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1 . Introduction

Throughout the paper N stands for the set of positive integers. Furthermore, R"*™
denotes the space of real n x m-matrices, R = R"*', R' = R. For a given n x m-
matrix A € R™™, by |A| we denote its norm,

b

m
|A| = max Z |ai ;
i=1,...,n 4
Jj=1

and det A is its determinant. The symbols I and 0 stand respectively for the identity
and the zero matrix of the proper type.
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As usual, by [0,1] and (0,1) we denote the corresponding closed and open in-
tervals, respectively. Furthermore, [0,1) and (0, 1] are the corresponding half-open
intervals.

The space of all functions F : [0,1] — R"™*™ of bounded variation on [0, 1] is
denoted by BV It is well known that BV"™*"™ equipped with the norm

FeBVY™ ||F||BV = |F(O)| + VaI'(l)F
is a Banach space. For a given F' € BV™*"™ we denote

F(t—)= lim F(r) and A" F(t) = F(t) — F(t—) for t € (0,1],

T—t—

F(t+) = lim F(r) and ATF(t) = F(t+) — F(t) for t € [0,1),

T+

F(0—) = F(0), A"F(0) =0, F(1+) = F(1), ATF(1) = 0.

As usual, the space of n x m-matrix valued functions continuous on [0,1] is
denoted by C™*™ and the space of n xm-matrix valued functions Lebesgue integrable
on [0,1] is denoted by L™, Instead of BV™*! or C"*! or LT*" we write BV" or
C" or L}, respectively. For given F' € L™ and G € C"*™, we denote

1
IF L, :/0 |F(t)|dt and |G| = Sup}lG(t)l-

te[0,1

The integrals are considered in the Perron-Stieltjes sense. We work with the
equivalent summation definition due to J. Kurzweil (cf. [5]) which is now usually
called the Kurzweil - Henstock integral or the gauge integral.

Let P, € L7*" for £ € N U {0} and let X, € AC™" be the corresponding
fundamental matrices, i.e.

Xk(t) :I—l—/th(s)Xk(s)ds on [0,1] for k€ N U{0}.

The following two assertions are relatively representative examples of theorems
on the continuous dependence of solutions of ordinary differential equations on a
parameter.

1.1. Theorem. If

1
lim/ Pu(s) — Po(s)|ds =0,
0

k— o0

then
lim X (t) = Xo(t) wuniformly on [0, 1].

k— 00
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1.2. Theorem. (Kurzweil & Vorel, [6]) Let there exist m € Ly such that

(1.1) |Pe(t)] <m(t) a.e. on [0,1] forall ke N
and let
t t
(1.2) klirn Pi(s)ds = / Py(s)ds uniformly on [0,1].
Then

lim X (t) = Xo(t) wuniformly on [0,1].

k—o0

1.3. Remark. For ¢t € [0,1] and £ € N U {0} denote

Ag(t) = /Ot Py(s)ds.

Then the assumptions of Theorem 1.2 may be reformulated for A, as follows:

(1.3) A, € AC™™ for all ke NU {0},
(1.4) sup [l Ayl < oo,
keN
(1.5) klim Ag(t) = Ao(t) uniformly on [0, 1].
—00

Besides, the assumption (1.1) means that there exists a nondecreasing function
ho € AC such that

|Ak(t2) - Ak(t1)| S |h0(t2) - ho(t1)| for all tl,tg € [O, 1]

In fact, we may put

hg(t):/o m(s)ds on [0,1].

2 . Linear GDE’s - a survey of known results

The following basic existence result for linear generalized differential equations of
the form

z(t) = i—l—/ﬂ d[A(s)]z(s), te€[0,1]

may be found e.g. in [9] (cf. Theorem I11.1.4) or in [8] (cf. Theorem 6.13).
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2.1. Theorem. Let A € BV™" be such that
(2.1) det [I — ATA(t)] #0 for all t € (0,1].

Then there exists a unique X € BV™*" such that

(2.2) X (1) :I+/0 d[A(s)]X(s) on [0,1].

