
Finite Model Theory

Martin Otto

Winter Term 2005/06

Contents

I Finite vs. Classical Model Theory
and The Role of First-Order Logic 3

1 Introduction 5
1.1 Finite Model Theory: Topical and Methodological Differences 5
1.2 Failure of classical methods and results 6
1.3 Global relations, queries and definability 8

2 Expressiveness and Definability via Games 13
2.1 The Ehrenfeucht-Fräıssé method . 13

2.1.1 The basic Ehrenfeucht-Fräıssé game; FO pebble game 14
2.1.2 Inexpressibility via games . 16

2.2 Locality of FO: Hanf and Gaifman Theorems 17
2.3 Variation: monadic second-order logic and its game 22
2.4 Variation: k variables, k pebbles . 24

2.4.1 The k-variable fragment and k-pebble game 24
2.4.2 The unbounded k-pebble game and k-variable types 26

3 Zero-One Laws 31
3.1 Asymptotic probabilities . 31
3.2 Extension axioms and the almost sure theory 32
3.3 The random graph . 34

II Logic and Complexity: Descriptive Complexity 37

4 Monadic Second-Order Logic and Büchi’s Theorem 39
4.1 Word models . 39
4.2 Regular languages . 40
4.3 Büchi’s Theorem . 40

5 Excursion: Computational Complexity 43
5.1 Turing machines . 43
5.2 Resource bounds and complexity classes 45
5.3 Finite structures as inputs: unavoidable coding 46

6 Existential Second-Order Logic and Fagin’s Theorem 49
6.1 Existential second-order logic . 49
6.2 Coding polynomially bounded computations 50

1

2 Finite Model Theory – Martin Otto 2005/06

7 Fixpoint Logics 53
7.1 Recursion on first-order operators . 53
7.2 Least and inductive fixpoint logics . 55

7.2.1 Least fixpoint logic LFP . 55
7.2.2 Capturing Ptime on ordered structures 57
7.2.3 Inductive fixpoint logic IFP . 59

7.3 Partial fixpoint logic . 60
7.3.1 Partial fixpoints . 60
7.3.2 Capturing Pspace on ordered structures 61

7.4 The Abiteboul–Vianu Theorem . 62
7.4.1 Fixpoint logics and finite variable logics 62
7.4.2 Simulating fixpoints over the invariants 65
7.4.3 From the invariants back to the real structures 67
7.4.4 P versus Pspace . 68

Part I

Finite vs. Classical Model Theory
and The Role of First-Order Logic

3

Chapter 1

Introduction

1.1 Finite Model Theory: Topical and Methodological Dif-
ferences

Model theory: analysis of syntax vs. semantics. Some main issues:

• definability of structural properties with logical means

• algebraic properties in axiomatic theories

• classification of models of theories

Some key theorems of classical first-order model theory:

• compactness theorem (!)

• Löwenheim-Skolem theorems

• Craig’s interpolation theorem (and other interpolation theorems)

• Tarski’s preservation theorem (and many other preservation theorems)

• classification of theories w.r.t. their spectrum in all infinite cardinalities

Finite Model Theory: only consider finite structures.
Key notions correspondingly shift:

STR(τ) Ã FIN(τ)
MOD(ϕ) Ã FMOD(ϕ)

ϕ |= ψ Ã ϕ |=fin ψ
ϕ ≡ ψ Ã ϕ ≡fin ψ

SAT Ã FINSAT
VAL Ã FINVAL

Finite structures are usually disregarded in classical model theory. But finiteness often
matters (for adequate modelling), and restriction to just finite structures dramatically
changes the picture.

Of the above central results, all are either meaningless (like Löwenheim-Skolem) or
just no longer valid in the sense of finite model theory (like compactness, and in its
wake, most other theorems of classical model theory).

5

6 Finite Model Theory – Martin Otto 2005/06

Consequently, finite model theory (FMT) has developed into a very different disci-
pline from classical model theory, with distinct methods, themes and applications of its
own. Connections with computer science (theory and applications), algorithmic issues
and complexity theory have strong influence on the development of FMT.

Emphasis on construction and analysis of finite models leads to stronger interplay
with combinatorics, graph theory and related branches of discrete mathematics, includ-
ing probabilistic methods. Algorithmic issues lead to new themes like model checking
complexity (with finite structures and formulae as inputs) and the field of descriptive
complexity (matching logical definability against computational complexity). Models of
fixed finite sizes can be counted (up to isomorphism), leading to the study of asymptotic
probabilities (0-1-laws).

Conventions: All vocabularies are finite (and mostly relational); FO stands for first-
order logic, as well as for the set of formulae of FO (= FO(τ) when τ is fixed). Writing
ϕ(x) it is understood that the free variables of ϕ are among those listed.

STR(τ) and FIN(τ) are the classes of all and of all finite τ -structures, respectively.
Structures are typically denoted as in A = (A, RA, UA, cA); structures with parameters
A,a for tuples a from A. Notation like A |= ϕ[a] signifies that A satisfies ϕ under the
assignment of a to x.

Example 1.1.1 For a binary relation symbol R, let ϕ0 ∈ FO({R}) say that R is the
graph of a total injective function; ϕ1 ∈ FO({R}) say that R is the graph of a total
surjective function. Then ϕ0 ≡fin ϕ1, but classically neither ϕ0 |= ϕ1 nor ϕ1 |= ϕ0. A
sentence ϕ ∈ FO({R}) with only infinite models ϕ ∈ SAT(FO) \FINSAT(FO)) is easily
obtained from these. So FO does not have the finite model property.

Definition 1.1.2 A logic L has the finite model property (FMP) if any satisfiable
formula of L has a finite model, i.e., if SAT(L) = FINSAT(L).

While FO does not have the FMP, some interesting fragments (e.g., the 2-variable
fragment or modal logics) do.

Exercise 1.1.3 If L is closed under boolean connectives and has the FMP, then the
consequence relation for L, |=L, coincides with its FMT variant, |=L

fin.

1.2 Failure of classical methods and results

Proposition 1.2.1 FO does not have the compactness property for finite models.

Proof Look, for τ = ∅, at the set of sentences ∃x1 . . .∃xn
∧

16i<j6n ¬xi = xj , for
n > 1. 2

Compare the following with the classical situation: VAL(FO) is recursively enumer-
able (due to the existence of a complete proof calculus), but SAT(FO) is not.

Recall that Trakhtenbrot’s theorem is proved via reduction of the halting problem
(for Turing machines or register machine programs). There is a computable reduction
that maps a machine/program M and input instance λ to an FO-sentence ϕM,λ such
that M terminates on λ iff ϕM,λ ∈ FINSAT.

FMT – 2005/06 7

Theorem 1.2.2 (Trakhtenbrot)
FINVAL(FO) is not recursively enumerable while FINSAT(FO) is recursively enumer-
able.1

Corollary 1.2.3 FO cannot have any (finitistic, effective) complete proof calculus for
|=fin.

Exercise 1.2.4 Review and discuss the status of VAL and SAT on the one hand and
of FINVAL and FINSAT on the other hand. What can be said about the status of
fragments of FO that do have the finite model property?

An example of a typical classical preservation theorem is the following, matching
definability in universal FO with preservation/closure under substructures.

Theorem 1.2.5 (Tarski) The following are equivalent for any FO sentence ϕ:
(i) ϕ is preserved under substructures, i.e., for all B ⊆ A, if A |= ϕ then B |= ϕ

(equivalently: MOD(ϕ) closed under the substructure relation).
(ii) ϕ ≡ ϕ̃ for some ϕ̃ = ∀xχ(x) with qfr-free χ (i.e., MOD(ϕ) = MOD(ϕ̃) for a

universal FO-sentence ϕ̃).

Proposition 1.2.6 (Tait, Gurevich) The analogue of Tarski’s theorem fails in FMP.
There are FO-sentences ϕ for which FMOD(ϕ) is closed under the substructure relation,
but FMOD(ϕ) 6= FMOD(ψ) for any universal first-order sentence ψ.

Proof Consider the vocabulary τ consisting of two constants min and max, two binary
relation symbols < and R, and a unary relation symbol P . Let ϕ0 ∈ FO(τ) be a universal
(!) sentence saying that “< is a total linear order of the universe with first element min,
last element max and R is a subset of the successor relation w.r.t. <.”

Let ϕ1 = ∀x(x = max∨∃yRxy). Note that ϕ0 ∧ϕ1 forces R to be the real successor
relation w.r.t. <. Consider

ϕ := ϕ0 ∧ (ϕ1 → ∃zPz).

Claim 1: FMOD(ϕ) is closed under substructures.
Let A |= ϕ and B ⊆ A. Clearly B |= ϕ0 (ϕ0 is universal). If B 6|= ϕ1, then B |= ϕ.

If B |= ϕ1, then B = A (!) and hence trivially B |= ϕ.

Claim 2: ϕ is not equivalent on FIN(τ) to any sentence ψ = ∀xχ(x) with qfr-free χ.
Assume to the contrary that ψ ≡fin ϕ for such ψ. Let x = (x1, . . . , xn) the variables of
χ. Let A0 be the standard model of ϕ0∧ϕ1 on A = {0, . . . , n+2}. Then (A, PA) |= ϕ iff
PA 6= ∅. In particular, (A, ∅) 6|= ϕ implies that (A, ∅) 6|= ∀xχ(x). So (A, ∅) |= ¬χ[a] for
suitable a ∈ An. Choosing b ∈ A disjoint from a, minA and maxA (note that |A| > n+2),
we still have (A, {b}) |= ¬χ[a], because A ¹ a is unchanged. So (A, {b}) 6|= ∀xχ(x) and
therefore (A, {b}) 6|= ψ while on the other hand (A, {b}) |= ϕ. Contradiction. 2

Many more classical results are known to fail in FMT. For instance, the following
interpolation theorem is known to fail in FMT.

1More precisely: for any fixed finite τ , FINSAT(FO(τ)), the set of FO(τ)-sentences that are satisfiable
in finite models, is r.e.; for any fixed finite finite vocabulary τ with at least one binary relation symbol,
FINVAL(FO(τ)), the set of FO(τ)-sentences that are valid in all finite τ -structures, is not r.e.

8 Finite Model Theory – Martin Otto 2005/06

Theorem 1.2.7 (Craig interpolation) For sentences ϕi ∈ FO(τi) for i = 1, 2 such
that ϕ1 |= ϕ2, there is a so-called interpolant ξ ∈ FO(τ1 ∩ τ2) for which ϕ1 |= ξ and
ξ |= ϕ2.

Proposition 1.2.8 Craig’s interpolation fails for |=fin.

Exercise 1.2.9 Construct a counterexample to interpolation in FMT using sentences
ϕ1 ∈ FO(τ1) and ϕ2 ∈ FO(τ2), such that ϕ1 forces the universe of its finite models
to have an odd number of elements, with ϕ2 not in FINVAL but valid in all finite
τ2-structures with an odd number of elements.

That there is no ξ ∈ FO(∅) whose finite models are just the odd size sets follows,
e.g., with a simple Ehrenfeucht-Fräıssé argument (cf. next section).

A notable exception of a classical Tarski style preservation theorem that does survive
in FMT due to a very recent result of Rossmann (LICS 2005 best paper award) is the
Lyndon-Tarski preservation theorem.

Theorem 1.2.10 (Rossmann) The following are equivalent for any sentence ϕ ∈
FO(τ) for relational vocabulary τ , both classically and in the sense of FMT:

(i) ϕ is preserved under homomorphisms.
(ii) ϕ is equivalent to an existential positive sentence ϕ̃ of the form ϕ̃ = ∃xχ(x) with

qfr-free χ without any negations.

1.3 Global relations, queries and definability

Definition 1.3.1 Let FIN(τ) be the class of all finite τ -structures.

For any n ∈ N and map π : A → B, we lift π to all powers An through the maps
π : An → Bn that send (a1, . . . , an) ∈ An to (π(a1), . . . , π(an)) ∈ Bn.

For any set A, we identify An for n = 0 with the singleton set whose only element
is the empty tuple. The only subsets of A0 thus are ∅ and A0; these we identify with
the boolean values 0 (false, for the empty subset of A0) and 1 (true, for A0 itself). The
corresponding lift of π : A → B to π : A0 → B0 is the identity on B = {0, 1}.

Definition 1.3.2 A global relation or query of arity n (n ∈ N) over FIN(τ) is a mapping

A ∈ FIN(τ) 7−→ QA ⊆ An

that is compatible with ' in the sense that for π : A ' B always QB = π
(
QA)

. Queries
or global relations of arity 0 are called boolean.

Queries and global relations over suitable subclasses of FIN(τ) (or of STR(τ)) can be
similarly defined.

Remark 1.3.3 A boolean query Q on FIN(τ) is identified with the subclass (also called
Q) Q = {A ∈ FIN(τ) : QA = 1}. The compatibility condition means that Q is closed
under '.

Example 1.3.4 In the following <,E are binary relation symbols, U is a unary relation
symbol, +, · are binary function symbols, and 0, 1 are constant symbols.

FMT – 2005/06 9

(i) for τ = {E}: GRAPH := {A = (A,EA) : A a finite undirected graph }.2
(ii) for τ = {<}: ORD := {A = (A,<A) ∈ FIN(τ) : <A a total linear order of A }.
(iii) for τ = ∅: EVEN := {A : |A| even }.
(iv) for τ = {+, ·, 0, 1}: FIELD := {A = (A, +A, ·A, 0A, 1A) : A a finite field }.
(v) for τ = {+, ·, 0, 1}: unary Q defined as

QA :=
{ {a ∈ A : a a unit in A } if A is a ring
∅ else

(vi) for τ = {E}, ` ∈ N: binary D` defined as

DA6` :=
{ {(a, b) ∈ A2 : d(a, b) 6 `} if A ∈ GRAPH3

∅ else

Derived from these, the following binary and boolean graph queries:

DA
<∞ :=

⋃
`∈NDA

` (reachability)
CONN := {A : A a finite connected undirected graph } (connectivity)

= {A : DA
<∞ = A2}

(vii) for τ = {E}: BIPART := {A : A ∈ GRAPH bipartite }.
(viii) for τ = {E, U}: U-BIPART := {A : A a finite graph, bipartite w.r.t. UA }.
(ix) for τ = {E, U}: MATCH := {A ∈ U-BIPART: A has a perfect matching }.

Definition 1.3.5 An n-ary query (global relation) is definable in the logic L (e.g., in
FO) if for some ϕ ∈ L(τ), we have that for all A ∈ FIN(τ)

QA = {a ∈ An : A |= ϕ[a]}.

In the boolean case (n = 0) this means that Q = FMOD(ϕ) for some L-sentence ϕ.

Exercise 1.3.6 Provide FO-definitions for the following queries among the above ex-
amples: (i), (ii), (iv), (v), each D6` in (vi), as well as (viii). The others are in fact not
FO-definable (see later).

With any class ∆ = ∆(x) of formulae (in a fixed tuple of free variables x) we
may associate the induced notion of ∆-equivalence of structures (with parameters as
assignments to x):

A,a ≡∆ B,b iff for all ϕ(x) ∈ ∆: A |= ϕ[a] ⇔ B |= ϕ[b].

If ∆(x) is finite up to logical equivalence (over FIN(τ)), then ≡∆ has finite index (over
FIN(τ)). A query Q is closed under ≡∆ if A,a ≡∆ B,b implies that a ∈ QA iff b ∈ QB.

Proposition 1.3.7 Let ∆(x) be a class of formulae that is closed under boolean con-
nectives and finite up to logical equivalence over FIN(τ), Q a query over FIN(τ). Then
the following are equivalent:

(i) Q is definable by a formula from ∆.
(ii) Q closed under ≡∆.

2(A, EA) is an undirected graph if EA is symmetric and irreflexive.
3d is the usual graph distance.

10 Finite Model Theory – Martin Otto 2005/06

Proof (of (ii) ⇒ (i)) For A,a consider its ∆-type {δ(x) ∈ ∆: A |= δ[a]} ⊆ ∆. By
assumption this set is finite up to logical equivalence over FIN(τ) and hence logically
equivalent to a single formula δA,a ∈ ∆: δA,a ≡

∧{δ(x) ∈ ∆: A |= δ[a]} (and ∆ is
closed under conjunction). δA,a characterises A,a up to ≡∆-equivalence in the sense
that B,b ≡∆ A,a iff B |= δA,a(b) (this uses that ∆ is closed under negation). For
similar reasons the following disjunction is (up to equivalence) a formula ϕ ∈ ∆ and
defines Q: ϕ(x) :=

∨{δA,a : a ∈ QA}. 2

As we shall see in more detail later, FO is too weak to capture even some very basic
structural properties of finite τ -structures: for instance, EVEN or the natural boolean
graph queries CONN, BIPART, MATCH and the binary reachability query D<∞ of (v)
are not FO-definable.

The reachability query D<∞, for instance, though not FO-definable, is computationally
and algebraically very basic.

On graphs A, DA
<∞ is just the reflexive transitive closure of EA. In terms of the

adjacency matrix A of EA, iterated powers of A + I w.r.t. a boolean matrix product
operation will yield the adjacency matrix for DA

<∞.
D<∞ is also generated by recursive iteration of a Datalog program

Xxx ←
Xxy ← Xxz, Ezy

based on simple qfr-free FO-rules for the iteration. The n-th iteration of this program
on a finite graph A evaluates to DA6n, and DA

<∞ is reached as the limit (union) of
this monotone chain of stages within |A| many iterations. [Can you improve this to a
logarithmic bound, with a modified program?]

Whether a given pair (a, b) of nodes of a finite graph A is in DA
<∞ can also easily be

checked by a breadth-first search algorithm (in a number of iterations that is linear in
the number of edges).

Curious phenomenon: FO and in particular elementary equivalence ≡ between finite
structures are “too strong” to be of model theoretic interest, as any finite structure is
characterised up to isomorphism by a single FO-sentence.

Observation 1.3.8 For finite vocabulary τ and any A ∈ FIN(τ) there is a sentence
ϕA ∈ FO(τ) with MOD[ϕA] = {B : B ' A}. Elementary equivalence and isomorphism
agree on FIN(τ).

Exercise 1.3.9 Let τ be finite. For A ∈ FIN(τ) of size n provide a prenex sentence ϕA
that characterises A up to ', with qr(ϕA) = n + 1.

Show that A ≡ B implies A ' B whenever at least one of A of B is finite. (For this,
τ does not even have to be finite, why?)

Summary In FMT FO loses the unique status it holds in classical model theory.
Consequently, FO will only be one logic among many others to be considered. Fragments
(with better algorithmic behaviour, more suited to specific tasks, or inducing more
interesting notions of equivalence over finite structures) and various extensions (with
stronger expressive power for defining queries) feature importantly.

FMT – 2005/06 11

Some other logics Besides FO we here encounter, on the one hand, its restrictions
to a fixed finite supply of k distinct variable symbols. FOk, the k-variable fragment of
FO. induces a logically non-trivial notion of elementary equivalence on finite structures,
with useful game characterisations etc (this is where FO was “too strong”).

On the other hand, for powerful extensions beyond FO, we look at the fragment of
second-order logic which adds with quantification over subsets to FO (monadic second-
order logic MSO) and at extensions of FO by several mechanisms for relational recursion
(fixpoint logics LFP, IFP and PFP).

Applications and context; outlook FMT has strong links with computer science,
both as an application area and as a source of motivation for model theoretic questions
particular to finite structures. The following are some key connections:

• expressive power of various logics over finite structures (Part I).

– database query languages (SQL essentially based on FO; extensions with
various recursion operators like, e.g., transitive closures; Datalog as a purely
relational version of Prolog, etc)

– languages for formal specification and verification of systems and processes
(model checking with various modal logics, temporal logics, process logics)

• algorithmic properties of logics over finite structures.

– model checking algorithms and their complexity
– SAT/FINSAT as central logic problems for many applications areas (process

logics, description logics, logics for knowledge bases, etc)

• logic and complexity (Part II).

– logics designed to match levels of computational complexity
– transfer between model theory and theory of complexity

12 Finite Model Theory – Martin Otto 2005/06

Chapter 2

Expressiveness and Definability
via Games

2.1 The Ehrenfeucht-Fräıssé method

We explicitly deal with relational vocabularies only. Unless otherwise mentioned all
vocabularies τ are finite and consist of relation symbols only. Constants could easily be
incorporated (in an obvious manner); the inclusion of function symbols would necessitate
an analysis of the contribution that the quantifier rank and the complexity of terms make
to the expressiveness of FO. Note, however, that functions can be eliminated in favour
of relations that describe the graphs of functions.

Ehrenfeucht-Fräıssé games provide a key methodology for the analysis of the ex-
pressive power of various logics. The methodology itself is applicable in classical model
theory as well as in FMT. In FMT it is well adapted to the often more combinatorial
character of model construction and analysis.

