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Abstract
In this text we investigate solvability of various nonlinear singular boundary value problems

for ordinary differential equations on the compact interval [0, T ]. The nonlinearities in differential
equations may be singular both in the time and space variables. Location of all singular points
in [0, T ] need not be known.

The work is divided into 6 sections. Sections 1 and 2 are devoted to singular higher order
boundary value problems. The remaining ones deal with the second order case. Motivated
by various applications in physics we admit here the left hand sides of the equations under
consideration containing the φ-Laplacian or p-Laplacian operator. The special attention is paid
to Dirichlet and periodic problems.

Usually, the main ideas of the proofs of the results mentioned are described. More detailed
proofs are included in the cases where no proofs are available in literature or where the details
are needed later.
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0 . Notation

Let J ⊂ R, k ∈ N, p ∈ (1,∞). Then we will write:

• L∞(J) for the set of functions essentially bounded and (Lebesgue) measurable on
J ; the corresponding norm is ‖u‖∞ = sup ess{|u(t)| : t ∈ J}.

• L1(J) for the set of functions (Lebesgue) integrable on J ; the corresponding norm
is ‖u‖1 =

∫
J
|u(t)| dt.

• Lp(J) for the set of functions whose p-th powers of modulus are integrable on J ;

the corresponding norm is ‖u‖p =
(∫

J
|u(t)|p dt

) 1
p .

• C(J) and Ck(J) for the sets of functions continuous on J and having continuous
k-th derivatives on J, respectively.

• AC(J) and ACk(J) for the sets of functions absolutely continuous on J and having
absolutely continuous k-th derivatives on J, respectively.

• ACloc(J) and ACk
loc(J) for the sets of functions absolutely continuous on each com-

pact interval I ⊂ J and having absolutely continuous k-th derivatives on each
compact interval I ⊂ J, respectively.

• If J = [a, b], we will simply write C[a, b] instead of C([a, b]) and similarly for other
types of intervals and other functional sets defined above.

Further, we use the following notation:

• If u ∈ L∞[a, b] is continuous on [a, b], then max{|u(t)| : t ∈ [a, b]} = sup ess{|u(t)| :
t ∈ [a, b]}. Therefore the norm in C[a, b] will be denoted by ‖u‖∞ = max{|u(t)| :
t ∈ [a, b]} and the norm in Ck[a, b] by ‖u‖Ck =

∑k
i=0 ‖u(i)‖∞.

• Let n ∈ N and M⊂ Rn. Then M will denote the closure of M, ∂M the boundary
of M and meas (M) the Lebesgue measure of M.

• deg(I − F , Ω) stands for the Leray-Schauder degree of I − F with respect to Ω,
where I denotes the identity operator.

We say that a function f satisfies the Carathéodory conditions on the set [a, b]×M if:

f(·, x0, . . . , xn−1) : [a, b] → R is measurable for all (x0, x1, . . . , xn−1) ∈M; (0.1)

f(t, ·, . . . , ·) : M→ R is continuous for a.e. t ∈ [a, b]; (0.2)





for each compact set K ⊂M there is a function mK ∈ L1[a, b] such that

|f(t, x0, . . . , xn−1)| ≤ mK(t)

for a.e. t ∈ [a, b] and all (x0, x1, . . . , xn−1) ∈ K.

(0.3)
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In this case we will write f ∈ Car([a, b] × M). If J ⊂ [a, b] and J 6= J, then f ∈
Car(J ×M) will mean that f ∈ Car(I ×M) for each compact interval I ⊂ J.

1 . Principles of solvability of singular higher order BVPs

1.1 . Regular and singular BVPs

For n ∈ N, [0, T ] ⊂ R, i ∈ {0, 1, . . . , n − 1} and a closed set B ⊂ Ci[0, T ] consider the
boundary value problem

u(n) = f(t, u, . . . , u(n−1)), (1.1)

u ∈ B. (1.2)

In what follows, we will investigate the solvability of problem (1.1), (1.2) on the set
[0, T ] × A, where A is a closed subset of Rn or A = Rn. The classical existence results
are based on the assumption f ∈ Car([0, T ] × A). In this case we will say that problem
(1.1), (1.2) is regular on [0, T ]×A. If f 6∈ Car([0, T ]×A) we will say that problem (1.1),
(1.2) is singular on [0, T ]×A.

Motivated by the following applications we will mainly address singular problems.

Example 1. In certain problems in fluid dynamics and boundary layer theory (see e.g.
Callegari, Friedman, Nachman [45], [46], [47]) the second order differential equation

u′′ +
ψ(t)

uλ
= 0 (1.3)

arose. Here λ ∈ (0,∞) and ψ ∈ C(0, 1), ψ 6∈ L1[0, 1]. Equation (1.3) is known as the
generalized Emden-Fowler equation. Its solvability with the Dirichlet boundary conditions

u(0) = u(1) = 0 (1.4)

was investigated by Taliaferro [149] in 1979 and then by many other authors. Problem
(1.3), (1.4) has been studied on the set [0, 1]× [0,∞) because positive solutions have been
sought. We can see that f(t, x) = ψ(t) x−λ does not fulfil conditions (0.2) and (0.3) with
[a, b] = [0, 1] and M = [0,∞). Hence problem (1.3), (1.4) is singular on [0, 1]× [0,∞).

Example 2. Consider the fourth order degenerate parabolic equation

Ut + (|U |µ Uyyy)y = 0,

which arises in droplets and thin viscous flows models (see e.g. [33], [34]). The source-type
solutions of this equation have the form

U(y, t) = t−b u(y t−b), b =
1

µ + 4
,
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which leads to the study of the third order ordinary differential equation on [−1, 1],

u′′′ = b t u1−µ.

We see that f(t, x) = b t x1−µ is singular on [−1, 1]× [0,∞) if µ > 1.

Example 3. Similarly to Example 2, the sixth order degenerate equation

Ut − (|U |µ Uyyyyy)y = 0

which arises in semiconductor models (Bernis [31], [32]) leads to the fifth order ordinary
differential equation

−u(5) =
t

uλ

which is singular for λ > 0.

A solvability decision for singular boundary value problems requires an exact definition
of a solution to such problems. Here, we will work with the same definition of a solution
both for regular problems and for singular ones.

Definition 1.1. A function u ∈ ACn−1[0, T ] ∩ B is said to be a solution of problem
(1.1), (1.2), if it satisfies the equality u(n)(t) = f(t, u(t), . . . , u(n−1)(t)) a.e. on [0, T ]. If we
investigate problem (1.1), (1.2) on A 6= Rn, we moreover require (u(t), . . . , u(n−1)(t)) ∈ A
for t ∈ [0, T ].

In literature, an alternative approach to solvability of singular problems can be found.
In this approach, solutions are defined as functions whose (n− 1)-st derivatives can have
discontinuities at some points in [0, T ]. Here we will call them the w-solutions. According
to Kiguradze [97] or Agarwal and O’Regan [3] we define them as follows. In contrast to
our starting setting, to define w-solutions we assume that i ∈ {0, 1, . . . , n− 2} and B is a
closed subset in C i[0, T ].

Definition 1.2. We say that u is a w-solution of problem (1.1), (1.2) if there exists
a finite number of points tν ∈ [0, T ], ν = 1, 2, . . . , r, such that if we denote J = [0, T ] \
{tν}r

ν=1, then u ∈ Cn−2[0, T ]∩ACn−1
loc (J)∩B satisfies u(n)(t) = f(t, u(t), . . . , u(n−1)(t)) a.e.

on [0, T ]. If A 6= Rn we require (u(t), . . . , u(n−1)(t)) ∈ A for t ∈ J.

Clearly each solution is a w-solution and each w-solution which belongs to ACn−1[0, T ]
is a solution.

In the study of singular problem (1.1), (1.2) we will focus our attention on two types
of singularities of the function f :

Let J ⊂ [0, T ]. We say that f : J × A → R has singularities in its time variable t, if
J 6= J = [0, T ] and

f ∈ Car(J ×A) and f 6∈ Car([0, T ]×A). (1.5)
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Let D ⊂ A. We say that f : [0, T ] × D → R has singularities in its space variables
x0, x1, . . . , xn−1, if D 6= D = A and

f ∈ Car([0, T ]×D) and f 6∈ Car([0, T ]×A). (1.6)

We will study particular cases of (1.5) and (1.6) which will be described in Section 1.2
and Section 1.3, respectively.

1.2 . Singularities in time variable

According to (0.3) and (1.5) a function f has a singularity in its time variable t, if f is not
integrable on [0, T ]. Let us define it more precisely. Let k ∈ N, ti ∈ [0, T ], i = 1, . . . , k,
J = [0, T ] \ {t1, t2 . . . , tk} and let f ∈ Car(J × A). Assume that for each i ∈ {1, . . . , k}
there exists (x0, . . . , xn−1) ∈ A such that

∫ ti+ε

ti

|f(t, x0, . . . , xn−1)| dt = ∞ or
∫ ti

ti−ε

|f(t, x0, . . . , xn−1)| dt = ∞ (1.7)

for any sufficiently small ε > 0. Then f does not fulfil (0.3) with M = A and, according
to (1.5), function f has singularities in its time variable t, namely at the values t1, . . . , tk.
We will call these values the singular points of f.

Example. Let fi : Rn → R, i = 1, 2, . . . , k, be continuous. Then the function

f(t, x0, . . . , xn−1) =
k∑

i=1

1

t− ti
fi(x0, . . . , xn−1),

has singular points t1, t2, . . . , tk.

1.3 . Singularities in space variables

By virtue of (0.2) and (1.6) we see that if f has a singularity in some of its space variables
then f is not continuous in this variable on a region where f is studied. Motivated by
equation (1.3) we will consider the following case. Let Ai ⊂ R be a closed interval and let
ci ∈ Ai, Di = Ai \ {ci}, i = 0, 1, . . . , n− 1. Assume that there exists j ∈ {0, 1, . . . , n− 1}
such that





lim sup
xj→cj , xj∈Dj

|f(t, x0, . . . , xj, . . . , xn−1)| = ∞

for a.e. t ∈ [0, T ] and for some xi ∈ Di, i = 0, 1, . . . , n− 1, i 6= j.
(1.8)

If we put A = A0 × · · · × An−1, we see that f does not fulfil (0.2) with M = A and,
according to (1.6), the function f has a singularity in its space variable xj, namely at the
value cj.

Let u be a solution of (1.1), (1.2) and let a point tu ∈ [0, T ] be such that u(j)(tu) = cj for
some j ∈ {0, . . . , n−1}. Then tu is called a singular point corresponding to the solution u.
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Now, let u be a w-solution of (1.1), (1.2). Assume that a point tu ∈ [0, T ] is such that
u(n−1)(tu) does not exist or there is a j ∈ {0, . . . , n − 1} such that u(j)(tu) = cj. Then tu
is called a singular point corresponding to the w-solution u.

Example. Let h1, h2, h3 ∈ L1[0, T ], h2 6= 0, h3 6= 0 a.e. on [0, T ]. Consider the Dirichlet
problem

u′′ + h1(t) +
h2(t)

u
+

h3(t)

u′
= 0, u(0) = u(T ) = 0. (1.9)

Let u be a solution of (1.9). Then 0 and T are singular points corresponding to u.
Moreover, there exists at least one point tu ∈ (0, T ) satisfying u′(tu) = 0, which means
that tu is also a singular point corresponding to u. Note that (in contrast to the points 0
and T ) we do not know the location of tu in (0, T ).

