
Algorithms for Testing Fault-Tolerance of Sequenced Jobs

Marek Chrobak∗ Mathilde Hurand† Jǐŕı Sgall‡

Abstract

We study the problem of testing whether a given set of sequenced jobs can tolerate transient
faults. We present efficient algorithms for this problem in several fault models. A fault model
describes what types of faults are allowed and specifies assumptions on their frequency. Two
types of faults are considered: hidden faults, that can only be detected after a job completes,
and exposed faults, that can be detected immediately.

First, we give an O(n)-time fault-tolerance testing algorithm, for both exposed and hidden
faults, if the number of faults does not exceed a given parameter k.

Then we consider the model in which any two faults are separated in time by a gap of
length at least ∆, where ∆ is at least twice the maximum job length. For exposed faults we
give an O(n)-time algorithm. For hidden faults we give an algorithm with running time O(n2),
and we prove that if job lengths are distributed uniformly over an interval [0, pmax], then this
algorithm’s expected running time is O(n). Our experimental study shows that this linear-time
performance extends to other distributions. Finally, we provide evidence that improving the
worst-case performance may not be possible, by proving an Ω(n2) lower bound, in the algebraic
computation tree model, on a slight generalization of this problem.

1 Introduction

Ghosh, Melhem and Mossé [GMM95, MMG03] (see also [EKM+99]) studied the problem of testing
fault-tolerance of a collection of sequenced jobs. More specifically, we are given a sequence J of
jobs, with release times, deadlines, and processing times (or lengths). The jobs in J have already
been sequenced, that is, their order of execution is known. Transient faults may occur when jobs
are executed. If a fault occurs, the currently executed job is re-executed. In [GMM95, MMG03]
the authors assume that a fault can be detected only after the processing of a job is complete. We
refer to such faults as hidden faults. The question investigated in [GMM95, MMG03] is whether all
jobs in J will meet their their deadlines in the presence of faults. The answer is, obviously, negative
when arbitrary fault patterns are allowed. However, with reasonable assumptions on the frequency
of faults, the question becomes meaningful and, in some cases, non-trivial. In [GMM95, MMG03],
the authors assume the fault frequency model in which a gap between any two faults is at least
∆, where ∆ is at least twice the maximum job length. For this model, they present an O(n2)-
time fault-tolerance testing algorithm, under the restriction that all jobs are released at the same
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time. In addition, they also propose a linear-time heuristic for this problem. The authors also
extend this linear-time heuristic to jobs with arbitrary release times, and discuss its applications
and experimental results.

A different fault frequency model, in which the number of faults is bounded by some constant
k, has been suggested by Liberato, Melhem and Mossé [LMM00]. For this model, the authors
give a O(n2k)-time dynamic programming algorithm for testing fault-tolerance, if jobs are ordered
according to EDF and preemption is allowed.

Testing for fault-tolerance and enhancing schedules to improve their fault-tolerance are signifi-
cant issues in real-time systems with hard deadlines, where missing a deadline by a job may result
in a malfunction of the whole system. Although scheduling approaches as those discussed above
can only guarantee limited fault-tolerance, they still provide useful tools. A system designer can
choose a fault-tolerance model most appropriate for its application, and determine the expected
level of its fault tolerance (say, the value of ∆ or k, in the models discussed above). Alternatively,
one can use the desired value of ∆ or k to determine either the maximum load conditions or the
hardware requirements needed to meet these fault-tolerance goals. The experiments reported in
[GMM95] show that, in fact, even if the faults do not strictly match the model, the task loss is
minimal. We refer the reader to [GMM95, MMG03] for more background on this problem and
discussion of its practical aspects. See also Section 7 for a brief discussion of more general models.
Our results. In this paper, the jobs are already ordered (as in the previous work), and preemption
is not allowed. We consider both fault frequency models from [GMM95, MMG03, LMM00] in this
paper. In addition to the hidden faults, we also consider another type of faults that we call
exposed. Unlike hidden faults, exposed faults can be detected immediately, and the running job
can be restarted from scratch at the time when a fault occurs.

First, we discuss the issue of scheduling. A schedule assigns to each job its planned start time,
that is the time when the job would be started if the previous jobs are not delayed due to faults. The
greedy schedule starts each job either at its release time or at the completion time of the previous
job, whichever comes later. In the exposed-fault model, it is not difficult to see that it is sufficient
to consider only greedy schedules. For hidden faults, however, there are fault patterns for which it
is beneficial, in some situations, to delay execution of a job and stay idle for some time. In Section 3
we prove that this cannot happen if the set of all possible fault sequences satisfies the following
sparsifiability property: if a certain fault sequence can occur, then any sparser sequence can occur
as well (see Section 2 for precise definitions). This is a very natural restriction on potential fault
sequences and all the fault frequency models we consider are sparsifiable. Thus throughout the
paper we can restrict our attention to greedy schedules only.

We then propose a number of fault-tolerance testing algorithms. Our first algorithm is for the
fault frequency model NUMk, where the number of faults is bounded by k. This algorithm runs
in time O(n) (for both fault types), independent of k. In [Ayd04] the fault model from [LMM00]
is extended so that a reexecution of a job could take time different from its processing time. Our
algorithm can be adapted to handle a similar case as well.

Then we consider the fault frequency model GAP∆, introduced in [GMM95, MMG03], in which
any two consecutive faults are separated by a gap at least ∆. As in [GMM95, MMG03], we assume
that ∆ is at least twice the maximum processing time. (Thus each job can fail at most once.) For
exposed faults, we give an algorithm that runs in time O(n).

The case of hidden faults in the GAP∆ model is more difficult. Here, we present an algorithm
with running time O(n2). Our algorithm applies to jobs with arbitrary release times, generalizing
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the work from [GMM95, MMG03]. We further show that if job lengths are distributed uniformly
then the running time of this algorithm is O(n) with high probability. (And thus its expected
running time is O(n) as well.) This result is in fact much more general, as it holds for all probability
distributions in which certain sub-intervals of [0,∆/2] have non-zero probability. (See Section 6.2.)
We also include the results of an experimental study that confirms our analysis.

Whether the worst-case running time can be improved remains an open question. However, we
provide evidence that such an improvement is unlikely, by showing that a slight generalization of
this problem cannot be solved faster than in time Ω(n2) in the algebraic computation tree model.

All our algorithms are very simple, efficient, and easy to implement. The basic idea behind all
these algorithms is similar: For each fault model we first show that one needs to consider only some
specific “cruel” fault patterns. With this restriction, using dynamic programming, we design an
algorithm that for each job computes its latest completion time on faults that are “cruel” for this
model. Comparing these completion times with the deadlines, we determine whether the given set
of jobs is fault-tolerant.
Other related work. Substantial work has been done on fault tolerant scheduling in multipro-
cessor systems. For example, Liberato et al. [LLMM99] study scheduling of periodic preemptive
real-time jobs in the presence of transient faults. A different model, with processor faults and non-
periodic and non-preemptive tasks was investigated by Manimaran and Siva Ram Murthy [MM98].
Pruhs and Kalyanasundaram [KP97] study fault-tolerant scheduling from the perspective of com-
petitive analysis. (See [LLMM99, MM98, QHJ+00, QJS02, GKS04, KP97] and references therein
for other work on this and related topics.)

2 Terminology and Notation

Jobs and Schedules. By J we denote the sequence of n jobs on input. Jobs are identified by
integers 1, 2, ..., n. Each job j is specified by a triple (rj , dj , pj), where rj is its release time, dj is
its deadline, and pj is its processing time. Without loss of generality, we assume that 0 ≤ rj <
rj + pj ≤ dj for all j. By pmax = maxj pj we denote the maximum processing time.

A schedule of J is any sequence s = (s1, . . . , sn), such that sj ≥ rj for all j, and sj+1 ≥ sj + pj

for j < n. We refer to sj as the scheduled start time of job j.
Without loss of generality, throughout the paper, we assume that rj+1 ≥ rj + pj for all j < n.

For any set of jobs J we can easily modify, in linear time, the release times in J to satisfy this
property, without affecting job completion times for any schedule of this sequence of jobs. (Recall
that the order of jobs is already fixed in advance.) The greedy schedule for J is then defined simply
by sj = rj , for all j.
Faults. Each fault is specified by a real number, namely the time of the fault. Fault sequences (or
patterns) are denoted by letters f , g, h. We assume that the faults in these sequences are listed
in increasing order, that is if f = (f1, f2, . . . , fm) then f1 < f2 < ... < fm. By |f | we denote the
length of sequence f . (We allow infinite sequences as well, in which case |f | =∞.)

A fault frequency model is a set F of potential fault sequences. F is called sparsifiable if for all
f ∈ F , any 1 ≤ a ≤ b ≤ |f |, and any fault sequence g with |g| = b−a+1, if fa+i−1−fa+i−2 ≤ gi−gi−1

for i = 2, ..., b− a + 1, then g ∈ F as well. Intuitively, this means that any sequence “sparser” than
a segment of a sequence in F is also in F .