We denote finite maps p from def(p) ⊆ A to im(p) ⊆ B as

p = (a 7→ b)

if a = (a1, . . . , an) ∈ An is such that def(p) = {a1, . . . , an} and b = (b1, . . . , bn) where
bi = p(ai).

p ⊆ p′ means that p′ extends p in the sense that def(p) ⊆ def(p′) and p′(a) = p(a)
for all a ∈ def(p).

A map p = (a 7→ b) is a partial 1 isomorphism between τ -structures A and B if
p : A ¹ def(p) ' B ¹ im(p) is an isomorphism of induced substructures (useful shorthand:
p : A ¹ a ' B ¹ b.) We admit the empty partial isomorphism p = ∅ as a special case of
a partial isomorphism.

Definition 2.1.1 For A, B ∈ STR(τ) let Part(A, B) be the set of all finite partial
isomorphisms between A and B.

Example 2.1.2 For linear orderings A and B, Part(A, B) consists of all order-preserving
maps p = (a 7→ b). These are representable by a and b such that a is strictly increasing
w.r.t. <A and b is strictly increasing w.r.t. <B.

1A better, though not standard, terminology would be: local isomorphism.

13

14 Finite Model Theory – Martin Otto 2005/06

2.1.1 The basic Ehrenfeucht-Fräıssé game; FO pebble game

Review of basic idea: two players I (challenger, spoiler, male) and II (duplicator, female)
play over two structures A, B ∈ STR(τ). Roles: I tries to demonstrate differences, II
similarity between A and B.

Game positions: configurations (A,a;B,b) where a = (a1, . . . , an), b = (b1, . . . , bn),
n ∈ N. In pebble game terms: two sets of pebbles numbered i = 1, . . . , n, placed on
elements ai and bi of A and B, respectively.

Single round : challenge/response according to:

I places next pebble on some element of either A or B

II responds by placing the opposite pebble in the opposite structure

This exchange of moves leads the play from some position (A,a; B,b) to a new position
(A,aa; B,bb). The newly placed pebble pair extends the correspondence a 7→ b in the
previous position to aa 7→ bb.

Winning conditions/constraints: II loses (and I wins) the play as soon as the mapping
a 7→ b induced by the current position is not a partial isomorphism. Otherwise, we speak
of isomorphic pebble configurations if (a 7→ b) ∈ Part(A, B), and play may continue.

The m-round game

Definition 2.1.3 The m-round game Gm(A,a; B,b) continues for m rounds starting
from position (A,a; B,b). II wins any play in which she maintains isomorphic pebble
configurations through all m rounds, and loses otherwise.

In any game, we say that II wins the game if she has a winning strategy (so that
she wins every play that she plays according that strategy). It is obvious that in any
m-round game over finite structures precisely one of the players has a winning strategy.
Here this even follows directly from the finiteness of the game tree of all possible plays,
which could also be analysed by exhaustive search to determine who can force a win.2

The analysis below yields better insights, though.

Winning strategies and back-and-forth systems

Definition 2.1.4

(i) Let I ⊆ Part(A, B), p = (a 7→ b) ∈ Part(A,B). p has back-and-forth extensions
in I if

forth ∀a ∈ A∃b ∈ B : (aa 7→ bb) ∈ I
back ∀b ∈ B∃a ∈ A : (aa 7→ bb) ∈ I

(ii) Let Ii ⊆ Part(A, B) for 0 6 i 6 m. Then (Ii)06i6m is a back-and-forth system for
Gm(A,a; B,b) if

– (a 7→ b) ∈ Im

– for 1 6 k 6 m, every p ∈ Ik has back-and-forth extensions in Ik−1.

2That games of this kind are determined in this sense follows in a much wider context, including
infinite play with not necessarily finite branching on moves.

FMT – 2005/06 15

(iii) If (Ii)06i6m is a back-and-forth system for Gm(A,a; B,b), we write

(Ii)06i6m : A,a 'm B,b

and say that A,a and B,b are m-isomorphic, A,a 'm B,b.

Observation 2.1.5 II wins Gm(A,a; B,b) (i.e., she has a winning strategy for this
game) iff A,a 'm B,b (i.e., if there is a back-and-forth system for Gm(A,a; B,b)).

Proof (sketch) For “⇐” extract winning strategy from back-and-forth conditions:
with k more rounds to play, II can maintain positions in Ik.

For “⇒” show that the system Ik :=
{
(a 7→ b) : II wins Gk(A,a;B,b)

}
satisfies

the back-and-forth conditions. 2

Reminder: ≡m stands for elementary equivalence up to qfr-rank m. A,a ≡m B,b iff
for all ϕ(x) ∈ FO with qr(ϕ) 6 q we have A |= ϕ[a] ⇔ B |= ϕ[b]. In the sense of
section 1.3, ≡m is ≡∆ where ∆ is the set of all FO-formulae of qfr-rank up to m.

Exercise 2.1.6 Show that for finite relational τ , ≡m has finite index (over FIN(τ) as
well as over STR(τ)).

Theorem 2.1.7 (Ehrenfeucht-Fräıssé Theorem) The following are equivalent for
all A,a; B,b and m:

(i) A,a 'm B,b.
(ii) II wins Gm(A,a; B,b).
(iii) A,a ≡m B,b.

See logic course for detailed proof.
(ii) ⇒ (iii) can be shown by induction on m; one outermost quantifier corresponds

to the first round in the game.
For (iii) ⇒ (i) one can show in an ad-hoc manner that the system Ik :=

{
(a 7→

b) : A,a ≡k B,b
}

satisfies the back-and-forth conditions. Alternatively, one may use
the following lemma with additional benefit.

Lemma 2.1.8 For A,a and m there is a formula χ(x) = χm
A,a(x) of qfr-rank m that

characterises the 'm-class of A,a in the sense that for all B,b:

B |= χ[b] iff B,b 'm A,a.

The χm
A,a(x) are constructed by induction on m, for all A,a simultaneously:

χ0
A,a consists just of conjunctions over all atomic and negated atomic formulae true

of a ∈ A.
Inductively, χm+1 expresses the back-and-forth conditions relative to the given χm,

in the following typical format:

χm+1
A,a (x) :=

∧{∃y χm
A,aa(x, y) : a ∈ A

}
︸ ︷︷ ︸

forth: responses for challenges in A

∧∀y
∨{

χm
A,aa(x, y) : a ∈ A

}
︸ ︷︷ ︸

back: responses for challenges in B

.3

Corollary 2.1.9 A query (global relation) Q on FIN(τ) is FO-definable at qfr-rank m
iff Q is closed under 'm in the sense that for A,a 'm B,b we have a ∈ QA ⇔ b ∈ QB.
It follows that Q is FO-definable iff Q is closed under 'm for some m ∈ N.

3Over infinite structures A one uses the fact that there are only finitely many qfr-rank m formulae
up to logical equivalence in order to see that these conjunctions and disjunctions can be made finite.

16 Finite Model Theory – Martin Otto 2005/06

Proof For (i) ⇒ (ii) let ϕ(x) ∈ FO define Q, qr(ϕ) = m, and let A,a 'm B,b. By
the theorem, A,a ≡m B,b, so B |= ϕ[b] ⇔ A |= ϕ[a], and thus a ∈ QA ⇔ b ∈ QB.

For (ii) ⇒ (i) let Q be closed under 'm, hence under ≡m. The claim follows with
Proposition 1.3.7. A defining formula for Q is

ϕ(x) :=
∨{

χm
A,a(x) : a ∈ QA}

.

Note again how this disjunction is essentially finite. 2

Exercise 2.1.10 Let Ai,ai 'm Bi,bi for i = 1, 2. Let A be the disjoint union of A1

and A2, similarly B that of the Bi. Show that A,a1a2 'm B,b1b − 2. Argue for
strategies in the game or with the corresponding back-and-forth systems. What does
this imply about FO w.r.t. the operation of taking disjoint unions?

Exercise 2.1.11 Inductively define m-types of structures with parameters, TPm(A,a),
as follows:

TP0(A,a) := {ϕ(x) : ϕ atomic and A |= ϕ[a]};
TPm+1(A,a) := {TPm(A,aa) : a ∈ A}.

Show that TPm characterises 'm classes (m-isomorphism types) in the sense that

TPm(A,a) = TPm(B,b) iff A,a 'm B,b.

2.1.2 Inexpressibility via games

Based on Corollary 2.1.9 we can show that certain queries cannot be expressed in FO.
For instance, for a boolean query Q, we establish that Q is not FO-definable over FIN(τ)
if we can exhibit structures Am ∈ Q and Bm 6∈ Q for every m ∈ N such that A 'm B.

Examples

Example 2.1.12 EVEN ⊆ FIN(∅) is not FO-definable. Trivially any two naked sets of
sizes > m are m-isomorphic. Taking sets of sizes m and m + 1 we see that EVEN is not
closed under 'm.

Example 2.1.13 The class Q of even length finite linear orderings is not FO-definable.

Proof Let An be the standard ordering of N in restriction to [n] := {1, . . . , n}. On
(N, <) consider the usual distance d(i, j) = |j − i|. We use truncated distances dk (for
k ∈ N) with values in {0, . . . , 2k − 1} ∪ {∞} defined as

dk(i, j) :=
{

d(i, j) if d(i, j) < 2k

∞ else

Consider strictly increasing a = (a1, . . . , as) in [n] and b = (b1, . . . , bs) in [n′]. Put
(a 7→ b) into Ik ⊆ Part(An, An′) if (for s > 0)

dk(0, a1) = dk(0, b1)
dk(ai, ai+1) = dk(bi, bi+1) for 1 6 i < s

dk(as, n + 1) = dk(bs, n
′ + 1),

and ∅ ∈ Ik iff dk(0, n + 1) = dk(0, n′ + 1). One checks that (Ik)06k6m satisfies the
back-and-forth conditions, and that ∅ ∈ Im whenever n = n′ or n, n′ > 2m − 1. Hence
An 'm An′ for n, n′ > 2m − 1. Putting n := 2m and n′ := 2m − 1 we see that Q is not
closed under 'm. 2

FMT – 2005/06 17

Exercise 2.1.14 Connectivity of finite linearly ordered graphs is not FO-definable.
Modify the above example by choosing an edge relation E that is FO-definable in terms
of the underlying linear orderings and such that (An, EAn) is connected precisely for
even n. Describe a suitable choice of E and detail the argument establishing the non-
definability claim.

Exercise 2.1.15 Connectivity of finite graphs, CONN, is not FO-definable. This fol-
lows from the previous, but one may also modify the truncated distance idea of Exam-
ple 2.1.13 directly. We shall see a variant proof in Corollary 2.2.9 and a stronger result
in Example 2.2.11.

Exercise 2.1.16 The class of finite bipartite graphs is not FO-definable. Hint: find an
FO-definable edge relation E on the linear orderings An from Example 2.1.13 such that
the resulting graph is bipartite or not according to the parity of n.

2.2 Locality of FO: Hanf and Gaifman Theorems

All vocabularies finite and purely relational.

Definition 2.2.1

(i) With A ∈ FIN(τ) associate its Gaifman graph, G(A) := (A,E) where the edge
relation is

E = E(A) :=
⋃

R∈τ

⋃
a∈RA{(ai, aj) : ai 6= aj}.

(ii) The Gaifman distance d(a, b) between a, b ∈ A is defined to be the usual graph
distance in G(A) (with values in N ∪ {∞}).

(iii) The Gaifman neighbourhood of radius ` of a ∈ A is N `(a) := {b ∈ A : d(a, b) 6 `}.
For tuples a ∈ An define N `(a) :=

⋃
16i6n N `(ai).

(iv) A tuple a is called `-scattered in A if d(ai, aj) > 2` for i 6= j. Equivalently, if
N `(ai) ∩N `(aj) = ∅ for i 6= j.

Observation 2.2.2 The following global relations are FO-definable for all `, n ∈ N:
(i) The edge relation E of the Gaifman graph of A.
(ii) D6` where DA6` = {(a, b) ∈ A2 : d(a, b) 6 `}.
(iii) Similarly defined global relations D∗` for ∗ =<,>, >, =.
(iv) SCn,` where SCA

n,` = {a ∈ An : a `-scattered }.
We use shorthand notation like “ d(x, y) 6 ` ” for corresponding FO-formulae.
Also, “ d(x, y) 6 ` ” for x = (x1, . . . , xn) is shorthand for

∨
16i6n d(xi, y) 6 `.

Exercise 2.2.3 Provide a formula defining the edge relation E of the Gaifman graph.
By induction on `, generate formulae “ d(x, y) 6 ` ”. [The qfr-rank of d(x, y) 6 ` can be
bounded logarithmically in `.]

Relativisation to Gaifman neighbourhoods Let ϕ(x) ∈ FO(τ), y a tuple of vari-
ables, w.l.o.g. not bound in ϕ. Let ϕN`(y)(x,y) be the formula that relativises ϕ to
the substructure that is induced on N `(y), the `-neighbourhood of y. One obtains this

18 Finite Model Theory – Martin Otto 2005/06

relativisation by induction on ϕ, as follows.

atomic ϕ: ϕN`(y) := ϕ
propositional connectives: commute with relativisation
ϕ = ∃zψ: ϕN`(y) := ∃z(

d(y, z) 6 ` ∧ ψN`(y)
)

ϕ = ∀zψ: ϕN`(y) := ∀z(
d(y, z) 6 ` → ψN`(y)

)

The crucial model theoretic property of these relativisations is that for all A, a,b such
that a ∈ N `(b):

A |= ϕN`(y)[a,b] iff A ¹ N `(b) |= ϕ[a].

Definition 2.2.4 (i) A formula ϕ(x) ∈ FO(τ) is `-local iff ϕ ≡ ϕN`(x).

(ii) For any ϕ(x) we write ϕ`(x) for the `-local version ϕN`(x) of ϕ.
If q = qr(ϕ), we refer to ϕ` as a local formula of Gaifman rank (`, q).

(iii) A basic `-local sentence is a sentence of the form

∃x1 . . . ∃xm

∧

i<j

d(xi, xj) > 2` ∧
∧

i

ψ`(xi),

asserting the existing of an `-scattered m-tuple whose components satisfy the `-
local formula ψ`(x). If q = qr(ψ), we regard the above basic local sentence as one
of Gaifman rank (`, q, m).

Example 2.2.5 The formula expressing d(x, y) 6 ` is d`/2e-local (about x and y);
∃y(

d(x, y) 6 k ∧ ϕ`(y)
)

is (k + `)-local (about x).

As N `(a) ⊆ N `′(a) for ` 6 `′, any `-local formula is also `′-local for any `′ > `.

Locality properties of FO Locality criteria can be used to establish 'm, and hence
≡m between relational structures A, B. Consider systems of sets of partial isomorphisms

(Hanf) Ik =
{
a 7→ b ∈ Part(A,B) : A ¹ N `k(a),a ' B ¹ N `k(b),b

}

or, (Gaifman) Ik =
{
a 7→ b ∈ Part(A,B) : A ¹ N `k(a),a 'rk

B ¹ N `k(b),b
}

for suitable choices of the parameters `k and rk. The theorems of Hanf and Gaifman,
respectively, give suitable overall conditions on local behaviours in A and B such that
corresponding systems satisfy the back-and-forth conditions. Thus, local similarity con-
ditions allow us to establish similarity in the sense of 'm and ≡m. Qualitatively, these
techniques show that all of FO is of an essentially local nature over relational structures
(classically as well as in FMT).

Hanf’s theorem In Hanf’s theorem, the overall condition specifies that each isomor-
phism type of `-neighbourhoods is realised in A and B by the same number of elements.
An N ` isomorphism type ι is specified by a structure C, c with distinguished element c
(its centre) such that C ¹ N `(c) = C; an element a of A realises this isomorphism type
if A ¹ N `(a), a ' C, c.

Definition 2.2.6 A and B are `-Hanf-equivalent if, for every N ` isomorphism types ι,
the number of elements in A and B, respectively, that realise ι are equal.

FMT – 2005/06 19

Note that `′-Hanf-equivalence implies `-Hanf-equivalence if ` 6 `′.

Lemma 2.2.7 Let A, B ∈ FIN(τ) be `-Hanf-equivalent, L = 3` + 1. Then any p = a 7→
b such that

A ¹ NL(a),a ' B ¹ NL(b),b

admits back-and-forth extensions p′ = aa 7→ bb for which

A ¹ N `(aa),aa ' B ¹ N `(bb),bb.

Consequently, if A and B are 3m−1−1
2 -Hanf-equivalent, then the following form a back-

and-forth system for Gm(A, B):

Ik =
{
(a 7→ b) ∈ Part(A, B) : A ¹ N `k(a),a ' B ¹ N `k(b),b

}
for `k =

3k − 1
2

.

So any 3m−1−1
2 -Hanf-equivalent A and B are m-isomorphic.

Proof Let p : a 7→ b such that ρ : A ¹ NL(a),a ' B ¹ NL(b),b, L = 3` + 1.
We show that p has extensions p′ as required. Consider w.l.o.g. the forth-requirement

for some a ∈ A. We need to provide b ∈ B s.t. A ¹ N `(aa),aa ' B ¹ N `(bb),bb.

Case 1 : a ∈ N2`+1(a). Then N `(a) ⊆ NL. Choosing b := ρ(a) we get ρ : A ¹
NL(a),aa ' B ¹ NL(b),bb. Therefore ρ′ := ρ ¹ N `(aa) shows that p′ : aa 7→ bb is
as desired.

Case 2 : a 6∈ N2`+1(a). Then N `(a)∩N `(a) = ∅ and moreover A ¹
(
N `(a)∪N `(a)

)
is the

disjoint union of A ¹ N `(a) and A ¹ N `(a). We therefore just need to find b ∈ B of the
same N ` isomorphism type as a and such that also b 6∈ N2`+1(b). Then the restriction
of ρ to N `(a) can be combined with an isomorphism between the `-neighbourhoods of
a and b, respectively.

Let ι be the isomorphism type of the `-neighbourhood of a. The isomorphism type
of NL(a) determines the number of realisations of ι within N2`+1(a), which (through
ρ) must be the same as the number of realisations of ι within N2`+1(b) (note that
y ∈ N2`+1(x) implies that N `(y) ⊆ NL(x)).

By `-Hanf-equivalence, therefore, B must also have the same number of realisations
of ι outside N2`+1(b) as A has outside N2`+1(a). Any such realisation will do.

For `k = 3k−1
2 we have `k+1 = 3`k + 1. At the bottom level, for k = 0, observe

that even isomorphism of the 0-neighbourhoods of a and b implies that (a 7→ b) ∈
Part(A,B). So the 'm claim follows. 2

Example 2.2.8 Consider finite undirected graphs built from connected components
that are simple cycles Cn of length n, for various n. Clearly any two elements have
isomorphic `-neighbourhoods in cycles of lengths n > 2` + 1. Hence, for n > 2` + 1, C2n

and the disjoint union of two copies of Cn are `-Hanf-equivalent. We therefore get the
following (compare Exercise 2.1.15).

Corollary 2.2.9 Connectivity of finite undirected graphs, CONN, is not FO-definable.

Exercise 2.2.10 Show that k-connectivity of finite graphs is not FO-definable. (A
graph is k-connected if it remains connected after the removal of any k edges.)

20 Finite Model Theory – Martin Otto 2005/06

As a further application, there is this stronger result about connectivity.

Proposition 2.2.11 CONN is not even definable even by a monadic existential second-
order sentence. I.e., there is no second-order sentence of the form ∃X1 . . .∃Xsψ(X)
with ψ ∈ FO({E}∪{X1, . . . , Xs}) for unary relation variables Xi such that for all finite
undirected graphs A

A connected iff (A, P1, . . . , Ps) |= ψ for some Pi ⊆ A.

Proof (by cutting and gluing) Suppose to the contrary that ∃Xψ(X) were as desired.
Consider a cycle CN of length N . We let CN := ZN and put a symmetric edge between
u and u′ where ′ : u 7→ u′ := u + 1 modN .

As CN is connected, there is an expansion (CN ,P) |= ψ. Let ` be such that `-Hanf-
equivalence preserves ψ. For N > 2` + 1 any `-neighbourhood in C has precisely 2` + 1
elements, and in (CN ,P) there are only s2`+1 many distinct P-colourings of (2` + 1)-
chains.

Hence, for sufficiently large N , there must be two nodes, u and v at distance d(u, v) >
2` + 1 in (CN ,P) such that

(CN ,P) ¹ N `(u), u ' (CN ,P) ¹ N `(v), v

via an isomorphism of the form x 7→ x + mmod N , for a suitable translation m. In
particular this isomorphism also maps u′ to v′. We now change just the edge relation
near u and v by swapping u′ and v′:

E′ :=
(
E \ {(u, u′), (u′, u), (v, v′), (v′, v)}) ∪ {(u, v′), (v′, u), (v, u′), (u′, v)}.

