a LVNC 1
∗
-term, or a ΣB

0 (LVNC 1
∗
)-formula. Then α is provably in

VNC 1
∗ computable by Open(LVNC 1

∗
)-circuits, and provably inVNC 1

∗ computable by ∆B
1 (VNC 1

∗)-
circuits in such a way that VNC 1

∗ proves the defining axiom of α.
Moreover, the graph of α or of its characteristic function is definable in VNC 1

∗ by a ΣB
1 -

formula ∃Y ≤ t ϑ(~X, ~x, ε, Y) with ϑ ∈ ΣB
0 , and provably in VNC 1

∗, we can compute some Y
satisfying the formula from ~x, ~X by ∆B

1 (VNC 1
∗)-circuits.

11

Proof: We proceed by induction on the complexity of α (defined in such a way that the
complexity of Cϕ and Yϕ is larger than that of ϕ, and in the case of Yϕ, also ϕ∗).We will show
two cases, and leave the rest to the reader.

Let α be the formula ∃xc ≤ t(~X, ~x)β(~X, ~x, xc), and fix a polynomial p(n) such that
t(~X, ~x) < p(n) whenever | ~X|, ~x ≤ n. By the induction hypothesis, we can compute the formula
α′ = xc ≤ t(~X, ~x) ∧ β(~X, ~x, xc) by Open(VNC 1

∗)-circuits or ∆B
1 (VNC 1

∗)-circuits described by
s′, m′, τ ′, and ϕ′. We construct circuits for α by taking p(n) copies of the circuit for α′, fixing
the value of xc to the representation of i in the ith copy, and computing the disjunction of the
outputs (arranged in a binary tree, as in the proof of Theorem 4.2). To be exact, we put s(n) =
p(n)s′(n) (assuming s′(n) ≥ 2), m(n) = 4m′(n)p(n) (so that |m′(n)| ≥ |m(n)|+ |p(n)|+ 1),

τ(n, d, x, p) ⇔ (d ≥ |m′| ∧ p = p∨q)

∨ (d < |m′| ∧ τ ′(n, d, x% s′, p) ∧ ¬∃j < n p = pxcn+jq)

∨ (d < |m′| ∧ ∃j < n (τ ′(n, d, x% s′, pxcn+jq)

∧ ((j < bx/s′c ∧ p = p∧q) ∨ (j ≥ bx/s′c ∧ p = p∨q)))),

ϕ(n, d, x, d′, x′) ⇔ (d < |m′| ∧ ϕ′(n, d, x% s′, d′, x′ % s′) ∧ bx/s′c = bx′/s′c)
∨ (d = |m′| ∧ d′ = d− 1 ∧ p− 1 ≤ x < 2p− 1 ∧ x′ = (x− (p− 1))s′)

∨ (d > |m′| ∧ d′ = d− 1 ∧ x ≥ p− 1 ∧ x′ = x)

∨ (d > |m′| ∧ d′ = d− 1 ∧ x < p− 1 ∧ 1 ≤ x′ − 2x ≤ 2),

where we write m′, s′, p for m′(n), s′(n), p(n). Clearly, τ is ΣB
0 , ϕ is Open(LVNC 1

∗
) or

∆B
1 (VNC 1

∗) as appropriate, and it is easy to see that the circuit defined by s, m, τ , ϕ computes
α.

Let ∃Y ≤ uϑ(~X, ~x, xc, ε, Y) be a ΣB
1 -definition of the graph χα′(~X, ~x, xc) = ε of the

characteristic function of α′, such that Y is computable from ~X, ~x, xc by ∆B
1 (VNC 1

∗)-circuits.
Consider the ΣB

1 -formula

(∗) |ε| ≤ 1 ∧ ∃Z ≤ up(n) (∀xc < p(n) (ϑ(~X, ~x, xc,∅, Z [xc]) ∨ ϑ(~X, ~x, xc, {0}, Z [xc]))

∧ (0 ∈ ε↔ ∃xc < p(n)ϑ(~X, ~x, xc, {0}, Z [xc]))),

where n =
∑

i|Xi|+
∑

i xi, and Z [x] denotes {y < u | xu+y ∈ Z}. We take p(n) parallel copies
of the circuit computing Y , and wire the xc inputs in the ith copy to the representation of i,
as above in the construction of the circuit for α. The resulting circuit computes Z satisfying

∀xc < p(n) (ϑ(~X, ~x, xc,∅, Z [xc]) ∨ ϑ(~X, ~x, xc, {0}, Z [xc]))

from ~X, ~x. Given Z, it is easy to see that (∗) is equivalent to χα(~X, ~x) = ε.
Let us turn to the case α = Yψ(~p(~X, ~x), s(~X, ~x),m(~X, ~x), I(~X, ~x)), where ψ(~p, d, x, y) is an

openVNC 1
∗-formula. By the induction hypothesis, we can compute the terms ~p, s, m, and I

by suitable circuits. Let q(n) be a polynomial such that ~p(~X, ~x), s(~X, ~x),m(~X, ~x), |I(~X, ~x)| <
q(n) whenever | ~X|, ~x ≤ n. We construct circuits computing α as follows:

• We compute s(~X, ~x),m(~X, ~x), I(~X, ~x), ~p(~X, ~x) using their respective circuits. We de-
note the jth bit of the result by sj , mj , ij , prj .

12

• For every ~p, s,m < q(n), we evaluate in parallel the eval-style circuit defined by s, |m|,
and ψ∗(~p, ·, ·, ·) on input I. That is, we take the circuit with |m| + 1 layers, each of
size s. The bottom layer is initialized to the first s bits ij , and the other layers are
alternating disjunctions and conjunctions, where yth node on dth layer is an input to
xth node on (d + 1)st layer iff ψ∗(~p, d, x, y). We denote the value of the xth node on
dth layer by v~p,s,m,d,x.