The two particular fault frequency models we consider are:
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GAP∆: The set of all sequences f in which fi − fi−1 ≥ ∆ for each i, and

NUMk: The set of all sequences f with at most k faults.

Both models are easily seen to be sparsifiable. As we show later in the paper, for sparsifiable
models, we can restrict ourselves to studying only greedy schedules.
Completion times. Next, we explain how execution of a job is affected when a fault occurs. This
depends on the type of faults under consideration.

Fix a sequence of n jobs J and a fault model F . By Sj(s, f) and Cj(s, f) we denote the start
time and completion time of job j, if we execute the jobs according to schedule s and the fault
sequence is f . Informally, Sj(s, f) is either sj or the completion time of job j − 1, whichever is
greater. If no fault occurs between Sj(s, f) and Sj(s, f) + pj , then Cj(s, f) equals Sj(s, f) + pj . If
a fault occurs in this interval, j will need to be reexecuted, starting either at the fault time or at
Sj(s, f) + pj , depending on whether we consider exposed or hidden faults. The completion time is
the time when j has been fully processed without faults.

We now give a rigorous definition. Initially, set S1(s, f) = s1. Then, for j = 1, ..., n, assume
that Sj(s, f) has been defined, and proceed as follows:

(C) The completion time Cj(s, f) depends on the fault type:

(CE) For exposed-faults, Cj(s, f) is the smallest τ ≥ Sj(s, f)+pj such that f∩(τ−pj , τ ] = ∅,
that is, the interval (τ − pj , τ ] contains no faults.

(CH) For hidden-faults, Cj(s, f) is the smallest τ ≥ Sj(s, f)+pj such that f ∩ (τ −pj , τ ] = ∅
and τ − Sj(s, f) is an integer multiple of pj .

(S) If j < n, then the start time of job j + 1 is Sj+1(s, f) = max {sj+1, Cj(s, f)}.

For the sake of brevity, as in the definition above, we sometimes treat f as a set of real numbers
(fault times), so that we can apply to it set-theoretic operations.

In (CE) and (CH), if such τ does not exist, job j (and all subsequent jobs) never complete.
Note that in the case of a “tie”, when a fault occurs exactly at a time when some job j completes
its execution and job j + 1 is about to start, we assume that the fault affects job j but not j + 1.
(All the results remain valid if we assumed that j + 1 is affected instead of j, or even if the choice
of the affected job was arbitrary.)

By Cj(s, F ) we denote the maximum completion time of a job j if the faults are from F , that
is Cj(s, F ) = maxf∈F Cj(s, f). Throughout the paper, we will simplify notation by omitting the
arguments that are understood from context, for example Sj(s), Cj(F ), Cj , etc.

For either fault type, exposed or hidden, a schedule s of J is called F -tolerant, if each job
completes by its deadline, that is Cj(s, F ) ≤ dj for all j. All algorithms we present will actu-
ally compute, for all j, the maximum completion times Cj(s, F ). Testing fault-tolerance, that is,
whether Cj(s, F ) ≤ dj for all j, can then be done trivially in linear time.

3 Fault Tolerance and Greedy Schedules

In this section we show that we can restrict ourselves to greedy schedules only. For two schedules
s, t, we write s≺t if si ≤ ti for all i.
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Lemma 1. For exposed faults, for any fault frequency model F , if J has any F -tolerant schedule
then the greedy schedule for J is F -tolerant.

Proof. Fix any fault sequence f and schedules s, t such that s≺t. It is enough to show the following
claim:
(∗) Cj(s, f) ≤ Cj(t, f) for all j.

Indeed, if (∗) holds, to get the lemma we take s to be the greedy schedule. If J has any
F -tolerant schedule t, then s≺t, and thus (∗) implies that the greedy schedule is F -tolerant as well.

We show inequality (∗) by induction on j. For j = 0, define artificially C0(s, f) = C0(t, f) = 0,
and the claim holds trivially.

Suppose that j ≥ 1 and Cj−1(s, f) ≤ Cj−1(t, f). Then τ = Cj(t, f) satisfies f ∩ (τ − pj , τ ] = ∅
and τ ≥ Sj(t, f) + pj = max {tj , Cj−1(t, f)}+ pj ≥ max {sj , Cj−1(s, f)}+ pj = Sj(s, f) + pj . Thus
Cj(s, f) ≤ Cj(t, f) as well.

Lemma 1 does not hold for hidden faults. For hidden faults, it is possible that J has an
F -tolerant schedule even though the greedy schedule is not F -tolerant. For example, take J =
{(r1, d1, p1) = (0, 5, 3)} (just one job) and F = {(1)}, one fault sequence with a single fault at time
1. Schedule s = (2) is F -tolerant, but the greedy schedule s = (0) is not. However, we show that a
lemma analogous to Lemma 1 holds for hidden faults if we assume that F is sparsifiable.

Lemma 2. For hidden faults, for any sparsifiable fault frequency model F , if J has any F -tolerant
schedule then the greedy schedule for J is F -tolerant.

Proof. The proof is a little harder than that of Lemma 1, although the general idea is similar. Fix
any fault sequence f and schedules s, t such that s≺t. It is enough to show the following claim:
(∗) For any b ∈ J and f ∈ F there is g ∈ F such that Cb(s, f) ≤ Cb(t, g).

That (∗) is sufficient to prove the lemma should be quite obvious: Take s to be the greedy
schedule. If t is any F -tolerant schedule, then s≺t, and thus (∗) implies that the greedy schedule
is F -tolerant as well.

It is sufficient to prove (∗) for the special case where s and t differ in just one start time, say
tm = sm +ε, for some ε > 0, and tj = sj for j 6= m. For if s≺t are arbitrary, we can define schedules
s = s0≺s1≺...≺sl = t, where each two consecutive schedules sq, sq+1 differ on only one start time.
If (∗) holds for any pair of consecutive schedules s′ = sq, t′ = sq+1, then it holds for s, t as well.

Without loss of generality, Cb(s, f) <∞. Fix b, and pick the largest a ≤ b such that Sa(s, f) =
sa. Thus jobs a, a + 1, . . . , b execute back-to-back, some possibly several times. Without loss of
generality we can assume that all faults in f occur in (sa, Cb(s, f)], since we can remove other faults
without changing the value of Cb(s, f). (Note that removing faults at the beginning or end of f
creates a fault sequence that is still in F .) We choose g depending on the value of m. There are
three cases to consider.
Case 1: m > b. This is the easiest case, since here we can simply take g = f . The execution of jobs
1, 2, ..., b is the same in f and g, so Cb(s, f) = Cb(t, g).
Case 2: a ≤ m ≤ b. Let ε′ = max {tm − Cm−1(s, f), 0} be the amount of time by which m will
be delayed if we change its start time from sm to tm. Define gi = fi for all fi ≤ Sm(s, f) and
gi = fi + ε′ for all fi > Sm(s, f). Since F is sparsifiable, g ∈ F , and in g each fault will hit the
same job as in f . Therefore Cb(s, f) ≤ Cb(t, g), and we are done.
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Case 3: m < a. Recall that, according to our assumption, no fault occurs before Sa(s, f). Denote
by θ =

∑a
j=m+1 max {sj − Cj−1(s, f), 0} the total idle time between Cm(s, f) and sa. We have two

sub-cases.
If ε ≤ θ, then increasing sm to tm will not change the start time of job a, and therefore we can

simply take g = f .
In the other case, when ε > θ, the jobs a, a + 1, ..., b will be started earlier by ε′ = ε − θ. We

take gi = fi + ε′ for all i. Then g ∈ F and (similarly to Case 2), each fault will hit the same job as
as in f . Therefore (∗) holds in this case as well.

The following lemma follows almost directly from the definitions:

Lemma 3. Both fault frequency models NUMk and GAP∆ are sparsifiable.

Proof. Consider first NUMk. The definition of sparsifiability requires that for any f ∈ NUMk, any
sequence g not longer than f and sparser than a segment of f of length |g| is also in NUMk. Since
NUMk contains all sequences with at most k faults, this condition is satisfied vacuously.

For GAP∆, the proof is equally simple: Suppose that f ∈ GAP∆ and let g be any sequence with
|g| = b−a+1, where 1 ≤ a ≤ b ≤ |f |, that satisfies fa+i−1−fa+i−2 ≤ gi−gi−1 for i = 2, ..., b−a+1.
Since fa+i−1 − fa+i−2 ≥ ∆ for all i = 2, ..., b − a + 1, we get gi − gi−1 ≥ ∆ as well, implying that
g ∈ GAP∆.