Then in (C′N ,P) every node has exactly the same N ` isomorphism type as in (CN ,P), up
to isomorphism. So (C′N ,P) and (CN ,P) are `-Hanf-equivalent and therefore (C′N ,P) |=
ψ, too. But C′N is disconnected, consisting of two cycles rather than one. Contradiction.

2

Exercise 2.2.12 Show that the binary reachability query D<∞ on the other hand is
defined by the existential monadic second-order formula ϕ(x, y) = ∃Xψ(x, y, X) where
ψ ∈ FO({E,X}) says that either x = y or

x, y ∈ X,
x and y each have precisely one immediate E-neighbour in X
all elements of X apart form x and y have precisely two direct E-neighbours in X.

Does this work in infinite graphs as well?

Gaifman’s theorem This theorem shows that FO can only express structural prop-
erties of an essentially local nature. Compare definition 2.2.4 above.

Theorem 2.2.13 (Gaifman’s theorem) Any formula of FO is logically equivalent to
a boolean combination of local formulae and basic local sentences.

One can prove this “directly” by induction on ϕ (Gaifman’s original proof). We
make a detour through games.

Definition 2.2.14 (`, q, m)-Gaifman-equivalence, A,a ≡`
q,m B,b, is defined by the fol-

lowing conditions:

FMT – 2005/06 21

(i) A,a and B,b satisfy the same `-local formulae ϕ`(x) for qr(ϕ) 6 q.
(ii) A and B satisfy the same basic local sentences of ranks (`′, q′,m′) for all `′ 6 `,

q′ 6 q and m′ 6 m.

Note that ≡`
q,m has finite index, and can be regarded as induced by the class ∆(`, q, n)

of basic local formulae and sentences of rank up to (`, q, m) in the sense of Proposi-
tion 1.3.7. To prove the theorem, it suffices to show that for any given m (m = qr(ϕ))
there are (`, q, n) such that for any A, B,

A,a ≡`
q,n B,b ⇒ A,a 'm B,b,

for then ϕ is equivalent to a boolean combination of basic local formulae and sentences
of ranks up to (`, q,m).

Exercise 2.2.15 Fill in the details for the above arguments.

Lemma 2.2.16 Let A and B be (L,Q, m)-Gaifman-equivalent for sufficiently large
L,Q. Then any p = a 7→ b with |a| = |b| < m and such that

A ¹ NL(a),a ≡Q B ¹ NL(b),b

admits back-and-forth extensions p′ = aa 7→ bb for which

A ¹ N `(aa),aa ≡q B ¹ N `(bb),bb.

Consequently, for some suitably fast growing sequence (`k, qk) we get the following. If
A ≡`

q,m B for (`, q) = (`m, qm), then the following form a back-and-forth system for
Gm(A, B):

Ik =
{
(a 7→ b) ∈ Part(A,B) : |a| = |b| 6 m− k , A ¹ N `k(a),a 'qk

B ¹ N `k(b),b
}
.

Similarly, for a ∈ An and b ∈ Bn: if A,a and B,b are (`m, qm,m + n)-Gaifman-
equivalent, then they are m-isomorphic.

Proof Let A,a and B,b be (L,Q, m)-Gaifman-equivalent (bounds on L, Q will be
collected during the proof), p = a 7→ b with |a| = |b| < m such that

A ¹ NL(a),a ≡Q B ¹ NL(b),b,

and (for the forth property), a ∈ A be given. We need to find b ∈ B such that

A ¹ N `(aa),aa ≡q B ¹ N `(bb),bb.

Case 1 (a close to a): a ∈ N2`+1(a). Then N `(a) ⊆ N3`+1(a). We assume that
L > 3` + 1. Then, by the forth property for A ¹ NL(a),a 'Q B ¹ NL(b),b we find
b ∈ NL(b) such that A ¹ NL(a),aa 'Q−1 B ¹ NL(b),bb. Provided Q is sufficiently
large this implies that also N `(b) ⊆ N3`+1(b) and A ¹ N `(aa),aa ≡q B ¹ N `(bb),bb.

Case 2 (a far from a): a 6∈ N2`+1(a). N `(a) and N `(a) are disjoint and A ¹ N `(aa) is
the disjoint union of A ¹ N `(a) and A ¹ N `(a). It suffices to find b ∈ B that is also far
from b and such that B ¹ N `(b), b 'q A ¹ N `(a), a. (Strategies for the q-round games
are compatible with disjoint unions, cf. Exercise 2.1.10).

22 Finite Model Theory – Martin Otto 2005/06

In this case we need to rely on basic local sentences to guarantee that in B we can
find a matching b 6∈ N2`+1(b). Let ψ(x) be the qfr-rank q formula that characterises
the 'q-type of a in A ¹ N `(a), ψ`(x) its `-local version.

Case 2.1 A has a (2` + 1)-scattered m-tuple of elements realising ψ` (i.e., with `-
neighbourhoods q-isomorphic to that of a).

For L > 2` + 1 and Q > q this fact is preserved in (L,Q, m)-Gaifman-equivalence.
Hence B also has such an m-tuple. As m > |b|, at least one member of this tuple must
lie outside N2`+1(b) (each N2`+1(bi) can hold at most one member as its diameter is at
most 2(2` + 1)).

Case 2.2 For some n < m, the maximal (2`+1)-scattered tuple of elements realising ψ`

in A has size n. Provided L > 2` + 1 and Q > q, the same n works in B.
We now compare this n with n0, the maximal size of any (2` + 1)-scattered tuple of

elements within N2`+1(a) realising ψ`. Clearly n0 6 n.
The same number n0 works for B, provided Q is sufficiently large to express the

existence of a (2` + 1)-scattered n0-tuple and non-existence of an (n0 + 1)-tuple for ψ`,
and if L > 3` + 1.

If n0 < n, then also in B we find an element outside N2`+1(b) that satisfies ψ` and
thus has an `-neighbourhood q-isomorphic to that of a.

If n = n0, then all realisations of ψ` in A,a, together with their `-neighbourhoods
lie inside NL(a) if L > 7` + 3. It follows that for L > 7` + 3 and Q sufficiently large to
express the existence of a witness for ψ`(x) at distance greater than 2` + 1 from x, the
existence of b as desired is guaranteed by A ¹ NL(a),a 'Q B ¹ NL(b),b. 2

2.3 Variation: monadic second-order logic and its game

Reminder: monadic second-order logic MSO extends FO by the possibility to quantify
over subsets of the universe (unary relation variables) as well as over elements. We
use letters like X, Y, Z for second-order relation variables, ranging over subsets of the
universe of the structure at hand. So, e.g., A |= ∃Xϕ(X) iff there is some P ⊆ A for
which A, P |= ϕ (also written A |= ϕ[P]).

Example 2.3.1 Connectivity of undirected graphs is definable in MSO({E}, by the
sentence

∀X[(∃xXx ∧ ∀x∀y(Xx ∧ Exy → Xy)
) → ∀xXx

]
.

Many natural queries, in particular graph queries, are definable in MSO. The ex-
pressive power of MSO over finite linearly ordered coloured strings (word models) is
analysed precisely in Part II.

Exercise 2.3.2 Give MSO-definitions for 3-colourability (as a boolean graph query)
and of the binary reachability query over undirected graphs.

Formulae of MSO can have free first- and second-order variables, which we indicate
as in ϕ(X,x): the free second-order variables are among those listed as X just as the
free first-order variables are among those listed as x. MSO quantifier rank is defined to
represent the nesting depth of first- and second-order quantifications (counted as one).
The qfr-rank of the above sample sentence is 3.

FMT – 2005/06 23

Definition 2.3.3 MSO(τ) stands for monadic second order logic over vocabulary τ .
MSO-equivalence, ≡MSO and MSO-equivalence up to qfr-rank m, ≡MSO

m , are defined
in the obvious manner. E.g., A,P,a ≡MSO

m B,Q,b if for all ϕ(X,x) ∈ MSO(τ) with
qr(ϕ) 6 m we have A |= ϕ[P,a] ⇔ B |= ϕ[Q,b].

The MSO game The FO-game is modified to allow a new kind of move that takes
care of second-order quantifications. A position in the MSO-game over structures A

and B consists of tuples of pebbled elements a and b (which establish a correspondence
a 7→ b as before) and tuples of designated subsets, P and Q, of A and B, respectively.
We denote such a configuration as (A,P,a; B,Q,b).

A single round is governed by a challenge/response exchange, where I decides whether
to play an element or a subset, and (as before) in which structure to play his challenge.
II needs to respond by choosing a corresponding object (element or subset) in the op-
posite structure. So a set-move of I takes the game from position (A,P,a; B,Q,b) to
some position (A,PP,a; B,QQ,b); an element move, as before, takes the game from
position (A,P,a; B,Q,b) to some position (A,P,aa; B,Q,bb).

The winning conditions stipulate that II needs to maintain positions (A,P,a; B,Q,b)
in which (a 7→ b) ∈ Part((A,P), (B,Q)).

Definition 2.3.4 The m-round MSO-game starting from position (A,P,a; B,Q,b),
GMSO

m (A,P,a; B,Q,b), consists of m rounds.
We say that II wins the game if she has a winning strategy to maintain locally

isomorphic pebble configurations that also respect the subsets selected in set-moves.

Back-and-forth systems that correspond to winning strategies in the m-round MSO-
game can be defined in analogy with those for the FO game, only that back-and-forth
matches must be provided both for extensions by one further element and for extensions
by one further subset.

A,P,a and B,Q,b are MSO-m-isomorphic, A,P,a 'MSO
m B,Q,b if there is a back-

and-forth system for GMSO
m (A,P,a; B,Q,b), which is equivalent to the existence of a

winning strategy of II. Characteristic formulae χm
A,P,a(X,x) are defined inductively in

the canonical way, to characterise A,P,a up to 'MSO
m . One obtains the following MSO

variant of the Ehrenfeucht-Fräıssé theorem.

Theorem 2.3.5 (MSO Ehrenfeucht-Fräıssé Theorem) The following are equiva-
lent for all A,P,a; B,Q,b and m (in finite relational vocabulary τ):

(i) A,P,a 'MSO
m B,Q,b.

(ii) II wins GMSO
m (A,P,a;B,Q,b).

(iii) A,P,a ≡MSO
m B,Q,b.

A composition lemma A useful feature of MSO is its compositionality w.r.t. to some
simple composition operations on structures. We discuss (for later use) compositionality
w.r.t. ordered sums. (FO inherits the same as a fragment of MSO.)

Let τ have a binary relation symbol < (for a linear ordering). If A1 = (A1, <
A1 , . . .)

and A2 = (A2, <
A2 , . . .) are τ -structures with disjoint universes, A1 ∩ A2 = ∅, that are

linearly ordered by <, then the ordered sum of A1 and A2 is the τ -structure

A1 ⊕ A2 :=
(
A1 ∪A2, <

A1⊕A2 , (RA1 ∪RA2)R∈τ\{<}
)

where <A1⊕A2=<A1 ∪ <A2 ∪A1 ×A2.

24 Finite Model Theory – Martin Otto 2005/06

So A1 ⊕ A2 is obtained from the Ai by appending the order (A2, <
A2) to the order

(A1, <
A1) and taking the disjoint union of the interpretations for all other relations. In

case A1 and A2 are not disjoint, we pass to isomorphic copies that are.

Lemma 2.3.6 For linearly ordered A1, A2,B1, B2 with first- and second-order param-
eter tuples as indicated: if A1,P1,a1 'MSO

m B1,Q1,b1 and A2,P2,a2 'MSO
m B2,Q2,b2,

then also

(A1,P1)⊕ (A2,P2),a1a2 'MSO
m (B1,Q1)⊕ (B2,Q2),b1b2.

Proof We argue with a composition of winning strategies and look at a single round
in GMSO

m (A1 ⊕ A2; B1 ⊕ B2) (suppressing parameters for clarity). For instance, let I
play a set move P ⊆ A1 ∪ A2. II needs to come up with a matching Q ⊆ B1 ∪B2. Let
Pi := P ∩Ai; then her strategies for GMSO

m (Ai; Bi) give II matching responses Qi ⊆ Bi.
Then Q := Q1∪Q2 is a good response for her in the combined game. For element moves,
II refers to her strategy in that game GMSO

m (Ai; Bi) in which I’s challenge falls. 2

Exercise 2.3.7 Show that similarly 'MSO
m is compatible with disjoint unions of rela-

tional structures.

2.4 Variation: k variables, k pebbles

2.4.1 The k-variable fragment and k-pebble game

Reminder: all vocabularies finite and purely relational.
We consider the number of distinct variable symbols required as a logical resource.

This also corresponds to the maximal arity of the ‘auxiliary’ queries defined by subfor-
mulae. The finite-variable fragments of FO play an important role in FMT. They induce
non-trivial notions of elementary equivalence, and are helpful in the analysis also of the
much more expressive extensions by FO by fixpoint constructors that we encounter in
Part II. In the following k > 2 is arbitrary but fixed.

Definition 2.4.1 (i) The k-variable fragment of first-order logic, FOk ⊆ FO, consists
of those FO-formulae in which only the variable symbols x1, . . . , xk are used (free
or bound).

(ii) A,a and B,b (with |a| = |b| 6 k) are k-variable equivalent, A,a ≡k B,b, if for
all ϕ(x) ∈ FOk we have A |= ϕ[a] ⇔ B |= ϕ[b].
Similarly, for m ∈ N, A,a ≡k

m B,b if they agree on all ϕ(x) ∈ FOk with qr(ϕ) 6 m.

We often use variable symbols x, y, . . . (but only k distinct ones) instead of the official
variables x1, . . . , xk.

As atomic formulae in FOk also cannot use more than k distinct variables, we only
want to consider FOk(τ) in connection with relational vocabularies τ whose relation
symbols have arities up to k at most. For similar reasons, we only consider parameter
tuples (assignments to potentially free variables) of length k.

Example 2.4.2 (i) For k = 3, the class ORD is definable in FOk({<}).
(ii) Over A = (A,<A) ∈ ORD, there are FO2({<})-formulae ϕn defining the subset

consisting of the first n elements w.r.t. <, for n > 1. Inductively, ϕ1(x1) :=
∀x2¬x2 < x1; ϕn+1(x1) := ∀x2

(
x2 < x1 → ϕn(x2)

)
.4

4Here ϕn(x2) is obtained from ϕn(x1) be swapping variables x1 and x2 throughout.

FMT – 2005/06 25

It follows that ≡k is not of finite index. Unlike ≡, ≡k does in general not trivialise
to ' over finite structures. It will follow from game considerations below, for instance,
that FOk[∅] cannot distinguish between naked sets of different sizes n > k.

Exercise 2.4.3 Show that for every k > 2, ≡k coincides with ' on linearly ordered
finite graphs.

The k-pebble game The k-pebble game is obtained as a simple variation of the FO
pebble game. There are k pairs of pebbles numbered 1, . . . , k.

Positions in the k-pebble game over A and B are positions (A,a; B,b) with a ∈ Ak,
b ∈ Bk.5

A single round consists of a challenge/response exchange which now takes the fol-
lowing form. In position (A,a;B,b), I chooses one pebble in one of the structures and
relocates it on any element of that structure (e.g., pebble i in A is moved to element
a ∈ A); II has to respond by moving the corresponding pebble in the opposite structure
(in the example, moving pebble i in B to some element b ∈ B).

Writing aa
i for the result of replacing the i-th component of a by a, a round played

with pebble i thus leads from a position (A,a; B,b) to a position (A,aa
i ; B,b b

i).
The constraints and winning conditions for the m-round k-pebble game are strictly

analogous to those for the FO game, cf. Definition 2.1.3 and discussion there.

Definition 2.4.4 The m-round k-pebble game Gk
m(A,a;B,b) continues for m rounds

starting from position (A,a; B,b). II wins any play in which she maintains isomorphic
pebble configurations through m rounds, and loses otherwise.

Definition 2.4.5 A back-and-forth system for Gk
m over A and B is a system (Ii)06i6m

such that ∅ 6= Ii ⊆ {(a 7→ b) ∈ Part(A,B) : a ∈ Ak,b ∈ Bk}, and, for 1 6 i 6 m, every
(a 7→ b) ∈ In has back-and-forth extensions in Ii−1:

forth ∀j ∈ {1, . . . , k} ∀a ∈ A ∃b ∈ B : (aa
j 7→ b b

j) ∈ Ii−1

back ∀j ∈ {1, . . . , k} ∀b ∈ B ∃a ∈ A : (aa
j 7→ b b

j) ∈ Ii−1.

(Ii)06i6m is a back-and-forth system for Gk
m(A,a; B,b) if (a 7→ b) ∈ Im. We write

(In)06i6m : A,a 'k
m B,b in this situation, and say that A,a and B,b are k-pebble

m-equivalent.

The following variation of the Ehrenfeucht-Fräıssé theorem is strictly analogous to
the case of the m-round FO game, Theorem 2.1.7.

Theorem 2.4.6 The following are equivalent for all A,a; B,b and m:
(i) A,a 'k

m B,b.
(ii) II wins Gk

m(A,a; B,b).
(iii) A,a ≡k

m B,b.

Exercise 2.4.7 Prove the above in analogy to the remarks in connection with Theo-
rem 2.1.7.

5For simplicity we do not explicitly consider initial phases of the game during which not all pebbles
would have to be placed; but this can be adapted where necessary.

26 Finite Model Theory – Martin Otto 2005/06

Just as for the FO-game, one uses characteristic formulae χm
A,a ∈ FOk, qr(χm

A,a) = m,
that characterise the 'k

m-class of A,a. (Their shape is analogous to the χm
A,a for the FO

game, with the obvious adaptation that the back-and-forth conditions now are for the
moves in the k-pebble game.)

For m = 0, χm
A,a is the conjunction over all atomic and negated atomic FOk-formulae

that are true of a in A. Inductively,

χm+1
A,a (x) := χm

A,a ∧
∧

16j6k

∧{∃xjχ
m
A,aa

j
(x) : a ∈ A

}
︸ ︷︷ ︸

forth

∧∧
16j6k ∀xj

∨{
χm
A,aa

j
(x) : a ∈ A

}
︸ ︷︷ ︸

back

.

Exercise 2.4.8 Show that II wins Gk
m(A,a;B,b) iff B |= χm

A,a[b].

2.4.2 The unbounded k-pebble game and k-variable types

Definition 2.4.9 The infinite or unbounded k-pebble game Gk∞(A,a; B,b) starts from
(A,a; B,b) and consists of an unending succession of rounds in which isomorphic pebble
configurations are maintained or ends with a loss for II when local isomorphism is vio-
lated. Correspondingly, II wins the game Gk∞(A,a; B,b) if she has a strategy to maintain
isomorphic pebble configurations indefinitely in any play starting from (A,a; B,b).

Note that the game graph for Gk∞ over any two fixed finite A and B is finite (there
are only |A|k · |B|k distinct positions. The analysis of the game is therefore essentially
finite, since any sufficiently long play must eventually repeat some configuration.

Exercise 2.4.10 Try to argue game theoretically that if I has a winning strategy for
Gk∞(A,a; B,b), then he has a strategy to force a win within |A|k · |B|k many rounds.

Back-and-forth systems for the infinite game

Definition 2.4.11 A back-and-forth system for Gk∞ over A and B is a single set I ⊆
{(a 7→ b) ∈ Part(A, B) : a ∈ Ak,b ∈ Bk}, such that every (a 7→ b) ∈ I has back-and-
forth extensions in I. I is a back-and-forth system for Gk∞(A,a; B,b) if (a 7→ b) ∈ I.
We write I : A,a 'k∞ B,b in this situation, and say that A,a and B,b are k-pebble
equivalent.

Remark (for those familiar with these classical notions): 'k∞ is the k-variable variant
of the classical notion of partial isomorphy 'part. [However, over finite structures, the
distinction between notions of finite isomorphy and partial isomorphy is blurred.]

Analysis of k-variable types

Definition 2.4.12 For A and a ∈ Ak define
(i) The k-variable type tpk(A,a) :=

{
ϕ(x) ∈ FOk : A |= ϕ[a]

}
.

(ii) The rank m k-variable type tpk
m(A,a) := tpk(A,a) ∩ {ϕ ∈ FOk : qr(ϕ) 6 m}.

By the Ehrenfeucht-Fräıssé theorem above, the rank m k-variable types tpk
m(A,a)

exactly specify the 'k
m-equivalence class of A,a. It is therefore also determined by the

characteristic formula χm
A,a, which is itself a member of this type.

