Some developments on Dirichlet problems with discontinuous
coefficients

(Praha, december 2008)

Lucio Boccardo *

Let © be a bounded, open subset of RN, N > 2 and M : Q x R — R,
be a bounded and measurable matrix such that

(1) aléP < M(z)¢-¢, |M(z)| <8, aexzeQ, VEéeRY.

Under the assumptions |B|, |[E| € LN(Q2), f € L™() (m > 25) and p > 0

large enough, Guido Stampacchia proved that the boundary value problem

— div(M(z)Vu —uE(x)) + B(z)Vu+ pu = f(x) in Q,
2) { u=0 g on 02

has a unique weak solution v with some summability properties.
If we assume that F(z) is a vector field and f(z) is a function such that

N
) ferr@, 1sm<
(4) E e (L ()",
and we consider the following Dirichlet problem *
— div(M(z)Vu) = — div(u E(z)) + f(z) in Q,
(5) _
u=0 on 02

existence and summability properties (depending on m) of weak or distribu-
tional solutions are proved in [2].

In [3], equations with coefficients £ which do not belong to (L™ (Q2))" are
considered. The most important aim is the study of the case E € (L?(Q2))V,
where the main point is the definition of solution, since the distributional
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definition of solution does not work. It is possible to give a meaning to
solution for problem (5), using the concept of entropy solutions which has
been introduced in [1]

An important difficulty is due to noncoercivity of the differential operator
— div(M (z)Vv) + div(v E(x)).

Thus we assume

(6) E e (L)Y
and
(7) feLYQ).

We recall Stampacchia’s definition of truncate

[ if |s| < mn,
Tu(s) = nyy, if[s| >mn,

the definition of entropy solution and some results given in [1].

PROPOSITION 0.1 Let u be a measurable function such that Ty(u) belongs to

W01’2(Q) for every k > 0. Then there exists a unique measurable function
v:Q — RN such that

U X{jul<k} = VTi(u), almost everywhere in 2, Vk > 0.

If, moreover, u belongs to Wol’z(Q), then v coincides with the standard dis-
tributional gradient of u.

DEFINITION 0.2 Let u be a measurable function such that Ty(u) belongs to
Wol’z(Q) for every k > 0. We define Vu, the weak gradient of u, as the
function v given by Proposition 0.1.

DEFINITION 0.3 Assume (1), (6), (7). A measurable function u is an en-
tropy solution of the boundary value problem (5) if

Ti(u) € Wi2(9),

8) { [ M@VeVTifu— 6] < [ B@VTilu— 6]+ [ f()Tilu— )

Q Q
Vk € IRt Yo € W,2(Q) N L®(Q),



REMARK 0.4 Note that in the previous inequality, any term is well defined.

THEOREM 0.5 Assume (1), (6) and (7). Then there exists an entropy solu-
tion u of (5) in the sense of Definition 0.3. Moreover u satisfis the estimates

9) /ngHmmW<f/WF+/m

0 ¢ [Ivn P<—f/uW+k/m<—;ﬂmﬂw/v|
Q

lu|<k

REMARK 0.6 The estimate (10) gets the uniqueness of the solution u of
Theorem 0.5, if f =0. Let h — 0 and 0 < h < 4. Indeed, now (10) says

2 | T (w) > } 2{ [T (w) > r* VTh(uw)]* _ 1 2
5 [ / h?" <5 / h? S/ h?2 = o? / 2]
0<|u| Q Q 0<|u|<h

2
5%

which implies
2 1
S?meas {6 < |u|}> < 2 / |E|?.
0<|ul<h
Since |E| € L*(Q), the right hand side goes to 0, as h — 0. Thus meas{d < |u|} =
0, for every 6 > 0.

We poin out that independently, with a similar approach, T. Gallouet
([13]) proved that if f(x) > 0 then u(x) > 0.

A borderline case: we start with two radial problems, where the data f
and E are smooth enough, but £ does not belong (as in in [2]) to (LY (Q))¥,
but to (L4(Q))Y, for any ¢ < N. With this slightly weaker assumptions the
following examples show how all the existence and summability results about
the solutions can be lost.

REMARK 0.7 Let 0 < B < N — 2 and consider the boundary value problem

N =2
—Au=—-B div(ux> —B——— in{z:|z| <1},

[
u= on{x:|z| =1}.

Then the function ug(x) = @ — L is a weak solution in Wy2(Q) if B <
1+ N/2 and it is a distributional solution 1+ N/2 < B < N — 2.