From the lemmas above, throughout the rest of the paper we can assume that the jobs are
scheduled greedily, and we will use notation Sj(f), Cj(f), etc., for the start time and completion
time in the greedy schedule. Also, we will say that a job sequence J is F -tolerant if the greedy
schedule for J is F -tolerant.

4 Sequences with at Most k Faults

In this section we give a linear-time algorithm for testing fault tolerance when F = NUMk, that is,
F consists of all sequences with at most k faults, where k is a given parameter. By the results from
the previous section, we can assume that the jobs are scheduled according to the greedy schedule.
The general idea of the algorithm is that in the worst case all faults will affect just one “critical”
job.

Lemma 4. For both exposed and hidden faults, for each b ∈ J and f ∈ NUMk, there is g ∈ NUMk

that causes one job in J to execute k + 1 times, and for which Cb(g) ≥ Cb(f). In addition, all the
faults in g appear at the end of execution of that job.

The fault sequences g from the above lemma constitute the cruel sequences for NUMk.

Proof. Pick the smallest a such that the jobs a, . . . , b are executed back-to-back, that is Sa(f) = ra

and Sj(f) = Cj−1(f) for j = a + 1, . . . , b. We can assume, without loss of generality, that all faults
in f occur in the interval (ra, Cb(f)]. Let e, a ≤ e ≤ b, be the job in this block that has the largest
processing time pe.

We first give the argument for hidden faults. If there is any fault in the interval (Ce(f), Cb(f)],
we can do this: (i) remove the last fault from f , (ii) increase the time of all faults in f after Ce(f) by
pe, and (iii) add one fault during the last execution of e, that is, in the interval (Ce(f)− pe, Ce(f)].
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Let f ′ be the new fault sequence. There are at most k faults in f ′, and, by the choice of e, this
change can only increase the completion time of b, that is, Cb(f ′) ≥ Cb(f). By repeating this
process we eliminate all faults after the completion of e.

So suppose now that e is executed l +1 times, due to l faults, and that there are no faults after
Ce(f). If there are any faults in the interval (Sa(f), Se(f)], remove the last such fault. This will
decrease the start time of e by some amount δ ≤ pe. Modify f by decreasing times of all the faults
on e by δ, and then add one more fault on the last execution on e. Let the resulting sequence be f ′.
There are at most k faults in f ′ and, by the choice of e, the above modification can only increase
the completion time of b, so Cb(f ′) ≥ Cb(f).

Overall, the process above transforms f into another sequence g in which all faults (at most
k) occur during the executions of e, and which satisfies Cb(g) ≥ Cb(f). If the number of faults is
smaller than k, we can add another fault on the last execution of e. By repeating this, we obtain
a sequence with k faults on e.

Finally, to satisfy the second requirement in the lemma, each fault can be shifted to the end of
the corresponding execution of job e, without any change in the resulting completion times.

The proof for exposed faults is similar. The main observation is that for exposed faults, using a
similar shifting argument, we can assume that all faults occur at completions of executions of jobs,
that is at times of the form Sj(f)+ ipj , for i = 1, 2, ..., `−1, for some j, where Cj(f) = Sj(f)+ `pj .
The rest of the argument is the same as for hidden faults.

Algorithm 1 given below will compute the latest completion time C∗
j = Cj(NUMk) for each job

j. To test fault-tolerance, one then only needs to check if C∗
j ≤ dj for all j. Note that Lemma 4

implies that the cruel sequences and the completion times for them are the same for hidden and
exposed faults, so we can handle both cases at once.

Algorithm 1 — Computing the C∗
j = Cj(NUMk) for both fault types

C∗
0← 0

for j = 1, ..., n do
C∗

j ← max {C∗
j−1 + pj , rj + (k + 1)pj }.

Analysis. Clearly, Algorithm 1 works in linear time. We need to show that the completion times
are computed correctly, that is C∗

j = Cj(NUMk) for all j.
The proof is by induction. To make the base case easy to handle, we artificially set C0(NUMk) =

0.
The (≤) inequality is quite easy: Suppose it holds for indices 0, 1, ..., j − 1, and consider job j.

Using a fault sequence f ∈ NUMk that forces j to execute k + 1 times, we get Cj(f) ≥ rj + (k +
1)pj . If g ∈ NUMk is a fault sequence that realizes Cj−1(NUMk), then Cj(g) ≥ Cj−1(g) + pj =
Cj−1(NUMk) + pj ≥ C∗

j−1 + pj , by induction. Therefore Cj(NUMk) ≥ max {Cj(f), Cj(g)} ≥ C∗
j .

Now we show the (≥) inequality. In other words, we claim that for any job j and fault sequence
f ∈ NUMk, C∗

j ≥ Cj(f). Again, assume that this holds for jobs 1, 2, ..., j − 1. By Lemma 4, we can
assume that on f some job j′ is reexecuted k times. If j < j′ then j starts at rj (recall that ri+1 ≥
ri + pi for all i) and executes once, so j is completed no later than C∗

j . For j = j′, job j completes
at time rj +(k +1)pj ≤ C∗

j . For j > j′, job j is completed at time max {rj , C
∗
j−1}+ pj ≤ C∗

j . Thus
each job j completes no later than at time C∗

j , as claimed.
In conclusion, we obtain the following theorem.
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Theorem 5. For both fault types, Algorithm 1 computes in time O(n) the latest completion times
for all jobs j, in the presence of up to k faults (that is, for the fault model NUMk).

5 Exposed ∆-Faults

In this section we consider the fault model F = GAP∆, in which all fault sequences f satisfy
fi− fi−1 ≥ ∆ for all i, where ∆ is some parameter of the problem. Recall that, as in [GMM97], we
assume that ∆ ≥ 2pmax. We give a linear-time algorithm for testing fault-tolerance in this model
in the case of exposed faults.

As in the previous section, the idea is to show that only some special fault sequences need to
be considered.

Lemma 6. In the greedy schedule, for each b ∈ J and f ∈ GAP∆, there is g ∈ GAP∆ in which each
fault occurs at the completion time of the first execution of some job, and for which Cb(g) ≥ Cb(f).

Proof. Pick the largest a ≤ b such that Sa(f) = ra. Thus jobs a, a + 1, . . . , b execute back-to-back,
some possibly twice. Without loss of generality we can assume that all faults in f occur in the
interval (ra, Cb(f)], since we can remove all other faults without affecting the value of Cb(f).

If f satisfies the condition in the lemma, we take g = f and we are done. Otherwise, let fl be
the last fault in f that does not satisfy the condition in the lemma. Let also e, a ≤ e ≤ b, be the
job affected by fl, that is Se(f) < fl ≤ Se(f) + pe. For δ = Se(f) + pe − fl, define a new fault
sequence f ′ where f ′

i = fi if i < l and f ′
i = fi + δ for i ≥ l. Then f ′ ∈ GAP∆, Cj(f ′) ≥ Cj(f)

for all j = a, . . . , b, and f ′ has more faults satisfying the condition in the lemma than f . So after
repeating this process we transform f into a desired fault sequence g.

The algorithm. For each j, we define α(j) as the minimum index a such that
∑j

i=a pi ≤ ∆. (In
other words,

∑j
i=a pi ≤ ∆ and either a = 1 or

∑j
i=a−1 pi > ∆.) Let also π(j) =

∑j
i=α(j) pi. Note

that if a fault occurs during an execution of j and jobs α(j), . . . , j are executed back-to-back then
no fault could have occurred on these jobs.

The algorithm is shown below in pseudocode. It first precomputes the numbers α(j) and π(j).
Then it uses the numbers α(j) and π(j) to compute C∗

j = Cj(GAP∆), for each j. To determine
whether J is GAP∆-tolerant, one then only needs to check if C∗

j ≤ dj for all j.
Running time. By a standard amortization argument, it takes time O(n) to compute all numbers
α(j) and π(j). The linear-time complexity of computing the completion times is obvious.
Correctness. We now show that the numbers C∗

j are computed correctly, that is C∗
j = Cj(GAP∆)

for all j. The proof is by induction. We artificially set C0(GAP∆) = 0, so that the equality holds
in the base case j = 0.