In accordance with this example, we will distinguish two types of singular points
corresponding to solutions or to w-solutions: singular points of type I, where we know
their location in [0, T ] and singular points of type II whose location is not known.

1.4 . Existence principles for BVPs with time singularities

Singular problems are usually investigated by means of auxiliary regular problems. To
establish the existence of a solution of a singular problem we introduce a sequence of ap-
proximating regular problems which are solvable. Then we pass to the limit for the
sequence of approximate solutions to get a solution of the original singular problem. Here
we provide existence principles which contain the main rules for a construction of such
sequences to get either w-solutions or solutions.

Consider problem (1.1), (1.2) on [0, T ]×A. For the sake of simplicity assume that f
has only one time singularity at t = t0, t0 ∈ [0, T ]. It means that





J = [0, T ] \ {t0}, f ∈ Car(J ×A) satisfies at least one of the conditions

(i)

∫ t0

t0−ε

|f(t, x0, . . . , xn−1)| dt = ∞, t0 ∈ (0, T ],

(ii)

∫ t0+ε

t0

|f(t, x0, . . . , xn−1)| dt = ∞, t0 ∈ [0, T ),

for some (x0, x1, . . . , xn−1) ∈ A and each sufficiently small ε > 0.

(1.10)

Let us have a sequence of regular problems

u(n) = fk(t, u, . . . , u(n−1)), u ∈ B, (1.11)

where fk ∈ Car([0, T ]× Rn), k ∈ N.
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Theorem 1.3. (First existence principle for w-solutions of (1.1), (1.2))
Let (1.10) hold and let B be a closed subset in Cn−2[0, T ]. Assume that the conditions





for each k ∈ N and each (x0, . . . , xn−1) ∈ A,

fk(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1) a.e. on [0, T ] \ 4k,

where 4k = (t0 − 1
k
, t0 + 1

k
) ∩ [0, T ],

(1.12)

and 



there exists a bounded set Ω ⊂ Cn−1[0, T ] such that

for each k ∈ N the regular problem (1.11) has a solution uk ∈ Ω

and (uk(t), . . . , u
(n−1)
k (t)) ∈ A for t ∈ [0, T ]

(1.13)

are fulfilled.

Then{
there exist a function u ∈ Cn−2[0, T ] and a subsequence

{uk`
} ⊂ {uk} such that lim`→∞ ‖uk`

− u‖Cn−2 = 0;
(1.14)

{
lim`→∞ u

(n−1)
k`

(t) = u(n−1)(t) locally uniformly on J

and (u(t), . . . , u(n−1)(t)) ∈ A for t ∈ J ;
(1.15)

the function u ∈ ACn−1
loc (J) is a w-solution of problem (1.1), (1.2). (1.16)

Sketch of the proof. Step 1. Convergence of the sequence of approximate solutions.
Condition (1.13) implies that the sequences {u(i)

k }, 0 ≤ i ≤ n − 2, are bounded and
equicontinuous on [0, T ]. By the Arzelà–Ascoli theorem the assertion (1.14) is true and
u ∈ B ⊂ Cn−2[0, T ]. Since {u(n−1)

k } is bounded on [0, T ], we get, due to (1.11) and (1.12),
that for each t ∈ [0, t0) the sequence {u(n−1)

k } is equicontinuous on [0, t] and so the same
holds on [t, T ] if t ∈ (t0, T ]. The Arzelà–Ascoli theorem and the diagonalization principle
yield (1.15).

Step 2. Properties of the limit u.
By virtue of (1.12), (1.14) and (1.15) we have

lim
k`→∞

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t) = f(t, u(t), . . . , u(n−1)(t)) a.e. on [0, T ]. (1.17)

Hence, using the Lebesgue convergence theorem, we can deduce that if t0 6= 0 the limit u
solves the equation

u(n−1)(t) = u(n−1)(0) +

∫ t

0

f(s, u(s), . . . , u(n−1)(s)) ds for t ∈ [0, t0) (1.18)

and if t0 6= T the limit u solves the equation

u(n−1)(t) = u(n−1)(T )−
∫ T

t

f(s, u(s), . . . , u(n−1)(s)) ds for t ∈ (t0, T ], (1.19)
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which immediately yields (1.16). ¤

For the existence of a solution u ∈ ACn−1[0, T ] of problem (1.1), (1.2) we will impose
additional conditions on f on some neighbourhood of t0.

Theorem 1.4. (First existence principle for solutions of (1.1), (1.2)) Let all as-
sumptions of Theorem 1.3 be fulfilled. Further assume that




there exist ψ ∈ L1[0, T ], η > 0 and λ1, λ2 ∈ {−1, 1} such that

λ1 fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) ≥ ψ(t)

for all ` ∈ N and for a.e. t ∈ [t0 − η, t0) ∩ [0, T ] provided (1.10) (i) holds

and

λ2 fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) ≥ ψ(t)

for all ` ∈ N and for a.e. t ∈ (t0, t0 + η] ∩ [0, T ] provided (1.10) (ii) is true.

(1.20)

Then the assertions (1.14) and (1.15) are valid and u ∈ ACn−1[0, T ] is a solution of
problem (1.1), (1.2).

Sketch of the proof. Step 1. As in the proof of Theorem 1.3 we get that (1.14), (1.15)
and (1.16) hold.

Step 2. Since u is a w-solution of problem (1.1), (1.2), it remains to prove that u ∈
ACn−1[0, T ]. Assume that condition (1.10) (i) holds. Since

u
(n−1)
k`

(t)− u
(n−1)
k`

(t0 − η) =

∫ t

t0−η

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds (1.21)

for t ∈ (0, t0), we get due to (1.13) that there is a c ∈ (0,∞) such that

λ1

∫ t0

t0−η

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds ≤ c (1.22)

for each ` ∈ N. By the Fatou lemma, having in mind conditions (1.17), (1.20) and (1.22),
we deduce that f(t, u(t), . . . , u(n−1)(t)) ∈ L1[0, t0]. Similarly, if condition (1.10) (ii) holds,
we deduce that f(t, u(t), . . . , u(n−1)(t)) ∈ L1[t0, T ]. Therefore f(t, u(t), . . . , u(n−1)(t)) ∈
L1[0, T ] and due to (1.18) and (1.19) we have that u ∈ ACn−1[0, T ] is a solution of problem
(1.1), (1.2). ¤

In the sequel we will need the following definition:

Definition 1.5. Let [a, b] ⊂ R and {gk} ⊂ L1[a, b]. We say that the sequence {gk} is
uniformly integrable on [a, b] if





for each ε > 0 there exists δ > 0 such that

∞∑
j=1

(bj − aj) < δ =⇒
∞∑

j=1

∫ bj

aj

|gk(t)| dt < ε

for each k ∈ N and each sequence of intervals {(aj, bj)} in [a, b].

(1.23)
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Note that condition (1.23) is satisfied for example if there exists ψ ∈ L1[a, b] such that
|gk(t)| ≤ ψ(t) for a.e. t ∈ [a, b] and all k ∈ N.

Theorem 1.6. (Second existence principle for solutions of (1.1), (1.2)) Let all
assumptions of Theorem 1.3 be fulfilled and assume in addition that B is a closed subset
in Cn−1[0, T ] and that

{
there exists η > 0 such that the sequence {fk(t, uk(t), . . . , u

(n−1)
k (t))}

is uniformly integrable on [t0 − η, t0 + η] ∩ [0, T ].
(1.24)

Then

{
there exist a function u ∈ Ω and a subsequence {uk`

} ⊂ {uk} such that

lim`→∞ ‖uk`
− u‖Cn−1 = 0 and (u(t), . . . , u(n−1)(t)) ∈ A for t ∈ [0, T ]

(1.25)

and u ∈ ACn−1[0, T ] is a solution of problem (1.1), (1.2).

Sketch of the proof. Step 1. By (1.13) we get that the sequences {u(i)
k }, 0 ≤ i ≤ n−2,

are bounded in C[0, T ] and equicontinuous on [0, T ] and {u(n−1)
k } is bounded in C[0, T ].

Using (1.24) one can show that {u(n−1)
k } is also equicontinuous on [0, T ]. The Arzelà–Ascoli

theorem yields (1.25) and u ∈ B ⊂ Cn−1[0, T ].

Step 2. As in Step 2 of the proof of Theorem 1.3 we get that u is a w-solution of problem
(1.1), (1.2).

Step 3. It remains to prove that u ∈ ACn−1[0, T ]. Since u ∈ ACn−1
loc (J), it is sufficient to

prove
u(n−1) ∈ AC([t0 − η, t0 + η] ∩ [0, T ]). (1.26)

Assume that (1.10) (i) holds and [t0 − η, t0] ⊂ [0, T ]. By virtue of (1.17) and (1.24),
applying Vitali’s convergence theorem we obtain f(t, u(t), . . . , u(n−1)(t)) ∈ L1[t0 − η, t0].
If (1.10) (ii) holds, we can assume [t0, t0 + η] ⊂ [0, T ] and deduce similarly that

f(t, u(t), . . . , u(n−1)(t)) ∈ L1[t0, t0 + η].

Hence, we get (1.26). ¤

1.5 . Existence principles for BVPs with space singularities

Similarly to Section 1.4 we will establish sufficient properties for an approximate sequence
of regular problems and of their solutions to pass to a limit and yield a solution of the
original singular problem (1.1), (1.2). Let Ai ⊂ R, i = 0, . . . , n − 1, be closed intervals
and let A = A0 × · · · × An−1. Consider problem (1.1), (1.2) on [0, T ] × A and assume
that f has only one singularity at each xi, namely at the values ci ∈ Ai, i = 0, . . . , n− 1.
Denoting D = D0 × · · · × Dn−1, Di = Ai \ {ci}, i = 0, . . . , n− 1, we will assume that

f ∈ Car([0, T ]×D) satisfies (1.8) for j = 0, . . . , n− 1. (1.27)
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Consider a sequence of regular problems (1.11) where fk ∈ Car([0, T ] × Rn), k ∈ N.
We will use the approach used by Rach̊unková and Staněk in [127] and [128].

Theorem 1.7. (Second existence principle for w-solutions of (1.1), (1.2)) Let
(1.13), (1.27) hold and let B be a closed subset in Cn−2[0, T ]. Assume that

{
for each k ∈ N, for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D we have

fk(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1) if |xi − ci| ≥ 1
k
, 0 ≤ i ≤ n− 1.

(1.28)

Then the assertion (1.14) is valid.

If, moreover, the set

Σ =
{

s ∈ [0, T ] : u(i)(s) = ci for some i ∈ {0, . . . , n− 1}
or u(n−1)(s) does not exist

}

is finite, then the assertion (1.15) is valid for J = [0, T ] \ Σ. If, in addition,

{
the sequence {fk`

(t, uk`
(t), . . . , u

(n−1)
k`

(t))}
is uniformly integrable on each interval [a, b] ⊂ J

(1.29)

then u ∈ ACn−1
loc (J) is a w-solution of problem (1.1), (1.2).

Sketch of the proof. Step 1. Convergence of the sequence of approximate solutions.
As in Step 1 of the proof of Theorem 1.3 we get (1.14)and u ∈ B ⊂ Cn−2[0, T ].