• For each ~p, s,m < q(n), we compute in parallel the “selector” h~p,s,m which states that∧
r(p

r(~X, ~x) = pr) ∧ s(~X, ~x) = s ∧m(~X, ~x) = m. This can be done as

h~p,s,m =
∧
r

(prpr−1 ∧ ¬prpr) ∧ ss−1 ∧ ¬ss ∧mm−1 ∧ ¬mm,

where we omit the conjuncts with index −1 (i.e., treat them as >).

• We compute in parallel the output bits

od,x =
∨

~p,s,m<q(n)

(h~p,s,m ∧ v~p,s,m,d,x).

We spare the reader the formal definitions of the τ and ϕ formulas describing the circuit,
and leave it to their imagination to verify that τ is ΣB

0 , and ϕ is a Boolean combination of
ΣB

0 formulas and ψ∗ (substituted with ΣB
0 -definable functions like division with remainder).

By the induction hypothesis, ψ∗ is equivalent to a ∆B
1 (VNC 1

∗)- and Open(LVNC 1
∗
)-formula,

therefore so is ϕ. It is easy to see that the circuit indeed computes α.
Let ϑ be ΣB

0 -formula such that the graph χψ(~p, s,m) = ε of the characteristic function
of ψ is equivalent to ∃W ≤ t ϑ(~p, d, x, y, ε,W), and W is computable by ∆B

1 (VNC 1
∗)-circuits.

Consider the formula

∃Z ≤(q(n))3t∃I, ~p, s,m ≤ q(n)
(
eval(s, |m|, ξ, I, Y)(∗∗)

∧
∧
r

pr(~X, ~x) = pr ∧ s(~X, ~x) = s ∧m(~X, ~x) = m ∧ I(~X, ~x) = I

∧ ∀d < |m| ∀x, y < s (ϑ(~p, d, x, y,∅, Z [d,x,y]) ∨ ϑ(~p, d, x, y, {0}, Z [d,x,y]))
)
,

where
ξ(d, x, y) ⇔ ϑ(~p, d, x, y, {0}, Z [d,x,y]),

n =
∑

i|Xi| +
∑

i xi, and Z [d,x,y] denotes {u < t | ((dq(n) + x)q(n) + y)t + u ∈ Z}. If we
replace pr(~X, ~x), s(~X, ~x), and m(~X, ~x) with their ΣB

1 -definitions which exist by the induction
hypothesis and prenex the second-order existential quantifiers, we obtain a ΣB

1 -formula, which
we can further normalize to the form with only one second-order quantifier using a pairing
function. Given ~X, ~x, we can compute a witness to this formula by ∆B

1 (VNC 1
∗)-circuits as

follows. We compute (using the induction hypothesis) the values of ~p, s, m, and I, and
witnesses to the second-order quantifiers used in their graphs. Then we take the circuit
computing W , and evaluate in parallel its q3 copies for all fixed values d, x, y < q(n) to obtain
a Z such that

∀d < |m| ∀x, y < s (ϑ(~p, d, x, y,∅, Z [d,x,y]) ∨ ϑ(~p, d, x, y, {0}, Z [d,x,y])).

13

Given such Z, we have ξ(d, x, y) ↔ ψ(d, x, y), hence eval(s, |m|, ξ, I, Y) is valid for Y =
Yψ(~p, s,m, I), and only for this Y . Thus, (∗∗) defines the graph of α, and witnesses for its
second-order quantifiers can be computed by ∆B

1 (VNC 1
∗)-circuits. �

Corollary 4.6 VNC 1
∗ is contained in an extension ofVNC 1

∗ by ΣB
1 -definitions. In particular,

VNC 1
∗ is conservative over VNC 1

∗. �

Corollary 4.7 Every ΣB
0 (LVNC 1

∗
)-formula is in VNC 1

∗ equivalent to an open formula. �

Corollary 4.8 VNC 1
∗ proves ΣB

0 (LVNC 1
∗
)-COMP, and ΣB

0 (LVNC 1
∗
)-IND. Moreover, there are

comprehension terms F (a, ~x, ~X) = {u < a | ϕ(u, ~x, ~X)} for ΣB
0 (VNC 1

∗)-formulas ϕ.

Proof: Induction follows from comprehension. Let ϕ(u, ~x, ~X) be a ΣB
0 (LVNC 1

∗
)-formula, and

take a sufficiently large n. By Lemma 4.5, ϕ is computable by an Open(LVNC 1
∗
)-circuit. We

take a parallel copies of the circuit as in the proof of Lemma 4.5, and wire the output of the
ith circuit to the ith new output bit. We evaluate the circuit on the input which sets ~x and
~X in each copy to the value of the respective parameters, and sets u to the representation of
i in the ith copy. Then the output of the new circuit is {u < a | ϕ}. The circuit is described
by an open formula, hence its value is computable by an LVNC 1

∗
-term using Theorem 4.2. �

Theorem 4.9 VNC 1
∗ is an open theory.

Proof: For any ΣB
0 (LVNC 1

∗
)-formula ϕ, let ϕ be an open formula equivalent to ϕ inVNC 1

∗ by
Corollary 4.7. We may assume that ϕ = ϕ if ϕ is already open. Let T be the set of formulas
which contains

ϕ ∨ ψ ↔ ϕ ∨ ψ,

and similarly for other Boolean connectives, and the formulas

ϕ(x) ∧ x ≤ t→ ∃x ≤ t ϕ(x),

∃x ≤ t ϕ(x) → ϕ(|S|) ∧ |S| ≤ t,

where S is a term (with the same free variables as ∃x ≤ t ϕ) such that VNC 1
∗ proves S =

{x < t | ϕ(x + 1)}. Notice that {x < t | ϕ(x + 1)} is computable by an LVNC 1
∗
-term by

Corollary 4.8.
Clearly, T is an open subtheory ofVNC 1

∗, and every ΣB
0 (LVNC 1

∗
)-formula is in T equivalent

to an open formula. AsVNC 1
∗ is ΣB

0 (LVNC 1
∗
)-axiomatized, it is equivalent to an open extension

of T . �

Theorem 4.10 If VNC 1
∗ proves ∃Y ϕ(~x, ~X, Y), where ϕ is a Σ1

1-formula, then there exists
an LVNC 1

∗
-term F such that VNC 1

∗ proves ϕ(~x, ~X, F (~x, ~X)).