We prove the (≤) inequality first. Assume that this inequality holds for indices 0, 1, ..., j − 1,
and consider job j. If f consists of just one fault at the end of the execution of j, then Cj(f) ≥
rj + 2pj . Next, choosing g ∈ GAP∆ to be the fault that realizes Cj−1(GAP∆), we get Cj(g) ≥
Cj−1(g) + pj = Cj−1(GAP∆) + pj ≥ C∗

j−1 + pj , by induction. Finally, take h ∈ GAP∆ that realizes
Cα(j)−1(GAP∆). Add to h a fault at the end of the execution of j. This new fault sequence h′ is
still in GAP∆, by the definition of α(j) and π(j). Therefore Cj(h′) ≥ Cα(j)−1(h) + π(j) + pj =
Cα(j)−1(GAP∆) + π(j) + pj ≥ C∗

α(j)−1 + π(j) + pj , by induction. Putting it together, we get
Cj(GAP∆) ≥ max {Cj(f), Cj(g), Cj(h′)} ≥ C∗

j .
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Algorithm 2 — Computing C∗
j = Cj(GAP∆) for exposed faults

// Compute the numbers αj , πj

α(1)← 1 ; π(1)← p1

for j = 2, ..., n do
a← α(j − 1); x← π(j − 1) + pj

while x > ∆ do
x← x− pa ; a← a + 1

α(j)← a ; π(j)← x
// Compute the completion times
C∗

0← r1

for j = 1, . . . , n do
C∗

j ← max {C∗
j−1 + pj , rj + 2pj , C∗

α(j)−1 + π(j) + pj }

Next, we prove the (≥) inequality. We need to show that C∗
j ≥ Cj(f) for each j and each

f ∈ GAP∆. Assume that the claim holds for 0, 1, ..., j − 1. For the current job j we consider
cases depending on whether the last fault occurred. If j is executed without faults, then Cj =
max {rj , Cj−1} + pj ≤ max {rj , C

∗
j−1} + pj ≤ C∗

j . Suppose now that a fault occurs at job j, so
j is executed twice. Without loss of generality, this fault is at the end of its first execution. If
j starts at rj then Cj(f) = rj + 2pj ≤ C∗

j . Otherwise j must have been delayed because of a
previous fault on a job of index smaller or equal to α(j) So the jobs α(j) − 1, . . . , j − 1 must
have been executed back-to-back with jobs α(j), . . . , j − 1 executing without faults. Therefore
Cj = Cα(j)−1 + π(j) + pj ≤ C∗

α(j)−1 + π(j) + pj ≤ C∗
j . We conclude that the algorithm is correct.

Theorem 7. For exposed faults, Algorithm 2 computes in linear time the maximum completion
times when all faults are separated by gaps of length at least ∆ (that is, for the fault model GAP∆).

6 Hidden ∆-Faults

The algorithm from [GMM97] verifies fault-tolerance for hidden ∆=faults if all jobs are ready at
the same time. Their method is to divide the sequence of jobs into blocks of length at most ∆,
where each block includes an additional unallocated recovery interval whose length is at least the
longest processing time of the jobs. Then they compute the partition that minimizes the total
execution time. This approach does not work for jobs with different release times, because some
job sequences can be executed fault-tolerantly but do not have such partition into blocks. Consider,
for example, a sequence J of jobs in which job j has start time 3j − 3, deadline 3j + 1 and all jobs
have execution time equal 2. Let ∆ = 6. With the greedy schedules, for all f ∈ GAP∆, all jobs
in J will meet their deadlines, but it will not be possible if we use a schedule where some job is
postponed.
General idea. The general approach we take is similar to those in the previous section. We iden-
tify certain “cruel” fault sequences on which completion times of jobs are maximized. By focusing
on these sequences, we can derive a dynamic programming algorithm for computing maximum com-
pletion times for all jobs. This algorithm, for each j, will compute pairs (c, δ), where c is a possible
completion time of j and c − δ is the time of the latest fault before c. This is all the information
needed to determine the latest completion times of the jobs j+1, ..., n. To achieve polynomial-time,
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we show that we need to keep track of only those pairs (c, δ) that are not dominated by other – in
the sense defined formally below.

To simplify the argument, it is convenient to slightly modify the interpretation of faults as
follows: if a fault occurs at a time τ and a job j starts at time τ , then we will assume that this
fault affects job j and j is re-executed (not job j − 1, even if it ends at τ). We claim that this
modification does not change the worst-case completion times. Indeed, for any fault sequence f
that possibly contains some faults on the beginning of jobs (with the new interpretation), we can
choose a sufficiently small ε > 0 and increase all fault times by ε, so that afterwards all faults are
on exactly the same jobs, but not on their start times. The completion times of all jobs on this new
sequence f ′ will be the same as on f . Similarly, for any fault sequence that possibly contains some
faults on the end of jobs (with the old interpretation), we can choose a sufficiently small ε > 0 and
decrease all fault times by ε with no change of completion times.

Let J be a set of jobs. A fault sequence f ∈ GAP∆ is called cruel for J if for all fi ∈ f , either
fi − fi−1 = ∆ or fi occurs at a beginning of some job. The above conditions imply that each cruel
fault sequence can be divided into chains, where in each chain the faults are at distance exactly ∆.
We define CRUEL0

J to be the set of fault sequences in GAP∆ that are cruel for J .

Lemma 8. In the greedy schedule, for each b ∈ J and f ∈ GAP∆, there is g ∈ CRUEL0
J for which

Cb(g) ≥ Cb(f).

Proof. For convenience, for all fault sequences f we will set f0 = −∞. Fix b and f . Pick the largest
a ≤ b such that Sa(f) = ra. Thus jobs a, a + 1, . . . , b execute back-to-back, some possibly twice.
Let f ′ be the fault sequence obtained from f by removing all faults before Sa and after Cb. Then
f ′ ∈ GAP∆ and Cb(f ′) = Cb(f).

Now take the first fault f ′
i that does not satisfy the definition of the cruel sequence. Suppose

that f ′
i occurs when a job j is executed, that is f ′

i ∈ (Sj(f ′), Sj(f ′) + pj). By the choice of i, we
have f ′

i − f ′
i−1 > ∆ (and this holds even if i = 1 because f ′

0 = −∞). We can modify f ′ by moving
f ′

i to max {f ′
i−1 + ∆, Sj(f ′)} without affecting the completion time of jobs j, j +1, . . . , b. After this

change f ′ will be still in GAP∆. By repeating this process for each fault, we turn f ′ into a sequence
g ∈ CRUEL0

J .

For a job j and a fault sequence f , suppose that fi is the time of the last fault in f before
Cj(f), that is fi = maxi′ {fi′ | fi′ < Cj(f)}. As explained earlier, the idea of our algorithm is to
keep track of such pairs (Cj(f), Ci(f)− fi), as these pairs determine the start time of the next job
and the earliest possible time when a fault can occur. Lemma 8 implies that we only need to be
concerned with cruel fault sequences. This still does not yield a polynomial-time algorithm, as even
for cruel sequences the number of such pairs to keep track of could be exponential. We reduce the
complexity by discarding from consideration fault sequences that are “redundant”, namely those
that cannot maximize the completion time of any job after j.

First we note that once Cj(f) − fi ≥ ∆, the next fault can occur immediately and it is not
necessary to remember the exact value of the difference. Instead, in such a pair, we always use ∆
in the second component. We define δj(f) = min(Cj(f)− fi,∆).

We now formalize the idea of redundancy. A pair (c̃, δ̃) is said to dominate a pair (c, δ) if c̃ ≥ c,
δ̃ ≥ δ, and at least one of these inequalities is strict. The dominance relation is clearly a (strict)
partial order.

We extend the definition of dominance to fault sequences. For two fault sequences f, g ∈
CRUEL0

J and a job k, we say that f k-dominates g if (Ck(f), δk(f)) dominates (Ck(g), δk(g)). (In
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case when (Ck(f), δk(f)) = (Ck(g), δk(g)), to break the tie, we further require that f is lexico-
graphically smaller than g). For each k, the k-dominance relation is a partial order on CRUEL0

J .
By CRUELk

J ⊆ CRUEL0
J we denote the set of cruel sequences that are not j-dominated by another

sequence, for any j = 1, 2, ..., k. In other words, for k > 0, CRUELk
J is the set of all f ∈ CRUELk−1

J

such that f is not k-dominated by any g ∈ CRUELk−1
J . We now prove that, in order to compute

the worst-case completion times, it is sufficient to consider only the sequences in the sets CRUELk
J .

Lemma 9. For any f ∈ CRUELk−1
J − CRUELk

J and b ≥ k, there exists g ∈ CRUELk
J such that

Cb(f) ≤ Cb(g).

Proof. Fix any f ∈ CRUELk−1
J − CRUELk

J , and choose a fault sequence h ∈ CRUELk−1
J that k-

dominates f . Without loss of generality, we can assume that h is maximal with respect to the
k-dominance relation, that is h ∈ CRUELk

J . Let g be a sequence that contains the faults in h that
affect jobs 1, 2, ..., k, as well as the faults from f that affect jobs k+1, ..., n, appropriately shifted so
that they hit the same jobs and at the same places as in f . Then g ∈ GAP∆ because f, h ∈ GAP∆

and h k-dominates f . Also, Cb(g) ≥ Cb(f) because Ck(h) ≥ Ck(f). The gap in g from job k to
job k + 1 could violate the definition of a cruel sequence, but using the method from Lemma 8 we
can modify the part of g after job k to satisfy this definition, getting a cruel sequence g for which
Cb(g) ≥ Cb(f). And finally, since all faults of g up to job k are from h and h ∈ CRUELk

J , we have
g ∈ CRUELk

J .