Assume that Σ is finite and choose an arbitrary [a, b] ⊂ J. According to (1.27) and (1.28)
we can prove that the sequence {u(n−1)

k`
} is equicontinuous on [a, b]. Using the Arzelà-

Ascoli theorem and the diagonalization principle we deduce that the subsequence {uk`
}

can be chosen so that it fulfils (1.15).

Step 2. Convergence of the sequence of regular right-hand sides.
Consider sets

V1 = {t ∈ [0, T ] : f(t, ·, . . . , ·) : D → R is not continuous},
V2 = {t ∈ [0, T ] : the equality in (1.28) is not valid}.

We can see that meas (V1) = meas (V2) = 0. Denote U = Σ ∪ V1 ∪ V2 and choose an
arbitrary t ∈ [0, T ] \ U . By (1.14) and (1.15) there exists `0 ∈ N such that for each ` ∈ N,
` ≥ `0,

|u(i)(t)− ci| > 1

k`

, |u(i)
k`

(t)− ci| ≥ 1

k`

for i ∈ {0, . . . , n− 1}.

According to (1.28) we have

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) = f(t, uk`
(t), . . . , u

(n−1)
k`

(t))
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and, by (1.14), (1.15),

lim
`→∞

fk`
(t, uk`

(t), . . . , u
(n−1)
k`

(t)) = f(t, u(t), . . . , u(n−1)(t)). (1.30)

Since meas (U) = 0, (1.30) holds for a.e. t ∈ [0, T ].

Step 3. Existence of a w-solution.
Choose an arbitrary interval [a, b] ⊂ J. By (1.29) and (1.30) we can use Vitali’s

convergence theorem [24] to show that f(t, u(t), . . . , u(n−1)(t)) ∈ L1[a, b] and if we pass to
the limit in the sequence

u
(n−1)
k`

(t) = u
(n−1)
k`

(a) +

∫ t

a

fk`
(s, uk`

(s), . . . , u
(n−1)
k`

(s)) ds, t ∈ [a, b],

we get

u(n−1)(t) = u(n−1)(a) +

∫ t

a

f(s, u(s), . . . , u(n−1)(s)) ds, t ∈ [a, b].

Since [a, b] ⊂ J is an arbitrary interval, we conclude that u ∈ ACn−1
loc (J) satisfies equation

(1.1) for a.e. t ∈ [0, T ]. ¤

Theorem 1.8. (Third existence principle for solutions of (1.1), (1.2)) Let (1.13),
(1.27), (1.28) hold and let B be a closed subset of Cn−1[0, T ]. Further, assume that the
sequence

{fk(t, uk(t), . . . , u
(n−1)
k (t))} is uniformly integrable on [0, T ]. (1.31)

Then the assertion (1.25) is valid. If, moreover, the functions u(i)− ci, 0 ≤ i ≤ n− 1,
have at most a finite number of zeros in [0, T ], then u ∈ ACn−1[0, T ] is a solution of (1.1),
(1.2).

Sketch of the proof. Step 1. As in Step 1 in the proof of Theorem 1.6 we get that
(1.25) is valid and u ∈ B ⊂ Cn−1[0, T ].

Step 2. As in Step 2 in the proof of Theorem 1.7 we get that (1.30) is valid.

Step 3. We can argue as in Step 3 in the proof of Theorem 1.7 if we take [0, T ] instead of
[a, b] and (1.31) instead of (1.29). ¤

2 . Existence results for singular two-point higher order BVPs

In this section we are interested in problems for higher order differential equations hav-
ing singularities in their space variables only (see Section 1.3). We consider the focal,
conjugate, (n, p), Sturm-Liouville and Lidstone boundary conditions which appear most
frequently in literature. Boundary conditions considered are two-point, linear and homo-
geneous.

Existence results for the above singular problems are proved by regularization and
sequential techniques which consist in the construction of a proper sequence of auxiliary
regular problems and in limit processes (see Section 1.5). To prove solvability of the
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auxiliary regular problems we use the Nonlinear Fredholm Alternative (see, e.g., [101],
Theorem 4 or [154], p. 25) which we formulate in the form convenient for our problems.
In particular, we consider the differential equation

u(n) +
n−1∑
i=0

ai(t) u(i) = g(t, u, . . . , u(n−1)) (2.1)

and the corresponding linear homogeneous differential equation

u(n) +
n−1∑
i=0

ai(t) u(i) = 0 (2.2)

where ai ∈ L1[0, T ], 0 ≤ i ≤ n− 1, g ∈ Car([0, T ]×Rn). Further, we introduce boundary
conditions

Lj(u) = rj, 1 ≤ j ≤ n, (2.3)

and the corresponding homogeneous boundary conditions

Lj(u) = 0, 1 ≤ j ≤ n, (2.4)

where Lj : Cn−1[0, T ] → R are linear and continuous functionals and rj ∈ R, 1 ≤ j ≤ n.

Theorem 2.1. (Nonlinear Fredholm Alternative) Let the linear homogeneous problem
(2.2), (2.4) have only the trivial solution and let there exist a function ψ ∈ L1[0, T ] such
that

|g(t, x0, . . . , xn−1)| ≤ ψ(t) for a.e. t ∈ [0, T ] and all x0, . . . , xn−1 ∈ R.

Then the nonlinear problem (2.1), (2.3) has a solution u ∈ ACn−1[0, T ].

2.1 . Focal conditions

We discuss the singular (p, n− p) right focal problem

(−1)n−p u(n) = f(t, u, . . . , u(n−1)), (2.5)

u(i)(0) = 0, 0 ≤ i ≤ p− 1, u(j)(T ) = 0, p ≤ j ≤ n− 1, (2.6)

where n ≥ 2, p ∈ N is fixed, 1 ≤ p ≤ n− 1, f ∈ Car([0, T ]×D) with

D =





Rp+1
+ × R− × R+ × R− × · · · × R+︸ ︷︷ ︸

n

if n− p is odd

Rp+1
+ × R− × R+ × R− × · · · × R−︸ ︷︷ ︸

n

if n− p is even

and f may be singular at the value 0 of all its space variables. Here R− = (−∞, 0) and
R+ = (0,∞). Notice that if f > 0 then the singular points corresponding to the solutions
of problem (2.5), (2.6) are only of type I. The Green function of problem u(n) = 0, (2.6)
is presented in [19] and [20].

The existence result for the singular problem (2.5), (2.6) is given in the following
theorem.
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Theorem 2.2. ([126, Theorem 4.3]) Let f ∈ Car([0, T ]×D) and let there exist positive
constants ε and r such that

ε (T − t)r ≤ f(t, x0, . . . , xn−1) for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D.

Also assume that for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D we have

f(t, x0, . . . xn−1) ≤ ϕ(t) +
n−1∑
i=0

ωi(|xi|) +
n−1∑
i=0

hi(t) |xi|αi ,

where αi ∈ (0, 1), ϕ, hi ∈ L1[0, T ] are nonnegative, ωi : R+ → R+ are nonincreasing,
0 ≤ i ≤ n− 1, and

∫ T

0

ωi(t
r+n−i) dt < ∞ for 0 ≤ i ≤ n− 1.

Then there exists a solution u ∈ ACn−1[0, T ] of problem (2.5), (2.6) with
{

u(i) > 0 on (0, T ] for 0 ≤ i ≤ p− 1,

(−1)j−p u(j) > 0 on [0, T ) for p ≤ j ≤ n− 1.
(2.7)

Sketch of proof. Step 1. Construction of a sequence of regular differential equations
related to equation (2.5).

Put

ϕ∗(t) = ϕ(t) +
n−1∑
i=0

ωi(1) +
n−1∑
i=0

hi(t) for a.e. t ∈ [0, T ].

Then ϕ∗ ∈ L1[0, T ] and there exists r∗ > 0 such that the estimate ‖u(n−1)‖∞ < r∗ is valid
for any function u ∈ ACn−1[0, T ] satisfying (2.6), (−1)n−p u(n)(t) ≥ ε (T − t)r and

(−1)n−p u(n)(t) ≤ ϕ∗(t) +
n−1∑
i=0

ωi(|u(i)(t)|) +
n−1∑
i=0

hi(t) |u(i)(t)|αi

for a.e. t ∈ [0, T ]. Now for m ∈ N, 0 ≤ i ≤ n− 1 and x ∈ R, put %i = 1 + r∗T n−i−1 and

σi(
1
m

, x) =





1
m

sign x for |x| < 1
m

,

x for 1
m
≤ |x| ≤ %i,

%i sign x for %i < |x|.

Extend f onto [0, T ] × (R \ {0})n as an even function in each of its space variables xi,
0 ≤ i ≤ n − 1, and for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ Rn, define auxiliary
functions

fm(t, x0, . . . , xn−1) = f(t, σ0(
1

m
,x0), . . . , σn−1(

1

m
,xn−1)), m ∈ N.
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In this way we get the family of regular differential equations

(−1)n−p u(n) = fm(t, u, . . . , u(n−1)) (2.8)

depending on m ∈ N.

Step 2. Properties of solutions to problems (2.8), (2.6).
By Theorem 2.1 we show that for any m ∈ N, problem (2.8), (2.6) has a solution

um ∈ ACn−1[0, T ] satisfying (for t ∈ [0, T ])




u
(i)
m (t) ≥ c tr+n−i if 0 ≤ i ≤ p− 1,

(−1)i−p u
(i)
m (t) ≥ c (T − t)r+n−i if p ≤ i ≤ n− 1,

(2.9)

where c is a positive constant and ‖u(n−1)
m ‖∞ < r∗. Moreover, the sequence {u(n−1)

m } is
equicontinuous on [0, T ]. By virtue of the Arzelà-Ascoli theorem, a convergent subsequence
{ukm} exists and let limm→∞ ukm = u. Then u ∈ Cn−1[0, T ], u satisfies (2.6) and, because
of (2.9),

u(i)(t) ≥ c tr+n−i for t ∈ [0, T ] and 1 ≤ i ≤ p− 1,

(−1)i−p u(i)(t) ≥ c (T − t)r+n−i for t ∈ [0, T ] and p ≤ i ≤ n− 1.

Also,

|fkm(t, ukm(t), . . . , u
(n−1)
km

(t))| ≤ %(t) for a.e. t ∈ [0, T ] and all m ∈ N,

where % ∈ L1[0, T ] and

lim
m→∞

fkm(t, ukm(t), . . . , u
(n−1)
km

(t)) = f(t, u(t), . . . , u(n−1)(t)) for a.e. t ∈ [0, T ].

Now, letting m →∞ in

u
(n−1)
km

(t) = u
(n−1)
km

(0) + (−1)n−p

∫ t

0

fkm(s, ukm(s), . . . , u
(n−1)
km

(s)) ds

we conclude

u(n−1)(t) = u(n−1)(0) + (−1)n−p

∫ t

0

f(s, u(s), . . . , u(n−1)(s)) ds, t ∈ [0, T ].

Hence u ∈ ACn−1[0, T ] and u is a solution of problem (2.5), (2.6). ¤

Example. Let γ ∈ (0, 1), αi ∈ [0, 1), ci ∈ (0,∞), βi ∈
(
0, 1

n+γ−i

)
and let hi ∈ L1[0, T ]

be nonnegative for 0 ≤ i ≤ n − 1. Then, by Theorem 2.2, there exists a solution u ∈
ACn−1[0, T ] of the differential equation

(−1)n−p u(n) =

(
T − t

t

)γ

+
n−1∑
i=0

ci

|u(i)|βi
+

n−1∑
i=0

hi(t) |u(i)|αi

satisfying the (p, n− p) right focal boundary conditions (2.6) and (2.7).
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Remark 2.3. Substituting t = T − s in (2.5), (2.6) and using Theorem 2.2 we can
also give results for the existence of solutions to singular differential equations satisfying
(n− p, p) left focal boundary conditions

u(i)(0) = 0, p ≤ i ≤ n− 1, u(j)(T ) = 0, 0 ≤ j ≤ p− 1

(see [126, Theorem 4.4]).