2.2. Definition. For a given A € BV™", the n x n-matrix valued function X €
BV™" such that (2.2) holds is called the fundamental matriz corresponding to A.

When restricted to the linear case, Theorem 8.8 from [8] modifies to

2.3. Theorem. Let Ay € BV™" satisfy (2.1) and let Xy be the corresponding
fundamental matriz. Let Ay € BV™" k € N, and scalar nondecreasing and left-

continuous on (0,1] functions hy, k € N U{0}, be given such that hy is continuous
on [0,1] and

(2.3) klirgo Ag(t) = Ag(t) on [0,1],
(2.4) |Ak(t) = Ai(t1)| < [hi(t2) — hie(t1)]

for all ty,ty, €[0,1) and k € N U{0},
(2.5) lﬁﬁﬂm@ywmﬂgm@ywwg

whenever 0 <t <ty <1.

Then for any k € N sufficiently large there exists a fundamental matriz Xy
corresponding to Ay and

lim Xy (t) = Xo(t) wuniformly on [0, 1].

k—o00

2.4. Lemma. Under the assumptions of Theorem 2.3 we have

(2.6) sup var g Ay, < oo
keN
and
(2.7) lim [Ag(t) — Ax(0)] = Ao(t) — Ao(0) uniformly on [0,1].

k— 00
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Proof. ' i) By (2.5) there is ky € N such that
hi(1) — hy(0) < ho(1) — ho(0) +1 for all k > ko.

Hence for any £ € N we have
varj Ay, < ap = max ({Var(l]Ak; k< ko} U {ho(l) — ho(0) + 1}) < 0.

Thus we conclude that (2.6) is true.
ii) Suppose that

(2.8) lim Ag(t) = Ap(t) uniformly on [0,1]

k—o00

is not valid. Then there is € > 0 such that for any ¢ € N there exist m, > ¢ and
te € 0,1] such that

(2'9) |Amz (té) - AO(t£)| > E.
We may assume that my.; > my for any ¢ € N and

(2.10) lim , =ty € [0,1].
£—00

Let ¢y € (0,1) and let an arbitrary ¢ > 0 be given. Since hy is continuous, we
may choose 7 > 0 in such a way that ty — n,to +n € [0,1] and

(2.11) ho(to +n) — ho(to — 1) < e.
Furthermore, by (2.3) there is ¢; € N such that

(2.12) | A, (to) — Ao(to)| < e forall £> ¢

and by (2.4), (2.5) and (2.11) there is ¢, € N, ¢y > {1, such that

(2.13) | A, (12) = A, (11)] < ho(to +n) — ho(to — 1) +¢ < 2¢
whenever 7,19 € (to — n,to +n) and £ > ls.

The relations (2.3) and (2.13) imply immediately that

(2.14) |Ao(72) — Ao(1)| = Lim | A, (T2) = Ay (11)| < 26

whenever 71,75 € (tg — n,t0 + 7).

!The author is indebted to Ivo Vrko¢ for his suggestions which led to a considerable simplifica-
tion of this proof.
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Finally, let /3 € N be such that /3 > /5 and
(2.15) [te —to] <m forall ¢> {5,
then in virtue of the relations (2.10)—(2.15) we have

| Am, (te) — Ao(te)]
< |Am, (te) = Am, (to)| + [Am, (t0) — Ao(to)[ + [Ao(to) — Ao(te)]
< be.

Hence, choosing & < £&, we obtain by (2.9) that
E > A (1) — Aolt)] 2 &

This being impossible, the relation (2.8) has to be true. The modification of the
proof in the cases ty = 0 or ¢ty = 1 and the extension of (2.8) to (2.7) is obvious. [

Thus, Theorem 2.3 is a special case of the following result due to M. Ashordia
(cf.[1]).