Proof: Write ϕ = ∃~Z ϑ(~x, ~X, Y, ~Z) with ϑ ∈ ΣB
0 (LVNC 1

∗
). By Corollary 4.7, ϑ is equivalent

to an open formula. By Theorem 4.9 and Herbrand’s theorem, there exist terms Fr, G
j
r such

thatVNC 1
∗ proves

ϑ(~x, ~X, F0(~x, ~X), ~G0(~x, ~X)) ∨ · · · ∨ ϑ(~x, ~X, Fc(~x, ~X), ~Gc(~x, ~X))

14

for some c. Put

αr ⇔ ϑ(~x, ~X, Fr(~x, ~X), ~Gr(~x, ~X)) ∧
∧
s<r

¬ϑ(~x, ~X, Fs(~x, ~X), ~Gs(~x, ~X)),

and let p be a polynomial such that |Fr|, |Gjr| ≤ p(~x, | ~X|). By Corollary 4.8, there are terms
F and Gj such thatVNC 1

∗ proves

F (~x, ~X) =
{
u < p(~x, | ~X|)

∣∣∣ ∨
r

(αr ∧ u ∈ Fr(~x, ~X))
}
,

Gj(~x, ~X) =
{
u < p(~x, | ~X|)

∣∣∣ ∨
r

(αr ∧ u ∈ Gjr(~x, ~X))
}
,

Clearly,VNC 1
∗ proves ∨

r

αr,

αr → F (~x, ~X) = Fr(~x, ~X),

αr → Gj(~x, ~X) = Gjr(~x, ~X),

hence also
ϑ(~x, ~X, F (~x, ~X), ~G(~x, ~X)),

which implies ϕ(~x, ~X, F (~x, ~X)). �

Corollary 4.11 Every ∆B
1 (VNC 1

∗)-formula is in VNC 1
∗ equivalent to an open formula.

Proof: Given ϕ ∈ ∆B
1 (VNC 1

∗) (or even ∆1
1(VNC 1

∗)), we apply Theorem 4.10 to the formula
∃Y (0 ∈ Y ↔ ϕ). We obtain a term F such that the open formula 0 ∈ F (~x, ~X) is equivalent
to ϕ. �

Corollary 4.12 VNC 1
∗ contains VNC 1

∗, thus VNC 1
∗ is the L0-fragment of VNC 1

∗.

Proof: By Corollary 4.11,VNC 1
∗ is closed under ∆B

1 -SCV . �

Corollary 4.13 VNC 1
∗ is ΣB

1 -axiomatizable.

Proof: We can take axioms stating the totality of ΣB
1 -definitions of LVNC 1

∗
-functions by Corol-

lary 4.6, and a translation of an open axiom system for VNC 1
∗ to L0, which exists by Theo-

rem 4.9. The resulting theory exhaustsVNC 1
∗ by Corollary 4.12.

Alternatively, assume that a ΣB
1 -formula ϕ = ∃~Z ≤ t ϑ(~p, d, x, y, ~Z) is equivalent to a

ΠB
1 -formula ¬∃~Z ≤ t λ(~p, d, x, y, ~Z). Then ϕ is equivalent to an open VNC 1

∗-formula by
Corollary 4.11, hence by the proof of Lemma 4.5,VNC 1

∗ proves

(∗) ∃Y ≤ (|m|+ 1)n ∃Z ≤ |m|n2t [eval(n, |m|, ξ, I, Y)

∧ ∀d < |m| ∀x, y < n (ϑ(~p, d, x, y, Z [d,x,y]) ∨ λ(~p, d, x, y, Z [d,x,y]))],

15

where
ξ(d, x, y) ⇔ ϑ(~p, d, x, y, Z [d,x,y]).

Clearly, (∗) is a ΣB
1 -formula, and it implies

∃Y ≤ (|m|+ 1)n eval(n, |m|, ϕ, I, Y)

over V 0, hence we can axiomatizeVNC 1
∗ by (∗) for all such ϕ over V 0. �

Theorem 4.14 VNC 1
∗ is contained in VL.

Proof: We need to show that VL is closed under the ∆B
1 -SCV rule. If ϕ ∈ ∆B

1 (VL), then ϕ
is, provably in VL, log-space computable, hence VL proves comprehension for ϕ (see [9]). It
thus suffices to show that VL proves

∀n,m,E, I ∃Y eval(n, |m|, E, I, Y).

We will prove this by formalizing in VL the standard log-space algorithm for evaluation of
log-depth circuits.

Fix d0 ≤ |m| and x0 < n, we will describe how to evaluate the node x0 on layer d0

of the circuit. The idea of the algorithm is to make a depth-first traversal of the circuit,
evaluating the nodes along the way, and taking short cuts when we have enough information
to determine the value of a particular node. The states of the algorithm will be described by
numbers below some a, and we will define the graph of the transition function F : a → a of
the algorithm; computation of the algorithm will then be simulated by iterating F using the
VL axiom. The states of the algorithm will have the following form:

(i) 〈◦, b〉, where b < 2. This is the final state, b is the result of the computation.

(ii) 〈↓, s, x〉, where x < n, 0 < s < 2|m|+1. We have just descended one layer down the
circuit. The path from 〈d0, x0〉 to the current node is recorded by a sequence encoded
by s: if the binary expansion of s is 1s0 . . . sk−1, then si is 0 (1) if we have descended
to the left-most (right-most, resp.) child at the ith branching (i.e., at ith layer below
the top). The current node is node x on layer d0 − k = d0 − |s|+ 1.