The singular problem (2.5), (2.6) was also considered on the interval [0, 1] by Agarwal,
O’Regan and Lakshmikantham in [13] where f is assumed to be continuous and indepen-
dent of space variables xp, . . . , xn−1 and may be singular at xi = 0, 0 ≤ i ≤ p − 1. They
examined the problem

{
(−1)n−p u(n) = ϕ(t) h(t, u, . . . , u(p−1)),

u(i)(0) = 0, 0 ≤ i ≤ p− 1, u(j)(1) = 0, p ≤ j ≤ n− 1,
(2.10)

under the assumptions

ϕ ∈ C0(0, 1) with ϕ > 0 on (0, 1) and ϕ ∈ L1[0, 1], (2.11)

h : [0, 1]× Rp
+ → R+ is continuous, (2.12)





h(t, x0, . . . , xp−1) ≤
∑p−1

i=0 gi(xi) + r (max{x0, . . . , xp−1}) on [0, 1]× Rp
+

with gi > 0 continuous and nonincreasing on R+ for each i = 0, . . . , p− 1

and r ≥ 0 continuous and nondecreasing on [0,∞),

(2.13)





h(t, x0, . . . , xp−1) ≥
p−1∑
i=0

hi(xi) on [0, 1]× Rp
+

with hi > 0 continuous and nonincreasing on R+ for each i = 0, . . . , p− 1,

(2.14)





∫ 1

0

ϕ(t) gi(ki t
p−i) dt < ∞ for each i = 0, . . . , p− 1,

where ki > 0 (i = 0, . . . , p− 1) are constants
(2.15)

and




if z > 0 satisfies z ≤ a0 + b0 r(z) for constants a0 ≥ 0 and b0 ≥ 0,

then there exists a constant K (which may depend only on a0 and b0)

such that z ≤ K.

(2.16)

The next result was proved by sequential technique and a nonlinear alternative of Leray-
Schauder type ([81, Theorem 2.3]).

Theorem 2.4. ([13, Theorem 2.1]) Suppose (2.11)− (2.16) hold.
Then problem (2.10) has a solution u ∈ Cn−1[0, 1]∩Cn(0, 1) with u(i) > 0 on (0, 1] for

0 ≤ i ≤ p− 1.
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Example. Consider the problem




(−1)n−p u(n) =

p−1∑
i=0

( 1

(u(i))βi
+ µi (u

(i))αi + τi

)
,

u(i)(0) = 0, 0 ≤ i ≤ p− 1, u(j)(1) = 0, p ≤ j ≤ n− 1

(2.17)

with βi ∈ (0,∞), µi, τi ∈ [0,∞), αi ∈ [0, 1) for 0 ≤ i ≤ p − 1. In addition, assume
βi (p − i) < 1 for i = 0, . . . , p − 1. Theorem 2.4 guarantees that problem (2.17) has
a solution u ∈ Cn−1[0, 1] ∩ Cn(0, 1) with u(i) > 0 on (0, 1] for 0 ≤ i ≤ p− 1.

2.2 . Conjugate conditions

Let 1 ≤ p ≤ n− 1 be a fixed natural number. Consider the (p, n− p) conjugate problem

(−1)p u(n) = f(t, u, . . . , u(n−1)), (2.18)

u(i)(0) = 0, 0 ≤ i ≤ n− p− 1, u(j)(T ) = 0, 0 ≤ j ≤ p− 1 (2.19)

where n ≥ 2, f ∈ Car([0, T ] × D), D = (0,∞) × (R \ {0})n−1 and f may be singular at
the value 0 of all its space variables.

Replacing t by T − t, if necessary, we may assume that p ∈ {1, . . . , n
2
} for n even and

p ∈ {1, . . . , n+1
2
} for n odd. We observe that the larger p is chosen, the more complicated

structure of the set of all singular points of a solution to (2.18), (2.19) and its derivatives
is obtained. We note that solutions of problem (2.18), (2.19) have singular points of type
I at t = 0 and/or t = T and also singular points of type II. Since the singular problem
(2.18), (2.19) for n = 2 is the Dirichlet problem discussed in Section 4, we assume that
n > 2.

Theorem 2.5. ([127, Theorems 2.1 and 2.7] and [129]) Let n > 2 and 1 ≤ p ≤ n− 1 be
fixed natural numbers. Suppose that the following conditions are satisfied:{

f ∈ Car([0, T ]×D) and there exists c > 0 such that

c ≤ f(t, x0, . . . , xn−1) for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈ D,
(2.20)





h ∈ Car([0, T ]× [0,∞)) is nondecreasing in its second variable and

lim sup
z→∞

1

z

∫ T

0

h(t, z) dt <
(
1 +

n−2∑
i=0

T n−i−1

(n− i− 2)!

)−1

,
(2.21)





ωi : (0,∞) → (0,∞) are nonincreasing and
∫ T

0

ωi(t
n−i) dt < ∞ for 0 ≤ i ≤ n− 1,

(2.22)





f(t, x0, . . . , xn−1) ≤ h
(
t,

n−1∑
i=0

|xi|
)

+
n−1∑
i=0

ωi(|xi|)
for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈ D.

(2.23)
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Then the (p, n − p) conjugate problem (2.18), (2.19) has a solution u ∈ ACn−1[0, T ]
and u > 0 on (0, T ).

Sketch of proof. Step 1. Uniform integrability.
Put

B =
{

u ∈ ACn−1[0, T ] : u satisfies (2.19) and (−1)p u(n)(t) ≥ c for a.e. t ∈ [0, T ]
}

,

where c > 0 is taken from (2.20). Conditions (2.20) and (2.22) guarantee that there exists
a positive constant A such that

∫ T

0

ωi(|u(i)(t)|) dt ≤ A for each u ∈ B and 0 ≤ i ≤ n− 1

and that the set of functions {ωi(|u(i)(t)|) : u ∈ B, 0 ≤ i ≤ n− 1} is uniformly integrable
on [0, T ]. Also, u > 0 on (0, T ) for each u ∈ B.

Step 2. Estimates of functions belonging to B.
By virtue of (2.21), there exists r∗ > 1 such that the estimate ‖u‖Cn−1 < r∗ holds for

each function u ∈ B satisfying

u(n)(t) ≤ h
(
t, n +

n−1∑
i=0

|u(i)(t)|
)

+
n−1∑
i=0

[ωi(|u(i)(t)|) + ωi(1)] for a.e. t ∈ [0, T ].

Step 3. Construction of regular problems to (2.18), (2.19) and properties of their solutions.
For m ∈ N, let hm ∈ Car([0, T ]× ([0,∞)× Rn−1)) be such that hm(t, x0, . . . , xn−1) =

f(t, x0, . . . , xn−1) for a.e. t ∈ [0, T ] and any x0 ≥ 1
m

, |xj| ≥ 1
m

, 1 ≤ j ≤ n− 1. Put

fm(t, x0, x1, . . . , xn−1) = hm(t, σ0(x0), σ(x1), . . . , σ(xn−1))

for a.e. t ∈ [0, T ] and each (x0, x1, . . . , xn−1) ∈ Rn, where

σ0(x) =

{
|x| if |x| ≤ r∗,

r∗ if |x| > r∗,
σ(x) =

{
x if |x| ≤ r∗,

r∗ sign x if |x| > r∗.

Now, the sequence of regular differential equations

(−1)p u(n) = fm(t, u, . . . , u(n−1)) (2.24)

is considered. It follows from Theorem 2.1 that for each m ∈ N there exists a solution
um of problem (2.24), (2.19) and ‖um‖Cn−1 < r∗. Moreover, the sequence of functions
{fm(t, um(t), . . . , u

(n−1)
m (t))} is uniformly integrable on [0, T ]. By the Arzelà-Ascoli theo-

rem there exists a subsequence {ukm} converging in Cn−1[0, T ], limm→∞ ukm = u. Then
u ∈ Cn−1[0, T ] satisfies (2.19) and for each i ∈ {1, . . . , n − 1}, the function u(n−i) has a
finite number of zeros 0 ≤ ai1 < · · · < ai,pi

≤ T and satisfies

|u(n−i)(t)| ≥ c

i!
(t− aik)

i for t ∈ [aik, ai,k+1]

or
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|u(n−i)(t)| ≥ c

i!
(ai,k+1 − t)i for t ∈ [aik, ai,k+1]

(see [129]). Therefore u ∈ ACn−1[0, T ] and u is a solution of problem (2.18), (2.19) due
to Theorem 1.8. From Step 1 and (2.20) it follows that u > 0 on (0, T ). ¤

Example. Let p ∈ {1, . . . , n − 1}. Let αi ∈ (0, 1), βi ∈ (0, 1
n−i

) and bi ∈ L1[0, T ], ci ∈
L∞[0, T ] be nonnegative for 0 ≤ i ≤ n − 1. Also, let ϕ ∈ L1[0, T ] and ϕ(t) ≥ c for a.e.
t ∈ [0, T ] with c > 0. Then the differential equation

(−1)p u(n) = ϕ(t) +
n−1∑
i=0

(
bi(t) |u(i)|αi +

ci(t)

|u(i)|βi

)

has a solution u ∈ ACn−1[0, T ] satisfying (2.19) and u > 0 on (0, T ).

2.3 . (n, p) boundary conditions

Here we are concerned with the singular (n, p) problem

−u(n) = f(t, u, . . . , u(n−1)), (2.25)

u(i)(0) = 0, 0 ≤ i ≤ n− 2, u(p)(T ) = 0, p fixed, 0 ≤ p ≤ n− 1, (2.26)

where n ≥ 2, f ∈ Car([0, T ] × D), D = (0,∞) × (R \ {0})n−2 × R and f may be
singular at the value 0 of its space variables x0, . . . , xn−2. Notice that the (n, 0) problem
is simultaneously also the (1, n − 1) conjugate problem. For f > 0, solutions of problem
(2.25), (2.26) have singular points of type I at t = 0, t = T and also singular points of
type II.

Theorem 2.6. ([15, Theorem 4.2]) Suppose




f ∈ Car([0, T ]×D) and there exist positive ψ ∈ L1[0, T ] and

K ∈ (0,∞) such that ψ(t) ≤ f(t, x0, . . . , xn−1) for a.e. t ∈ [0, T ]

and each (x0, . . . , xn−1) ∈ (0, K]× (R \ {0})n−2 × R,

(2.27)





hj ∈ L1[0, T ] is nonnegative, ωi : (0,∞) → (0,∞) is nonincreasing and

n−1∑

k=0

1

(n− k − 1)!

∫ T

0

hk(t)t
n−k−1 dt < 1,

∫ T

0

ωi(t
n−i−1) dt < ∞

for 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ n− 2,

(2.28)





for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D we have

f(t, x0, . . . , xn−1) ≤ ϕ(t) +
n−2∑
i=0

ωi(|xi|) +
n−1∑
j=0

hj(t) |xj|

where ϕ ∈ L1[0, T ] is nonnegative.