3



Note that E = —Bpi belongs to (LYQ)N, for any ¢ < N, and the right

hand side belongs to L™ (), for any m < % Nevertheless the solution u

does not belong to any LP space; that 1s: it 1s not possible to apply the results
of [2], where the assumption is |E| € L™ (Q).

REMARK 0.8 The function up =" —r%, D € IR, is solution of the bound-
ary value problem

—Au=D div(u%) + 2+ D)N in{zx:|z| <1},

u=0 on {z : |z| = 1}.

If D > 0, up s unbounded solution of a Dirichlet problem with bounded
datum the real number (24 D)N; up is a weak solution if D < 1+ N/2 and
it is a distributional solution 1+ N/2 < D < N — 2.

Now, on the vector field ¥ we assume
A
=]’

(which is slightly weaker than (4)) ans we use the following inequality.

(11) E|< =, A>0, 0€Q,

PROPOSITION 0.9 [HARDY-SOBOLEV INEQUALITY| The Hardy inequality
states that

(12) H(/l |2) (/|W|Z) Ve Q).

Moreover H = —_ s optimal.

THEOREM 0.10 Assume (1), (3), with ]3% <m <L, (11), with |A| < 2.
Then there exists a weak solution u € Wy*(Q) N Lm () of the Dirichlet

problem (5).

THEOREM 0.11 Assume (1), (3), with 1 <m < N+2, (11) with |A| <

Then there exists a distributional solution v € W™ ( ) of the Dirichlet
problem (5).

m** .

Let us recall the definition of Marcinkiewicz spaces MP(€)), we shall use
later.



DEFINITION 0.12 Let p be a positive number. The Marcinkiewicz space
MP(Q) is the set of all measurable functions v : Q — IR such that

meas{x € Q : |E(z)| > k} < é, for every k >0,

for some constant ¢ > 0. Moreover, for any p > 1, LP(Q2) C MP(Q2) and,
p>1, MP(Q2) C LP~¢(Q2), € > 0.

THEOREM 0.13 Assume (1), f € LY(Q), (11), with |A| < a(N — 2). Then
there exists a distributional solution w of the Dirichlet problem (5). The

function u belongs to the Marcinkiewicz space M%(Q) and Vu belongs to
the Marcinkiewicz space M%(Q)

REMARK 0.14 Let £ = (N‘;lé)x, so that |E| belongs to L1(Q)) for every q <

N, but is not in L™ (Q). Then the function (see [10]) u(x) = u(|z]) =
[el!|z[*=N — e] is a solution of the boundary value problem

. (N-1)zx _e(N—l)(N—Q)
(13){ — d1v[Vu+u|x|2 } +u = 2]

—e, in B1(0);
u=20, ondB(0).

The above example (13) shows that, for some values of m > 1, it is not
true that u belongs to L™(2), if f belongs to L™(f2), as usual if £ = 0.
Furthermore, even if ¥ and f are quite regular, the summability of Vu is
poor.

Now we will show how, in the differential equation (5), the presence of a
lower order term improves a little bit the regularity properties of the solu-
tions, under the basic assumptions (1), (6), (3).

Let A > 0 and p > 1. We consider here the following boundary value
problem

(14) { — div(M (2)Vu) + MuP~'u = — div(u E(z)) + f(z) in Q,
u=20 on 0f)
THEOREM 0.15 Assume (1), (3) with m =1,

N
N—-2
Then there exists a distributional solution u of (14) such that uw € LP(Q2) and
Vu € Mi(Q).

(15) Ee (L (), p>




THEOREM 0.16 Assume (1), (8) with m > 211,
p

N +2
N-2

2(p+1)

(16) Ee (LT ()Y, p>

Then there exists a weak solution u € Wy () of (14) such that u € LPTH(Q).

REMARK 0.17 Let0 < e < N—2. It is possible to state the previous theorem
in the following way. Assume (1), (3) withm > 1+ =, E € (L*™(Q))V.

2+€’
2+2¢

Then there exists a weak solutionu € Wy () of (14) such thatu € L=< (Q).

Here, we shall prove, by duality, the exixtence of weak solutions for the
boundary value problem problem

(17) { — div(M (2)Vu) + EVu+ M = f(z) inQ,
u=70 on 0f)

under minimal assumptions on E.
THEOREM 0.18 Assume (1), (6),
(18) A >0,

(19) feL=(Q).
Then there eziste a weak solution u in W, > (Q) N L=(Q) of (17).

REMARK 0.19 If A = 0, the problem (17) has been studied in [14], even if

the principal part is nonlinear.
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