(iii) 〈↑, s, b, t, i, x〉, where 0 < s < 2|m|+1, b < 2, t < 2, i < |s|, x < n. We have ascended up
from a child node. Again, s describes the path to the current node. b is the computed
value of the child, and t is 0 if the child was the left-most child, or 1 otherwise. In
this situation, we do not know the number of the node we are in, as it cannot be
uniquely inferred from the child node; we can however recover it from the sequence s.
We compute the node number in a loop with |s| − 1 steps, we use i as the loop counter,
and x to keep track of the node number. We will obtain the current node number in x
when i = |s| − 1.

16

We pick sufficiently large a so that all states above are encoded by a number below a. The
function F is ΣB

0 -defined by

F (〈◦, b〉) = 〈◦, b〉

F (〈↓, s, x〉) =

〈◦, I(x)〉 d0 = 0

〈↑, bs/2c, I(x), s% 2, 0, x0〉 |s| − 1 = d0 > 0

〈↑, bs/2c, (d0 − |s|) % 2, s% 2, 0, x0〉 |s| − 1 < d0,

∀y < n¬E(d0 − |s|, x, y)
〈↓, 2s, l(d0 − |s|+ 1, x)〉 |s| − 1 < d0,

∃y < nE(d0 − |s|, x, y)

F (〈↑, s, b, t, i, x〉) =

〈↑, s, b, t, i+ 1, l(d0 − i, x)〉 i < |s| − 1, si = 0

〈↑, s, b, t, i+ 1, r(d0 − i, x)〉 i < |s| − 1, si = 1

〈◦, b〉 i = |s| − 1 = 0,

t = 1 or d0 − |s| 6≡ b (mod 2)

〈↑, bs/2c, b, s% 2, 0, x0〉 i = |s| − 1 > 0,

t = 1 or d0 − |s| 6≡ b (mod 2)

〈↓, 2s+ 1, r(d0 − |s|+ 1, x)〉 i = |s| − 1 > 0,

t = 0, d0 − |s| ≡ b (mod 2)

where

l(d, x) = min{y < n | E(d− 1, x, y)},
r(d, x) = max{y < n | E(d− 1, x, y)},

and F is defined arbitrarily on other numbers below a. By the VL axiom, there exists a
sequence P such that (P)0 = 〈↓, 1, x0〉 and (P)v+1 = F ((P)v) for all v < a. We leave to
the reader to verify that P determines a correct partial evaluation of the original circuit, in
particular, (P)a = 〈◦, b〉, where b is the value of node x0 on layer d0.

In order to evaluate the whole circuit at once, we take a copy of the above algorithm for
every d0 ≤ |m| and x0 < n, and “concatenate” them in such a way that a final state 〈◦, b〉 of
node 〈d0, x0〉 is followed by the initial state 〈↓, 1, x′0〉 of the next node 〈d′0, x′0〉. We leave the
details to the reader. �

Definition 4.15 A function F (~x, ~X) is a provably total computable function of a theory
T ⊇ V 0, if there exists a Σ1

1-formula ϕ(~x, ~X, Y) which defines the graph of F in the standard
model such that

T ` ∃!Y ϕ(~x, ~X, Y).

Complexity classes like NC 1 can be adapted to the second-order setting in a straightfor-
ward way: we represent sets by binary strings, and we write numbers in unary (i.e., as in
Definition 4.4).

17

Corollary 4.16 The provably total computable functions of VNC 1
∗ and VNC 1

∗ include the
uniform NC 1-functions, and are contained in the L-uniform NC 1-functions.

Proof: Uniform NC 1-functions are provably total already in VNC 1. On the other hand,
assume that F (~x, ~X) is provably total inVNC 1

∗. By Theorem 4.10, F is definable by an LVNC 1
∗
-

term, hence it is computable by ∆B
1 (VNC 1

∗)-circuits using Lemma 4.5. As VNC 1
∗ ⊆ VL, the

formula ϕ defining the circuits as in Definition 4.4 must be in ∆B
1 (VL) = L. The description of

the circuits by the formulas ϕ and τ is a notational variant of the direct connection language,
hence F is in L-uniform FNC 1. �

The theory V i extended by the axiom of choice

∀x < a∃X ≤ b ϕ(x,X) → ∃Z ∀x < aϕ(x,Z [x])

for ΣB
i+1-formulas ϕ is ∀∃ΣB

i+1-conservative over V i (Zambella [14]). We will prove that the
axiom of choice for ΣB

1 -formulas can be similarly ∀∃ΣB
1 -conservatively added to VNC 1

∗. We
will in fact show that the same holds for a version of the axiom of choice without the bound
on X.

Definition 4.17 Let Γ be a set of formulas. The unbounded axiom of choice is the schema

(Γ-AC) ∀x < a∃X ϕ(x,X) → ∃Z ∀x < aϕ(x,Z [x]),

where ϕ ∈ Γ may have other parameters, and Z [x] denotes {u | 〈x, u〉 ∈ Z}, where 〈·, ·〉 is a
pairing function. A theory T is closed under the unbounded choice rule Γ-CR, if

T ` ∃X ϕ(x,X) ⇒ T ` ∃Z ∀x < aϕ(x,Z [x]),

where ϕ ∈ Γ may have other parameters.
It is easy to see that ΣB

0 -AC is equivalent to ∃ΣB
1 -AC , and similarly for CR.

Theorem 4.18 Let T be a ∀∃∀ΠB
1 -axiomatized extension of V 0 closed under ΣB

0 -CR. Then
T + ∃ΣB

1 -AC is a ∀∃ΣB
1 -conservative extension of T .

Proof:

Claim 1 Let M � T , a ∈ M , and ϕ a ΣB
0 -formula with parameters from M . Then there

exists a model N � T such that M�∃ΣB1
N , and N satisfies

∃Z ∀x < aϕ(x,Z [x])

or
∃x < a∀X ¬ϕ(x,X).