(2.29)
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Then there exists a solution u ∈ ACn−1[0, T ] of problem (2.25), (2.26) with u(i) > 0
on (0, T ] for 0 ≤ i ≤ p− 1 and u(p) > 0 on (0, T ).

Sketch of proof. Step 1. A priori bounds for solutions of problem (2.25), (2.26).
Upper and lower bounds for solutions of problem (2.25), (2.26) and their derivatives

are given by means of the Green function of the problem −u(n) = 0, (2.26) (see e.g. [1]).

Step 2. Construction of auxiliary regular problems and properties of their solutions.
Using Step 1, a sequence of regular differential equations

−u(n) = fm(t, u, . . . , u(n−1)), m ∈ N, m ≥ m0 ≥ 1

K
, (2.30)

with fm ∈ Car([0, T ] × Rn) is constructed. By the Leray-Schauder degree theory, we
prove that for any m ≥ m0 problem (2.30), (2.26) has a solution um. The sequence
{um}∞m=m0

is bounded in Cn−1[0, T ] and {u(n−1)
m }∞m=m0

is equicontinuous on [0, T ]. The
Arzelà-Ascoli theorem guarantees the existence of a subsequence {uk}∞k=1 of {um}∞m=m0

converging in Cn−1[0, T ] to a function u. Then u ∈ Cn−1[0, T ] satisfies (2.26) and u(i) > 0
on (0, T ] for 0 ≤ i ≤ p − 1 (if p ≥ 1) and u(p) > 0 on (0, T ). Moreover, for each
i ∈ {p + 1, . . . , n− 2}, the function u(i) has a unique zero ξi in (0, T ) (0 < ξn−2 < ξn−1 <
· · · < ξp+1 < T ) and satisfies

u(i)(t) ≥
{

c tn−i−1 for t ∈ [0, ξi+1],

c (ξi − t) for t ∈ [ξi+1, ξi],
u(i)(t) ≤ c (ξi − t) for t ∈ [ξi, T ]

where c is a positive constant. Since {fk(t, uk(t), . . . , u
(n−1)
k (t))} is uniformly integrable

on [0, T ], we can use Theorem 1.8 concluding that u ∈ ACn−1[0, T ] and u is a solution of
problem (2.25), (2.26). ¤

A related existence result for the singular (n, p) problem
{
−u(n) = ϕ(t) h(t, u, . . . , u(p−1)),

u(i)(0) = 0, 0 ≤ i ≤ n− 2, u(p)(1) = 0, p fixed, 1 ≤ p ≤ n− 1
(2.31)

was presented in [13] with h continuous and positive on [0, 1]× (0,∞)p and ϕ ∈ C0(0, 1)∩
L1[0, 1] positive on (0, 1). In this setting solutions of problem (2.31) cannot have singular
points of type II. The result is the following.

Theorem 2.7. ([13, Theorem 3.1]) Suppose that (2.11)− (2.14) and (2.16) hold and





∫ 1

0

ϕ(t) gi(ki t
n−1−i) dt < ∞ for each i = 0, . . . , p− 1,

where ki > 0, i = 0, . . . , p− 1, are constants.

Then problem (2.31) has a solution u ∈ Cn−1[0, 1]∩Cn(0, 1) with u(j) > 0 on (0, 1] for
0 ≤ j ≤ p− 1.
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2.4 . Sturm-Liouville conditions

We are now concerned with the Sturm-Liouville problem for the n-order differential equa-
tion (2.25), n ≥ 3, and the boundary conditions




u(i)(0) = 0, 0 ≤ i ≤ n− 3,

α u(n−2)(0)− β u(n−1)(0) = 0,

γ u(n−2)(T ) + δ u(n−1)(T ) = 0,

(2.32)

where α, γ > 0 and β, δ ≥ 0. Notice that the function f in equation (2.25) may be
singular at the value 0 of its space variables x0, . . . , xn−1. If f > 0, solutions of problem
(2.25), (2.32) have singular points of type I at the end points of the interval [0, T ] and
also singular points of type II.

We will impose the following conditions on the function f in (2.25):





f ∈ Car([0, T ]×D) where D = (0,∞)n−1 × (R \ {0})
and there exist positive constants ε and r such that

ε tr ≤ f(t, x0, . . . , xn−1)

for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D;

(2.33)





for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D,

f(t, x0, . . . , xn−1) ≤ ϕ(t) +
n−1∑
i=0

ωi(|xi|) +
n−1∑
i=0

hi(t) |xi|αi

with αi ∈ (0, 1), ϕ, hi ∈ L1[0, T ] nonnegative,

ωi : (0,∞) → (0,∞) nonincreasing, 0 ≤ i ≤ n− 1, and

∫ T

0

ωn−1(t
r+1) dt < ∞,

∫ T

0

ωi(t
n−i−1) dt < ∞ for 0 ≤ i ≤ n− 2;

(2.34)





for a.e. t ∈ [0, T ] and each (x0, . . . , xn−1) ∈ D,

f(t, x0, . . . , xn−1) ≤ ϕ(t) +
n−1∑

i=0,i6=n−2

ωi(|xi|) + q(t) ωn−2 (|xn−2|) +
n−1∑
i=0

hi(t) |xi|αi

with αi ∈ (0, 1), ϕ, q, hi ∈ L1[0, T ] nonnegative,

ωi : (0,∞) → (0,∞) nonincreasing, 0 ≤ i ≤ n− 1, and
∫ T

0

ωn−1(t
r+1) dt < ∞,

∫ T

0

ωj(t
n−j−2) dt < ∞ for 0 ≤ j ≤ n− 3.

(2.35)

The next two theorems show that our sufficient conditions for the solvability of prob-
lem (2.25), (2.32) with min{β, δ} > 0 are weaker then those for this problem with
min{β, δ} = 0.
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Theorem 2.8. ([126, Theorem 4.1]) Let conditions (2.33) and (2.34) be satisfied and let
min{β, δ} = 0.

Then problem (2.25), (2.32) has a solution u ∈ ACn−1[0, T ], u(n−2) > 0 on (0, T ) and
u(j) > 0 on (0, T ] for 0 ≤ j ≤ n− 3.

Sketch of proof. Step 1. A priori bounds for the solution of (2.25), (2.32).
By (2.33) and by the properties of the Green function to problem

−u′′ = 0, α u(0)− β u′(0) = 0, γ u(T ) + δ u′(T ) = 0,

the existence of a positive constant A is proved such that for any function u ∈ ACn−1[0, T ]
satisfying (2.32) and −u(n)(t) ≥ ε tr for a.e. t ∈ [0, T ] we have

u(n−2)(t) ≥
{

A t for t ∈ [0, T
2
],

A (T − t) for t ∈ (T
2
, T ],

(2.36)

u(j)(t) ≥ A

4 (n− j − 1)!
tn−j−1 for t ∈ [0, T ] and 0 ≤ j ≤ n− 3 (2.37)

and

u(n−1)(t)




≥ ε

r + 1
(ξ − t)r+1 for t ∈ [0, ξ],

< − ε

r + 1
(t− ξ)r+1 for t ∈ (ξ, T ],

(2.38)

where ξ ∈ (0, T ) (depending on the solution u) is the unique zero of u(n−1). Condition
(2.34) guarantees the existence of a positive constant S such that ‖u‖Cn−1 ≤ S for any
solution u to (2.25), (2.32).

Step 2. Construction of regular differential equations.
Using Step 1, a sequence of regular differential equations (2.30) is constructed where

fm ∈ Car([0, T ]× Rn),

fm(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1) for a.e. t ∈ [0, T ] and all (x0, . . . , xn−1) ∈ Rn

such that

1

m
≤ xj ≤ S + 1 if 0 ≤ j ≤ n− 2,

1

m
≤ |xn−1| ≤ S + 1

and

sup{fm(t, x0, . . . , xn−1) : (x0, . . . , xn−1) ∈ Rn} ∈ L1[0, T ] for all m ∈ N.

Then Theorem 2.1 guarantees that the regular problem (2.30), (2.32) has a solution um

which satisfies (2.36)-(2.38) (with um instead of u).

Step 3. Properties of solutions to regular problems (2.30, (2.32).
The sequence {um} is considered. It is proved that {um} is bounded in Cn−1[0, T ] and,

by (2.34), the sequence of functions {fm(t, um(t), . . . , u
(n−1)
m (t))} is uniformly integrable
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on [0, T ], which implies that {u(n−1)
m } is equicontinuous on [0, T ]. Hence a subsequence

{ukm} converging in Cn−1[0, T ] exists and let limm→∞ ukm = u. Since u satisfies (2.36)-
(2.38), the functions u(i), 0 ≤ i ≤ n− 1, have a finite number of zeros in [0, T ]. Therefore,
by Theorem 1.8, u ∈ ACn−1[0, T ] and u is a solution of problem (2.25), (2.32) such that
u(j) > 0 on (0, T ] for 0 ≤ j ≤ n− 3 and u(n−2) > 0 on (0, T ). ¤
Theorem 2.9. ([126, Theorem 4.2]) Let conditions (2.33) and (2.35) be satisfied and let
min{β, δ} > 0.

Then there exists a solution u ∈ ACn−1[0, T ] of problem (2.25), (2.32) such that
u(n−2) > 0 on [0, T ] and u(j) > 0 on (0, T ] for 0 ≤ j ≤ n− 3.

Sketch of proof. Since min{β, δ} > 0, there is a positive constant B such that
u(n−2) ≥ B on [0, T ] for any solution u of problem (2.25), (2.32). Further, the inequalities
(2.37) with B instead of A and (2.38) hold. Next we argue as in the sketch of proof to
Theorem 2.8. ¤

2.5 . Lidstone conditions

Let R− = (−∞, 0), R+ = (0,∞) and R0 = R \ {0}. Here we will consider the singular
problem

(−1)n u(2n) = f(t, u, . . . , u(2n−2)), (2.39)

u(2j)(0) = u(2j)(T ) = 0, 0 ≤ j ≤ n− 1, (2.40)

where n ≥ 1 and f ∈ Car([0, T ]×D) with

D =





R+ × R0 × R− × R0 × · · · × R+︸ ︷︷ ︸
4k−3

if n = 2k − 1

R+ × R0 × R− × R0 × · · · × R−︸ ︷︷ ︸
4k−1

if n = 2k

(for n = 1, 2 and 3 we have D = R+, D = R+ ×R0 ×R− and D = R+ ×R0 ×R− ×R0 ×
R+, respectively). The function f may be singular at the value 0 of its space variables
x0, . . . , x2n−2. If f is positive on [0, T ]×D, solutions of problem (2.39), (2.40) have singular
points of type I at t = 0 and t = T as well as singular points of type II.

Theorem 2.10. ([15, Theorem 4.1]) Let the following conditions be satisfied:





f ∈ Car([0, T ]×D) and there exists ϕ ∈ L1[0, T ] such that

0 < ϕ(t) ≤ f(t, x0, . . . , x2n−2)

for a.e. t ∈ [0, T ] and each (x0, . . . , x2n−2) ∈ D;

(2.41)
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



for 0 ≤ j ≤ 2n− 2, hj ∈ L1[0, T ] are nonnegative and
n−1∑
j=0

T 2(n−j)−3

6n−j−1

∫ T

0

t (T − t) h2j(t) dt

+
n−2∑
j=0

T 2(n−j−2)

6n−j−2

∫ T

0

t (T − t) h2j+1(t) dt < 1

(here
∑n−2

j=0 = 0 if n = 1);

(2.42)





ωj : R+ → R+ are nonincreasing, Λ > 0 and∫ T

0

ωj(s) ds < ∞, ωj(u v) ≤ Λ ωj(u) ωj(v)

for 0 ≤ j ≤ 2n− 2 and u, v ∈ R+;

(2.43)





f(t, x0, . . . , x2n−2) ≤ ψ(t) +
2n−2∑
j=0

ωj(|xj|) +
2n−2∑
j=0

hj(t) |xj|

for a.e. t ∈ [0, T ] and each (x0, . . . , x2n−2) ∈ D,

where ψ ∈ L1[0, T ] is nonnegative.