Corollary 10. If a job b ∈ J is CRUELb
J -tolerant, then it is CRUEL0

J -tolerant.

Proof. Let f ∈ CRUEL0
J . Let k be the first job for which f ∈ CRUELk−1

J −CRUELk
J . Then, according

to Lemma 9 there exists g in CRUELk
J with Cb(g) ≥ Cb(f). By repeating this argument as many

times as necessary, we will find h ∈ CRUELb
J with Cb(h) ≥ Cb(f).

The algorithm. As before, we view the problem as the optimization problem in which we wish
to compute the worst-case completion time, C∗

j = Cj(GAP∆), for each j. By Lemma 8 and
Corollary 10, for each j we have C∗

j = Cj(CRUEL0
J) = Cj(CRUELj

J).
The algorithm maintains the set Hj = {(Cj(f), δj(f)) | f ∈ CRUELj

J}, for j = 1, 2, ..., n. In
other words, Hj is the set of pairs (c, δ) such that for some fault sequence f ∈ CRUELj

J we have
c = Cj(f) and δ = δj(f). Given Hj , the maximum completion time of j can be determined easily,
as we have C∗

j = max {c | (c, δ) ∈ Hj}.
To compute the sets Hj , we initially start with H0 ← {(−∞,∆)}. Then for j = 1, 2, ..., n, since

CRUELj
J ⊆ CRUELj−1

J , we can use the definition of cruel sequences to construct Hj from Hj−1.
(See the pseudo-code below.)

The complete algorithm is given below in pseudo-code. An example illustrating the recursive
construction of the sets Hj (for the case without the release times) is shown in Figure 1.

Correctness. Take f ∈ CRUELj
J . We claim that Hj is computed correctly, that is

Hj = {(Cj(f), δj(f)) | f ∈ CRUELj
J}. (1)

The proof is by induction. Given our definition of H0, the basis case j = 0 is trivial. Suppose that
the claim is true up to step j − 1, that is Hj−1 = {(Cj−1(f), δj−1(f)) | f ∈ CRUELj−1

J }. We prove
that (1) holds.
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Algorithm 3 — Computing the C∗
j = Cj(GAP∆) for hidden faults

H0←{(−∞,∆)}
for j = 1, 2, ..., n do

Hj←∅
for each (c, δ) ∈ Hj−1 such that c ≥ rj do

if δ + pj ≤ ∆ then
add (c + pj , δ + pj) to Hj

else
add (c + 2pj , δ + 2pj −∆) and (c + pj ,∆) to Hj

if min {c | (c, δ) ∈ Hj−1} < rj then
add (rj + pj ,∆) and (rj + 2pj , 2pj) to Hj

Eliminate dominated pairs from Hj

C∗
j ← max {c | (c, δ) ∈ Hj}

H j

H j+1

∆−p
j+1

c

δ
∆

Figure 1: Building Hj+1 from Hj .The pairs marked by squares are eliminated.

(⊆) For any (c′, δ′) ∈ Hj , we need to find a corresponding f ′ ∈ CRUELj
J . This is quite

straightforward. Suppose that (c, δ) ∈ Hj−1. By induction, there is f ∈ CRUELj−1
J such that

(c, δ) = (Cj−1(f), δj−1(f)). We extend f to f ′, depending on which case in the algorithm holds.
Consider (c, δ) ∈ Hj−1 with c ≥ rj . If δ + pj ≤ ∆, then the algorithm adds (c + pj , δ + pj) that

corresponds to f ′ = f . Otherwise, we add (c + 2pj , δ + 2pj −∆), that corresponds to f ′ obtained
from f by adding a fault at the earliest possible time during the execution of job j, and (c + pj ,∆)
that corresponds to f ′ = f .

If there exists (c, δ) ∈ Hj with c < rj , then the empty fault sequences corresponds to (rj +pj ,∆)
and the fault sequence (rj), with just one fault at rj , corresponds to (rj + 2pj , 2pj).

(⊇) Take f ∈ CRUELj
J . We argue that (Cj(f), δj(f))) will be added to Hj by the algorithm.

That this pair will not be eliminated at the end of the jth iteration follows from f being in CRUELj
J .

Since CRUELj
J ⊆ CRUELj−1

J , f is in CRUELj−1
J as well and (Cj−1(f), δj−1(f)) ∈ Hj−1.

Let (c, δ) = (Cj−1(f), δj−1(f)), and assume that c ≥ rj . If δ + pj ≤ ∆ then no fault can occur
in f on job j. Thus (Cj(f), δj(f)) = (c + pj , δ + pj), consistent with the algorithm. Otherwise, we
have δ + pj > ∆. If f faults on job j, then, according to the definition of cruel sequences, this fault
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will occur exactly ∆ time units after the previous one, so (Cj(f), δj(f)) = (c + 2pj , δ + 2pj −∆).
If we do not fault on j, then after j there will be no constraint on the position of the last fault, so
(Cj(f), δj(f)) = (c + pj ,∆).

Finally, suppose that c < rj . This means that in the greedy schedule j starts at its release time
rj . Note that then we can assume, without loss of generality, that either f is empty, or it only
faults at rj . For if f faults on j but not at its release time, we can remove from f all faults before
rj and move the fault to rj , and this new fault sequence will j-dominate f . Therefore, if f faults at
rj , then the corresponding pair is (rj + 2pj , 2pj). Otherwise, the corresponding pair is (rj + pj ,∆).

Running time. It may seem at first that the size of Hj could double at each step. However,
since we eliminated dominated pairs, of all pairs of type (c,∆) we added, only the one with the
biggest c remains. Therefore the size of Hj increases at most by 1 at each step. Consequently,
|Hj | ≤ j for all j.

To make the construction of Hj run in linear time, we can keep two lists of the new pairs to be
added, one for the pairs of type (c + pj , δ + pj) and one for the pairs of type (c + 2pj , δ + 2pj −∆),
ordered by increasing c (and thus by decreasing δ). The final list Hj can be obtained by merging
two sorted sequences, and adding the dominating pair of type (c̃,∆) and the pair (rj + 2pj , 2pj),
if any. Each set Hj can therefore be built from the previous one in time O(j). Thus the overall
running time of the algorithm is O(n2).

Theorem 11. For hidden faults, Algorithm 3 computes in time O(n2) the maximum completion
times when all faults are separated by gaps of length at least ∆ (that is, for the fault model GAP∆).

6.1 Experimental Results

As we showed in the previous section, the algorithm for ∆-faults runs in time O(n2) in the worst
case. Note, however, that the algorithm is not data-oblivious, namely, its running time depends on
how the size of the sets Hj evolves over time. For the overall running time to be quadratic, the size
of Hj would have to increase by 1 in many steps, which means that in many steps no elimination
would occur – a scenario that seems very unlikely in random or non-adversarial data sequences. In
this section we confirm this intuition through some experimental studies. We performed three types
of experiments, for various probability distributions. In the first one, we show that the expected
running time grows linearly with n. Next, we confirm this further by showing that the total size
(sum) of the sets Hj is linear in expectation. Finally, we show that, for the uniform distribution,
with high probability the size of the sets Hj is bounded by a constant throughout the algorithm.
(Indeed, we will prove this fact in the next section.) The experiments and the stochastic analysis
are both performed without release times. However, we note that introducing release times can
only increase the number of eliminations and thus improve the performance even further.
Running time. We have tested the running time of the algorithm for uniform and normal random
distributions of the job lengths, without release times. In both cases, the job lengths are drawn from
the interval (0,∆/2), where we arbitrarily choose ∆/2 = 10. We tested several normal distributions,
with different values of the mean and variance (discarding the values that did not fall between 0
and ∆/2). The number n of jobs ranges from 1 to 20, 000. In all cases, the simulations show that
the running time increases linearly with the size of the instance – See Figure 2.

Note, however, that the slope of the linear curve depends on the distribution. The intuition
here is quite simple. For example, for the normal distribution with mean 9 and variance 0.5, most
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Figure 2: Running time of Algorithm 3 in mili-seconds. The x-axis represents the number n of
jobs and the y-axis represents the running time. The results are shown for the uniform distribution
(marked with “+”), and two normal distributions, one with mean 9 and variance 0.5 (marked with
“×”) and one with mean 6 and variance 2 (marked with “∗”). The lines show the corresponding
linear interpolations.

of the generated job lengths are between 8 and 10 = ∆/2, decreasing the probability of elimination,
and thus increasing the average number of pairs in the sets Hj .
The size of the sets Hj. The running time of the algorithm is proportional to

∑n
j=0 |Hj |, the

total number of pairs (c, δ) in the sets Hj . In the second batch of experiments we measured the
expectation of the total size of sets Hj for instances of different size n ranging from 1 to 20, 000.
In our experiments, this value also grows linearly with n. (Results not shown.)