Proof: Let MM be the expansion of M by constants for all elements of M . If

T + Th∀ΠB1
(MM) + ∃x < a∀X ¬ϕ(x,X)

18

is consistent, then any its model N satisfies the conclusion. Otherwise there is a sentence
ψ = ∀X ϑ(X), where ϑ ∈ ΣB

0 has parameters from M , such that M � ψ, and

T ` ψ → ∀x < a∃X ϕ(x,X).

We can rewrite it as
T ` ∃X (ϑ(X) ∧ x < a→ ϕ(x,X)),

hence
T ` ∃Z ∀x < a (ϑ(Z [x]) → ϕ(x,Z [x]))

by ΣB
0 -CR, which implies

M � ∃Z ∀x < aϕ(x,Z [x]).

Thus we may take N = M. � (Claim 1)

Claim 2 Any model of T has an ∃ΣB
1 -elementary extension to a model of T + ΣB

0 -AC .

Proof: Let M0 � T . We enumerate all pairs of an element a ∈ M0 and a formula ϕ ∈ ΣB
0

with parameters from M0 as 〈aα, ϕα〉 for α < κ, where κ is a cardinal. We construct an ∃ΣB
1 -

elementary chain of models Nα � T , α ≤ κ, where N0 = M0, Nα+1 is obtained from Nα by
an application of Claim 1 using a = aα, ϕ = ϕα, and Nλ =

⋃
α<λNα for limit λ. Notice that

validity of T is preserved by unions of ∃ΣB
1 -elementary chains, as T is ∀∃∀ΠB

1 -axiomatized.
Then M1 := Nκ is an ∃ΣB

1 -elementary extension of M0, M1 � T , and

M1 � ∀x < a∃X ϕ(x,X) → ∃Z ∀x < aϕ(x,Z [x])

for all a ∈ M0, and ϕ ∈ ΣB
0 with parameters from M0. We continue in the same way to

construct a chain M0 �∃ΣB1
M1 �∃ΣB1

M2 �∃ΣB1
. . . , whose union is a model of T + ΣB

0 -AC .
� (Claim 2)

Assume that T +∃ΣB
1 -AC = T +ΣB

0 -AC proves a ∀∃ΣB
1 -formula α, and let M be any model

of T . Take an ∃ΣB
1 -elementary extension N � T + ΣB

0 -AC of M by Claim 2. Then N � α,
hence M � α. �

Corollary 4.19 VNC 1
∗ + ∃ΣB

1 -AC is a ∀∃ΣB
1 -conservative extension of VNC 1

∗.

Proof: In view of Theorem 4.18 and Corollary 4.13, it suffices to show that VNC 1
∗ is closed

under ΣB
0 -CR. Let

VNC 1
∗ ` ∃X ϕ(x,X,~a, ~A),

where ϕ ∈ ΣB
0 with all free variables shown. By Corollary 4.12 and Theorem 4.10, there exists

an LVNC 1
∗
-term F such that

VNC 1
∗ ` ϕ(x, F (x,~a, ~A),~a, ~A).

By Corollary 4.8, there exists an LVNC 1
∗
-term G such thatVNC 1

∗ proves

G(a,~a, ~A) = {〈x, y〉 | x < a, y ∈ F (x,~a, ~A)}.

19

Then
VNC 1

∗ ` ∀x < aϕ(x,G(a,~a, ~A)[x],~a, ~A),

hence
VNC 1

∗ ` ∃Z ∀x < aϕ(x,Z [x],~a, ~A)

by Corollary 4.6. �

5 Propositional translation

We will define a propositional formula

[[ϕ(x1, . . . , xr, X1, . . . , Xs)]]n1,...,nr,m1,...,ms(p1,0, . . . , p1,m1−1, . . . , ps,0, . . . , ps,ms−1)

for each ΣB
0 (LVNC 1

∗
)-formula ϕ(~x, ~X), and natural numbers ~n, ~m. Let X1, . . . , Xs be sets such

that |Xi| ≤ mi, and let X̃i denote the propositional valuation which assigns the value 1 to
pi,k iff k ∈ Xi. Then the translation is defined in such a way that

(1) [[ϕ]]~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � ϕ(~n, ~X).

If T (~x, ~X) is a set LVNC 1
∗
-term, we define a bounding term bT (~n, ~m), that is a number L0-term

such that |T (~n, ~X)| ≤ bT (~n, ~m) whenever |Xi| ≤ mi for each i, and we define propositional
formulas [[T]]k~n,~m for k < bT (~n, ~m) so that

(2) [[T]]k~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � k ∈ T (~n, ~X).

Finally, if t(~x, ~X) is a number LVNC 1
∗
-term, we define a bounding L0-term bt such that

t(~n, ~X) ≤ bt(~n, ~m) whenever |Xi| ≤ mi for all i, and we introduce propositional formulas
[[t]]k~n,~m for k ≤ bt(~n, ~m) so that

(3) [[t]]k~n,~m(X̃1, . . . , X̃s) = 1 ⇔ N � t(~n, ~X) = k.

The bounding terms are defined inductively as follows:

bxi(~n, ~m) = ni,

bXj (~n, ~m) = mj ,

bf(t1,...,tr)(~n, ~m) = f(bt1(~n, ~m), . . . , btr(~n, ~m)), f ∈ {0, s,+, ·, |x|},
b|T |(~n, ~m) = bT (~n, ~m),

bCϕ(s,~t,~T)(~n, ~m) = bs(~n, ~m),

bYϕ(~t,s,u,T)(~n, ~m) = (|bu(~n, ~m)|+ 1)bs(~n, ~m).

The translations [[ϕ]]~n,~m, [[T]]k~n,~m, [[t]]k~n,~m are defined by simultaneous induction on complexity,
along with formulas {{R}}~n,~m, {{F}}k~n,~m, {{f}}k~n,~m for predicates R (including equality), set
function symbols F , and number function symbols f . (The formulas {{α}} are minor variants
of [[α]], cf. Lemma 5.1 (v). We introduce them to make the definition of [[α(~t, ~T)]] below

20

uniform, so that we do not have to treat specially the case where ~t, ~T are simple variables.)
Let us denote

I(ϕ) =

{
> if ϕ holds,

⊥ otherwise.