2.5. Theorem. Let Ay € BV"™*" satisfy (2.1), let Xy be the corresponding funda-
mental matriz and let {Ag}2, C BV"™" be such that (2.6) and (2.7) hold. Then
for any k € N sufficiently large there exists a fundamental matriz X corresponding
to A, and

lim Xy (t) = Xo(t) wuniformly on [0,1].

k—o0

2.6. Remark. Under the assumptions of Theorem 2.5 we obviously have

lim Ag(t—) = Ao(t—) and klirn Ap(s+) = Ao(s+)
—00

k—00

for all ¢ € (0,1] and all s € [0, 1), respectively. Thus Theorem 2.5 cannot cover the
case that there is a ty € (0,1] such that

Ak(to—) = Ak(tO) for all & & N, while Ag(tg—) % Ao(tg)

In particular, Theorem 2.5 does not apply to the following simple example.

2.7. Example. Consider the sequence of initial value problems

z, = ap(t)xp on [—1,1], x(-1)=7,

where
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0 if ¢ S A,
ar(t) = g% ift e (o Br),
1 if t > Oy;

{a}32, is an arbitrary increasing sequence in [—1,0) such that

lim a4 = 0;
k—o00

{Br}2, is an arbitrary decreasing sequence in (0, 1] such that

k—o0
and
lim — x € [0,1).

koo ap — B

For the corresponding solutions we have

f lf t S O,
t—ap ~ .
l'k(t) = eBrk—ak if ¢ S (aka/Bk)7

T if ¢t<0,
zo(t) = klim zp(t)y =< ez if t=0,
—00 ~ .

ex if ¢>0,

while the unique solution z(t) of the ”limit” equation

z(t) =2 + /_ld[a(s)]x(s), te[-1,1],

where
0 it t<0,
a(t) = lim ai(t) =4 » if t=0,
koo 1 if t>0,
is given by
z if t<0
z(t) =4 =T if t=0 3 #w(t).
2z if >0

T
N
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On the other hand, zq is a solution to

xo(t):f+/ dlag(t)]zo(s) on [—1,1],

where

0 if ¢t <0,
ag(t): 1—e™> if tZO,
(e—1)e™ if t>0

and aj tends to ag in the following sense:

(a) given arbitrary o € (—1,0) and § € (0,1), limy_ ax(t) = ao(t) uniformly on
[—1, ] and limy_,o0[ag(t) — ar(B)] = ao(t) — ao(B) uniformly on [, 1];

(b) limg_y0 ar(t) = ag(t) + ao(t), where

0 if <0,
Q) =4 sxter—1  if t=0,
1—el"™+e ™ if t>0;

(c) for any z € R and € > 0, there is § > 0 such that for any §' € (0,0) there is
ko € N such that for any k > ko we have oy, > —0', B, < &' and the relations

Y (0) — ye(—0") — léz—% <e

and
|26(0") — 2£(0) — Atag(0)z] < e
are satisfied for any solution y, on [—¢',0] of
yr = ap(t)yr  with yp(—=0") € (2 = 8,2 +9)
and any solution z on [0,0'] of

2 = ay(t)z,  with z(0) € (z — 9,2+ 9).
In fact, for given z € R, §' > 0 and k € N such that oy > —§’ we have

t—ap

yr(t) = ek yp(—d")  on [y, 0]
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and thus
A~ ay(0)z
0) = y(=9") = 7= e 2|
‘yk( ) yk( ) 1— A_ao(())
=[5~ () — (- 1)
< ‘eﬁgfzk — e”‘|z| + ‘ef’k_fgk — 1“3 — ye(=0")],
where
lim eg;’ﬁk —e”‘ =0, ‘eﬁl:fzk -1 <2
k—o00
and
|z — ye(=6")] < 6.

Analogously, if £ € N is such that 3, < ', we have

8
2(t) = Tk 2,(0) on [0,

and thus
‘zk((S') — 2(0) — AJ’aO(O)z‘
8
= (eﬂk—k‘lk — l)zk(—5') — (elf” — l)z
B 1 B
< lefi—er —e Tz 4 ‘eﬂk—“k - 1“2’ — 2(0)],
where
B B
lim |efr—or —e'™*| =0, ‘eﬁk*“k — 1‘ <2
k—o0
and
|z — 2,(0)] <.