We have also run experiments where we computed the maximum size of the sets Hj , for various
values of n, ranging from 0 to 120, 000, and for the uniform distribution of job lengths. For each n
we run the simulation, and the value plotted for n is the maximum cardinality of sets H1, ...,Hn for
the whole run. The results (see Figure 3) show that this quantity grows very slowly, and appears
to level off at around 11. Even for very large values of n, we did not find any sets Hj with more
than 13 pairs. In the next section, we will prove that for the uniform distribution the expected size
of the sets Hj is indeed O(1).

6.2 Probabilistic Analysis

In this section we show that if the job lengths are drawn uniformly at random from the interval
(0,∆/2) then the expected running time of Algorithm 3 is O(n). In fact, we prove something
stronger – namely that the running time of the algorithm is O(n) with very high probability.

Without loss of generality we can assume that ∆ = 1, and thus the job lengths are uniformly
distributed in the interval (0, 1/2).
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Figure 3: Maximum size of the sets Hj . The x-axis represents the number n of jobs and the y-axis
represents the maximum cardinality of a set Hj .

Although, for the sake of simplicity, we carry out the calculations for the uniform distribution,
without the release dates, our proof works for any distribution where each interval [ 5

26 , 6
26 ] (13

52 , 15
52),

[15
52 , 17

52 ], and ( 6
13 , 1

2 ] has strictly positive probability, and with release dates taken into account.
The idea of the proof is to show that, with high probability, the size of the sets Hj remains

constant throughout the computation. To simplify the analysis, we only exploit certain types of
elimination in the proof. As a result, the constant bound we get is higher than what one would
expect based on the empirical study from the previous section.
Random sets Qj. For a given j, let ωj = min {c | (c, δ) ∈ Hj}. It is easy to show (by induction
on j) that Hj ⊆ [ωj , ωj + 1/2] × [0, 1] and also (ωj , 1) ∈ Hj . The idea of the proof is to define a
sequence of random sets Qj which are essentially supersets of the sets Hj , offset leftwards by ωj

so that they are contained in the rectangle [0, 1/2] × [0, 1]. This way, each step of the algorithm
can be modeled as a mapping from [0, 1/2] × [0, 1] to [0, 1/2] × [0, 1]. Another difference between
the sets Qj and Hj is that when computing Qj we only do one type of elimination, and thus more
points from Qj−1 may survive when mapped into Qj than when Hj is computed from Hj−1 in the
actual algorithm. Nevertheless, we still show that with high probability the size of the Qj remains
constant.

We define first two auxiliary functions F (·) and α̂(·). For all p ∈ (0, 1
2) and α, β ∈ [0, 1

2 ]× [0, 1],
define

F (p, α, β) =
{

(α + p, β + 2p− 1) if β ≥ 1− p
(α, β + p) if β < 1− p

and for Q ⊆ [0, 1
2 ]× [0, 1] and p ∈ (0, 1

2), let

α̂(Q, p) = max {α | (α, β) ∈ Q & β ≥ 1− p}.

Intuitively, F (p, α, β) represents the mapping from Hj−1 to Hj (except that all points are
additionally offset leftwards by p), while α̂(Q, p) represents the maximum α-coordinate of a point
in Q to which the first option in the definition of F (p, α, β) applies. (See Figure 4.)
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Figure 4: Interpretation of F (p, α, β) and α̂(Q, p).

In the rest of the proof we consider a random sequence p1, p2, ..., pn of job lengths, where each pj

is chosen uniformly from (0, 1
2), and we prove that for this sequence the size of all sets Hj remains

constant with high probability.
To avoid cumbersome notation, from now on we fix the values of p1, p2, ..., pn. The sets Qj

are defined recursively. For j = 0, let Q0 = {(0, 1)}. For j ≥ 1, suppose that Qj−1 has been
defined. To simplify notation, denote Fj(α, β) = F (pj , α, β) and α̂j = α̂(Qj−1, pj). As before, for
(α, β), (α′, β′) ∈ [0, 1

2 ]× [0, 1] we say that (α, β) dominates (α′, β′) if and only if α ≥ α′ and β ≥ β′.
Then

Q′
j = {(α, β) ∈ Fj(Qj−1) | (α, β) is not dominated by (α̂j , 1) or (pj , 2pj)} ∪ {(α̂j , 1)}

Qj = {(α− α̂j , β) | (α, β) ∈ Q′
j}

The reader needs to keep in mind that Fj , Qj and α̂j , as well as all other values dependent on
the sequence {pj} are actually random variables. Observe that, by definition, the point (α̂(Q, p), 1)
dominates all points (α, β) ∈ Q with α ≤ α̂(Q, p). Also, by induction, for all j ≥ 1 we have
(0, 1) ∈ Qj−1 and therefore (pj , 2pj) ∈ Fj(Qj−1).

Lemma 12. For all j = 1, 2, ..., n and for any (α, β) ∈ Fj(Qj−1) we have α ≤ α̂j + 1
2 .

Proof. Choose (α′, β′) ∈ Qj−1 such that (α, β) = Fj(α′, β′). We have two cases. If β′ < 1−pj , then
α = α′ ≤ α̂j + 1

2 , since both α̂j , α
′ ∈ [0, 1

2 ]. If β′ ≥ 1− pj , then α = α′ + pj ≤ α̂j + pj ≤ α̂j + 1
2 , by

the definition of α̂j .

Observe that, according to Lemma 12 and from the definition of Fj , we have Qj ⊆ [0, 1
2 ]× [0, 1]

for all j.
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Figure 5: Partition of [0, 1
2 ]× [0, 1] into five zones.

Lemma 13. |Hj | ≤ |Qj | for all j = 1, 2, ..., n.

Proof. For all j define ĉj = α̂(Hj , pj), that is, ĉj is the analogue of the α̂j for sets Hj instead of
Qj . Let ωj =

∑j−1
i=1 (α̂i + pi).

We want to prove that (c, δ) ∈ Hj implies (c − ωj , δ) ∈ Qj . The proof is by induction on
j. For j = 0, Q0 = H0 = {(0, 1)} and ω0 = 0. In the inductive step, suppose the property is
true for j − 1, and let (c, δ) ∈ Hj . We have two cases. If δ = 1, (c, δ) originates from the point
(ĉj−1, δ

′) ∈ Hj−1. By induction we have (ĉj−1−ωj−1, δ
′) ∈ Qj−1 and there is no point (c′, β′) ∈ Hj−1

with c′ ≥ ĉj−1 and β′ ≥ 1− pj (because such a point would have been non-dominated in Hj−1 and
thus would not have been eliminated in the process leading to creation of set Hj−1). Therefore
(ĉj−1 − ωj−1, δ

′) = (α̂j−1, δ
′) and (c− ωj , 1) = (0, 1) ∈ Qj .

If δ < 1 then (c, δ) originated from a point (c′, δ′) ∈ Hj−1, that is either (c, δ) = (c′+pj , δ
′+pj) for

δ′ < 1−pj or (c, δ) = (c′+2pj , δ
′+2pj−1) for δ′ ≥ 1−pj . Then, by induction (c′−ωj−1, δ

′) ∈ Qj−1.
We only need to make sure that Fj(c′ − ωj−1, δ

′) is not eliminated in Qj . This cannot happen,
for otherwise (c, δ) would have been eliminated in Hj as well: Indeed, the two points (0, 1) in
respectively Qj and Qj−1 correspond in Hj and Hj−1 to the points (ωj−1, 1) and (ωj , 1).

We are now going to study how the cardinality of Qj changes while j varies. We view these
changes as a random process where at each step a point (α, β) ∈ Qj−1 is mapped into a point
(α′, β′) = Fj(α, β)− (α̂j , 0). If (α′, β′) /∈ Qj (because Fj(α, β) is dominated by (α̂j , 1) or (pj , 2pj)),
we say that (α, β) is eliminated in step j. Otherwise, we say that (α, β) migrates to (α′, β′). For
each j = 1, 2, ..., n− 4, and each point in Qj we show that in four steps with constant probability
it is eliminated (more precisely, one of the subsequent points to which it migrates is eliminated).

We partition the rectangle [0, 1
2 ]× [0, 1] into five zones A,B1, B2, C, D defined as in Figure 5.

Lemma 14. Fix some step j, 1 ≤ j ≤ m. Then: (a) with probability at least 1
13 , all points in

Qj−1 ∩ A will be eliminated, (b1) with probability at least 1
13 , all points in Qj−1 ∩ B1 that are not
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eliminated will migrate to Qj ∩A, (b2) with probability at least 1
13 , all points in Qj−1 ∩B2 that are

not eliminated will migrate to Qj ∩A, (c) with probability at least 1
13 , all points in Qj−1∩C that are

not eliminated will migrate to Qj ∩ B, and (d) with probability at least 1
13 , all points in Qj−1 ∩D

that are not eliminate will migrate to Qj ∩ (B ∪ C).