If α is a predicate or function symbol, we put

[[α(t1, . . . , tr, T1, . . . , Ts)]]k~n,~m =
∨

k1≤bt1 (~n,~m)
...

kr≤btr (~n,~m)

(r∧
i=1

[[ti]]ki~n,~m

∧ {{α}}k~k,bT1
(~n,~m),...,bTs (~n,~m)

(
[[T1]]0~n,~m, . . . , [[T1]]

bT1
−1

~n,~m , . . . , [[Ts]]0~n,~m, . . . , [[Ts]]
bTs−1
~n,~m

))
,

where the superscript k is omitted if α is a predicate. We further define

[[xi]]k~n,~m = I(k = ni),

[[Xj]]k~n,~m = pj,k,

[[ϕ ◦ ψ]]~n,~m = [[ϕ]]~n,~m ◦ [[ψ]]~n,~m, ◦ ∈ {∧,∨,¬},

[[∃x ≤ t ϕ]]~n,~m =
∨

k≤bt(~n,~m)

[[x ≤ t ∧ ϕ]]k,~n,~m,

[[∀x ≤ t ϕ]]~n,~m =
∧

k≤bt(~n,~m)

[[x ≤ t→ ϕ]]k,~n,~m,

{{R}}n,n′ = I(n R n′), R ∈ {≤,=},

{{∈}}n,m(~p) =

{
pn if n < m,

⊥ otherwise,

{{X = Y }}m,m′(~p, ~q) =
∧

j<min(m,m′)

(pj ↔ qj) ∧
m−1∧
j=m′

¬pj ∧
m′−1∧
j=m

¬qj ,

{{f}}k~n = I(f(~n) = k), f ∈ {0, s,+, ·, |x|},

{{|X|}}km(~p) =

pk−1 ∧

m−1∧
j=k

¬pj if k > 0,∧
j<m

¬pj otherwise,

{{Cϕ(u,~x, ~X)}}
k
n,~n,~m(~p) = I(k < n) ∧ [[ϕ]]k,~n,~m(~p).

It remains to define {{Yϕ(~p, n, r, I)}}k~p,n,r,m for an open LVNC 1
∗
-formula ϕ(~p, d, x, y). We fix

~p, n,m, r, and we write {{Yϕ}}d,x for {{Yϕ}}dn+x
~p,n,r,m, where x < n. As ϕ has no free set variables,

[[ϕ]]~p,d,x,y is a Boolean sentence with a definite truth value. We may thus define the relations

e(d, x, y) ⇔ [[ϕ]]~p,d,x,y = 1,

e∗(d, x, y) ⇔ e(d, x, y) ∧
(∧
z<y

¬e(d, x, z) ∨
n−1∧
z=y+1

¬e(d, x, z)
)

21

for d < |m|, x, y < n. By induction on d < |m|, we define

{{Yϕ}}0,x =

{
px if x < r,

⊥ otherwise,

{{Yϕ}}d+1,x =

∨
e∗(d,x,y)

{{Yϕ}}d,y if d is even,

∧
e∗(d,x,y)

{{Yϕ}}d,y if d is odd.

We also put {{Yϕ}}d,x = ⊥ for d > |m|. Notice that the definition of e∗ ensures that there are
at most two y such that e∗(d, x, y) for any given d, x, hence the conjunctions and disjunctions
in the definition of {{Yϕ}}d+1,x are at most binary. As the formulas have depth d ≤ |m|, they
are of size O(m). It follows by induction on complexity that the formulas [[α]](k)~n,~m for any fixed

formula or term α have size poly(~n, ~m) and logarithmic depth. In fact, [[α]](k)~n,~m is constructible
in logarithmic space given ~n, ~m, k in unary (the most difficult case is again Yϕ: we observe
that we can evaluate the logspace-constructible Boolean sentence [[ϕ]] needed to define e in
logarithmic space). It is also straightforward to show (1), (2), (3) by induction on complexity.

We recall that a Frege system is a propositional proof system given by a finite set F of
rules of the form

ϕ1, . . . , ϕn
ϕ

which is sound and implicationally complete. An F -proof of a formula ϕ is a sequence
of propositional formulas ending with ϕ such that every formula is derived from previous
formulas by an instance of an F -rule. By a well-known theorem of Cook and Reckhow [10], all
Frege systems are polynomially equivalent, hence the choice of the basic rules does not matter
(often one takes Modus Ponens and a list of axioms). Frege systems are also polynomially
equivalent to the propositional version of Gentzen’s sequent calculus LK , which is easier to
work with in some contexts.

Lemma 5.1

(i) If τ, σ are terms, then bτ(~x, ~X,σ(~x, ~X))(~n, ~m) = bτ (~n, ~m, bσ(~n, ~m)).

(ii) If α(~x, ~X, Y) is a formula or term, and T (~x, ~X) is a set term, then

[[α(~x, ~X, T (~x, ~X))]](k)~n,~m = [[α]](k)~n,~m,bT (~n,~m)

(
[[T]]0~n,~m, . . . , [[T]]bT (~n,~m)−1

~n,~m

)
,

where k is present only if α is a term, and on the right-hand side the formulas are
substituted for the variables corresponding to Y .

(iii) If t(~x, ~X) is a number term, there are size poly(~n, ~m) log-space constructible Frege proofs
of the formulas ∨

k≤bt(~n,~m)

[[t]]k~n,~m,∧
k<l≤bt(~n,~m)

([[t]]k~n,~m → ¬[[t]]l~n,~m).