Notice that if

then

200 = (T )0 = T
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The convergence described in Example 2.7 is closely related to the notion of the
emphatic convergence introduced by J. Kurzweil (cf. [5]).

2.8. Definition. A sequence {A;}32, C BV™" converges emphatically to Ay €
BV™" on [0, 1] if

(i) there exist nondecreasing functions hy : [0,1] — R, &k € N U {0}, which are
left-continuous on (0, 1] and such that

[ Ar(t2) — Ap(tr)| < [h(tz) — he(ty)]
for all £ € N U {0} and 1,1, € [0, 1];

(ii) limsupy_,. [Aw(t2) — hi(t1)] < [ho(t2) — ho(t1)] whenever 0 < #; < ¢, < 1 and
hy is continuous at ¢; and ?y;

(iii) there is Ay € BV™ ™ such that limy_,e Ay () = Ag(t)+ Ao (t) whenever ho(t) =

ho(t+) and |Ag(tz) — Ag(t1)| < [ho(ts) — ho(ty)] for all t1,t, € [0,1], where hy
stands for the break part of hg;

(iv) if ho(to+) > ho(to), then for any 2 € R™ and any € > 0 there exists § > 0 such
that for any ¢’ € (0,9) there is ko € N such that

ly(to +0") — yr(to — 0') — AT Ag(to)z| < e

holds for any k > ko, any yx € R" such that |z — yx| < ¢ and any solution y
of the equation

t

Uelt) = G + / [ Ax(s)lye(s) on [to — &', t0 + 5.

to—0'

The following assertion is a restriction of Theorem 4.1 from [5] to the linear case.

2.9. Theorem. Let Ay converge emphatically on [0,1] to Ay. Let the sequence
{Xk}2, € BV™™ of the fundamental matrices corresponding respectively to Ay,
k € N, be uniformly bounded on [0,1] and such that

lim Xy (t) = Zo(t) on [0,1] whenever ho(t+) = ho(t).

k—00

Then Zy € BV™" and the function X, defined by

| Z(1) if  ho(t+) = ho(t),
Xolt) = { Zo(t—) otherwise

s the fundamental matriz corresponding to Ay.
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2.10. Remark. Let us notice that necessary and sufficient conditions assuring the
uniform convergence of fundamental matrices X}, corresponding to Ag, £ € N, to

the fundamental matrix X, corresponding to Ay may be found in the paper [2] by
M. Ashordia.

Results related to Theorem 2.9 obtained by the method of ”prolongation” of
functions of bounded variation to continuous functions along monotone functions
and using the concept of convergence under substitution instead of the emphatic
convergence were obtained by D. Frankova in [3] (cf. also [4]), as well.

3 . Linear GDE’s - new results

3.1. Notation. For a given function F' € BV™"*"  the symbol S(F') stands for the
set of the points of discontinuity of F' in [0, 1], while

SH(F) = {t € [0,1); A*F(t) £0} and S (F) = {t € [0,1); A" F(t) # 0}.

If F is such that S(F') possesses at most a finite number of points, then for an
arbitrary compact set M such that

U%ﬁy]C [0, 1]\ S(F)

with [ay;, ;] N [, Bk] = 0 for j # k, we define
FY(t) = F(t) - F(ay) if t € |ay, ).

Provided the set S(Ap) contains at most a finite number of elements, we can
extend Theorem 2.9 to the case that the functions Ag, £ € N U {0}, need not be
left-continuous on (0, 1] in the following way.