Proof. We prove each claim separately. Let (α, β) ∈ Qj−1 and (α′, β′) = Fj(α, β)− (α̂, 0).
(a) Suppose that pj ∈ [1226 , 1

2 ]. If (α, β) ∈ Qj−1 ∩ A then Fj(α, β) is dominated by (pj , 2pj), so
(α, β) will be eliminated. The probability that pj ∈ [1226 , 1

2 ] is 1
13 .

Now, for the following cases, we assume that the point (α′, β′) is not eliminated.
(b1) Suppose that pj ∈ [ 5

26 , 12
52 ]. If (α, β) ∈ Qj−1 ∩ B1 then β ≥ 1 − pj , so α′ = α + pj − α̂j ≤

pj ≤ 12
26 and β′ = β + 2pj − 1 ≤ 12

26 so (α′, β′) ∈ Qj ∩A. The probability that pj ∈ [ 5
26 , 12

52 ] is 1
13 .

(b2) Suppose that pj ∈ [1552 , 17
52 ]. If (α, β) ∈ Qj−1 ∩ B2 then β ≥ 1 − pj , so α′ = α + pj − α̂j ≤

pj ≤ 12
26 and β′ = β + 2pj − 1 ≤ 21

26 + 2 · 17
52 − 1 = 12

26 , so (α′, β′) ∈ Qj ∩ A. The probability that
pj ∈ [15

52 , 17
52 ] is 1

13 .
(c) Suppose that pj ∈ (13

52 , 15
52). If (α, β) ∈ Qj−1∩C then β < 1−pj so β′ = β+pj > 12

26 + 13
52 = 37

52 .
So (α′, β′) ∈ Qj ∩B. The probability that pj ∈ [1352 , 15

52 ] is 1
13 .

(d) Suppose that pj ∈ (12
26 , 1

2 ]. If (α, β) ∈ Qj−1 ∩ D β < 1 − pj , so β′ = β + pj > 12
26 . Thus

(α′, β′) ∈ Qj ∩ (B ∪ C). The probability that pj ∈ (12
26 , 1

2 ] is 1
13 .

Let λ = 1
134 . Looking at an individual point in Qj , Lemma 14 implies that in fours steps j + 1,

j + 2, j + 3, j + 4 (starting from Qj and ending in Qj+4) it is eliminated with probability at least
λ. Consequently, each point on average contributes to at most 4/λ sets Qj . Since one new point
is introduced in each step, the expected total size of sets Q1, . . . , Qn is at most 4n/λ = O(n). By
Lemma 13 this also bounds the running time of the algorithm and we obtain the following theorem.

Theorem 15. Suppose that the job lengths are drawn from a uniform distribution in (0,∆/2).
Then the expected running time of Algorithm 3 is O(n).

We now prove a stronger statement, namely that the size of each Qj is small with high proba-
bility. Since the eliminations of different elements of Qj are not independent, this needs some more
work. In the following lemma we show that with constant probability a constant fraction of points
is eliminated. This is sufficient to calculate the desired bound.

Lemma 16. Let 0 ≤ j ≤ n−4. In four steps j +1, j +2, j +3, j +4 (starting from Qj and ending
in Qj+4), with probability at least λ = 1

134 , at least 1
9 -th of the points in Qj will be eliminated.

Proof. If |Qj ∩A| ≥ 1
9 |Qj | then, according to Lemma 14(a), with probability at least 1

13 , all points
in Qj ∩A will be eliminated in step j + 1.

If |Qj ∩B| ≥ 2
9 |Qj | then |Qj ∩Ba| ≥ 1

9 |Qj | for a = 1 or a = 2. According to Lemma 14(b1) and
(b2), with probability at least 1

13 each point in Ba will either be eliminated in step j +1 or migrate
to A and then be eliminated in step j + 2 with probability 1

13 . So with probability at least 1
132 , at

least 1
9th of points in Qj will be eliminated in steps j + 1 and j + 2.

If |Qj ∩ C| ≥ 2
9 |Qj | then, according to Lemma 14(c), with probability at least 1

13 all points
in C ∩ Qj will either be eliminated or migrate to B, and then, applying the argument from the
previous case, with probability at least 1

132 at least half of them will be eliminated in steps j + 2
and j + 3. Thus with probability at least 1

133 at least 1
9th of the points in Qj will be eliminated in

steps j + 1, j + 2 or j + 3.
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If none of the cases above holds then |Qj ∩D| ≥ 4
9 |Qj |. Then, according to Lemma 14(d), with

probability at least 1
13 , in step j + 1 each point in Qj ∩D will be either eliminated or migrate to B

or to C. By applying the previous cases to either Qj+1 ∩ B or Qj+1 ∩ C, whichever is bigger, we
conclude that with probability at least 1

134 at least one fourth of the points in Qj ∩D (and thus at
least 1

9th of the points in Qj) will be eliminated in steps j + 1, j + 2, j + 3 or j + 4.

Lemma 17. Recall that λ = 1
134 . For t = 0, 1, ..., bn/4c, let Pt(k) = Prob[|Q4t| ≥ k]. Then

Pt(k) ≤ (1− λ/2)(k−k0)/4 where k0 = − 32
log(1−λ/2) + 4.

Proof. For k ≤ k0 we have (1−λ/2)(k−k0)/4 ≥ 1, so the condition is trivially satisfied. Assume now
that k > k0. In this case the proof is by induction on t. In the base case, for t < k0/4, we have
k > 4t and Pt(k) = 0 (because |Qj | ≤ j for all j with probability 1), and the theorem holds.

In the inductive step, let t ≥ k0/4 and suppose the property is true for t′ = t− 1 and all values
of k. By Lemma 16, in steps 4t− 3, 4t− 2, 4t− 1 and 4t, with probability at least λ at least 1

9th of
points from Q4(t−1) have been eliminated. At the same time, at most four points have been added.
Thus if |Q4t| ≥ k then either we had |Q4(t−1)| ≥ 9

8(k − 4), or k − 4 ≤ Q4(t−1) < 9
8(k − 4) and fewer

than 1
9th of the points in Q4(t−1) were eliminated in steps 4t− 3, 4t− 2, 4t− 1 and 4t — an event

whose probability is at most 1− λ. Therefore

Pt(k) ≤ Pt−1(9
8(k − 4)) + (1− λ)[Pt−1(k − 4)− Pt−1(9

8(k − 4))]
= (1− λ)Pt−1(k − 4) + λPt−1(9

8(k − 4))

≤ (1− λ)(1− λ/2)(k−4−k0)/4 + λ(1− λ/2)(
9
8
(k−4)−k0)/4

= (1− λ/2)(k−4−k0)/4(1− λ + λ(1− λ/2)(k−4)/32)
≤ (1− λ/2)(k−4−k0)/4

[
1− λ + λ(1− λ/2)−1/ log(1−λ/2)

]
≤ (1− λ/2)(k−4−k0)/4[1− λ + λ/2]
= (1− λ/2)(k−k0)/4,

and the lemma follows.

Theorem 18. Suppose that the job lengths are drawn from a uniform distribution in (0,∆/2).
Then the size of each set Hj is constant with high probability. Specifically, for j = 1, 2, ..., n, we
have Prob[|Hj | ≥ k] ≤ C1(C2)k where C1 and C2 are constants and C2 < 1.

Proof. Fix j. By Lemma 13, we have |Hj | ≤ |Qj |. Thus this claim follows from Lemma 17 with
constants C1 = (1− λ/2)−k0/4 and C2 = (1− λ/2)1/4. Since λ > 0, we have C2 < 1.

Other distributions. Theorem 18 holds in fact for more general distributions on job lengths.
To obtain an O(n) bound, all we need is that all intervals discussed in the five parts of the proof of
Lemma 14 are hit with non-zero probability. Changing these probabilities from 1

13 to other positive
values will only affect the constant in the big-O notation. Thus we have:

Theorem 19. Suppose that the job lengths are drawn from a distribution in (0,∆/2) in which each
interval [ 5

26 , 6
26 ], (13

52 , 15
52), [1552 , 17

52 ], and ( 6
13 , 1

2 ] has strictly positive probability. Then the expected
running time of Algorithm 3 is O(n).
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6.3 An Ω(n2) Lower Bound

Algorithm 3 gives rise to a data structure problem where we need to maintain a dynamic set Hj of
pairs (c, δ) under a sequence of conditional offset operations. At each step j, to obtain Hj+1 from
Hj , we are given a threshold τ and two offset vectors (α, β), (α′, β′), and we perform the following
operation: For each (c, δ) ∈ Hj let

(c, δ) ←
{

(c + α, δ + β) if δ ≤ τ
(c + α′, δ + β′) if δ > τ

(In Algorithm 3 we have τ = ∆ − pj , (α, β) = (pj , pj) and (α′, β′) = (2pj , 2pj − ∆). In fact, the
algorithm creates other points as well, but we ignore them here, for simplicity.)