22

(iv) If α(y, ~x, ~X) is a formula or term, and t(~x, ~X) is a number term, then there are size
poly(~n, ~m) log-space constructible Frege proofs of the formulas

[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔
∨

r≤bt(~n,~m)

(
[[t]]r~n,~m ∧ [[α]](k)r,~n,~m

)
,

where k is present only if α is a term, and we put [[α]]kr,~n,~m = ⊥ if α is a number term
and k > bα(~n, ~m), or if α is a set term and k ≥ bα(~n, ~m).

(v) If α(~x, ~X) is a predicate or function symbol, there are size poly(~n, ~m) log-space con-
structible Frege proofs of

{{α}}(k)
~n,~m ↔ [[α]](k)~n,~m.

Proof: By straightforward induction on complexity. For example, we will show the proof of
the step for α = β(~t, ~T) in (iv), where β is a predicate or function symbol. Let r ≤ bt(~n, ~m).
By the induction hypothesis, we can construct proofs of

[[ti(t(~x, ~X), ~x, ~X)]]ki~n,~m ↔
∨

s≤bt(~n,~m)

(
[[t]]s~n,~m ∧ [[ti]]kis,~n,~m

)
,

hence we construct proofs of

[[t]]r~n,~m →
(
[[ti(t(~x, ~X), ~x, ~X)]]ki~n,~m ↔ [[ti]]kir,~n,~m

)
using (iii). Similarly, we can construct proofs of

[[t]]r~n,~m →
(
[[Ti(t(~x, ~X), ~x, ~X)]]j~n,~m ↔ [[Ti]]

j
r,~n,~m

)
.

Using the definition of [[β(~t, ~T)]] and (i), we infer

[[t]]r~n,~m →
[
[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔

∨
k1≤bt1 (bt(~n,~m),~n,~m)

...

(∧
i

[[ti]]kir,~n,~m

∧ {{β}}(k)
~k,bT1

(bt(~n,~m),~n,~m),...
([[T1]]0r,~n,~m, . . .)

)]
.

It is easy to see that there are short proofs of

{{β}}(k)
~k,~v

(~p) ↔ {{β}}(k)
~k,~u

(~p, ~⊥)

for any ~u ≥ ~v. Using the fact that bTj (r, ~n, ~m) ≤ bTj (bt(~n, ~m), ~n, ~m), and the definition of
[[ti]]j or [[Ti]]j as ⊥ for too large j, we obtain a proof of

[[t]]r~n,~m →
[
[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔

∨
k1≤bt1 (r,~n,~m)

...

(∧
i

[[ti]]kir,~n,~m

∧ {{β}}(k)
~k,bT1

(r,~n,~m),...
([[T1]]0r,~n,~m, . . .)

)]
,

23

hence
[[t]]r~n,~m →

(
[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔ [[α]](k)r,~n,~m

)
by the definition of [[β(~t, ~T)]]. We get the required

[[α(t(~x, ~X), ~x, ~X)]](k)~n,~m ↔
∨

r≤bt(~n,~m)

(
[[t]]r~n,~m ∧ [[α]](k)r,~n,~m

)
using (iii). �

Theorem 5.2 Let ϕ(~x, ~X) be a ΣB
0 (LVNC 1

∗
)-formula provable in VNC 1

∗. Then the formulas
[[ϕ]]~n,~m have Frege proofs of size poly(~n, ~m) constructible in logarithmic space.

Proof: It will be more convenient to work with sequent calculus, which is p-equivalent to
Frege systems. The sequent ` ϕ has an LK -proof π using substitution instances of axioms of
VNC 1

∗ and equality axioms as extra initial sequents. We may reformulate the extensionality
axiom as

∀x < |X| (x ∈ X → x ∈ Y) ∧ ∀x < |Y | (x ∈ Y → x ∈ X) → X = Y,

hence all the initial sequents are ΣB
0 (LVNC 1

∗
). Using the free-cut elimination theorem [4], we

may thus assume that all formulas in π are ΣB
0 (LVNC 1

∗
). We will show by induction on the

length of the proof that for every sequent Γ ` ∆ in π, the sequents [[Γ]]~n,~m ` [[∆]]~n,~m have
propositional LK -proofs constructible in logarithmic space, where [[Γ]]~n,~m denotes {[[ψ]]~n,~m |
ψ ∈ Γ} for any set of formulas Γ.

The induction steps for the cut rule, propositional rules, and structural rules is trivial, we
simply use the induction hypothesis and apply the same rule.

If the last rule in the proof is the ∀-right rule, it must have the form

Γ ` y ≤ t→ ψ(y),∆
Γ ` ∀x ≤ t ψ(x),∆

as the conclusion is ΣB
0 (LVNC 1

∗
). By the induction hypothesis we can construct proofs of

[[Γ]]~n,~m ` [[y ≤ t→ ψ(y)]]r,~n,~m, [[∆]]~n,~m

for every r ≤ bt(~n, ~m), from which we derive

[[Γ]]~n,~m `
∧

r≤bt(~n,~m)

[[y ≤ t→ ψ(y)]]r,~n,~m, [[∆]]~n,~m

using the ∧-right rule. The case of ∃-left is similar.
If the last rule in the proof is the ∃-right rule, it must have the form

Γ ` s ≤ t ∧ ψ(s),∆
Γ ` ∃x ≤ t ψ(x),∆

where s is a term. By the induction hypothesis we can construct a proof of

[[Γ]]~n,~m ` [[s ≤ t ∧ ψ(s)]]~n,~m, [[∆]]~n,~m.

24

By Lemma 5.1 (iv), there are short Frege proofs of

[[s ≤ t ∧ ψ(s)]]~n,~m ↔
∨

r≤bs(~n,~m)

([[s]]r~n,~m ∧ [[x ≤ t ∧ ψ(x)]]r,~n,~m).

Moreover, we can construct Frege proofs of ¬[[x ≤ t∧ψ(x)]]r,~n,~m for all bt(~n, ~m) < r ≤ bs(~n, ~m),
hence we can construct a proof of the sequent

[[s ≤ t ∧ ψ(s)]]~n,~m `
∨

r≤bt(~n,~m)

[[x ≤ t ∧ ψ(x)]]~r,~n,~m.