FMT – 2005/06 27

Inductive refinement Consider an individual A ∈ FIN(τ). An inductive refinement
generates 'k

i and, as their limit, 'k∞, as equivalence relations on Ak. Let ∼0 be the
equivalence relation corresponding to qfr-rank 0 equivalence:

a ∼0 a′ iff A,a 'k
0 A,a′ iff tpk

0(A,a) = tpk
0(A,a′) iff A ¹ a,a ' A ¹ a′,a′.

Suppose the equivalence relation ∼i on Ak is given such that

a ∼i a′ iff A,a 'k
i A,a′ iff tpk

i (A,a) = tpk
i (A,a′).

For any 1 6 j 6 k, any ∼i equivalence class α ∈ Ak/∼i, and a ∈ Ak define

ιj,α(a) :=
{

1 if ∃a ∈ A(aa
j ∈ α)

0 else.

Now put
a ∼i+1 a′ iff a ∼i a′ and ∀j∀α : ιj,α(a) = ιj,α(a′).

I.e., for a 'k
i a′ we put a ∼i+1 a′ if, and only if, a 7→ a′ has back-and-forth extensions

which maintain 'k
i equivalence. It follows that, as desired, ∼i+1 coincides with 'k

i+1

(and ≡k
i+1) on A.

Clearly the sequence (∼i)i>0 is a monotone sequence of successively refined equiva-
lence relation on the finite set Ak. Hence for some r 6 |A|k we must have∼r=∼r+1=∼r+s

for all s ∈ N. The minimal such r is called the k-rank of A, k-rank(A).

Lemma 2.4.13 (i) For all i ∈ N: a ∼i a′ iff A,a 'k
i A,a′.

(ii) For r = k-rank(A): a ∼r a′ iff A,a 'k∞ A,a′.

Proof (i) follows directly from the definition of the ∼i, by induction on i.
For (ii) consider I :=

{
a 7→ a′ : a ∼r a′

}
. We claim that I has back-and-forth

extensions, so that I : A,a 'k∞ A,a′ for any (a 7→ a′) ∈ I. Let (a 7→ a′) ∈ I, 0 6 j 6 k
and a ∈ A. As ∼r=∼r+1, a ∼r+1 a′. Hence A,a 'k

r+1 A,a′, which guarantees the
existence of some a′ ∈ A for which A,aa

j 'k
r A,a′ a

′
j . It follows that (aa

j 7→ a′ a
′

j) ∈ I is
as desired. 2

We conclude that for every A and a ∈ Ak there is also a single FOk-formula that
characterises the 'k∞ class of A,a. Let r = k-rank(A) and put

χA :=
∧

a∈Ak ∃xχr
A,a ∧ ∀x∨

a∈Ak χr
A,a

∧∧
16j6k

∧
a∈Ak ∀x

[
χr
A,a →

(∧
a∈A ∃xjχ

r
A,aa

j
∧ ∀xj

∨
a∈A χr

A,aa
j

)]
.

The first two conjuncts say that precisely the rank r k-types of A are realised; the third
conjunct implies that ∼r+1=∼r, whence the rank r types determine the 'k∞ types.

For a ∈ Ak put
χA,a(x) := χA ∧ χr

A,a(x).

Note that qr(χA,a) = r + k + 1.
Suppose B |= χA. Then B has exactly the same rank r types as A and k-rank(B) =

r. Moreover, the following system has back-and-forth extensions:

I :=
{
a 7→ b : tpk

r (B,b) = tpk
r (A,a)

}
.

If B |= χA,a[b], then also tpk
r (B,b) = tpk

r (A,a) and A,a 'k∞ B,b via I.

28 Finite Model Theory – Martin Otto 2005/06

Theorem 2.4.14 Let A ∈ FIN(τ), r := k-rank(A), a ∈ Ak. Then the following are
equivalent for any B ∈ FIN(τ) and b ∈ Bk:

(i) A,a 'k∞ B,b.
(ii) A,a 'k

r+k+1 B,b.

(iii) A,a ≡k
r+k+1 B,b.

(iv) A,a ≡k B,b.

Proof The equivalence between (ii) and (iii) is from Theorem 2.4.6. As'k∞ equivalence
implies 'k

i equivalence for all i, we clearly have (i) ⇒ (ii), and Theorem 2.4.6 also gives
(i) ⇒ (iv). (iv) ⇒ (iii) is trivial. As (iii) implies B |= χA,a[b], (iii) ⇒ (i) follows from
the consideration above. 2

A global pre-ordering w.r.t. k-variable types We upgrade the inductive refine-
ment that separated out the different 'k∞-types over an individual finite structure A

so that it provides a linear ordering of these types, i.e., a linear ordering of Ak/'k∞.
This is achieved in stages that go along with the inductive refinement of the equivalence
relations (∼i)i>0 on Ak we saw above. We now instead generate transitive, reflexive and
total pre-ordering relations 4i on Ak such that

a ∼i a′ ⇔ (
a 4i a′ and a′ 4i a

)
. (∗)

It follows that Ak/∼i is linearly ordered (in the sense of 6) by 4i.
At level i = 0 we use some arbitrary but fixed linear ordering of the (finitely many)

qfr-free k-variable types. Inductively assume that 4i satisfies (∗), and hence induces a
linear ordering on Ak/∼i. Consider the values of the boolean functions ιj,α on Ak, and
recall that for a ∼i a′ we have a ∼i+1 a′ iff ιj,α(a) = ιj,α(a′) for all j, α.

Consider the boolean tuple listing the ιj,α-values in order of increasing j, and within
the same j, increasing w.r.t. α in the sense of 4i. The set of all such tuples carries a
natural lexicographic ordering, based on the first position where the two tuples differ (if
not equal). We now put

a 4i+1 a′ if
(
a 4i a′ and (ιj,α(a))j,α 6lex (ιj,α(a′))j,α

)
.

Then 4i+1 is again transitive, reflexive and total and provides a linear ordering of the
∼i+1-classes according to (∗). Note that 4i+1 is uniformly FO-definable in terms of 4i

over A. Let 4 be the limit 4A=4A
r for r = k-rank(A). Then 4A is a linear ordering (in

the sense of 6) on Ak/'k∞.

Lemma 2.4.15 There is a global relation 4 of arity 2k, uniformly definable by an
inductive iteration of a first-order definable operation, such that 4A is a pre-ordering on
Ak which linearly orders w.r.t. k-variable types.

The linear ordering induced by 4 on Ak/'k∞ is completely determined by the k-
variable types in A, and hence only depends on the ≡k-class of A. The same is true of
the information about the qfr-free formulae in each 'k∞-type,

Pθ := {α ∈ Ak/'k
∞ : A |= θ[a] for a ∈ α} for each qfr-free θ ∈ FOk(τ)

and the incidence between 'k∞-types w.r.t. the relations describing moves of the j-th
pebble in the game

Ej :=
{
(α, α′) : ∃a(a

a

j
∈ α′) for a ∈ α

}
for j = 1, . . . , k.

FMT – 2005/06 29

For a distinguished tuple a ∈ Ak, we may also identify its 'k∞-class [a]'k∞ as a distin-
guished element in the quotient Ak/'k∞.

Definition 2.4.16 The k-variable invariant of A,a is defined to be the linearly ordered
quotient structure Ik(A,a) :=

(
Ak/'k∞, 6, (Pθ), (Ej), [a]'k∞

)
.

Proposition 2.4.17 For A,a and B,b: A,a 'k∞ B,b iff Ik(A,a) ' Ik(B,b).

Proof “⇐” is clear from the definition of Ik. “⇒” follows from the fact that the
actual k-variable types realised in A, and in particular the k-variable type of a in A can
be identified from just Ik(A,a). For this one determines tpk

m(A,a′) for a′ ∈ α ∈ Ik, by
induction on m. 2

As the invariants are polynomial time computable, and isomorphism between finite
linearly ordered structures is trivially decidable in polynomial time (also cf.P̃art II), we
get the following.

Corollary 2.4.18 k-variable equivalence can be decided by a polynomial time algorithm.

30 Finite Model Theory – Martin Otto 2005/06

Chapter 3

Zero-One Laws

3.1 Asymptotic probabilities

For fixed finite relational vocabulary τ and n > 1, the set of all finite τ -structures of size
n is finite up to '. If we let FINn(τ) stand for the set of τ -structures over the standard
size n universe [n] := {1, . . . , n}, then FINn(τ) is a finite set for each n. Given a sentence
ϕ ∈ L(τ), we regard

µn(ϕ) :=
|{A ∈ FINn(τ) : A |= ϕ}|

|FINn(τ)| =
|MOD(ϕ) ∩ FINn(τ)|

|FINn(τ)|
as the probability that a randomly chosen A ∈ FINn(τ) satisfies ϕ (the boolean query Q
defined by ϕ). If the limit exists,

µ(ϕ) := limn→∞µn(ϕ)

is called the asymptotic probability of ϕ (the query defined by ϕ). In particular, we say
that

ϕ is almost surely true if µ(ϕ) = 1,

ϕ is almost surely false if µ(ϕ) = 0.

An equivalent and intuitive characterisation of this probability space based on FINn(τ)
with the uniform distribution is as follows. For every relational τ -atom Rx and every
assignment a for x over [n], toss a fair coin to determine whether a ∈ RA or not, with
probability 1/2. Treating all instantiated atoms in this way, independent of each other,
we arrive at a τ -structure A ∈ FINn(τ) as the outcome of a random experiment. For
any query Q, µn(Q) then is the probability that this random experiment yields A ∈ Q.

For technical reasons we also consider probabilities for formulae with free variables. For
ϕ(x) and fixed assignment a to its free variables x over [n], we let

µn(ϕ[a]) :=
{A ∈ FINn(τ) : A |= ϕ[a]}

|FINn(τ)|
be the probability that A ∈ FINn makes ϕ[a] true.

Definition 3.1.1 (i) A logic L has asymptotic probabilities if all L-sentences have
asymptotic probabilities.

(ii) A logic satisfies a zero-one law if it has asymptotic probabilities, and these take
values in {0, 1} only. I.e., if every sentence of L(τ) is either almost surely true or
almost surely false on FIN(τ).

31

32 Finite Model Theory – Martin Otto 2005/06

Variation Often the reference class of structures is not FIN(τ) but a proper subclass.
We only look at the special case of τ = {E} and the class GRAPH of all finite undirected
graphs. Generally, for K ⊆ FIN(τ), the above notions are adapted accordingly, by letting

µK
n (ϕ) =

|MOD(ϕ) ∩Kn|
|Kn| ,

where Kn = K ∩ FINn(τ).

Example 3.1.2 (i) The boolean query EVEN does not have an asymptotic proba-
bility, as µn(EVEN) = nmod 2.

(ii) We shall see below that finite undirected graphs almost surely have diameter 2,
whence in particular they are almost surely connected.

Asymptotic probabilities can also be useful in connection with FINSAT issues. Note
that if µn(ϕ) > 0 the ϕ must have models of size n; if µ(ϕ) > 0, then ϕ must have
arbitrarily large finite models. Probabilistic arguments can thus be used to prove the
existence of finite models.

3.2 Extension axioms and the almost sure theory

Fix finite relational τ . A basic k-type is a maximal consistent set of atomic and negated
τ -formulae in variables x1, . . . , xk comprising in particular the formulae ¬xi = xj for
1 6 i < j 6 k.

In the following we write θ(x) where x = (x1, . . . , xk) for such basic types. As θ(x)
is finite, we may identify it with the single qfr-free formula

∧
θ. A non-degenerate tuple

a in A realises the type θ if θ = {ϕ(x) : ϕ (negated) atomic, A |= ϕ[a]}. i.e. if A |= θ[a].

Exercise 3.2.1 Let θ(x), θ′(x) be basic k-types, a,a′ disjoint non-degenerate assign-
ments over [n] to x. Show that

(i) µn(θ[a]) = µn(θ[a′]).
(ii) µn(θ[a] ∧ θ[a′]) = µn(θ[a])µn(θ[a′]) (independence).
(iii) µn(θ[a]) = µn(θ′[a]), i.e., any two basic types have the same probability to be

realised by a particular tuple.

For basic k-type θ(x) and (k + 1)-type θ′(x, xk+1), we say that θ′ is an extension of
θ if θ ⊆ θ′ (if we regard them as sets of formulae), or equivalently, if θ′ |= θ (if we regard
them as formulae). We call such (θ, θ′) an extension pair.

Definition 3.2.2 The extension axiom for the extension pair (θ, θ′) is the FO(τ)-
sentence

Extθ,θ′ := ∀x(
θ(x) → ∃xk+1θ

′(x, xk+1)
)
.

We explicitly include the case of extension pairs (∅, θ(x1)), for which Ext∅,θ ≡ ∃x1θ(x1).
Let EXT(τ) ⊆ FO(τ) be the set of all extension axioms.

Definition 3.2.3 The almost sure theory for τ is the set of FO(τ)-sentences

AST(τ) := {ϕ ∈ FO(τ) : µ(ϕ) = 1}.

In the remainder of this section we show the following result.

FMT – 2005/06 33

Theorem 3.2.4 (Fagin) For any finite relational vocabulary τ :
(i) EXT(τ) ⊆ AST(τ), i.e., every extension axiom is almost surely true. It follows

that every finite collection of extension axioms has a finite model, and that (by
compactness) EXT(τ) is satisfiable (in an infinite model).

(ii) EXT(τ) has, up to isomorphism, precisely one countably infinite model, the so-
called random τ -structure Rτ .

(iii) AST(τ) is the FO-theory of the random τ -structure:

AST(τ) = {ϕ ∈ FO(τ) : Rτ |= ϕ}.

(iv) FO(τ) satisfies a zero-one law.

We first establish (i).

Lemma 3.2.5 For every extension pair (θ, θ′), Extθ,θ′ is almost surely true.

Proof We show that µn(Extθ,θ′) → 1. Let θ = θ(x) where x = (x1, . . . , xk), and,
writing y instead of xk+1 for clarity, θ′ = θ′(x, y). Note that, as a basic type, θ′(x, y)
stipulates that y 6= x for x in x.

Consider a fixed non-degenerate assignment a in [n] to the variables x. For every b ∈
[n]\{a}, every basic type for (a, b) is equally likely in A ∈ FINn(τ) (cf. Exercise 3.2.1 (iii)).
Let δ > 0 be this probability that the basic type of (a, b) is θ′ (or any other specified
basic type).

δ := µn(θ′[a, b]) > 0.

Then
µn

(
(θ ∧ ¬θ′)[a, b]

)
< 1− δ,

and as any b ∈ [n] \ {a} has the same probability to realise θ′ (by an argument similar
to Exercise 3.2.1 (ii)), for fixed a

µn

(
θ ∧ ¬∃yθ′)[a]

)
< (1− δ)n−k.

Clearly, each non-degenerate a fails θ → ∃yθ′ with the same probability (e.g., by an
isomorphism argument). Therefore

µn(¬Extθ,θ′) = µn

(∃x(θ ∧ ¬∃yθ′)
)

< nk(1− δ)n−k n→∞−→ 0.

It follows that µ(¬Extθ,θ′) = 0 and µ(Extθ,θ′) = 1. 2

Note that this implies in particular that any finite collection of extension axioms
is satisfiable in finite models. By compactness, EXT(τ) is satisfiable, but has no finite
models (why?). By Löwenheim-Skolem, it must have countably infinite models.

Corollary 3.2.6 EXT(τ) is satisfiable in a countably infinite model.

The following lemma yields (ii) of the theorem. The proof is a familiar back-and-
forth argument from classical model theory (partially isomorphic countable structures
are isomorphic).

Lemma 3.2.7 Let A, B |= EXT(τ), A and B both countable. Then A ' B.

34 Finite Model Theory – Martin Otto 2005/06

Proof (back-and-forth argument) Suppose Let A, B |= EXT(τ). Then the following
system of all finite partial isomorphisms between A and B has back-and-forth extensions:

I :=
{
p = (a 7→ b) : p ∈ Part(A, B), def(p) finite

}
.

Consider (a 7→ b) ∈ I, and, for instance, a ∈ A. W.l.o.g. a is non-degenerate and a
disjoint from a. Let θ(x) and θ(x, y) be the basic types of a and aa in A, respectively.
Then (θ, θ′) is an extension pair. As a 7→ b is an isomorphism between A ¹ a and B ¹ b,
b satisfies θ(x) in B. As B |= Extθ,θ′ , we find b ∈ B such that B |= θ′[b, b]. It follows
that (aa 7→ bb) ∈ I.

If A and B are both countable, let A and B be enumerated as (ai)i∈N and (bi)i∈N.
Define a sequence of finite partial isomorphisms (pn)n∈N, where pn ∈ I for all n, p0 ⊆
p1 ⊆ p2 ⊆ · · · an increasing chain and such that

⋃
n def(pn) = A and

⋃
n im(pn) = B.

The limit p of the sequence (pn)n∈N is an isomorphism, p =
⋃

n pn : A ' B (check!).
The pn are chosen inductively, starting from p0 = ∅, where

(i) for even n = 2m, pn+1 ⊇ pn is a forth-extension of pn with am ∈ def(pn+1).
(ii) for odd n = 2m + 1, pn+1 ⊇ pn is a back -extension of pn with bm ∈ im(pn+1).

2

Together with Corollary 3.2.6, we see that EXT(τ) has a unique (up to ') countably
infinite model Rτ |= EXT(τ), called the random τ -structure. Moreover:

EXT(τ) |= ϕ ⇔ Rτ |= ϕ. (∗)

For “⇐” note that consistency of ¬ϕ with EXT(τ) would imply the existence of a
(countable) model of EXT(τ) ∪ {¬ϕ}, whence, by the last lemma, Rτ |= ¬ϕ.

EXT(τ) |= ϕ ⇒ µ(ϕ) = 1 (ϕ ∈ AST) (∗∗)
For this note that, by compactness, EXT(τ) |= ϕ implies that ϕ is a consequence of

finitely many extension axioms. As those are almost surely true, so is ϕ.

Proof (of Theorem 3.2.4) Parts (i) and (ii) have been dealt with in the preceding
lemmas. For (iii) we argue that, by (∗) and (∗∗), also

Rτ |= ϕ ⇔ µ(ϕ) = 1 (ϕ ∈ AST).

“⇒” is immediate from (∗) and (∗∗). For “⇐” it suffices to consider “⇒” for ¬ϕ: if
Rτ 6|= ϕ, then Rτ |= ¬ϕ, so µ(¬ϕ) = 1 and µ(ϕ) = 0.

(iv) follows, since for all sentences ϕ either ϕ ∈ AST or ¬ϕ ∈ AST. In the first case,
µ(ϕ) = 1, in the second case µ(ϕ) = 0. 2

3.3 The random graph

The whole approach outlined above carries through for so-called parametric classes of
finite τ -structures instead of the whole of FIN(τ) as the basic reference set. This is
important, as one cannot directly apply the above results to classes like G := GRAPH.
The naive attempt to identify those FO-sentences ϕ that are almost surely true in finite
graphs by looking at µ(ϕ0 → ϕ), where ϕ0 ∈ FO({E}) defines GRAPH, fails. In fact,
µ(ϕ0) = 0 (why?) and therefore µ(ϕ0 → ϕ) = 1 for any ϕ.

FMT – 2005/06 35

One needs to look at conditional probabilities instead. In effect this necessitates a
repetition of the above arguments involving extension axioms for those basic types that
are compatible with GRAPH (consistent with ϕ0).

For the probabilities we now want the following, where in our case G := GRAPH
and Gn := GRAPH ∩ FINn({E}), and ϕ0 says that E is irreflexive and symmetric.

µG
n (ϕ) =

|MOD(ϕ) ∩Gn|
|Gn| =

|MOD(ϕ0 ∧ ϕ) ∩ FINn({E})|
|MOD(ϕ0) ∩ FINn({E})| .

Extension axioms for graphs
A basic type is compatible with ϕ0 if it can be realised in graphs, which is the case if and
only if it describes the isomorphism type of a finite (sub-)graph. A one-point extension
of a finite (sub-)graph G0 by one extra new vertex b is fully determined by stipulating
to which vertices a of G0 the new vertex b is linked by an edge. If a is a non-degenerate
tuple listing all the vertices of G0, we just need to partition a into disjoint tuples a+,a−,
where a+ lists those a ∈ a for which (a, b), (b, a) ∈ E and a− lists those a ∈ a for which
(a, b), (b, a) 6∈ E in the extension. Consistency with internal edges within G0 is trivial,
as there is no dependency. Therefore, the following formalisation of graph extension
axioms is sufficient.

Extn,m := ∀x1 . . . ∀xn+m

(∧

16i<j6n+m

¬xi = xj → ∃y(∧

16i6n

Exiy ∧
∧

n+16i6n+m

¬Exiy
))

.