Is there a data structure to implement a sequence of m conditional offset operations so that the
overall running time will be less than O(mn)? In this section we consider a simple abstraction of
this problem and show that its complexity in the model of algebraic computation trees is Ω(mn).

We stress that this lower bound does not imply a lower bound for the original problem of fault
tolerant scheduling, but rather on a class of algorithms that use our dynamic approach and attempt
to maintain the sets Hj using some data structures. It is conceivable (although, in our view, not
likely) that a completely different approach may lead to a faster algorithm.

The 1-dimensional version. We focus on a simplified problem, where we maintain a set of
numbers (instead of pairs of numbers), and one of the offset values is 0. The input consists of three
vectors of real numbers:

x̄ = (x1, x2, ..., xn) τ̄ = (τ1, τ2, ..., τm) β̄ = (β1, β2, ..., βm)

where x̄ represents the input values and τ̄ , β̄ represent m operations on x̄. In the j-th conditional
offset operation we do the following: for each i = 1, 2, ..., n, if xi ≤ τj then we set xi←xi + βj

(otherwise xi remains unchanged). The task is to compute the vector ȳ resulting from applying
these m conditional offset operations successively to x̄.

Algebraic computation trees. We now show that the above problem requires time Ω(mn) in
the algebraic computation tree model. This computation model is an extension of the standard
comparison tree model, where algebraic operations on the variables are allowed. The computation
is represented by a tree that has two types of nodes: computation nodes and decision nodes.
In a computation node (that have one child) an operation o ∈ {+,−,×, /,

√} is applied to some
variables. In a decision node, a comparison between two variables is made, and such a node has two
children corresponding to the outcome (true or false). Leaves are labeled as either “accept” leaves
or “reject” leaves. Each decision problem is modeled by a set V ⊆ Rd. An algebraic computation
tree solves the decision problem “given v̄ ∈ Rd, is v̄ ∈ V ?” if, for any given v̄, the computation on
v̄ leads to an “accept” leaf if and only if v̄ ∈ V . The complexity is measured by the maximum tree
depth. (See [BO83].)

Let W ∈ R2m+2n be the set of vectors

v̄ = (x1, ..., xn, τ1, ..., τm, β1, ..., βm, y1, ..., yn)

such that ȳ = (y1, y2, ..., yn) is the result of applying the m conditional offsets with parameters
(τj , βj), j = 1, ...,m, to the input vector x̄ = (x1, x2, ..., xn). We consider a decision problem where,
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given a vector v̄ ∈ R2n+2m we wish to determine if v̄ ∈ W and we will show that any algorithm
for this problem requires time Ω(mn) in the algebraic computation tree model. This implies that,
given x̄, τ̄ , ᾱ, computing the output vector ȳ requires time Ω(mn) as well.

For a set W ⊆ Rd, let #(W ) denote the number of connected components of W . By a
well-known result of Ben-Or [BO83], the algebraic computation tree complexity of W is at least
log6 max {#(W ),#(R2m+2n −W )} −Θ(m + n).

In fact, we will consider a fixed sequence of operations. We take τ̄ , β̄ where τj =
∑j

i=1 2m−i and
βj = 2m−j for j = 1, 2, ...,m. Let W ′ ⊆ R2n be the set of vectors (x̄, ȳ) where ȳ is obtained from x̄ by
applying the sequence of operations (τj , βj), i = 1, 2, ...,m, defined above. Since #(W ) ≥ #(W ′),
to prove our lower bound it is sufficient to show the following inequality:

#(W ′) ≥ 2mn. (2)

We prove (2) by presenting a set of 2mn points in W ′ that all must be in different connected
components of W ′. Define K ⊆W ′ to be the set of vectors (k̄, l̄) ∈W ′ where k̄ ∈ {0, 1, ..., 2m − 1}n.
Clearly, |K| = 2mn.

Lemma 20. If (k̄, l̄), (k̄′, l̄′) ∈ K and k̄ 6= k̄′ then (k̄, l̄), (k̄′, l̄′) are in different connected components
of W ′.

Proof. For integers 0 ≤ k ≤ 2m − 1 and 1 ≤ i ≤ m, let k[i] denote the i-th bit of k in its binary
representation. Note that if (k̄, l̄) ∈ K and k̄ = (k1, k2, ..., kn), l̄ = (l1, l2, ..., ln), then for each
i = 1, 2, ..., n we have li = ki +

∑m
j=1 (1− ki[j])βj .

Choose i such that ki 6= k′i and let j the smallest integer such as ki[j] 6= k′i[j]. Without loss
of generality we can assume that ki[j] = 0 and k′i[j] = 1. Denote Aj =

∑j−1
r=1 (1− ki[r])2m−r,

Rj = 2m−j +
∑m

r=j+1 (1− ki[r])2m−r, and R′
j =

∑m
r=j+1 (1− k′i[r])2

m−r. Then we have:

li − ki −Aj = Rj ≥ 2m−j

l′i − k′i −Aj = R′
j ≤ 2m−j − 1

Define the function fi,j : W ′ → R so that fi,j(x̄, ȳ) = yi − xi − Aj − 2m−j . This is a continuous
function, and it satisfies fi,j(k̄, l̄) ≥ 0 and fi,j(k̄′, l̄′) ≤ −1. According to the intermediate value
theorem of calculus, any connected path from (k̄, l̄) to (k̄′, l̄′) must contain a point (x̄, ȳ) for which
fi,j(x̄, ȳ) = −1

2 . But by definition of W ′, if (x̄, ȳ) was in W ′, then yi−xi would be integer. Therefore,
(x̄, ȳ) /∈W ′ and (k̄, l̄) and (k̄′, l̄′) must be in different connected components of W ′, as claimed.

Since |K| = 2mn, Lemma 20 implies that #(W ′) ≥ 2mn. Therefore #(W ) ≥ 2mn as well. By
the lower bound of Ben-Or [BO83], the algebraic computation tree complexity of W is then at least
Ω(log #(W )) = Ω(mn). This, in turn, implies the following lower bound.

Theorem 21. Any algorithm for maintaining a set of n numbers under a sequence of m conditional
offset operation requires time Ω(mn) in the algebraic computation tree model.

7 Final Comments

We presented algorithms for testing fault tolerance of sequenced jobs in several fault models. For
the model where the number of faults is bounded by a constant k we gave an O(n)-time fault-
tolerance testing algorithm. For the model where the time between the faults is lower bounded by
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a constant ∆, our algorithms run in time O(n) for exposed faults (detectable immediately) and
in time O(n2) for hidden faults (detectable after the job completes.) We also show that this last
algorithm runs in expected time O(n) for a wide class of probability distributions on job lengths,
and that the O(n2) worst-case running time cannot be improved in the algebraic computation tree
model.

Our method can be extended to a yet more general model where two bounds k and ∆ are given,
and in any fault sequence there can be at most k gaps between faults of length greater than ∆. The
dynamic programming approach from Algorithm 3 can be generalized to this model (and hidden
faults) to yield an algorithm with worst case running-time O(kn2), although experiments show and
actual running time of O(kn), which can be explained by the same intuition.

For the future work, it would be of great interest to study the model where the fault sequences
are drawn from a given probability distribution. Then the goal would be to compute (or estimate)
the probability of failure for a given sequence of jobs.
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scheduling on multiprocessors. In Proc. Euromicro Workshop in Real-Time Systems,
1999.

[LMM00] F. Liberato, R. Melhem, and D. Mosse. Tolerance to multiple transient faults for
aperiodic tasks in hard real-time systems. IEEE Transactions on Computers, 49:906–
914, 2000.

22



[MM98] G. Manimaran and C. Siva Ram Murthy. A fault-tolerant dynamic scheduling algorithm
for multiprocessor real-time systems and its analysis. IEEE Trans. Parallel Distrib.
Syst., 9(11):1137–1152, 1998.

[MMG03] D. Mosse, R. Melhem, and S. Ghosh. A nonpreemptive real-time scheduler with re-
covery from transient faults and its implementation. IEEE Transactions on Software
Engineering, 29:752–767, 2003.

[QHJ+00] X. Qin, Z. Han, H. Jin, L. Pang, and S. Li. Realtime fault-tolerant scheduling in
heterogeneous distributed systems. In Proc. Int. Conference on Parallel and Distributed
Processing Techniques and Applications, pages 421–427, 2000.

[QJS02] X. Qi, H. Jiang, and D.R. Swanson. An efficient fault-tolerant scheduling algorithm for
real-time tasks with precedence constraints in heterogenous systems. In Proc. 13th Int.
Conference on Parallel Processing, pages 360–368, 2002.

23