3.2. Theorem. Let Ay € BV"™", S(Ay) = {7;}7L,,
det [I — A7 Aq(t)] #0 on [0,1]

and let Xy be the fundamental matriz solution corresponding to Ag. Let the sequence
{AL}32, € BV™" be such that

(i) supyvargAy < oo and det [I— A~AL(t)] # 0 on (0,1] for all k € N;

(ii) limg_eo AY (s) = A} (s) uniformly on M for any M C [0,1]\ S(Aq) such that
M = Ui oy, B, where [a, B;] N [ow, Bi] = O for j # k;
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(iii) if 7 € S(Ap) then for any z € R™ and any £ > 0 there exists 6 > 0 such that
for any 0" € (0,0) there is ko € N such that the relations

|y (r) — ye(r — ') — A~ Ag(T) [T = A~ Ag(7)] 2| <&

and

|26 (T 4 0") — 2i(1) — At Ag(r)z| < ¢

are satisfied for any k > ko and y and z, such that

ue(t) =ye(r = &) + [1 , d[A(s)|yk(s) on [r— &, 7],
w(t) = 2(7) + [ d[AR(s)]zk(s) on [r,7+ 0]

and

lz —y(r —0")| <6 and |z — 2z(7)] <.

Then for any k € N sufficiently large the fundamental matriz X corresponding
to Ay is defined on [0,1] and

lim X (t) = Xo(t) on [0,1].

k—o0

Proof. Let us restrict ourselves to the case that m = 1, i.e. let S(Agy) = {7}, where
7€ (0,1).

Let an arbitrary * € R" be given and let z for any £ € N U {0} denote the
solution to the equation

xg(t) :a?—i—/o d[Ak(s)]zk(s) on [0,1].

Our assumptions (i) and (ii) by Theorem 2.5 imply that for any a € (0,7) we
have

(3.1) klim zi(t) = zo(t) uniformly on [0, a].
—00

Consequently,

(3.2) lim zx(t) = xo(t) forall ¢t € [0,7).

k— 00
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Furthermore, for any ¢’ € (0,7) and k¥ € N we have
(3.3) |o(T) — 21 (7)]
< Jao(r) — wo (T — 8") = A™Ag(7) [1 = A~ Ag(7)] (7))
A A7) [T = A Ag(7)] o) = () — alr = 8)|
+ |IL'0(T — (5,) — l‘k(T — (5’)|

13

Let an arbitrary € > 0 be given. By the assumption (iii) there exists § € (0, ¢)
such that for all ' € (0,0) there exists k; = k1(0") € N such that for any k > k

and for any solution y;, of the equation

yr(t) = yp(r — 0') + /—5' d[Ax(8)]ye(s) on [r =0, 7]

such that |yx(7 — 0") — zo(7—)| < 6 we have

1

(3.4) yel7) = ue(r = &) = A~ Ay(7) [1 = A~ Ag(7)] ()| < =

Let us choose §' € (0,0) in such a way that
, J
(3.5) |zo(7—) —z(T = &")| < 2
is true. Furthermore, according to (3.2) there is ky € N such that kg > k; and
4
(3.6) |zo(T — 8") — 2 (7 = 0")| < 3 for all k > k.

In particular, for £ > ky we have

(3.7) |zo(7—) — 2 (7 — 0")| < 4.

Thus, if we put yx(t) = zx(t) on [ — ¢, 7], then the relation (3.4) will be satisfied

for any k > kg, i.e. we have
(3.8) w (1) — mp(1 — &) — AT A(7) [T — A7 Ay (7)] 711:0(7'—)‘ <e
for all k > ky. Now, inserting (3.6)-(3.8) into (3.3), we obtain that

)
|2k (T) — mo(7)| < ) + 3 +e< 2

is satisfied for any k > ko, i.e.

(3.9) lim 24 (7) = xo(7).

k— 00
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Further, we will prove that there is > 0 such that
lim x(t) = xo(t)
k—o00

is true on (7,7 + n) as well. To this aim, let £ > 0 be given and let 7y € (0,¢) be
such that

(3.10) lzo(s) — xo(7+)| <& forall s € (1,7 + ).