(2.44)

Then problem (2.39), (2.40) has a solution u ∈ AC2n−1[0, T ] and

(−1)j u(2j) > 0 on (0, T ) for 0 ≤ j ≤ n− 1.

Sketch of proof. Step 1. A priori bounds for solutions of problem (2.39), (2.40).
Using (2.41) and the properties of the Green functions to problems u(2j) = 0, u(2i)(0) =

u(2i)(T ) = 0, 0 ≤ i ≤ j−1, it is proved that for any solution u of problem (2.39), (2.40) and
for each j, 0 ≤ j ≤ n− 1, the inequality (−1)j u(2j) > 0 holds on (0, T ) and the function
(−1)j u(2j+1) is decreasing on [0, T ] and vanishes at a unique ξj ∈ (0, T ) (depending on
u). Moreover,

|u(2j)(t)| ≥ A
T 2(n−j)−5

30n−j−1
t (T − t), t ∈ [0, T ], 0 ≤ j ≤ n− 1,

and (if n > 1)

|u(2j+1)(t)| ≥ A
T 2(n−j)−7

30n−j−2

∣∣∣
∫ t

ξj

s (T − s) ds
∣∣∣, t ∈ [0, T ], 0 ≤ j ≤ n− 2,

where A =

∫ T

0

t (T − t) ϕ(t) dt.

Step 2. Construction of a sequence of regular problems.
For each m ∈ N, define fm ∈ Car([0, T ]× R2n−1) satisfying

fm(t, x0, . . . , x2n−2) = f(t, x0, . . . , x2n−2)
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for a.e. t ∈ [0, T ] and each (x0, . . . , x2n−2) ∈ D, |xj| ≥ 1
m

, 0 ≤ j ≤ 2n − 2. By
virtue of (2.44) and a fixed point theorem of Leray-Schauder type (see e.g. [54, Corollary
8.1]), for each m ∈ N there exists a solution um of the regular differential equation
(−1)n u(2n) = fm(t, u, . . . , u(2n−2)) satisfying (2.40). Further, ‖um‖C2n−1 ≤ B for each
m ∈ N where B is a positive constant and the sequence {fm(t, um(t), . . . , u

(2n−2)
m (t))} is

uniformly integrable on [0, T ] due to (2.43) and (2.44).

Step 3. Limit processes.
From Step 2 it follows that {um} is bounded in C2n−1[0, T ]. Hence, by the Arzelà-Ascoli

theorem and a compactness principle, there exists its subsequence {ukm} which converges
in C2n−2[0, T ] and {u(2n−1)

km
(0)} converges in R. Let limm→∞ ukm = u, limm→∞ u

(2n−1)
km

(0) =

C. Then u ∈ C2n−2[0, T ] satisfies (2.40) and, by Step 1, the functions u(i), 0 ≤ i ≤ 2n−1,
have a finite number of zeros on [0, T ]. Therefore, by Theorem 1.8, u ∈ AC2n−1[0, T ] and
u is a solution of (2.39). Moreover, (−1)j u(2j) > 0 on (0, T ) for 0 ≤ j ≤ n− 1. ¤

2.6 . Historical and bibliographical notes

Higher order boundary value problems with space singularities have been mostly studied
by Agarwal, Eloe, Henderson, Lakshmikantham, O’Regan, Rach̊unková and Staněk.

Positive solutions in the set Cn−1[0, 1] ∩ Cn(0, 1) were obtained in [7] for the singular
(p, n− p) right focal problem (−1)n−p u(n) = ϕ(t) f(t, u), (2.6) on the interval [0, 1] where
f ∈ C0([0, 1] × (0,∞)) is positive and may be singular at u = 0. In [7] the authors also
discussed applications in fluid theory and boundary layer theory.

Singular (p, n−p) conjugate problems were studied in [5], [62] (with p = 1) and [63] for
the differential equation (−1)n−p u(n) = f(t, u) where f ∈ C0((0, 1)× (0,∞)) and may be
singular at u = 0. Here positive solutions on (0, 1) belong to the class Cn−1[0, 1]∩Cn(0, 1).
Existence results in [62] and [63] are proved by a fixed point theorem for operators that
are decreasing with respect to a cone and those in [5] by a nonlinear alternative of Leray-
Schauder.

The existence of positive solutions on (0, 1) to singular Sturm-Liouville problems for
the differential equation −u(n) = f(t, u, . . . , u(n−2)) can be found in [21]. There f ∈
C((0, 1)×(0,∞)n−1) is positive and may be singular at the value 0 of all its space variables.
The results are proved by a fixed point theorem for mappings that are decreasing with
respect to a cone in a Banach space.

Existence results for positive solutions to singular (p, n − p) focal, conjugate and
(n, p) problems are given in [8] and [9] for differential equations with the right-hand
side ϕ(t) f(t, u) where f ∈ C([0, 1]× (0,∞)) and may be singular at u = 0. The paper [8]
is the first to establish conditions for the existence of two solutions to singular (p, n− p)
focal and (n, p) problems. Further multiple solutions for singular (p, n − p) focal, conju-
gate and (n, p) problems are established in [9]. The technique presented in [8] and [9] to
guarantee the existence of twin solutions to the singular problems combines (i) a nonlinear
alternative of Leray-Schauder, (ii) the Krasnoselskii fixed point theorem in a cone, and
(iii) lower type inequalities.
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Notice that in all cited papers singular points corresponding to solutions of the singular
problems under discussion are only of type I.

3 . Principles of solvability of singular second order BVPs with
φ-Laplacian

In the theory of partial differential equations, the p-Laplace equation

div
(|∇v|p−2∇v

)
= h(|x|, v) (3.1)

is considered. Here ∇ is the gradient, p > 1 and |x| is the Euclidean norm in Rn of
x = (x1, . . . , xn), n > 1. Radially symmetric solutions of (3.1) (i.e., solutions that depend
only on the variable r = |x|) satisfy the ordinary differential equation

r1−n (rn−1 |v′|p−2 v′)′ = h(r, v), ′ =
d
dr

. (3.2)

If p = n, the change of variables t = ln r transforms (3.2) into the equation

(|u′|p−2 u′)′ = en t h(et, u), ′ =
d
dt

and for p 6= n, the change of variables t = r(p−n)/(p−1) transforms (3.2) into the equation

(|u′|p−2 u′)′ =
∣∣∣p− 1

p− n

∣∣∣
p

t
p−n

p (1−n) h(t
p−1
p−n , u), ′ =

d
dt

.

The operator u → (|u′|p−2 u′)′ is called the (one-dimensional) p-Laplacian. Its natural
generalization is the φ-Laplacian

u → (φ(u′))′, where φ : R→ R is an increasing homeomorphism and φ(R) = R. (3.3)

Therefore the equation (3.1) was a motivation for discussing the solutions to the differ-
ential equations

(|u′|p−2 u′)′ = f(t, u, u′)

and
(φ(u′))′ = f(t, u, u′)

with the p-Laplacian and the φ-Laplacian, respectively.

In the next part of this section, we treat problems for second order differential equa-
tions with the φ-Laplacian on the left hand side and with nonlinearities on the right
hand sides which can have singularities in their space variables. Boundary conditions un-
der discussion are generally nonlinear and nonlocal. Using regularization and sequential
techniques we present general existence principles for solvability of regular and singular
problems.
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3.1 . Regularization of singular problems with φ-Laplacian

We discuss singular differential equations of the form

(φ(u′))′ = f(t, u, u′) (3.4)

with the φ-Laplacian. Here f ∈ Car([0, T ] × D), the set D = D1 × D2 ⊂ R2 is not
necessarily closed, D1, D2 are intervals and f may have singularities in its space variables
on the boundary ∂Dj of Dj (j = 1, 2). We note that f has a singularity on ∂Dj in its space
variable xj if there is an aj ∈ ∂Dj such that for a.e. t ∈ [0, T ] and some x3−j ∈ D3−j,

lim sup
xj→aj , xj∈Dj

|f(t, x1, x2)| = ∞.

Let A denote the set of functionals α : C1[0, T ] → R which are

(a) continuous and

(b) bounded, that is α(Ω) is bounded (in R) for any bounded Ω ⊂ C1[0, T ].

For α, β ∈ A, consider the (generally nonlinear and nonlocal) boundary conditions

α(u) = 0, β(u) = 0. (3.5)

Definition 3.1. A function u : [0, T ] → R is said to be a solution of problem (3.4),
(3.5) if φ(u′) ∈ AC[0, T ], u satisfies the boundary conditions (3.5) and (φ(u′(t)))′ =
f(t, u(t), u′(t)) holds for a.e. t ∈ [0, T ].

Special cases of the boundary conditions (3.5) are the Dirichlet (Neumann; mixed;
periodic and Sturm-Liouville type) boundary conditions which we get setting α(x)=x(0),
β(x)=x(T ) (α(x)=x′(0), β(x)=x′(T ); α(x)=x(0), β(x)=x′(T ); α(x)=x(0) − x(T ),
β(x)=x′(0)− x′(T ) and α(x)=a0 x(0) + a1 x′(0), β(x)=b0 x(T ) + b1 x′(T )).

In order to obtain an existence result for problem (3.4), (3.5), we use regularization
and sequential techniques. For this purpose consider a sequence of regular differential
equations

(φ(u′))′ = fn(t, u, u′) (3.6)

where fn ∈ Car([0, T ]× R2). The function fn is constructed in such a way that

fn(t, x, y) = f(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ Qn

where Qn ⊂ D and roughly speaking Qn converges to D as n →∞.
Let h ∈ Car([0, T ]× R2) and consider the regular differential equation

(φ(u′))′ = h(t, u, u′). (3.7)

A function u : [0, T ] → R is called a solution of the regular problem (3.7), (3.5) if φ(u′) ∈
AC[0, T ], u satisfies (3.5) and (φ(u′(t)))′ = h(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

The next general existence principle can be used for solving the regular problem (3.7),
(3.5).
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Theorem 3.2. (General existence principle for regular problems) Assume (3.3),
h ∈ Car([0, T ]×R2) and α, β ∈ A. Suppose there exist positive constants S0 and S1 such
that

‖u‖∞ < S0, ‖u′‖∞ < S1

for all solutions u to the problem

(φ(u′))′ = λh(t, u, u′), α(u) = 0, β(u) = 0 (3.8)

and each λ ∈ [0, 1]. Also assume there exist positive constants Λ0 and Λ1 such that

|A| < Λ0, |B| < Λ1 (3.9)

for all solutions (A,B) ∈ R2 of the system
{

α (A + B t) − µα (−A−B t) = 0,

β (A + B t) − µβ(−A−B t) = 0
(3.10)

and each µ ∈ [0, 1].