The theory corresponding to EXT(τ) in the graph setting then is

EXTG := {ϕ0} ∪
{
Extn,m : n,m ∈ N}

,

while the analogue of the almost sure τ -theory now is the almost sure theory of undirected
graphs

ASTG :=
{
ϕ ∈ FO({E}) : µG(ϕ) = 1

}
.

Theorem 3.3.1
(i) µG(Extn,m) = 1 for all n,m.
(ii) EXTG has, up to isomorphism, precisely one countably infinite model, the so-called

random graph, or Rado graph, R.
(iii) ASTG is the FO-theory of the random graph. For all FO({E})-sentences ϕ:

µG(ϕ) = 1 iff R |= ϕ.

Exercise 3.3.2 Outline the proof of the above theorem in analogy with the proof of
Theorem 3.2.4.

Exercise 3.3.3 One explicit representation of (the isomorphism type of) the random
graph R is given by the following structure. A := (N, E), where E is defined as follows.
Let p0 = 2, p1 = 3, p3 = 5, . . . be the enumeration of all primes. For 0 6 n < m put

(n,m), (m,n) ∈ E iff pn|m.

Check that A satisfies the graph extension axioms.
It follows that A ' R is (a presentation of) the random graph.

36 Finite Model Theory – Martin Otto 2005/06

Example 3.3.4 An undirected finite graph almost surely has diameter 2. I.e., the
following is almost surely true in undirected graphs (true in the random graph R):

∃x∃y¬Exy ∧ ∀x∀y(x = y ∨ Exy ∨ ∃z(Exz ∧ Ezy)).

In fact even ∃x∃y¬Exy ∧ ∀x∀y∃z(Exz ∧ Ezy) is almost surely true. For the first
conjunct, one may use the extension axiom Ext0,1 and Ext2,0 for the second part.

Example 3.3.5 Every finite graph G0 is isomorphically embedded in the random graph
R. Moreover, if G0 ⊆ G1 are finite graphs, and if ρ0 : G0 ' G′

0 ⊆ R is an isomorphic
embedding of G0 into R, then ρ0 can be extended to an isomorphic embedding of G1

into R: there exists ρ1 ⊇ ρ0 such that ρ1 : G1 ' G′
1 ⊆ R.

For this one establishes first the second claim in the special case where G1 is an
extension of G0 by a single vertex. The appropriate graph extension axiom takes care
of this. Then, we proceed by induction on the number of vertices in G1 \G0.

Exercise 3.3.6 For arbitrary finite relational τ consider the diameter of the Gaifman
graph of finite τ -structures A, diameter(G(A)). Show that almost surely

diameter(G(A)) =
{

2 if τ has at least one binary but no ternary relation,
1 if τ has at least one ternary relation.

Part II

Logic and Complexity:
Descriptive Complexity

37

Chapter 4

Monadic Second-Order Logic and
Büchi’s Theorem

4.1 Word models

Fix finite alphabet Σ; recall:

• Σ∗ the set of all Σ-words;

• w = a1 . . . an ∈ Σ∗ (ai ∈ Σ) has length |w| = n;

• ε ∈ Σ∗ the empty word, Σ+ = Σ∗ \ {ε};

• (Σ∗, · , ε) with concatenation operation · the monoid of Σ-words;

• (Σ+, ·) the semigroup of non-empty Σ-words.

Definition 4.1.1 Let τΣ = {<} ∪ {Pa : a ∈ Σ}.
(i) The canonical word model associated with w = a1 . . . an ∈ Σ+ is the linearly

ordered τΣ-structure Aw =
(
[n], <, (PAw

a)a∈Σ

)
, where [n] = {1, . . . , n} with the

usual ordering < and
PAw

a = {i : ai = a}.
(ii) A (Σ-)word model is any τΣ-structure isomorphic to some Aw for w ∈ Σ+;

Σ+ ⊆ FIN(τΣ) the class of all Σ word models (the '-closure of {Aw : w ∈ Σ+}).
(iii) For Σ-languages L ⊆ Σ+ put L := {B : B ' Aw for some w ∈ L} ⊆ Σ+ (the

'-closure of {Aw : w ∈ L}).

The connection between words and word models induces exact correspondences:

Σ-words w ∈ Σ+ − isomorphism classes of word models Aw

Σ-languages L ⊆ Σ+ − isomorphism classes of word models

concatenation of words − ordered sums of word models

Büchi’s Theorem will enrich this picture by the correspondence between regularity and
MSO-definability.

39

40 Finite Model Theory – Martin Otto 2005/06

4.2 Regular languages

Definition 4.2.1 For L ⊆ Σ∗ define syntactic congruence ≈L as an equivalence relation
on Σ∗ by

w ≈L w′ if for all x, y ∈ Σ∗ : xwy ∈ L ⇔ xw′y ∈ L.

Observe that ≈L is a congruence w.r.t. concatenation: v ≈L v′ and w ≈L w′ implies
vw ≈L v′w′. The quotient of (Σ∗, · , ε) w.r.t. ≈L (well-defined) is called the syntactic
monoid of L.

A right-handed version ∼L may be defined by

w ∼L w′ if for all x ∈ Σ∗ : wx ∈ L ⇔ w′x ∈ L.

∼L is right-invariant: w ∼L w′ implies wa ∼L w′a, but in general not left-invariant (and
not a congruence).

≈L is a refinement of ∼L and in particular also right-invariant.
Clearly L is a union of classes of ∼L as well as a union of classes of ≈L.

Exercise 4.2.2 Show that if L = L(A) for a deterministic automaton A with m states,
then ≈L has at most mm equivalence classes. Hint: associate unary operations on the
sate set with ≈L classes.

Definition 4.2.3 A language L ⊆ Σ∗ is regular if it is recognised by a (deterministic)
finite automaton, L = L(A) for a DFA A.

Note that this means that the word problem for L,

on input w ∈ Σ∗

decide whether w ∈ L

is solved by a DFA (with constant memory). The following is proved in automata and
formal languages.

Theorem 4.2.4 (Myhill–Nerode) T.f.a.e. for any L ⊆ Σ∗:
(i) L regular (DFA/NFA recognisable).
(ii) ≈L has finite index.
(iii) ∼L has finite index.
(iv) there is some right-invariant equivalence relation of finite index on Σ∗ such that

L is a union of equivalence classes.

4.3 Büchi’s Theorem

We concentrate on languages L ⊆ Σ∗, as we have no word model for the empty word.
Note that L ⊆ Σ∗ is regular iff L \ {ε} ⊆ Σ+ is regular.

Recall MSO, now over the signature τΣ for word models. We use first-order variables
x,y,z, . . . (ranging over elements) and second-order variables X,Y,Z, . . . (ranging over
subsets). MSO(τΣ) is the closure of the atomic formulae (of types x = y, x < y, Pax and
Xx) under ∧, ∨, ¬ and first- and second-order existential and universal quantification.
MSO quantifier rank counts first- and second-order quantification without distinction.

Recall≡MSO
m (MSO-equivalence up to quantifier rank m between structures with first-

and second-order parameters) and its game characterisation in GMSO
m (A,P,a; B,Q,b).

Recall from Lemma 2.3.6 in Part I that ≡MSO
m is compatible with ordered sums.

FMT – 2005/06 41

Exercise 4.3.1 There exists ϕ0 ∈ FO(τΣ) for which Σ+ = FMOD(ϕ0).

Call a class K ⊆ Σ+ MSO-definable if K = FMOD(ϕ) ∩ Σ+ for some sentence
ϕ ∈ MSO(τΣ) (if K = FMOD(ϕ ∧ ϕ0) for ϕ0 as in the exercise).

Similarly, K is said to be ∃-MSO-definable if K = FMOD(ϕ)∩Σ+ for some sentence
ϕ = ∃Xψ(X) with ψ(X) ∈ FO(τΣ ∪ {X}).

Theorem 4.3.2 (Büchi) T.f.a.e. for any K ⊆ Σ+:
(i) K MSO-definable.
(ii) K = L for some regular L ⊆ Σ+.
(iii) K ∃-MSO-definable.

Corollary 4.3.3 MSO and ∃-MSO have the same expressive power over word models
(unlike, e.g., over the class of finite graphs).

The proof of the theorem is immediate from the following two lemmas.

Lemma 4.3.4 For any NFA A there is an ∃-MSO sentence ϕA such that for all w ∈ Σ+:

w ∈ L(A) iff Aw |= ϕA.

Idea: use second-order variables Xq for the states q of A and an FO formula ψ(X)
describing accepting runs of A on w in terms of a state-assignment (Aw, (Pq)) over Aw.

The following lemma states that MSO model checking over word models can be done
by DFA.

Lemma 4.3.5 For any sentence ϕ ∈ MSO(τΣ) there is a DFA Aϕ such that for all
w ∈ Σ+:

w ∈ L(Aϕ) iff Aw |= ϕ.

Proof By Theorem 4.2.4, it suffices to provide some right-invariant equivalence rela-
tion on Σ∗ such that Lϕ := {w ∈ Σ+ : Aw |= ϕ} is a union of equivalence classes.

If qr(ϕ) = m, then ≡MSO
m induces such an equivalence relation. Put

w ∼ w′ if Aw ≡MSO
m Aw′ .

Then clearly ∼ has finite index (just like ≡MSO
m), and Lϕ is a union of ∼-classes.

Right-invariance follows from compatibility of≡MSO
m with ordered sums, Lemma 2.3.6

in Part I. In fact, ∼ is even a congruence w.r.t. concatenation. 2

Variations (on the proofs) Instead of automata one may rely on the characterisation
of the class of all regular Σ-languages as the smallest class of Σ-languages comprising
the empty language ∅ and the singleton languages {a} for all a ∈ Σ that is closed under
the language operations of union, concatenation and star.

Exercise 4.3.6 Show MSO-definability of all (classes of word models of) regular lan-
guages by direct induction on the generation of regular languages (or on the syntax of
regular expressions). More precisely, provide, by induction, for every regular language
L an MSO-definition of L \ {ε}.

42 Finite Model Theory – Martin Otto 2005/06

An inductive approach to the opposite direction, from MSO to automata or to regular
languages, is seemingly hampered by the problem of free variables in subformulae.

Free second-order variables can be treated through an appropriate extension of the
alphabet Σ. In order to describe a structure (Aw,P) where P = (P1, . . . , Pk) as a word,
we may use the alphabet Σ × Bk and associate with position i ∈ [n] = A the letter
(a, b1, . . . , bk) if i ∈ Pa and i ∈ Pj for precisely those j with bj = 1.

First-order variables (and parameters) may be eliminated in favour of second-order
variables as follows. Let MSO◦(τΣ) be the variant MSO logic with atomic formulae

X ⊆ Pa (with the obvious semantics)
X ⊆ Y (with the obvious semantics)
X < Y (with semantics: “∅ 6= X × Y ⊆ <”)

closed under ∧, ∨, ¬ and existential and universal second-order quantification.
There is an effective translation from ordinary MSO(τΣ) into MSO◦(τΣ).

Exercise 4.3.7 (a) Provide MSO◦-formalisations for “X = ∅”, “X ∩ Y = Z”, “X ∪
Y = Z”, “X is a singleton set” and “< is a linear ordering of the domain”.

(b) Sketch a construction of model checking automata Aϕ for ϕ ∈ MSO◦(τσ), by
induction on ϕ. For ϕ = ϕ(X1, . . . , Xk) we want that

Aw |= ϕ[P] iff Aϕ accepts wA,P,

where wP is the canonical word representation of (Aw,P) over the alphabet Σ×Bk

as indicated above.

Chapter 5

Excursion: Computational
Complexity

5.1 Turing machines

We here look at decision problems exclusively. A decision problem is a problem which
requires “yes”/“no” answers on any admissible input; it can be specified by two sets

I the set of instances
D ⊆ I the subset of positive instances,

where D ⊆ I is just the set of those instances for which the answer is “yes”, and I \D
the set of those for which the answer is “no”. At a syntactic level, I and D are languages
over some alphabet Σ used for the encoding of the instances. D ⊆ I ⊆ Σ∗ is thus a
(sub-)language recognition problem.

We use Turing machines of a particular format suitable for the input/output re-
quirements of decision problems to formalise the notion of an algorithmic solution of
a decision problem. For complexity consideration one treats both deterministic and
non-deterministic Turing machines.

Deterministic Turing machines The following definition of a Turing machine is
suited to language recognition problems. For some language L ⊆ Σ∗, we want to deal
with inputs w ∈ Σ∗, which the machine is to accept or reject according to whether w ∈ L
or not.

Definition 5.1.1 [DTM]
A deterministic Turing machine (DTM) with work tape alphabet Γ ⊇ Σ ∪ {2} (2 the
blank) is a tuple

M =
(
Γ, Q, q0, q

+, q−, q⊥, δ
)

Q the finite set of states with distinct special states q0, q
+, q−, q⊥ ∈ Q :

q0 ∈ Q the initial state
q+ ∈ Q the accepting final state
q− ∈ Q the rejecting final state
q⊥ ∈ Q the garbage state

δ the transition function.

43

44 Finite Model Theory – Martin Otto 2005/06

The transition function has the format

δ : Q× Γ → Γ× {−1, 0, +1} ×Q

and, depending on internal state and symbol currently read, specifies symbol to be
printed, head movement to be carried out, and successor state.

We assume that δ(q, b) = (b, 0, q) for q ∈ {q+, q−, q⊥} (which will guarantee station-
ary configurations).

For a computation of M on some input word w = a0 . . . an−1 ∈ Σ∗ we assume an
initialisation that has ai written into tape cell i for i = 0, . . . , n− 1, all other tape cells
blank; the head is located at tape cell 0; M in state q0.

A configuration of M is a complete description of its overall state, comprising of
internal (control) state: q ∈ Q
head position over tape: tape cell index ` ∈ N
full tape content: a function ρ : N→ Γ.

We use notation C = (q, `, ρ) for configurations, and write Ct[w] for the configuration
in step t of the computation on input w. The function ρ is used for specifying the tape
content in tape cell i as ρ(i). In any configuration arising in a computation of M, ρ(i)
will differ from 2 only in a finite region around i = 0 ∈ N, because all tape cells not yet
visited by the head must still be blank.

The initial configuration on input w, according to our initialisation convention, is
given by C0[w] = (q0, 0, ρ0) where

ρ0(i) =
{

ai for i < n = |w|
2 else.

A run of M on input w is the sequence C0[w], C1[w], . . . of configurations, starting
with the initial configuration C0[w], and Ct+1[w] always determined as the successor
configuration Ct[w]′ of Ct[w]. Successor configurations are determined according to the
transition function δ:

C = (q, `, ρ) 7−→ C ′ = (q′, ` + d, ρ′) with ρ′(i) =
{

b′ for i = `
ρ(i) for i 6= `

if δ(q, ρ(`)) = (b′, d, q′) and ` + d > 0.

C = (q, `, ρ) 7−→ C ′ = (q⊥, 0, ρ)

else, i.e., if ` = 0 and δ(q, ρ(`)) = (b′,−1, q′) [head trying to fall off the tape].

In words: δ(q, ρ(`)) = (b′, d, q′) tells M to print b over the currently read letter
(which is ρ(`)), move the head by d to the right, and to enter state q′.

Termination the computation of M on w terminates (within k steps) if a configuration
Ct[w] = (q, `, ρ) with q ∈ {q+, q−} is reached (for some t < k).

Acceptance A run of M on input w is accepting if it terminates with M in the accepting
final state q+, rejecting if it terminates in the rejecting final state q−. Note that there can
also be non-terminating runs; these are also called divergent and are neither accepting
nor accepting (no decision reached).

We use the following symbolic notation for acceptance, rejection, termination and di-
vergence:

FMT – 2005/06 45

w
M−→ q+ “the run of M on input w is accepting”

w
M−→ q− “the run of M on input w is rejecting”

w
M−→ < k “the run of M on input w terminates within k steps”

w
M−→∞ “the run of M on input w diverges”

Definition 5.1.2 A DTM M solves the decision problem associated with D ⊆ Σ∗ (or
decides D) if for all w ∈ Σ∗:

w
M−→ q+ for w ∈ D,

w
M−→ q− for w 6∈ D.

(For D ⊆ I ⊆ Σ∗, we only require correct termination for admissible inputs w ∈ I.)

Non-deterministic Turing machines A non-deterministic Turing machine (NTM)
has the format M =

(
Γ, Q, q0, q

+, q−, ∆
)

with a transition relation

∆ ⊆ Q× Γ× Γ× {−1, 0, +1} ×Q.

Tuples (q, b, b′, d, q′) give rise to possible transitions to successor configurations in the
obvious manner: when in state q and reading letter b, the run may proceed to a successor
configuration obtained by overwriting b with b′, moving the head by d and entering
control state q′ (provided the head was not already in position 0 and d = −1).

A run of M on input w is a (finite or infinite) sequence C0[w], C1[w], . . . of configu-
rations, starting with the initial configuration C0[w], and with Ct[w] one of the allowed
successor configurations of Ct−1[w] according to ∆.

As in general a configuration may have one or several possible successor configura-
tions or none, the set of runs on a given input forms a tree.

An accepting run is one in which state q+ is reached. A run terminates if q+, q− or
some configuration without successor is reached.

Definition 5.1.3 An NTM M solves the decision problem associated with D ⊆ Σ∗ (or
decides D) if for all w ∈ Σ∗, all runs of M on w terminate and M has an accepting run
on w if, and only if, w ∈ D. (Modification for D ⊆ I ⊆ Σ∗ as above.)

5.2 Resource bounds and complexity classes

Definition 5.2.1 For a function f : N→ N we say that an NTM or DTM M is
(i) f time bounded if for all inputs w, all computations of M on input w terminate

within f(|w|) many steps.
(ii) f space bounded if for all inputs w, all computations of M on input w have head

positions ` 6 f(|w|) throughout.
In particular, an NTM or DTM is polynomially time or space bounded if it is f time or
space bounded for some polynomial f(n).

Definition 5.2.2 A decision problem is in
(i) P (or Ptime, deterministic polynomial time), if it is solvable by some polynomially

time bounded DTM.

46 Finite Model Theory – Martin Otto 2005/06

(ii) NP (non-deterministic polynomial time), if it is solvable by some polynomially
time bounded NTM.

(iii) Pspace (polynomial space) if it is solvable by some polynomially space bounded
DTM.

Straightforward arguments show that

Ptime ⊆ NP ⊆ Pspace ⊆ Exptime,

where Exptime is the class defined via exponentially time bounded DTM (with time
bounds f(n) = 2p(n), p a polynomial). It is not currently known which of these inclu-
sions are strict (e.g., the famous P/NP problem), apart from the known

Ptime Exptime.

The complexity class P is generally regarded as an appropriate idealisation of feasibly
solvable decision problems. Many important decision problems are known to be in
NP (through polynomially bounded “guessing and checking”), with no indication how
they could be solved deterministically with polynomial time bounds. Moreover, many
natural NP problems can be shown to be NP complete in the sense that a deterministic
polynomial time bounded solution would imply that all of NP collapses to P.

Note that the complexity measures used here are essentially asymptotic. They dis-
tinguish different growth rates of required resources, in their dependence on input size,
as input size tends to infinity. In particular, one may always ignore finitely many inputs
(all inputs of some bounded size), as they could be treated trivially by “table look-up”.

Major complexity classes like the above are very robust in the sense that natural
variations in the specific details of the machine model do not affect the classes.

All the usual algorithms based on some natural intuition of polynomially bounded
iterations can in fact be “implemented” in polynomially bounded DTM.

5.3 Finite structures as inputs: unavoidable coding

We want to consider structures A ∈ FIN(τ) (for finite relational τ) as inputs for decision
problems Q ⊆ FIN(τ) where Q is a boolean query on finite τ -structures (i.e., an iso-
morphism closed subclass. Think of Q as the subclass of those finite τ -structures that
have some structural property we are interested in; then we want to decide, given any
finite τ -structure, whether it has this property.) However, A ∈ FIN(τ) cannot be fed to
a Turing machine directly, but via some encoding as an input word. For this purpose
we may for instance associate binary strings 〈A〉 ∈ B∗ with A ∈ FIN(τ).

Example 5.3.1 Consider graphs A = (V,EA) with universes V = {0, . . . , n− 1} of size
n. We regard n = |A| as the input size.

A is faithfully representable by the boolean adjacency matrix AA ∈ Bn,n with entries
aij = 0 or aij = 1 depending on whether (i, j) ∈ EA or not. We may then encode A as
a single boolean string 〈A〉 by concatenating the rows of this matrix to form one word
of length n2 over the alphabet B.