By the assumption (iii) there exists n € (0,7) such that for any 1’ € (0,7) there is
¢y = ¢1(n') € N such that for any & > ¢; and for any solution z; of the equation

2k (t) = zk(7) +/ d[Ak(s)]zk(s) on [1, 7+ 1]

such that |z (7) — xo(7)| < n we have
(3.11) |2e(T 4+ 1) = 21(7) — AT Ag(7)a0(7)| < e.
Let us choose n' € (0,7) arbitrarily. By (3.10), we have
(3.12) |zo(T — 1) — zo(74)] < e.
Furthermore, by (3.9) there is ¢y € N such that ¢, > ¢, and
(3.13) |2k (7) —20(7)| < forall k> .
Thus, by (3.11), for any k > ¢, we have
(3.14) |2e(T 4+ 1) — mp(7) — AT Ag(7)ao(7)| < e.
Making use of (3.12)-(3.14) we finally get for any k& > ko
|2 (T + 1) — wo(T + 1)
< ‘xk(T + 1) — x,(7) — o(7+) + $0(T)‘
+ ‘1‘0(7' +17') — x0(7'+)‘ + ‘Ik(T) — IL‘O(T)‘
- ‘l‘k(T +1') —a(r) — AJ“AO(T)xO(T)‘
+ ‘1‘0(7'-1-) — zo(T + 77')‘ + ‘xk(T) — $0(T)‘ < 3e,

i.e.

klim z(t) = 2o(t) forall t € (1,74 n).
— 00

The proof of the theorem can be completed by making use of Theorem 2.5 and
taking into account that r € R" was chosen arbitrarily. The extension to a general
case m € N is obvious. O
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3.3. Remark. Obviously, if we did not restrict ourselves to the case of only a
finite number of discontinuities of Ay, we should replace the assumptions (i)-(ii) in
Theorem 3.2 by assumptions of the form (i)-(ii) from Definition 2.8.

3.4. Remark. The following concept due to M. Pelant (cf. [7]) leads to another
interesting convergence effect which most probably cannot be explained by Theorem
3.2.

Let A € BV™" and let the divisions Py = {0 =tf < --- <tk =1}, k € N, of
[0,1] be such that

PeOD, = {telo,1];t ;k,z—O,l,...Q}
ULt e (0,1]; |AA(t)] > %
U{t € 0.1 |AYA(D)] > %
For a given k € N, let us put
A(t) if t € Py,

A k A k
Anlt) = § Al + 2 (- 1)

lf te(z latf)

Then we say that the sequence { Ay, Py }52, piecewise linearly approzimates A.
Furthermore, for a given A € BV™*" let us define Ay on [0, 1] by

B9 AO-AD- Y A AW
sES_(A)
Z ATA(s)X(511(2)

s€S+(A)

+ Z (I — [exp (AfA(S))]A)X[s,l}(t)
sES_(A)

+ Z (exp (AT A(s)) — I) X(s,1(t)
s€S+(A)

Then, obviously
det [I — A7 A4q(t)] #0 on [0,1]

holds and the following assertion may be proved (cf. [7]).
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Let A € BV et Ag be given by (3.15), let {Ay, Pp}i2, piecewise lin-
early approximate A and let for a given k € N, X}, denote the fundamental matriz
corresponding to Ag. Then

lim Xy (t) = Xo(t) for all t€[0,1].

k—o0
Furthermore, if A € BV"*" is such that the relations
(3.16) det [I— A"A(t)] #0 and det [[+ATA(t)] #0 on [0,1]

are true, then for ¢ € [0, 1] we can define

(3.17) A=Al — > ATA(s)xp()
sGSi(A)

— > ATA(s)x@y(t)
s€S+(A)

+ Z In [I — A_A(S)]ilX[s,u(t)
sESi(A)

+ Z In [I+A+A(S)] X(s1](%)
SES+(A)

and the following assertion is an immediate corollary of the above mentioned result
of M. Pelant.

3.5. Theorem. Let A € BV"™™™ be such that (3.16) holds and let X be the funda-
mental matriz corresponding to A. Let A} be given by (3.17), let { Ay, P}, piece-
wise linearly approzimate Aj and let for a given k& € IN, X denote the fundamental
matrix corresponding to Ai. Then

lim Xy (t) = X(t) forall t€]0,1].

k—o0
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