Some developments on Dirichlet problems with discontinuous coefficients (Praha, december 2008)

Lucio Boccardo *

Let Ω be a bounded, open subset of $\mathbb{I}\!\!R^N$, N > 2 and $M : \Omega \times \mathbb{I}\!\!R \to \mathbb{I}\!\!R^{N^2}$, be a bounded, elliptic and measurable matrix. If we assume that E(x) is a vector field and f(x) is a function such that

$$f \in L^m(\Omega), \ 1 \le m < \frac{N}{2}, \ E \in (L^N(\Omega))^N,$$

and we consider the following Dirichlet problem 1

(1)
$$\begin{cases} -\operatorname{div}(M(x)\nabla u) = -\operatorname{div}(u E(x)) + f(x) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

existence and summability properties (depending on m) of weak or distributional solutions are proved in [2].

In [3], equations with coefficients E which do not belong to $(L^N(\Omega))^N$ are considered. The most important aim is the study of the case $E \in (L^2(\Omega))^N$, where the main point is the definition of solution, since the distributional definition of solution does not work.

References

- [1] L. Boccardo: Some developments on Dirichlet problems with discontinuous coefficients; Boll. UMI, to appear.
- [2] L. Boccardo, preprint.

^{*}Dipartimento di Matematica, Università di Roma I, Piazza A. Moro 2, 00185 Roma; tel. (+39)0649913202; e-mail: boccardo@mat.uniroma1.it

¹related to the mathematical analysis of some models of flows in porous media (T. Gallouet)