Then problem (3.7), (3.5) has a solution.

Proof. Set

Ω =
{

x ∈ C1[0, T ] : ‖x‖∞ < max{S0, Λ0 + Λ1 T}, ‖x′‖∞ < max{S1, Λ1}
}

.

Then Ω is an open, bounded and symmetric with respect to 0 ∈ C1[0, T ] subset of the
Banach space C1[0, T ]. Define an operator P : [0, 1]× Ω → C1[0, T ] by the formula





P(λ, x)(t) = x(0) + α(x)

+

∫ t

0

φ−1
(
φ(x′(0) + β(x)) + λ

∫ s

0

h(v, x(v), x′(v)) dv
)

ds.
(3.11)

A standard argument shows that P is a continuous operator. We claim that P([0, 1]×Ω)
is compact in C1[0, T ]. Indeed, since Ω is bounded in C1[0, T ], we have

|α(x)| ≤ r, |β(x)| ≤ r, |h(t, x(t), x′(t))| ≤ %(t)

for a.e. t ∈ [0, T ] and x ∈ Ω, where r is a positive constant and % ∈ L1[0, T ]. Set
K = max{S1, Λ1}+ r and V = max{|φ(−K)|, |φ(K)|}. Then

|P(λ, x)(t)| ≤ max{S0, Λ0 + Λ1 T}+ r + T max{|φ−1(−V − ‖%‖1)|, |φ−1(V + ‖%‖1)|}

|P(λ, x)′(t)| ≤ max{|φ−1(−V − ‖%‖1)|, |φ−1(V + ‖%‖1)|}
and ∣∣φ(P(λ, x)′(t2)

)− φ
(P(λ, x)′(t1)

)∣∣ ≤
∣∣∣
∫ t2

t1

%(t) dt
∣∣∣
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for t, t1, t2 ∈ [0, T ] and (λ, x) ∈ [0, 1]×Ω. Hence P([0, 1]×Ω) is bounded in C1[0, T ] and
{φ[P(λ, x)′]} is equicontinuous on [0, T ]. The mapping φ−1 being an increasing homeo-
morphism from R onto R, we deduce from

∣∣P(λ, x)′(t2)− P(λ, x)′(t1)
∣∣ =

∣∣φ−1
(
φ(P(λ, x)′(t2))

)− φ−1
(
φ(P(λ, x)′(t1))

)∣∣

that {P(λ, x)′} is also equicontinuous on [0, T ]. Now the Arzelà-Ascoli theorem shows
that P([0, 1]× Ω) is compact in C1[0, T ]. Thus P is a compact operator.

Suppose that x0 is a fixed point of the operator P(1, ·). Then

x0(t) = x0(0) + α(x0) +

∫ t

0

φ−1
(
φ(x′0(0) + β(x0)) +

∫ s

0

h(v, x0(v), x′0(v)) dv
)

ds.

Hence α(x0) = 0, β(x0) = 0 and x0 is a solution of the differential equation (3.7). There-
fore x0 is a solution of problem (3.7), (3.5) and to prove our theorem, it suffices to show
that

deg(I − P(1, ·), Ω) 6= 0 (3.12)

where ”deg” stands for the Leray-Schauder degree and I is the identity operator on
C1[0, T ]. To see this let a compact operator K : [0, 1]× Ω → C1[0, T ] be given by

K(µ, x)(t) = x(0) + α(x)− µα(−x) + [x′(0) + β(x)− µβ(−x)] t.

Then K(1, ·) is odd (i.e. K(1,−x) = −K(1, x) for x ∈ Ω) and

K(0, ·) = P(0, ·). (3.13)

If K(µ0, x0) = x0 for some µ0 ∈ [0, 1] and x0 ∈ Ω, then

x0(t) = x0(0) + α(x0)− µ0 α(−x0) + [x′0(0) + β(x0)− µ0β(−x0)] t, t ∈ [0, T ].

Thus x0(t) = A0 + B0 t where A0 = x0(0) + α(x0)− µ0 α(−x0) and B0 = x′0(0) + β(x0)−
µ0 β(−x0), so α(x0)− µ0 α(−x0) = 0, β(x0)− µ0 β(−x0) = 0. Hence

α(A0 + B0 t)− µ0 α(−A0 −B0t) = 0,

β(A0 + B0 t)− µ0 β(−A0 −B0t) = 0.

Therefore |A0| < Λ0, |B0| < Λ1 and ‖x0‖∞ < Λ0+Λ1 T, ‖x′0‖∞ < Λ1, which gives x0 6∈ ∂Ω.
Now, by the Borsuk antipodal theorem and a homotopy property,

deg(I − K(0, ·), Ω) = deg(I − K(1, ·), Ω) 6= 0. (3.14)

Finally, assume that P(λ∗, x∗) = x∗ for some λ∗ ∈ [0, 1] and x∗ ∈ Ω. Then x∗ is a solution
of problem (3.8) with λ = λ∗ and, by our assumptions, ‖x∗‖∞ < S0 and ‖x′∗‖∞ < S1.
Hence x∗ 6∈ ∂Ω and the homotopy property yields

deg(I − P(0, ·), Ω) = deg(I − P(1, ·), Ω).

This, with (3.13) and (3.14), implies (3.12). Therefore, problem (3.7), (3.5) has a solution.
¤
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Remark 3.3. If functionals α, β ∈ A are linear, then system (3.10) has the form

A α(1) + B α(t) = 0,

A β(1) + B β(t) = 0.

All of its solutions (A,B) are bounded if and only if α(1) β(t)− α(t) β(1) 6= 0 (and then
(A,B) = (0, 0)). This is satisfied for example for the Dirichlet conditions but not for the
periodic ones.

3.2 . General existence principle for singular BVPs with φ-Laplacian

Let us consider the singular problem (3.4), (3.5). By regularization and sequential tech-
niques, we construct an approximating sequence of regular problems (3.6), (3.5) for whose
solvability Theorem 3.2 can be used. Existence results for the singular problem (3.4), (3.5)
can be proved by the following two general existence principles. The first principle uses
the Vitali convergence theorem, the other is based on a combination of the Lebesgue
dominated convergence theorem and the Fatou theorem.

Theorem 3.4. (General existence principle for singular problems I) Assume
(3.3). Let there exist a bounded set Ω ⊂ C1[0, T ] such that

(i) for each n ∈ N, the regular problem (3.6), (3.5) has a solution un ∈ Ω,

(ii) the sequence {fn(t, un(t), u′n(t))} is uniformly integrable on [0, T ].

Then

(a) there exist u ∈ Ω and a subsequence {ukn} of {un} such that limn→∞ ukn = u in
C1[0, T ],

(b) u is a solution of problem (3.4), (3.5) if

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t))

for almost all t ∈ [0, T ].

Proof. Since Ω is bounded in C1[0, T ] and {un} ⊂ Ω, we have

‖un‖∞ ≤ r, ‖u′n‖∞ ≤ r, n ∈ N, (3.15)

where r is a positive constant. Now (ii) guarantees that for each ε > 0 there exists δ > 0
such that

|φ(u′n(t2))− φ(u′n(t1))| ≤
∣∣∣
∫ t2

t1

|fn(t, un(t), u′n(t))| dt
∣∣∣ < ε

for each t1, t2 ∈ [0, T ], |t1 − t2| < δ and n ∈ N. Therefore {φ(u′n)} is equicontinuous on
[0, T ], and by virtue of (3.15) and the fact that φ is continuous and increasing on R, {u′n}
is equicontinuous on [0, T ] as well. The Arzelà-Ascoli theorem guarantees the existence
of a subsequence {ukn} of {un} converging in C1[0, T ] to some u ∈ Ω.
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Suppose that limn→∞ fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. By (ii),

{fkn(t, ukn(t), u′kn
(t))} is uniformly integrable on [0, T ]. Therefore, by Vitali’s convergence

theorem, f(t, u(t), u′(t)) ∈ L1[0, T ] and letting n →∞ in

φ(u′kn
(t)) = φ(u′kn

(0)) +

∫ t

0

fkn(s, ukn(s), u′kn
(s)) ds, t ∈ [0, T ], n ∈ N,

we arrive at

φ(u′(t)) = φ(u′(0)) +

∫ t

0

f(s, u(s), u′(s)) ds, t ∈ [0, T ].

Consequently, φ(u′) ∈ AC[0, T ] and u is a solution of (3.4). In addition, since

lim
n→∞

ukn = u in C1[0, T ]

and α and β are continuous in C1[0, T ], it follows that α(u) = 0, β(u) = 0. Hence u is a
solution of problem (3.4), (3.5). ¤

Remark 3.5. Let f in (3.4) have singularities only at the value 0 of its space variables
and let fn in (3.6) satisfy fn(t, x, y) = f(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ D,
n ∈ N, |x| ≥ 1

n
and |y| ≥ 1

n
. Then the condition

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] is satisfied if u and u′ have a finite number of zeros.

Theorem 3.6. (General existence principle for singular problems II) Assume
(3.3). Let f have singularities only at the value 0 of its space variables. Let fn in equation
(3.6) satisfy

{
for a.e. t ∈ [0, T ] and each x, y ∈ R \ {0},
0 ≤ fn(t, x, y) ≤ p(|x|, |y|) where p ∈ C((0,∞)× (0,∞)).

(3.16)

Suppose that for each n ∈ N, the regular problem (3.6), (3.5) has a solution un and there
exists a subsequence {ukn} of {un} converging in C1[0, T ] to some u. Then u is a solution
of the singular problem (3.4), (3.5) if u and u′ have a finite number of zeros and

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. (3.17)

Proof. Assume that (3.17) is true and 0 ≤ ξ1 < ξ2 < · · · < ξm ≤ T are all the zeros of u
and u′. Since ‖ukn‖∞ ≤ L and ‖u′kn

‖∞ ≤ L for each n ∈ N where L is a positive constant,
it follows from (3.16), (3.17),

φ(u′kn
(T ))− φ(u′kn

(0)) =

∫ T

0

fkn(t, ukn(t), u′kn
(t)) dt, n ∈ N,
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and the Fatou theorem that
∫ T

0

f(t, u(t), u′(t)) dt ≤ φ(L)− φ(−L).