Since we are here only interested in sizes and complexity bounds up to polynomial
re-scalings, the discrepancy between input size |A| (taken to be the universe size) and

FMT – 2005/06 47

the length of the actual encoding 〈A〉 (which is n2 in the example) does not matter. The
actual encoding details do not matter too much either; the robustness of complexity
classes such as P, NP, Pspace also covers natural variations in coding.1

If τ has several relations (of various arities) we may chose an encoding that similarly
consists of some systematic concatenation of the entries in (higher-dimensional) boolean
matrices, one for each relation.

Definition 5.3.2 For finite relational τ let STAN(τ) ⊆ FIN(τ) be the class of finite
τ -structures A with a standard universe of the form {0, . . . , n− 1}, n = |A| > 1.
For A ∈ STAN(τ), we let A< be its expansion by the natural ordering < on its domain
{0, . . . , |A| − 1}.

For notational convenience we often write just n for the standard set {0, . . . , n− 1}
of n elements, and similarly for instance nk for the standard set {0, . . . , nk − 1} of nk

elements, etc.

We assume a fixed natural encoding scheme for structures A ∈ STAN(τ) by 〈A〉 ∈ B∗,
such that

• for A ∈ STAN(τ), 〈A〉 uniquely determines A.

• 〈A〉 is of polynomial length in n for |A| = n, |〈A〉| < nk;
coding numbers in nk = {0, . . . , nk − 1} as k-digit numbers to base n, the boolean
entries of the word 〈A〉 are FO definable in A<.

• the set I = {〈A〉 : A ∈ STAN(τ)} is decidable at low complexity;
say, for our purposes, at least in P.

These are easily checked for instance for the adjacency list encoding of binary rela-
tions (and its generalisation) indicated above.

Definition 5.3.3 Let Q ⊆ FIN(τ) be a boolean query (an isomorphism closed class of
finite τ -structures). We say that Q is in P (or in NP, or in Pspace) if the associated
decision problem D ⊆ I,

I = {〈A〉 : A ∈ STAN(τ)}
D = {〈A〉 ∈ I : QA = 1} = {〈A〉 ∈ I : A ∈ Q}

is in P (or in NP, or in Pspace, respectively).

Remark 5.3.4 It is not hard to see (but tedious to detail) that for instance all FO
definable classes are in P; that algorithms based on polynomially bounded iteration, like
transitive closures, depth or breadth first search in graphs, etc., can all be implemented
in polynomially time bounded DTM, and are thus available for algorithmic solutions
establishing membership of structural decision problems Q ⊆ FIN(τ) in P.

Since everything that is of interest for us is already reflected in the notationally
much simpler cases of (ordered or unordered) graphs, we shall often deal explicitly with
τ = {E} (one binary relation for, e.g., graphs) and τ< = {E, <} (two binary relations
for, e.g., linearly ordered graphs). All considerations do generalise to arbitrary fixed
finite relational τ .

1But beware of exponential gaps, as can occur for instance in the encoding of numerical values,
between unary and binary encodings.

48 Finite Model Theory – Martin Otto 2005/06

Note on the role of order When deciding a structural property for finite τ -structures
(a boolean query, which is explicitly required to be isomorphism invariant!), we implicitly
require that all standard realisations of the same structure (or its isomorphic copies)
produce the same result. If A ' B, A, B ∈ STAN(τ), are two (standard) realisations of
the same isomorphism type, then 〈A〉 ∈ D ⇔ 〈B〉 ∈ D.

This is a crucial semantic consistency constraint on algorithms (Turing machines)
that decide queries.

If we are dealing with a class of linearly ordered structures, over τ< = τ ∪ {<}, and
restrict the inputs to be (encodings of) structures that interpret < as a linear ordering of
their universe, this problem can be avoided. The isomorphism type of any such structure
has a unique representative determined as the member of its isomorphism class in STAN
that interprets the ordering < as the standard ordering on {0, . . . , |A|−1}. As a result we
can have, for linearly ordered structures, a one-to-one correspondence between encodings
〈A〉 and isomorphism classes {B : B ' A}.

Chapter 6

Existential Second-Order Logic
and Fagin’s Theorem

6.1 Existential second-order logic

Definition 6.1.1 Second-order logic SO is the extension of FO by quantification over
relation variables of any arity. We write SO(τ) for the set of SO formulae over signature
τ . Existential second-order logic ∃-SO is the fragment of SO consisting of formulae of
the form

∃X1 . . . ∃Xs ψ(X1, . . . , Xs),

where ψ ∈ FO(τ ∪ {X1, . . . , Xs}), Xi a second-order variable of arity ri.

Exercise 6.1.2 Show that the following graph queries are definable in ∃-SO over GRAPH ⊆
FIN(τ) for τ = {E}:

(i) BIPART := {A ∈ GRAPH: A bipartite }.
(ii) MATCH := {A ∈ BIPART: A has a perfect matching }.
(iii) 3-COL := {A ∈ GRAPH: A 3-colourable }.
(iv) HAM := {A ∈ GRAPH: A has a Hamilton cycle }.

Remark: (i) and (ii) are in P, (iii) and (iv) NP-complete.

Lemma 6.1.3 Any ∃-SO definable query is in NP.

Proof Let Q = FMOD(ϕ), ϕ = ∃X1 . . . ∃Xs ψ(X1, . . . , Xs) with ψ ∈ FO. Consider a
polynomially time bounded DTM for the FO query defined by ψ,

Qψ :=
{
(A, R1, . . . , Rs) : (A, R1, . . . , Rs) |= ψ

} ⊆ FIN(τ ∪ {R1, . . . , Rs})

with relations Ri of arities ri matching the second-order variables Xi of ϕ. (Compare
Remark 5.3.4 above.) We obtain an NTM deciding Q which operates in two phases:

(1) extend the input 〈A〉 to an encoding 〈A, R1, . . . , Rs〉 of an expansion (A, R1, . . . , Rs).
In an adjacency matrix encoding this is achieved by non-deterministically append-
ing an arbitrary {0, 1}-word of the appropriate length.

(2) simulate the DTM that checks for satisfaction of ψ on the result of phase 1.
As the encoding in phase 1 is polynomial length, the overall computation remains poly-
nomially time bounded. It clearly decides Q. 2

49

50 Finite Model Theory – Martin Otto 2005/06

6.2 Coding polynomially bounded computations

Recall how existential MSO (the existential fragment of the monadic fragment of SO)
is used in Büchi’s theorem to encode acceptance of a word by an automaton over the
corresponding word model. We want to do the same for acceptance of (the encoding of)
a structure A by a polynomially bounded NTM.

Assume that Q ⊆ FIN(τ) is in NP: there is a polynomially time bounded NTM M
which on input 〈A〉 determines whether A ∈ Q. We want to translate this into the
definability of the class Q in a suitable logic L. I.e., we look for a logical description of
“acceptance of 〈A〉 by M” as a property of A.

To this end we firstly encode possible (accepting) runs of M on 〈A〉 within A itself,
through suitable relations over the universe {0, . . . , n− 1} of A ∈ STAN(τ) (n = |A|).

For the given NTM M, enumerate the set of tape symbols as {b0 = 2, b1, . . . , br−1}
and the state set as {q0, q1 = q+, . . . , qs−1}. We may identify Γ with the set {0, . . . , r−1}
and the state set with the set {0, . . . , s− 1}. Chose k > 0 and m ∈ N such that m > r, s
and such that for inputs 〈A〉 of size |A| = n > m all computations of M terminate
within nk many steps.

Recall that we write just n for the standard set {0, . . . , n−1} of n elements, similarly
for instance nk for the standard set {0, . . . , nk − 1} of nk elements, etc. We now also
associate numbers in the range {0, . . . , nk−1} (e.g., for time indices and tape cell indices
in configurations of M) with k-tuples over {0, . . . , n − 1}, simply by use of number
representations to base n. In other words, we treat the elements of the universe of A,
n = {0, . . . , n−1}, as digits. Tuples t = (tk−1, . . . , t0) ∈ {0, . . . , n−1}k encode numbers
0 6 t < nk as t =

∑
i tin

i in nk.

Exercise 6.2.1 Over the universes {0, . . . , n − 1} with the natural linear ordering <
regard k-tuples a, b, c as representations to base n of numbers a, b, c < nk.

(a) provide FO definitions ϕ(x,y) of “a < b” and ψ(x,y) of “b = a + 1”.
(b) show that (for k = 1) the graph of addition is not uniformly FO definable in

restriction to {0, . . . , n− 1} with the natural order: there is no ϕ(x, y, z) ∈ FO(<)
such that for all n, a, b, c < n: a + b = c iff (n,<) |= ϕ[a, b, c].
(Hint: EVEN is not FO definable.)

(c) show that there is ϕ ∈ FO(<,R) for ternary relation symbol R such that for all n
and R ⊆ {0, . . . , n− 1}3k:
(n,<) |= ϕ iff R = {(a,b, c) ∈ {0, . . . , n− 1}3k : a + b = c}.
(Hint: use the inductive definition of addition to force the correct R.)

Consider any configuration C = (q, `, ρ) in a run of M on size n input (for n > m).
We may code this configuration numerically by associating with the state q = qi its
index i < s 6 n, with the head position ` < nk, a k-tuple ` representing this number
to base n, and with ρ (the graph of) a function from tape cell indices i < nk to indices
j < r 6 n of the letters ρ(i) = bj in those positions.

A run of M is a sequence of length T 6 nk of such configurations, (Ct)t<T = (qt, `t,
where also the dependency on time indices t < nk can be coded through k-tuples t. The
corresponding functions are:

t 7→ qt with graph S = {(t, qt) : t < T} ⊆ {0, . . . , n− 1}k+1

t 7→ `t with graph H = {(t, `t) : t < T} ⊆ {0, . . . , n− 1}2k

t 7→ ρt, ρt : i 7→ ρt(i) with graph R = {(t, i, ρt(i)) : t < T, i < nk} ⊆ {0, . . . , n− 1}2k+1

FMT – 2005/06 51

In order to identify elements as digits in n = {0, . . . , n − 1} (the universe of A),
we use a linear ordering < on the universe. Note that A need not be linearly ordered
of its own, i.e., as a τ -structure, even if we refer to standard realisations on universes
{0, . . . , n− 1} that do have a natural ordering.)

The goal is now to capture acceptance of 〈A〉 by M in the form

∃< ∃S ∃H ∃R ψ(<,S, H, R),

where ψ needs to express that < is a linear ordering of the domain, and that (w.r.t. this
ordering) S, H and R encode an accepting run in the intended manner, over input 〈A〉.
The proof of the lemma indicates how this can be done with suitable ψ ∈ FO, whence
ϕ ∈ ∃-SO.

Lemma 6.2.2 Let M be polynomially bounded NTM deciding the boolean query Q ⊆
FIN(τ). Then Q is ∃-SO definable as a subclass of FIN(τ). For a suitable sentence
ϕ ∈ ∃-SO(τ):

Q = FMOD(ϕ).

Proof Let the given NTM be as above, n sufficiently large for the encoding of states
and tape symbols and such that M is nk time bounded on all inputs of size n. Using
new relations <,S, H,R or arities 2, k + 1, 2k, 2k + 1, respectively, as indicated above,
we essentially need to express the following in FO

(i) < is a linear ordering of the domain.
The following conditions refer to numbers in the range {0, . . . , nk−1} in representations
to base n as k-tuples, as outlined above.

(ii) There is some T 6 nk such that
(a) S is the graph of a function from T to s = {0, . . . , s − 1} with values 0 (for

q0) at 0 and 1 (for q1 = q+) at T − 1.
(b) H is the graph of a function from T to nk with value 0 at 0.
(c) for t < T , encoded as t: Rt := {(i, j) : (t, i, j) ∈ R} is the graph of a total

function from nk to r = {0, . . . , r − 1}.
(iii) R0 represents the function that encodes tape content 〈A〉 w.r.t. to the ordering

< of A.
(iv) The encoded functions are updated according to admissible transitions in ∆ as

t 7→ t′ = t + 1 for t + 1 < T .
All this can indeed be expressed in FO, and ϕ = ∃< ∃S ∃H ∃R ψ(<,S, H,R) is as
desired (for all sufficiently large A, the rest can be taken care of by FO sentences that
characterise them up to isomorphisms). 2

Together Lemmas 6.1.3 and 6.2.2 give Fagin’s correspondence between NP and ∃-SO,
a key result of descriptive complexity.

Theorem 6.2.3 (Fagin)
For any class Q ⊆ FIN(τ), that is closed under isomorphism, t.f.a.e.:

(i) Q is in NP.
(ii) Q is ∃-SO definable within FIN(τ): Q = FMOD(ϕ) for some ϕ ∈ ∃-SO(τ).

Note that it also offers a machine-independent, natural characterisation of the complex-
ity class NP. It also reflects (via the proof of Lemma 6.1.3) a known and useful normal
form for NP algorithms, consisting of two phases:

52 Finite Model Theory – Martin Otto 2005/06

(1) non-deterministic “guessing” of a polynomially size bounded “certificate”,
(viz., the predicates S, H, R in our formalisation), followed by

(2) deterministic polynomial time validation of this certificate,
(viz., checking the FO-query defined by ψ in our formalisation).

Chapter 7

Fixpoint Logics

7.1 Recursion on first-order operators

As noted in Part I, FO has very limited expressive power e.g., for non-local proper-
ties, and also for properties that intuitively involve some iterative or dynamic concepts.
The transitive closure of a binary relation E, for instance, is very easily generated
by a recursion based on the relational operation R 7→ R ∪ R ◦ R where R ◦ R :=
{(x, y) : ∃z(Rxz ∧Rzy)}. Over a structure A = (A,EA) of size n, the iterative applica-
tion of this operator, starting with the initialisation R0 := EA produces a sequence of
stages Ri+1 = Ri ∪ Ri ◦ Ri. This iteration terminates in the sense of reaching a stage
Ri with Ri ◦Ri ⊆ Ri and hence a fixpoint Ri+1 = Ri. (How many steps can this take?)
This final value for Ri is the transitive closure of EA.

In this section we examine several extensions of FO by recursive mechanisms that
allow us to define and use the results of well-defined recursion mechanisms based on
definable relational operations.

Consider any formula ϕ(X,x) ∈ L(τ ∪ {X}) (any suitable logic L) with free second-
order variable X of arity r and matching tuple of first-order variables x = (x1, . . . , xr).
On τ -structures A, one needs to supply assignments P ⊆ Ar for X and a ∈ Ar for
x in order to evaluate ϕ[P,a] (to a boolean value). Alternatively we may think of ϕ
as mapping an assignment P ⊆ Ar for X to the r-ary relation P ′ := {a ∈ Ar : A |=
ϕ[P,a]} ⊆ Ar. In this sense ϕ is a global predicate transformer, operating on the set of
r-ary relations over each τ -structure.

Definition 7.1.1 With a formula ϕ(X,x) with free variables as indicated and of match-
ing arity r > 0, associate the operator

FA
ϕ : P(Ar) −→ P(Ar)

P 7−→ FA
ϕ (P) := {a ∈ Ar : A |= ϕ[P,a]}.

over all structures A that interpret ϕ (up to assignments for X and x that is).
When A is clear from context, we often just write Fϕ. Formulae with additional free first-
and second-order variables, beside X and x can be similarly treated, with assignments
to these extra free variables as parameters.

Definition 7.1.2 An operation F : P(D) → P(D), over a finite domain D (e.g., D = Ar

for some r > 0, A the universe of a structure A) is called
(i) monotone if for all P1, P2 ⊆ D: P1 ⊆ P2 ⇒ F (P1) ⊆ F (P2).

53

54 Finite Model Theory – Martin Otto 2005/06

(ii) inductive (meaning inductive on ∅) if the sequence (Fn(∅))n∈N is increasing in the
sense that ∅ ⊆ F (∅) ⊆ F (F (∅)) ⊆ · · ·

(iii) eventually constant (meaning eventually constant on ∅) if the sequence (Fn(∅))n∈N
is eventually constant in the sense that F i+1(∅) = F i(∅) for some i ∈ N.

P ⊆ D is called a fixpoint of the operation F if F (P) = P .

NB: For iterates F i of an operator F , we always set F 0 to be the identity operation,
and inductively put F i+1 := F ◦ F i.

Note that over finite D the sequence (F i(∅))i∈N must be eventually periodic. It can
fail to be eventually constant only if it becomes periodic of a non-trivial period.

Exercise 7.1.3 For operations F : P(D) → P(D) as in the definition
(i) show that (F monotone) ⇒ (F inductive) ⇒ (F eventually constant).
(ii) give examples (of FO definable operations over suitable structures A, D = Ar) that

such operations can be eventually constant without being inductive, or inductive
without being monotone.

(iii) show that for monotone F , the sequence F i(D)i∈N is monotone decreasing: Ar ⊇
F (D) ⊇ F (F (D)) ⊇ · · ·

(iv) show that the induced operation F+ : P 7→ P ∪F (P) is always inductive (but not
necessarily monotone).

Definition 7.1.4 For ϕ(X,x) ∈ FO, we say that ϕ is positive in X if X only appears
in the scope of an even number of negations within ϕ.1 This syntactic notion extends to
many other logics, in particular the fixpoint extensions of FO to be introduced below.

Examples: Xxx ∨ ¬∃y∀z(¬Xxy ∨ Y xy) is positive in X but not in Y .
It is a fact from classical FO logic that the operation Fϕ associated with an FO

formula ϕ(X,x) that is positive in X is monotone (over all structures that interpret
ϕ up to the free variables). This is easily shown by syntactic induction, if the claim
is generalised to natural maps FA

ϕ : P(Ar) → P(As) induced by formulae with not
necessarily matching arities for their free first- and second-order variables.

Exercise 7.1.5 Prove that positivity implies monotonicity for FO definable maps.

The following is a very special case of a more general statement which is of great
value in much more general settings.2

Lemma 7.1.6 (Knaster–Tarski) Any monotone operator F : P(D) → P(D) has unique
⊆-minimal and ⊆-maximal fixpoints, called the least and greatest fixpoints of F , denoted
µ(F) and ν(F), respectively. Moreover (over finite domains D of size |D| = n), these
fixpoint are reached within n steps as the limits of the monotone (increasing, respectively
decreasing) sequences

(F i(∅))i∈N−→ Fn(∅) = Fn+1(∅) =
⋃

i∈N F i(∅) = µ(F) the least fixpoint of F .
(F i(D))i∈N−→Fn(D) = Fn+1(D) =

⋂
i∈N F i(D) = ν(F) the greatest fixpoint of F .

1Here we appeal to official FO syntax comprising the boolean connectives ¬,∧,∨, but not → or
↔. The latter are regarded as abbreviations, whose elimination does introduce extra negations, as in
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

2The concepts of monotonicity and least and greatest fixpoints make sense over (not necessarily
finite) complete partial orderings; we here only use it for finite partial ⊆ orderings. Also the inductive
generation of least/greatest fixpoints generalises, but on infinite domains the fixpoint is typically reached
only in a transfinite ordinal sequence of stages.

FMT – 2005/06 55

Proof We treat the case of the least fixpoint. By monotonicity of F , the sequence
(F i(∅))i∈N is monotone increasing: F 0(∅) = ∅ ⊆ F (∅) ⊆ F 2(∅) ⊆ · · · ⊆ D.

As D is finite, this sequence must be eventually constant, i.e., reaches a fixpoint of
F . If |D| = n, there can be at most n strict increases, and clearly F i+1(∅) = F i(∅)
implies F i+m(∅) = F i(∅) for all m, whence certainly Fn(∅) = Fn+1(∅) is a fixpoint.

Let F (P) = P be any fixpoint of F . Then ∅ ⊆ P and monotonicity of F imply (by
induction on i) that F i(∅) ⊆ F i(P) = P for all i ∈ N. Therefore the fixpoint Fn(∅) is
contained in P , which implies that it is the ⊆-minimal fixpoint of F . 2

Exercise 7.1.7 Give examples of monotone operators that have just one, exactly two,
more than two fixpoints, respectively.

Exercise 7.1.8 Let F : P(D) → P(D) be monotone. Show that the dual operator

F̂ : P 7−→ F (P) (complementation before and after F)

is also monotone, and that the greatest fixpoint of F is the complement of the least
fixpoint of F̂ and vice versa: µ(F) = ν(F̂) and ν(F) = µ(F̂).

7.2 Least and inductive fixpoint logics

Fixpoint logics enrich the syntax and semantics of FO by constructs that provide closure
under certain fixpoint constructs. The most important one is least fixpoint logic which
is a smallest well-behaved logic extending FO in which the least and greatest fixpoints
of positively definable operators (which are monotone) are definable.