We derive
[[Γ]]~n,~m `

∨
r≤bt(~n,~m)

[[x ≤ t ∧ ψ(x)]]~r,~n,~m, [[∆]]~n,~m

by a cut. The case of the ∀-left rule is analogous.
It remains to construct proofs of propositional translations of substitution instances of

axioms ofVNC 1
∗ and equality axioms. If ψ′ = ψ(~t, ~T) is an instance of an axiom ψ, then there

are short Frege proofs of

(∗) [[ψ′]]~n,~m ↔
∨

k1≤bt1 (~n,~m)
...

(∧
i

[[ti]]ki~n,~m ∧ [[ψ]]~k,bT1
(~n,~m),...

(
[[T1]]0~n,~m, . . .

))

by Lemma 5.1 (ii,iv). If we can construct short proofs of [[ψ]], we can substitute the formulas
[[Ti]]

j
~n,~m in the proof (incurring a polynomial blow-up) and combine it with Lemma 5.1 (iii)

to obtain the right-hand side of (∗). It thus suffices to construct translations of the base form
of the axioms.

Axioms of BASIC and equality axioms for L0 are provable in V 0, hence their translations
have log-space constructible proofs already in bounded-depth Frege [9].

The ΣB
0 -COMP axiom translates to

[[u ∈ Cψ(v, ~x, ~X)]]k,l,~n,~m ↔ [[u < v]]k,l ∧ [[ψ(u, ~x, ~X)]]k,~n,~m,

which can be proven equivalent to the tautology

I(k < l) ∧ [[ψ]]k,~n,~m ↔ I(k < l) ∧ [[ψ]]k,~n,~m

by Lemma 5.1 (v) and the definition of {{Cψ}}.
Consider an instance

|Yψ(~p, n, r, I)| ≤ (|r|+ 1)n ∧ eval(n, |r|, ψ, I, Yψ(~p, n, r, I))

of Open-SCV . We can prove

[[|Yψ(~p, n, r, I)| ≤ (|r|+ 1)n]]~p,n,r,m

easily using Lemma 5.1 (iii) and bYψ = (|r| + 1)n. Using the notation from the definition of
{{Yψ}}, we can construct short proofs of

[[dn+ x ∈ Yψ(~p, n, r, I)]]d,x,~p,n,r,m ↔ {{Yψ}}d,x

25

using Lemma 5.1 (v). As there are short proofs evaluating the Boolean sentences [[2 | d]]d and
[[ψ∗(~p, d, x, y)]]~p,d,x,y to I(2 | d) and I(e∗(d, x, y)), we can construct short proofs of

{{Yψ}}d+1,x ↔
((

[[2 | d]]d ∧
∨
y<n

([[ψ∗]]~p,d,x,y ∧ {{Yψ}}d,y)
)

∨
(
[[2 - d]]d ∧

∧
y<n

([[ψ∗]]~p,d,x,y → {{Yψ}}d,y)
))

for d < |r| and x < n, using the definition of {{Yψ}}d+1,x. Similarly, we construct proofs of

{{Yψ}}0,x ↔ [[x ∈ I]]x,m.

Putting it all together, we obtain a proof of

[[eval(n, |r|, ψ, I, Yψ(~p, n, r, I))]]~p,n,r,m.

Translation of the equality axioms for Cψ and Yψ is easy and left to the reader. (As a
matter of fact, one can show that these axioms are redundant inVNC 1

∗.) �

6 Acknowledgement

I am grateful to Phuong Nguyen for enlightening discussions onVNC 1.

References

[1] Toshiyasu Arai, A bounded arithmetic AID for Frege systems, Annals of Pure and Ap-
plied Logic 103 (2000), pp. 155–199.

[2] Albert Atserias, Nicola Galesi, and Pavel Pudlák, Monotone simulations of non-
monotone proofs, Journal of Computer and System Sciences 65 (2002), no. 4, pp. 626–638.

[3] Samuel R. Buss, The Boolean formula value problem is in ALOGTIME , in: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 123–131.

[4] , An introduction to proof theory, in: Handbook of Proof Theory (S. R. Buss,
ed.), Studies in Logic and the Foundations of Mathematics vol. 137, Elsevier, Amsterdam,
1998, pp. 1–78.

[5] Peter Clote, ALOGTIME and a conjecture of S.A. Cook, Annals of Mathematics and
Artificial Intelligence 6 (1992), no. 1–3, pp. 57–106.

[6] Peter Clote and Gaisi Takeuti, Bounded arithmetic for NC, ALogTIME, L and NL,
Annals of Pure and Applied Logic 56 (1992), pp. 73–117.

[7] Stephen Cook and Tsuyoshi Morioka, Quantified propositional calculus and a second-
order theory for NC1, Archive for Mathematical Logic 44 (2005), no. 6, pp. 711–749.

26

[8] Stephen A. Cook, Theories for complexity classes and their propositional translations,
in: Complexity of computations and proofs (J. Kraj́ıček, ed.), Quaderni di Matematica
vol. 13, Seconda Universita di Napoli, 2004, pp. 175–227.

[9] Stephen A. Cook and Phuong Nguyen, Logical foundations of proof complexity, book in
preparation, http://www.cs.toronto.edu/~sacook/homepage/book/.

[10] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional proof
systems, Journal of Symbolic Logic 44 (1979), no. 1, pp. 36–50.

[11] Emil Jeřábek, A sorting network in bounded arithmetic, preprint, 2008.

[12] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, Encyclo-
pedia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[13] Walter L. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sci-
ences 22 (1981), no. 3, pp. 365–383.

[14] Domenico Zambella, Notes on polynomially bounded arithmetic, Journal of Symbolic
Logic 61 (1996), no. 3, pp. 942–966.

27