7.2.1 Least fixpoint logic LFP

Definition 7.2.1 The syntax of least fixpoint logic LFP(τ) is the extension of FO
syntax with second-order variables (of any arity) by closure under µ and ν:

If ϕ(X,Z,x, z) ∈ LFP(τ) with free variables as indicated is positive in X, X of arity r
and x = (x1, . . . , xr) (pairwise distinct), then the following are also formulae of LFP(τ):

ψ1(Z, z,x) = µX,xϕ and ψ2(Z, z,x) = µX,xϕ,

with free variables as indicated. Here ψi is positive in Z if ϕ is positive in Z.
The semantics of ψi in τ -structures A with assignments R, c to the parameters Z, z,

and for assignment a to x, is given by

A |= (µX,xϕ)[R, c,a] iff a ∈ µ
(
FA,R,c

ϕ

)

A |= (νX,xϕ)[R, c,a] iff a ∈ ν
(
FA,R,c

ϕ

)

where FA,R,c
ϕ is the monotone operator FA,R,c

ϕ : P 7−→ {a ∈ Ar : A |= ϕ[P,R, c,a]} on
P(Ar). In other words, the formulae ψi define the least and greatest fixpoints of the
monotone operator defined by ϕ in terms of X and x (relative to fixed assignments to
the other parameters).

Example 7.2.2 Consider, for a binary relation E, the FO-formulae ϕ1(X,x1, x2) =
Ex1x2 ∨ ∃y(Ex1y ∧Xyx2) and ϕ2(Y, y) = ∀z(Eyz → Y z), which are positive in X and
Y , respectively. The inductive generation of the least fixpoint defined by (µϕ1)(x1, x2)

56 Finite Model Theory – Martin Otto 2005/06

has stages X0 = ∅, X1 = E, X2 = E ∪ E ◦ E, etc. The least fixpoint reached is the
transitive closure of E.

The least fixpoint defined by µϕ2 is the set of all those elements from which there is
no infinite E-path (µϕ2 defines the well-foundedness query).

Exercise 7.2.3 Consider a pair of two FO-formulae, ϕ1(X1, X2,x1) and ϕ2(X1, X2,x2),
both positive in both Xi, with matching arities ri between Xi and xi.

(a) Show that the simultaneous iteration based on simultaneous updates for (X1, X2)
according to (ϕ1, ϕ2) converges to the least fixpoint of the monotone operator

F : P(Ar1)×P(Ar2) −→ P(Ar1)× P(Ar2)
(P1, P2) 7−→ (P ′

1, P
′
2)

where P ′
i = {a ∈ Ari : A |= ϕi[P1, P2,a]}.

(Monotonicity is w.r.t. the natural partial order of componentwise ⊆).
(b) Show that the simultaneous least fixpoint from (a) is definable in LFP using a

suitable simulation that encodes X1 and X2 in one relation (Hint: one could try
to use X1×X2 but that causes some problem if one of these stays empty for some
stages; instead, one may use auxiliary first-order parameters as tags, at least in
structures with at least two distinct elements to instantiate these).

Remark: simultaneous (least or greatest) fixpoints of systems are generally reducible
to ordinary fixpoints, albeit at the expense of increased arities; one can use this, e.g.,
in showing that Datalog queries, whose semantics is precisely given through least
fixpoints of systems over negation-free existential FO, are LFP definable.

Exercise 7.2.4 (compare Exercise 6.2.1) For fixed k > 0 provide an LFP(<) for-
mula ϕ(x,y, z) that defines the graph of addition in restriction to standard struc-
tures ({0, . . . , n − 1}, <) w.r.t. to number representations to base n. I.e., for all n
and a, b, c < nk we want (n,<) |= ϕ[a,b, c] iff a + b = c.

Lemma 7.2.5 LFP formulae can be evaluated in polynomial time over finite structures
(polynomial time model checking for LFP).

Proof Arguing by syntactic induction on LFP formulae ϕ(Z, z) with free variables as
indicated, we want to show that the following boolean query Qϕ on τ ∪ {Z} structures
with parameters c (as assignments for z) is in P:

Qϕ =
{
(A,R, c) : A |= ϕ[R, c]}.

We treat the case of µ-application. Let ψ = ψ(Z, z,x) = µX,xϕ(X,Z, z,x). By the
inductive hypothesis, Qϕ is in P. Let r be the arity of X and x. In order to evaluate
Qψ on an input (A,R, c,a) with |A| = n, successively compute the stages (Xi) of the
inductive generation of the least fixpoint. X0 = ∅ is trivial; inductively,

Xi+1 =
{
a′ ∈ Ar : (A, Xi,Z, c,a′) ∈ Qϕ

}

can be computed by evaluating Qϕ on each one of the nr candidate tuples a′ successively.
The iteration can be terminated as soon as we find a ∈ Xi (then (A,R, c,a) ∈ Qψ)
or Xi+1 = Xi but a 6∈ Xi (then (A,R, c,a) 6∈ Qψ). As the fixpoint is guaranteed to
complete within nr iterations, each of which takes polynomial time, the overall procedure
is again polynomially time bounded. 2

FMT – 2005/06 57

Exercise 7.2.6 Write polynomially bounded For-loop or While-loop relational pro-
gram for the evaluation of the least or greatest fixpoints of an operator F , which is itself
computed by a black box program.

Exercise 7.2.7 On the relationship between LFP and SO:
(a) Give a translation from LFP(τ) formulae into logically equivalent SO(τ) formulae,

based on the second-order definition of least and greatest fixpoints.
(b) For an LFP(τ) formulae ψ = µX,xϕ(X,x) with ϕ ∈ FO, find an ∃-SO(τ) formula

ψ̂ such that ψ ≡FIN ψ̂.
Hint: for (b) look for an FO formula that describes an encoding of the stages of the
inductive generation of the fixpoint by means of auxiliary relations (which can then be
quantified existentially in ∃-SO).

7.2.2 Capturing Ptime on ordered structures

The following central result in descriptive complexity is due to Immerman and Vardi,
independently. It provides a logical characterisation of the complexity class P (determin-
istic polynomial time) in terms of the expressive power of LFP (FO plus least fixpoint
recursion) over linearly ordered finite structures. The restriction to linearly ordered
input structures seems

(i) technically necessary in order to enable sufficient coding machinery on the struc-
tural side.

(ii) unproblematic from a more conventional computational point of view, as actual
computation always works with ordered input (representations).

(iii) unsatisfactory from a model theoretic (and database query language) point of view,
as we do not obtain a logical language for all polynomial time boolean queries also
over unordered structures that would guarantee semantic independence of input
representation.

Point (iii) concerns a semantic safety requirement for queries put to not intrinsically
ordered data: the answer needs to be independent of the (incidental) ordering that
underlies the input presentation. In fact, the problem of whether there is a logic that
captures P also over not necessarily ordered structures remains a major challenge in
descriptive complexity. Note that in Fagin’s characterisation of NP (which is good also
over structures without order) we could just quantify over all possible orderings. This
trick is not available at the level of P as there are n! many orderings to consider.

To make the ordering explicit, consider finite relational vocabularies τ< = τ ∪ {<},
and the class

FORD(τ<) :=
{
A ∈ FIN(τ<) : <A a linear ordering of the domain }.

The input representation 〈A〉 is then in one-to-one correspondence with the unique
realisation of the isomorphism type of A in STAN(τ) for which the inner ordering (cor-
responding to <A) is the natural ordering on the domain {0, . . . , n}.

Theorem 7.2.8 (Immerman, Vardi)
For any class Q ⊆ FORD(τ<), that is closed under isomorphism, t.f.a.e.:

(i) Q is in P.
(ii) Q is LFP definable: Q = FMOD(ψ) for some ψ ∈ LFP(τ<).

58 Finite Model Theory – Martin Otto 2005/06

Proof One direction is settled by Lemma 7.2.5. For the other direction, suppose Q is
decided by the polynomially time bounded DTM M which terminates within nk steps
on input 〈A〉 with |A| = n (for all sufficiently large n). We only consider A ∈ FORD(τ<)
(which is FO definable within FIN(τ<)).

We want to generate a relational description of the first nk − 1 steps of the com-
putation of M on input 〈A〉 as a least fixed point over A. Since A is linearly ordered,
we may use a numerical encoding of configurations similar to the one used for Fagin’s
theorem. The key difference: here we do not guess one possible computation path but
rather describe the unique computation path.

Let the sate set of M be s = {0, . . . , s − 1}, and the set of tape symbols identified
with r = {0, . . . , r − 1} and assume n > s, r. In order to make do with just one single
relation for the description of the computation we recombine the graphs of the functions
t 7→ qt (control state), t 7→ `t (head position) and t 7→ ρt : nk → r (tape content) into
the graph of one combined function (for t 7→ Ct)

C =
{
(t, qt, `t, i, ρt(i)) : t, i < nk

} ⊆ Ak ×A×Ak ×Ak ×A = A3k+2.

We want to generate the relation C over A as a least fixpoint of a positive FO defin-
able operation Fϕ : P(A3k+2) → P(A3k+2) whose stages Xi = F i

ϕ(∅) precisely correspond
to the initial segments of the computation:

Xi := C ∩ ({t ∈ Ak : t < i} ×A2k+2
)
.

It remains to provide an FO formulae ϕ(X,x) which induces the desired operation
Fϕ. Here X is a second-order variable of arity 3k +2 and x a matching tuple of distinct
first-order variables. For better readability we write these first-order variables to suggest
their intended instantiations as ϕ(X, t, q, `, i, b).

Assuming that Xi is as desired, we want Xi+1 = {(t, q, `, i, b) : ϕ(Xi, t, q, `, i, b)} to
consist of Xi together with all those tuples (t, q, `, i, b) where t represents the immediate
successor t = tprev + 1 of some tprev < i represented by some tprev, that make up the
correct description of the successor configuration of a configuration described by Xi ∩
(
({tprev} × (A2k + 2)

)
.3

For this we use a formula ϕ0(t, q, `, i, b) that defines the correct description of the
initial configuration and then put

ϕ(X, t, q, `, i, b) = ϕ0(t, q, `, i, b) ∨

∃tprev∃qprev∃`prev∃bprev




Xtprevqprev`previ bprev

∧ “t = tprev + 1”
∧ ξ(X, q, `, i, b; tprev, qprev, `prev)


 ,

where the formula ξ serves to select just those (q, `, i, b) that belong in the correct
description of the successor configuration of the configuration described by

X ∩ ({tprev} ×A2k+2
)

= Xtprev .

More specifically, ξ is a disjunction of clauses of the following form, one for each possible
transition δ(m, j) = (m′, d, j′) of M:

∃z



Xtprevqprev`prev`prevz ∧ “qprev = m” ∧ “z = j”
∧“q = m′” ∧ “` = ` + d”
∧ [(

i 6= `prev ∧Xtprevqprev`prev`b
) ∨ (

i = `prev ∧ “b = j′”
)]


 .

3It would seem to suffice to add to Xi just those tuples that describe the i-th configuration, but one
cannot extract the maximal t′-value represented in Xi by means of a positive formula (why?).

FMT – 2005/06 59

Here the first line identifies the state and tape symbol read by the head through in-
spection of suitable entries in Xtprev ; the second line sets the values for state and head
position according to δ; the third line forces the tape content to be transcribed and
modified accordingly. Numerical equalities like “z = j” are FO definable conditions for
fixed values j, e.g., expressible as “z has precisely j many predecessors w.r.t. <”.

The fixpoint formula

ψ0(t, q, `, i, b) := µX,xϕ(X, t, q, `, i, b)

defines the query that, over A ∈ FORD(τ<) returns the relational representation C ⊆
A3k+2 of the computation of M on input 〈A〉. The desired LFP sentence ψ that defines
the boolean query “acceptance by M” over FORD(τ<) is then easily obtained in the
form

∃t∃q∃`∃i∃b(ψ0(t, q, `, i, b) ∧ “q = q+”
)
.

2

The proof also provides a normal form for LFP over finite linearly ordered structures.

Corollary 7.2.9 Over FORD(τ<), every LFP sentence is equivalent to one that has only
one µ-application, or: every polynomial time decidable boolean query on linearly ordered
finite structures is FO definable in terms of the least fixed point of some FO-definable
operation. (There are stronger normal forms for LFP, over all finite structures.)

7.2.3 Inductive fixpoint logic IFP

Inductive fixpoint logic extends FO by inductive fixpoints rather than least or greatest
fixpoints. The inductive fixpoint of an operation F : P(D) → P(D) is the limit of the
increasing sequence of stages of the induced inductive operator F+ : P 7→ P ∪ F (P):

∅ ⊆ F+(∅) ⊆ (F+)2(∅) ⊆ · · · ⊆ (F+)i(∅) = (F+)i+1(∅) = IFP(F).

The limit is denoted IFP(F) and, by abuse of terminology, called the inductive fixpoint
of F , even though it need not be a fixpoint of F (but only of F+). If F itself is inductive,
i.e., if the sequence of the F i(∅) is increasing by itself, then (F+)i(∅) = F (∅) for all i,
and the limit is indeed a fixpoint of F . (This, again, is in particular the case if F is
monotone, in which case IFP(F) = µ(F).)

Clearly, for any F over a finite domain D, IFP(F) is reached within |D| many
iterations of F+, for cardinality reasons.

Definition 7.2.10 The syntax of inductive fixpoint logic IFP(τ) is the extension of FO
syntax with second-order variables (of any arity) by closure under an IFP operation:
For ϕ(X,Z,x, z) ∈ IFP(τ) with free variables as indicated, X of arity r and x =
(x1, . . . , xr) (pairwise distinct), ψ(Z, z,x) = IFPX,xϕ is also a formula of IFP(τ), with
free variables as indicated.
The semantics of ψ in τ -structures A with assignments R, c to the parameters Z, z, and
for assignment a to x, is given by

A |= (IFPX,xϕ)[R, c,a] iff a ∈ IFP(FA,R,c
ϕ),

where FA,R,c
ϕ is the operator FA,R,c

ϕ : P 7−→ {a ∈ Ar : A |= ϕ[P,R, c,a]} on P(Ar).

60 Finite Model Theory – Martin Otto 2005/06

NB: One could, in the defining clause for the semantics of IFPX,xϕ, directly refer to the
inductive operator (Fϕ)+ which is the same as Fϕ′ for ϕ′(X,x) = Xx ∨ ϕ(X,x).

Since for ϕ(X,Z, z,x) that is positive in X we have IFPX,xϕ ≡ µX,xϕ, we may
regard LFP(τ) as a sublogic of IFP(τ).

Since IFP also has polynomial time model checking over finite structures, it follows
that IFP captures P over FORD(τ<) just as LFP does.

Corollary 7.2.11 Over linearly ordered finite structures, IFP and LFP have exactly
the same expressive power.

In fact, by a result of Gurevich and Shelah, which we state without proof, IFP
and LFP are equally expressive over all (not necessarily ordered) finite structures; this
result moreover even extends to all (not necessarily finite) structures, by a more recent
result of Kreutzer.4 These results are useful, because it is often much easier to formalise
some inductive process in IFP an in LFP – without the necessity of making the process
monotone and formalising it in a positive formula. We shall appeal to the Gurevich–
Shelah result for this reason later.

Theorem 7.2.12 (Gurevich–Shelah; Kreutzer)
IFP and LFP have the same expressive power.

The proofs are based on the LFP-definability of relations that encode the stages of
the inductive iteration sequence (F+

ϕ)i(∅).

7.3 Partial fixpoint logic

7.3.1 Partial fixpoints

Looking at arbitrary operations F : P(D) → P(D), one can “enforce” inductive be-
haviour by passage to F+ : P 7→ P ∪ F (P) (as in IFP). Alternatively, we may iterate
F itself on ∅ and associate with this iteration either its natural limit, if F is eventually
constant on ∅, or a default value ∅ otherwise, i.e., if the sequence (F i(∅)i∈N becomes
non-trivially periodic. The partial fixpoint of F is defined in this way, “partial” because
it may return ∅ as the default value when ∅ is not a fixpoint of F .

PFP(F) :=
{

F i+1(∅) = F i(∅) if such i exists
∅ otherwise.

Definition 7.3.1 The syntax of partial fixpoint logic PFP(τ) is the extension of FO
syntax with second-order variables (of any arity) by closure under a PFP operation:
For ϕ(X,Z,x, z) ∈ PFP(τ) with free variables as indicated, X of arity r and x =
(x1, . . . , xr) (pairwise distinct), ψ(Z, z,x) = PFPX,xϕ is also a formula of PFP(τ), with
free variables as indicated.
The semantics of ψ in τ -structures A with assignments R, c to the parameters Z, z, and
for assignment a to x, is given by

A |= (PFPX,xϕ)[R, c,a] iff a ∈ PFP(FA,R,c
ϕ),

where FA,R,c
ϕ is the operator FA,R,c

ϕ : P 7−→ {a ∈ Ar : A |= ϕ[P,R, c,a]} on P(Ar).
4The semantics of IFP over infinite structures is based on the transfinite inductive iteration of F+

ϕ .

FMT – 2005/06 61

PFP is at least as expressive as LFP, or generalises LFP, since PFP(F) = µ(F) for
monotone F . It is also at least as expressive as IFP, since IFP(F) = PFP(F+).

Lemma 7.3.2 Model checking for PFP over finite structures is in Pspace.

Proof The evaluation of a partial fixpoint for a Pspace computable operation F : P(D) →
P(D) over finite domain |D| = n is again in Pspace. One merely needs to note that

PFP(F) =
{

F 2n
(∅) if F 2n

(∅) = F 2n+1(∅)
∅ otherwise.

A (binary) counter for 2n iterations can be implemented in space n. Note, however, that
this procedure is only exponentially time bounded in general. 2

7.3.2 Capturing Pspace on ordered structures

In analogy with the capturing result for P over ordered structures through LFP, we
obtain a capturing result for Pspace over ordered structures through PFP.

Theorem 7.3.3 (Abiteboul–Vianu)
For any class Q ⊆ FORD(τ<), that is closed under isomorphism, t.f.a.e.:
(i) Q is in Pspace.
(ii) Q is PFP definable within FIN(τ<): Q = FMOD(ψ) for some ψ ∈ PFP(τ<).

Proof The proof of the crucial direction is similar to those given for the previous
capturing results. Given an nk space bounded DTM M, otherwise of the same format
as in the proof of Theorem 7.2.8 say, we now want to define a relational representation
of its final configuration as a partial fixpoint of some FO formula.

For this we set up the underlying FO-formula ϕ(X,x) such that the iterates F i+1
ϕ (∅)

over A represent the i-th configuration Ci of M on input 〈A〉, for every i until termina-
tion. Note that we do not have to keep track of the time index explicitly.

Using a tuple of first-order variables x = (q, `, i, b) (to suggest the intended roles as
representatives for state, head position, tape cell index and its contents) of arity 2k + 2
and matching X, we put

ϕ(X, q, `, i, b) :=
(¬∃xXx ∧ ϕ0(q, `, i, b)) ∨

(∃xXx ∧ ξ(X, q, `, i, b)
)
.

Here ϕ0 defines the relational description of the initial configuration on input 〈A〉
over A; note that ϕ0 is invoked precisely in the first iteration (when X is still empty),
and thus provides the correct initialisation with X1 := C0).

The formula ξ collects the tuples (q, `, i, b) that provide the description of the suc-
cessor configuration of the configuration described by X, according to the transition
function δ of M, similar to the corresponding formula in the proof of Theorem 7.2.8.
None of the further iterates will thus be empty.

ψ0(x) := PFPX,xϕ

is guaranteed to define over A the non-empty relational description of the final configu-
ration of M on input 〈A〉, because M does terminate. It follows that

ψ := ∃q∃`∃i∃b(ψ0(q, `, i, b) ∧ “q = q+”
)

defines acceptance by M. 2

62 Finite Model Theory – Martin Otto 2005/06

Exercise 7.3.4 Fill in the details for the formula ξ in the proof above, in analogy with
corresponding formalisation of the successor configuration in the proof of Theorem 7.2.8.

7.4 The Abiteboul–Vianu Theorem

It is not known whether P Pspace: the inclusion is obvious, but strictness is one of
the major open problems of computational complexity theory.

Since we can equate each side of this relationship with definability in a suitable
fixpoint logic over FORD, we get the following equivalence:

P = Pspace ⇔ LFP ≡ PFP over FORD

In this section we outline the proof of a famous result by Abiteboul and Vianu, which
allows us to remove the restriction to ordered structures in this equivalence.

P = Pspace ⇔ LFP ≡ PFP over FIN

Equal expressiveness between LFP and PFP over all finite structures is equivalent to
the collapse of Pspace to P. In other words, Pspace = P if, and only if, the result of
every PFP recursion can be equivalently obtained as the result of an LFP recursion, or if
relational While recursion is not more powerful than positive, monotone least fixpoint
recursion in determining any property of finite structures.

Technically, this result involves a uniform reduction from fixpoint evaluations over
a given not necessarily ordered finite structure A to the evaluation of a variant of that
fixpoint in some linearly ordered structure definable from A. This is achieved via a detour
through infinitary finite variable logics and a simulation of the fixpoint evaluation over
Ik(A), the k-variable invariant associated with A from section 2.4.2 in Part I, for suitable
k. See in particular Definition 2.4.16 and Proposition 2.4.17.

Our first step, therefore, is to embed the fixpoint logics into infinitary k-variable
logics.

7.4.1 Fixpoint logics and finite variable logics

Definition 7.4.1 Infinitary k-variable logic FOk
∞ is defined as an extension of k-variable

first-order logic FOk, augmenting the rules for formula formation in FOk by allowing
disjunctions and conjunctions over arbitrary (rather than just finite) sets of formulae. If
Φ ⊆ FOk

∞(τ) is any set of formulae of the logic, the so are
∧

Φ and
∨

Φ. The semantics
of these is the natural one:

A,a |= ∨
Φ if A,a |= ϕ for at least one ϕ ∈ Φ,

A,a |= ∧
Φ if A,a |= ϕ for all ϕ ∈ Φ.

Recall the analysis of the unbounded k-pebble game in section 2.4.2, which showed k-
variable equivalence ≡k to coincide with the equivalence defined through the unbounded
k-pebble game, 'k∞, over finite relational structures. The same analysis extends to show
that 'k∞ implies equivalence even at the level of FOk

∞. Hence the unbounded k-pebble
game may also be regarded as the Ehrenfeucht-Fräıssé game for infinitary k-variable
logic (and this correspondence in actually good even over infinite structures).

In the following we always assume parameter tuples a ∈ Ak, b ∈ Bk for the instan-
tiation of the k variables that may be free in formulae of k-variable logic.

FMT – 2005/06 63

Lemma 7.4.2 For finite structures A,a and B,b of the same finite relational type τ ,
t.f.a.e.:

(i) A,a ≡k B,b: for all ϕ(x) ∈ FOk(τ), A |= ϕ[a] ⇔ B |= ϕ[b]
(equivalence in FOk).

(ii) A,a 'k∞ B,b
(equivalence w.r.t. Gk∞: II wins Gk∞(A,a; B,b)).

(iii) for all ϕ(x) ∈ FOk
∞(τ), A |= ϕ[a] ⇔ B |= ϕ[b]

(equivalence in FOk
∞).

Proof We know (i) ⇒ (ii) from section 2.4.2.
(iii) ⇒ (i) is obvious, as FOk ⊆ FOk

∞.
It suffices therefore to prove that ¬(iii) (inequivalence in FOk

∞) gives I a winning
strategy in Gk∞(A,a; B,b), and hence implies ¬(ii).

The claim about winning strategies for I is proved by induction on the (infinitary!)
syntax of a formula ϕ(x) ∈ FOk

∞ that distinguishes between A,a ad B,b. Assume,
for instance, that A |= ϕ[a] while B 6|= ϕ[b], and, as our inductive hypothesis, that for
all proper subformulae ψ of ϕ the claim is true (that inequivalence w.r.t. ψ gives I a
winning strategy).

If ϕ(x) is of the form ¬ψ(x), then the inductive hypothesis for ψ works directly for
ϕ.

If ϕ(x) = ∃xjψ(x), then there is an a ∈ A such that A |= ψ[aa
j] while B |= ¬ψ[b b

j]
for all b ∈ B. We advise I to play in A, move pebble j to a, and rely on the inductive
hypothesis for ψ. The universal quantifier case is strictly analogous.

If ϕ =
∨

Φ, then there is some ψ ∈ Φ such that A |= ψ[a] while B |= ¬ψ[b]. So
I can use the strategy guaranteed by the distinguishing subformula ψ according to the
inductive hypothesis. The case of an (infinite) conjunction is strictly analogous. 2

What is the point of considering FOk
∞ over finite structures then?

There are two answers:

• FOk
∞ defines many classes of finite structures (queries) that are not FO definable.

(See Exercise 7.4.3 below.)

• FOk
∞ provides a natural way to define FOk-types and arbitrary collections of FOk-

types over FIN(τ) (unions of 'k∞ classes).

Exercise 7.4.3 Show that the following classes of finite structures are definable in FOk
∞

over FIN for suitable k and try to find the minimal k.
(a) τ = {E}. The class of finite undirected graphs that are connected.
(b) τ = {<}. For an arbitrary fixed subset S ⊆ N: the class of finite linear orderings

of length n for n ∈ S

Lemma 7.4.4 For ϕ(X,x) = ϕ(X,x1, . . . , xk) ∈ FOk
∞(τ ∪ {X}) with k-ary X, let Fϕ

be the operation that is globally defined by ϕ as an operation on k-ary relations over
structures A ∈ FIN(τ)

FA
ϕ : P(Ak) −→ P(Ak)

P 7−→ FA
ϕ (P) = {a ∈ Ak : A |= ϕ[P,a]}.

Then µ(Fϕ), IFP(Fϕ) and PFP(Fϕ) are globally definable in FOk
∞(τ).

64 Finite Model Theory – Martin Otto 2005/06

Proof We first show by induction that the finite stages in the iteration of Fϕ on ∅,
F i

ϕ(∅) are uniformly definable by suitable formulae ϕi(x) ∈ FOk
∞.

For i = 0, ϕ0(x) = ¬x1 =x1 is as desired.
Suppose ϕi(x) is given. We want to obtain ϕi+1(x) by a process of substituting ϕi(y)

for every atom Xy inside ϕ. However, y can be any tuple of not necessarily distinct
variables from {x1, . . . , xk}. This can be dealt with as follows. If y = (xπ(1), . . . , xπ(k))
for some permutation π of {1, . . . , k}, we just apply π to (the indices of) all variables (free
or bound) in ϕi(x), in oder to obtain a formula ϕi(y) that is as desired. The case where
y has multiple occurrences of the same variable symbol, e.g., y = (x1, x1, x3, . . . , xk),
reduces to the former case through quantification and equality binding of those variable
symbols that do not appear as components of y, e.g., Xx1x1x3 . . . xk ≡ ∃x2(x2 =
x1 ∧Xx1x2x3 . . . xk).

Then PFP(Fϕ) is globally defined by
∨

i∈N
(
ϕi(x) ∧ ∀x(ϕi(x) ↔ ϕi+1(x))

)
.

Similarly µ(Fϕ), for monotone ϕ, is globally defined by
∨

i∈N ϕi(x). For IFP we may
similarly first obtain global definitions of the stages w.r.t. F+

ϕ , which are the same as
the stages of Fϕ+ for ϕ+(X,x) = Xx ∨ ϕ(X,x). 2

The same argument for definability of the stages F i
ϕ(∅) goes through for ϕ(X, z,x) ∈

FOk
∞ (with X of arity r 6 k, x = (xi1 , . . . , xir) distinct and disjoint from the parameters

z), if the variables z do not have bound occurrences in ϕ. (See Exercise 7.4.9 below for
the necessity of some such restriction). We may then work with permutations of the
variable tuple x (fixing z) and equality bindings (possibly involving parameters z).

Corollary 7.4.5 Let ϕ(X, z,x) ∈ FOk
∞ such that no variable in z occours bound in ϕ,

X and x of matching arities suitable for corresponding fixpoints. Then these fixpoints
(with parameters) are globally definable in FOk

∞.

Definition 7.4.6 Let PFPk consist of the closure of FOk under the formula formation
rules of FOk and PFP applications to formulae of the form PFPX,xϕ(X,Z, z,x) such
that the variables in z do not have bound occurrences in ϕ. Fragments LFPk and IFPk

are similarly defined.

Every LFP, IFP or PFP formula can be transformed into an equivalent formula in
PFPk, IFPk or PFPk for some k, by a renaming of bound variables where necessary.

Corollary 7.4.7 Every formuala ϕ of LFPk(τ), IFPk(τ) or PFPk(τ) can be translated
into a formula of FOk

∞(τ) that is equivalent to ϕ over FIN(τ). It follows that every
formula of LFP(τ), IFP(τ) or PFP(τ) is equivalent over FIN(τ) to a formula of FOk

∞(τ)
for suitable k ∈ N.

Exercise 7.4.8 Show that for least and inductive fixpoints, the fixpoint w.r.t. X and
x for the operator defined by ϕ(X, z,x) with parameters z is first-order inter-definable
with a parameter-free fixpoint. Consider the fixpoint w.r.t. Y and y for the operator
defined by ϕ̂(Y,y) where y = zx, Y of matching arity, and ϕ̂(Y, zx) = ϕ(Y z , z,x).
Why does this not work directly for PFP?

Exercise 7.4.9 A fixpoint application to a formula ϕ ∈ FOk which has first-order
parameters can lead outside FOk. Here is a simple example.

ϕ(X, x1, x2) := x2 = x1 ∨ ∃x1(Ex1x2 ∧Xx1) ∈ FO2

FMT – 2005/06 65

uses the free occurrence of x1 as a parameter if we consider ψ(x1, x2) := µX,x2ϕ ∈
LFP({E}).

Check that ψ(x1, x2) defines the global relation of reachability, which is not definable
in FO2

∞. Give a definition of the same query in FO3
∞.

7.4.2 Simulating fixpoints over the invariants

The last corollary implies in particular that for every formula ϕ(x) ∈ PFP there is some
k such that ϕ(x) is preserved under 'k∞ in the sense that for all A,a 'k∞ B,b we must
have A |= ϕ[a] ⇒ B |= ϕ[b]. As the equivalence class of (A,a) w.r.t. 'k∞ is encoded
in the k-variable invariant Ik(A,a) from section 2.4.2, whether or not A |= ϕ[a] can be
determined in terms of Ik(A,a). In particular, for every PFP definable boolean query
Q ⊆ FIN(τ) there is a value of k and a corresponding query

Q̂ := {Ik(A) : A ∈ Q}
such that the function Ik : FIN(τ) → FIN(τk), which maps A to its k-variable invariant
Ik(A), is a polynomial time reduction from Q to Q̂. The same applies to LFP or IFP
definable queries and a similar statement also covers non-boolean queries. (Compare
Lemma 7.4.10 below.)

Here τk is the relational vocabulary used for the k-variable invariant of τ -structures,
τk = {6} ∪ {Pθ : θ ∈ FOk(τ), qr(θ) = 0} ∪ {Ej : 1 6 j 6 k}.

We now want to see that, moreover, a PFP(τ)/IFP(τ)/LFP(τ) formula can be eval-
uated in terms of the k-variable invariants, for a suitable value of k, using a matching
PFP(τk)/IFP(τk)/LFP(τk) formula there.

Recall the format of the k-variable invariants for A ∈ FIN(τ),a ∈ Ak:

Ik(A,a) =
(
Ak/'k

∞,6, (Pθ), (Ej), [a]'k∞

)
.

The Pθ for quantifier-free θ ∈ FOk(τ) indicate which quantifier-free formulae are
satisfied in each 'k∞ class of k-tuples represented in A; the Ej are equivalence relations
linking 'k∞ classes between which one can switch by changing the j-th components
(moves with pebble j). We now write just [a] for the 'k∞ equivalence class of a in Ak.
If the distinguished parameter tuple a is irrelevant, we write Ik(A).

We want to give a translation

ˆ : PFPk(τ) −→ PFP(τk)
ϕ(Z, x1, . . . , xk) 7−→ ϕ̂(Ẑ, x),

where Z = (Z1, . . . , Zm), Zs an rs-ary second-order variable with rs 6 k, and Ẑ =
(Ẑ1, . . . , Ẑm) consists of monadic second-order variables Ẑs. The semantic condition is
that for all A ∈ FIN(τ), and for all assignments to the Zs that are closed w.r.t. 'k∞
(unions of 'k∞ classes over Ars) and matching Ẑs := {[a] : a ∈ Zs ×Ak−rs} we have:

A |= ϕ[Z,a] iff Ik(A) |= ϕ̂(Ẑ, [a]).

The translation ϕ̂ is given by induction on ϕ(Z,x) = ϕ(Z, x1, . . . , xk). In order to
describe substitutions of variable tuples y ∈ {x1, . . . , xk}r, we first provide auxiliary
formulae ηi,j(u, v) ∈ FO(τk) for the definition of the binary relations

EQUALi,j = {([a], [b]) : bi = aj}

66 Finite Model Theory – Martin Otto 2005/06

over Ik(A). The formula ηi,j(u, v) says that there is some z in Pxi=xj , reachable from
u on a path of length up to k − 1 involving edges E` for ` 6= j (allowing to change all
components apart form the j-th), and reachable from v on a path of length up to k− 1
involving edges E` for ` 6= i (allowing to change all components apart form the i-th).
One needs to verify that this formula is such that Ik(A) |= ηi,j [α, β] iff there are a ∈ α
and b ∈ β for which bi = aj . (Exercise 7.4.13).

The translation from PFPk(τ) to PFP(τk):

Atomic formulae: Any quantifier-free ϕ(x) ∈ FOk(τ) is logically equivalent to one of
the formulae θ that give rise to the predicates Pθ in τk. Then ϕ̂ := Pθx is as required.
For atoms ϕ = Zy where y = (xσ(1), . . . , xσ(r)), put ϕ̂ := ∃y(∧

i ηi,σ(i)(x, y) ∧ Ẑy
)
.

Boolean connectives: trivially commute with the translation. E.g., if ϕ = ϕ1 ∧ ϕ2 then
ϕ̂ := ϕ̂1 ∧ ϕ̂2 works.

Quantification: For ϕ = ∃xjψ, put ϕ̂ := ∃y(Ejxy ∧ ψ̂(y)); similarly for universal quan-
tification.

Partial fixpoints: Consider ϕ = PFPX,x1ψ(X,x), where x = x0x1 and x0 acts as a
parameter tuple (X and x1 of arity r 6 k). Let ψ̂(X̂, x) be the translation of ψ.
Let η0(x, z) be the conjunction of formulae ηi,i(x, z) for the components xi in x0 and
put ψ̂1(Ẑ, x, z) := ψ̂(Ẑ, x) ∧ η0(x, z). The stages of the fixpoint (together with the
parameter components) will always consist of 'k∞-closed subsets of Ak, and are faithfully
represented by the stages of PFPẐ,xψ1(Ẑ, x, z). Therefore the following is as desired:

ϕ̂(x) := ∃z(
z = x ∧ PFPẐ,xψ̂1(Ẑ, x, z)

)
.

We have shown the following.

Lemma 7.4.10 Every PFPk-definable query Q over FIN(τ) translates into a PFP-
definable query Q̂ over FIN(τk) such that for all A ∈ FIN(τ) and a ∈ Ak:

a ∈ QA iff [a] ∈ Q̂Ik(A).

Corollary 7.4.11 Let k-size(A) := |Ak/'k∞| stand for the number of equivalence classes
w.r.t. 'k∞ over Ak. Then the partial fixpoint of ϕ(X,x) ∈ PFPk(τ) is either empty or
reached within 2k-size(A) many steps over A.

Exercise 7.4.12 Use the preceding fact to analyse the expressive power of PFPk(∅),
i.e., of PFP over naked sets. An alternative analysis proceeds by direct induction on
the syntax of PFPk(∅), to show that next to nothing (but what exactly?) is definable
in PFP over sets without structure.

Exercise 7.4.13 Check that the auxiliary formulae ηi,j suggested above do define the
intended relations EQUALi,j over all Ik(A).

Exercise 7.4.14 Outline variant translations that work for IFP and LFP. Note that
for LFP positivity in second-order variables needs to be preserved in the translation.

FMT – 2005/06 67

7.4.3 From the invariants back to the real structures

We now indicate a translation in the opposite direction, for expressing definable prop-
erties of Ik(A) as properties of the underlying A. We thus pull back PFP/IFP/LFP
definabilty in terms of Ik(A) to PFP/IFP/LFP definability in terms of A. We explicitly
treat LFP, for our purposes below, but translations for the other fixpoint logics could
be obtained in the same fashion. Our main goal is a translation

ˇ : LFP(τk) −→ LFP(τ)
ϕ(Z, z) 7−→ ϕ̌(Ž, ž).

In this translation we replace each first-order variable zi (ranging over elements of Ik(A),
corresponding to equivalence classes of k-tuples of elements of A) by k-tuple of variables
ži = xi = (xi1, . . . , xik). Similarly, we replace each second-order variable Z of arity r
(ranging over sets of r-tuples over Ik(A)) by a kr-ary relation Ž (ranging over sets of
r-tuples of k-tuples over A).

For an r-ary relation R over Ik(A) let

Ř :=
{
(a1, . . . ,ar) : ([a1], . . . [ar]) ∈ R

} ⊆ Akr.

Then the semantic condition on the translation ϕ 7→ ϕ̌ is that for all A ∈ FIN(τ),
and for all assignments R to the second-order variables Z of ϕ,

A |= ϕ̌[Ř,a1, . . . ,am] iff Ik(A) |= ϕ[R, [a1], . . . , [am]].

We firstly need an auxiliary formula that defines 6, the linear ordering w.r.t. 'k∞-
types in Ik(A), in terms of A. This is precisely the result of the inductive refinement
w.r.t. k-variable types from our analysis of the unbounded k-pebble game. Compare
section 2.4.2 and in particular the paragraph on pre-ordering types on page 28.

We there obtained 4 as the (inductive) fixpoint of an FO-definable operation. By
the Gurevich–Shelah theorem, Theorem 7.2.12, there is also an LFP-formula

η4(x11, . . . , x1k, x21, . . . , x2k) ∈ LFP(τ)

such that A |= η4[a1,a2] iff [a1] 6 [a2] in Ik(A). This means that η4 is the desired
translation of z1 6 z2. It then follows that

η≈(ž1, ž2) := η4(ž1, ž2) ∧ η4(ž2, ž1)

is the correct translation of z1 = z2 (check this against the semantic requirements!).

Again ϕ̌ is obtained by induction on ϕ.

Atomic formulae: Pθz translates into θ(ž);

Zz1 . . . zr into Žž1 . . . žr;

z1 = z2 into η≈(ž1, ž2);

z1 6 z2 into η4(ž1, ž2);

Ejz1z2 into ∃x1jη≈(ž1, ž2).

Boolean connectives: trivially commute with the translation.

Quantification: E.g., if ϕ = ∃zjψ, put ϕ̌ := ∃xj1 . . .∃xjkψ̌.

68 Finite Model Theory – Martin Otto 2005/06

Least fixpoints: Note that the other steps preserve positivity, in the sense that ϕ̌(Ž) is
positive in Ž if ϕ is positive in Z. One may therefore just pull back least fixpoints. For
instance, ϕ = µX,xψ(X,x) translates into ϕ̌(x̌) := µX̌,x̌ψ̌(X̌, x̌). Correctness is shown
by induction on the stages of these fixpoints; one establishes that the i-th stage of the
fixpoint w.r.t. ψ̌ over A is the translation of the i-th stage of the fixpoint w.r.t. ψ over
Ik(A).

This gives the following.

Lemma 7.4.15 Every LFP-definable r-ary query Q over
{
Ik(A) : A ∈ FIN(τ)

} ⊆
FIN(τk) translates into an LFP-definable rk-ary query Q̌ over FIN(τ) such that for all
A ∈ FIN(τ) and (a1, . . . ,ar) ∈ Ark:

(a1, . . . ,ar) ∈ Q̌A iff ([a1], . . . , [ar]) ∈ QIk(A).

Exercise 7.4.16 Check that for a (boolean) query Q that is PFPk-definable over FIN(τ),
the passage of translations from Q to Q1 := Q̂ (according to Lemma 7.4.10) to Q2 := Q̌1

(according to Lemma 7.4.15) gives Q2 = Q.

7.4.4 P versus Pspace

Lemmas 7.4.10 and 7.4.15, together with the capturing results for P and Pspace in the
presence of order now prove the following.

Theorem 7.4.17 (Abiteboul–Vianu)
The following are equivalent:

(i) LFP and PFP have the same expressive power – define exactly the same boolean
queries – over finite relational structures.

(ii) Pspace collapses to P.

Proof (i) ⇒ (ii). Using (i) just for classes of linearly ordered finite structures, we
obtain (ii) from Theorem 7.3.3 and Lemma 7.2.5.

(ii) ⇒ (i). Assume Pspace = P and let Q be definable in PFP. For suitable
k, Q is definable by a PFPk-sentence ϕ. By Lemma 7.4.10, the associated Q̂ is PFP-
definable, and hence by Lemma 7.3.2 in particular in Pspace. From the assumption that
Pspace = P we get that Q̂ is in P. As the invariants are linearly ordered structures, Q̂ is
definable in LFP by Theorem 7.2.8. Then Lemma 7.4.15, together with Exercise 7.4.16,
shows that Q is LFP-definable. 2