Hence f(t, u(t), u′(t)) ∈ L1[0, T ]. Set ξ0 = 0 and ξm+1 = T. We claim that for all j ∈
{0, 1, . . . , m}, ξj < ξj+1, the equality

φ(u′(t)) = φ
(
u′( ξj+ξj+1

2
)
)

+

∫ t

ξj+ξj+1
2

f(s, u(s), u′(s)) ds (3.18)

is satisfied for t ∈ [ξj, ξj+1]. Indeed, let j ∈ {0, 1, . . . , m} and ξj < ξj+1. Let us look at
the interval [ξj + δ, ξj+1 − δ] where δ ∈ (0,

ξj+ξj+1

2
). We know that |u| > 0 and |u′| > 0 on

(ξj, ξj+1) and therefore |u(t)| ≥ ε, |u′(t)| ≥ ε for t ∈ [ξj+δ, ξj+1−δ] with a positive constant
ε. Hence there exists n0 ∈ N such that |ukn(t)| ≥ ε

2
, |u′kn

(t)| ≥ ε
2

for t ∈ [ξj + δ, ξj+1 − δ]
and n ≥ n0. This yields (see (3.16))

0 ≤ fkn(t, ukn(t), u′kn
(t)) ≤ max

{
p(u, v) : u, v ∈ [

ε

2
, L]

}

for a.e. t ∈ [ξj + δ, ξj+1 − δ] and all n ≥ n0. Letting n →∞ in

φ(u′kn
(t)) = φ

(
u′kn

(
ξj+ξj+1

2
)
)

+

∫ t

ξj+ξj+1
2

fkn(s, ukn(s), u′kn
(s)) ds

gives (3.18) for t ∈ [ξj + δ, ξj+1 − δ] by the Lebesgue dominated convergence theorem.
Since δ ∈ (0,

ξj+ξj+1

2
) is arbitrary, (3.18) is true on the interval (ξj, ξj+1) and using the fact

that f(t, u(t), u′(t)) ∈ L1[0, T ], we conclude that (3.18) holds also at t = ξj and ξj+1. From
(3.18) it follows that φ(u′) ∈ AC[0, T ] and equation (3.4) is satisfied for a.e. t ∈ [0, T ].
Finally, α(ukn) = 0 and β(ukn) = 0 and the continuity of α and β yields α(u) = 0 and
β(u) = 0. Hence u is a solution of problem (3.4), (3.5). ¤

3.3 . Nonlocal singular BVPs

We consider differential equations of the type

(φ(u′))′ = f(t, u, u′) (3.19)

where φ is an increasing and odd homeomorphism, φ(R) = R, f satisfies the Carathéodory
conditions on a subset of [0, T ]× R2 and f may be singular in its space variables.

We also discuss nonlinear nonlocal boundary conditions

u(0) = u(T ), max{u(t) : 0 ≤ t ≤ T} = c, c ∈ R, (3.20)

u(0) = u(T ) = −γ min{u(t) : 0 ≤ t ≤ T}, γ ∈ (0,∞), (3.21)

min{u(t) : 0 ≤ t ≤ T} = 0, δ(u′) = 0, δ ∈ B, (3.22)
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where B denotes the set of functionals δ : C[0, T ] → R which are

(a) continuous, δ(0) = 0 and

(b) increasing, that is x, y ∈ C[0, T ], x < y on (0, T ) ⇒ δ(x) < δ(y).

Example. Let n ∈ N and 0 ≤ a < b ≤ T. Then the functionals δ1(x) = x(T
2
) + max{x(t) :

0 ≤ t ≤ T}, δ2(x) =
∫ b

a
x2n+1(t) dt, δ3(x) =

∫ T

0
ex(t) dt − T belong to the set B. The

functionals δ4(x) = x(0) and δ5(x) = x(T ) satisfy condition (a) of B but do not satisfy
condition (b). Hence δ4, δ5 6∈ B.

The boundary conditions (3.20)-(3.22) are special cases of (3.5) where

α(x) = x(0)− x(T ), β(x) = max{x(t) : 0 ≤ t ≤ T} − c for (3.20),

α(x) = x(0)− x(T ), β(x) = x(0) + γ min{x(t) : 0 ≤ t ≤ T} for (3.21),

and

α(x) = min{x(t) : 0 ≤ t ≤ T}, β(x) = δ(x′) for (3.22).

The next theorems give sufficient conditions for solvability of the three nonlocal singu-
lar problems given above. Their proofs are based on applying general existence principles
presented in Theorems 3.2, 3.4 and 3.6. Notice that if f < 0 in equation (3.19) then the
singular points corresponding to the solutions of problem (3.19), (3.20) are of type II and,
if f > 0, the solutions of problems (3.19), (3.21) and (3.19), (3.22) have singular points
of type II.

Theorem 3.7. ([145, Theorem 2.1]) Suppose f ∈ Car([0, T ]× R× (R \ {0}),




−q(x)
(
ω1(|y|) + ω2(|y|)

) ≤ f(t, x, y) ≤ −a

for a.e. t ∈ [0, T ] and each (x, y) ∈ R× (R \ {0}),
where a > 0, q ∈ C(R) is positive, ω1 ∈ C[0,∞) is nonnegative,

ω2 ∈ C(0,∞) is positive and nonincreasing and
∫ 1

0

ω2(φ
−1(s)) ds < ∞

(3.23)

and ∫ d

d−1

ds

H−1
( ∫ d

s
q(v) dv

) < ∞ for any d ∈ R,

where

H(x) =

∫ φ(x)

0

φ−1(s) ds

ω1(1 + φ−1(s)) + ω2(φ−1(s))
for x ∈ [0,∞).

Let

S =
{

c ∈ R : lim
x→−∞

∫ c

x

ds

H−1
( ∫ c

s
q(v)dv

) >
T

2

}
.

Then problem (3.19), (3.20) has a solution for each c ∈ S.
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Sketch of proof. Step 1. Regularization.
A sequence of auxiliary regular differential equations (φ(u′))′ = fn(t, u, u′) is con-

structed where fn ∈ Car([0, T ]× R2) and

fn(t, x, y) = f(t, x, y) for a.e. t ∈ [0, T ] and each x ∈ R, |y| ≥ 1

n
, n ∈ N.

Step 2. Existence of solutions of regular problems (3.6, (3.20).
Let c ∈ S. By (3.23), the existence of positive constants S0 and S1 (independent of n

and λ) is proved such that ‖u‖∞ < S0 and ‖u′‖∞ < S1 for any λ ∈ [0, 1], n ∈ N and each
solution u of the differential equation

(φ(u′))′ = λ fn(t, u, u′) (3.24)

satisfying the conditions (3.20). Put α(x) = x(0) − x(T ) and β(x) = max{x(t) : 0 ≤
t ≤ T} − c for x ∈ C1[0, T ]. Then system (3.10) has a unique solution (A,B) = (c 1−µ

1+µ
, 0)

for each µ ∈ [0, 1] and therefore all solutions of this system are bounded in R2. Hence
Theorem 3.2 guarantees that for each n ∈ N, problem (3.6), (3.20) has a solution un and
‖un‖∞ < S0, ‖u′n‖∞ < S1.

Step 3. Properties of solutions of regular problems (3.6), (3.20).
The sequence {un} is considered. It is proved that

u′n(t) ≥ φ−1(a (ξn − t)) for t ∈ [0, ξn] and |u′n(t)| ≥ φ−1(a (t− ξn)) for t ∈ [ξn, T ],

where ξn is the unique zero of u′n and a > 0 appears in (3.23). Next, it is shown that the
sequence {fn(t, un(t), u′n(t))} is uniformly integrable on [0, T ]. Hence {un} is bounded in
C1[0, T ] and {u′n} is equicontinuous on [0, T ] and, by the Arzelà-Ascoli theorem and the
compactness principle, we can assume without loss of generality that {un} converges in
C1[0, T ] and {ξn} converges in R. Let

lim
n→∞

un = u and lim
n→∞

ξn = ξ.

Then u ∈ C1[0, T ] satisfies (3.20),

u′(t) ≥ φ−1(a (ξ − t)) for t ∈ [0, ξ], |u′(t)| ≥ φ−1(a (t− ξ)) for t ∈ [ξ, T ]

and

lim
n→∞

fn(t, un(t), u′n(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Theorem 3.4 now guarantees that u is a solution of problem (3.19), (3.20). ¤

Example. Let p > 2, α ∈ [0, p− 2) and β ∈ (0, p− 1). Then for any c ∈ R there exists a
solution of the differential equation

(|u′|p−2 u′)′ +
(
2 + sin(t u) + |u|)

(
|u′|α +

1

|u′|β
)

= 0

satisfying boundary conditions (3.20).
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Theorem 3.8. ([146, Theorem 4.1]) Let f ∈ Car([0, T ]× (R \ {0})2). Let





a ≤ f(t, x, y) ≤ (
h1(|x|) + h2(|x|)

) (
ω1(φ(|y|)) + ω2(φ(|y|)))

for a.e. t ∈ [0, T ] and all (x, y) ∈ (R \ {0})2,

where a > 0, h1, ω1 ∈ C[0,∞) are nonnegative and nondecreasing,

h2, ω2 ∈ C(0,∞) are positive and nonincreasing,
∫ 1

0

h2(s) ds < ∞,

∫ 1

0

ω2(s) ds < ∞,

∫ ∞

0

ds

ω2(s)
= ∞,

(3.25)

and let

lim inf
x→∞

∫ x

0

ds

K−1
(

T
2

(h1(x) + h2(s))
) >

T

2
, (3.26)

where

K(x) =

∫ φ(x)

0

ds

ω1(φ(1) + s) + ω2(s)
, x ∈ [0,∞). (3.27)

Then there exists a solution of problem (3.19), (3.21) for each γ > 0.

Sketch of proof. Step 1. Regularization.
A sequence of approximating differential equations

(φ(u′))′ = fn(t, u, u′)

is introduced where fn ∈ Car([0, T ]× R2) and

fn(t, x, y) = f(t, x, y) for a.e. t ∈ [0, T ] and each |x| ≥ 1

n
, |y| ≥ 1

n
, n ∈ N.

Step 2. Existence of solutions of regular problems (3.6), (3.21).
Let γ > 0 in (3.21). Using (3.25) and (3.26), the existence of a positive constant P

(depending on γ) is proved such that ‖u‖∞ < P T and ‖u′‖∞ < P for each solution u of
problem (3.24), (3.21) with λ ∈ [0, 1] and n ∈ N. Put α(x) = x(0)− x(T ) and

β(x) = x(0) + γ min{x(t) : 0 ≤ t ≤ T} for x ∈ C1[0, T ].

The system (3.10) has a unique solution (A,B) = (0, 0) for each µ ∈ [0, 1]. Hence, by
Theorem 3.2 for each n ∈ N, there exists a solution un of problem (3.6), (3.21) and
‖un‖∞ < P T, ‖u′n‖∞ < P.

Step 3. Properties of solutions of regular problems (3.6), (3.21).
The sequence {un} is considered. From (3.25) it follows that u′n is increasing on

[0, T ] and has a unique zero ξn ∈ (0, T ) and un vanishes exactly at two points t1n, t2n,
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0 < t1n < ξn < t2n < T, un > 0 on [0, t1n) ∪ (t2n, T ] and un < 0 on (t1n, t2n). Further, un

satisfies the inequality

|un(t)| ≥





S |t− t1n|
ξn − t1n

for t ∈ [0, ξn],

S |t− t2n|
t2n − ξn

for t ∈ [ξn, T ],

where S is a positive constant and the sequence {fn(t, un(t), u′n(t))} is uniformly integrable
on [0, T ], which implies that {u′n} is equicontinuous on [0, T ]. Moreover, there exists
a positive constant ∆ such that

t1n ≥ γ ∆, ξn − t1n > ∆, t2n − ξn > ∆, T − t2n > γ ∆ for n ∈ N.

Hence, by the Arzelà-Ascoli theorem, there exists a subsequence {ukn} which converges
in C1[0, T ] and let u = limn→∞ ukn . Then u vanishes exactly at two points in [0, T ], u′ has
a unique zero and limn→∞ fkn(t, ukn(t), u′kn

(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. Now
Theorem 3.4 guarantees that u is a solution of problem (3.19), (3.21). ¤

Remark 3.9. If limx→∞ h2(x) < A for some A > 0 and

lim inf
x→∞

x

K−1
(

T
2

(h1(x) + A)
) >

T

2
,

then condition (3.26) is satisfied.

Example. Let qj ∈ L∞[0, T ] be nonnegative (1 ≤ j ≤ 6), q1(t) ≥ a > 0 for a.e. t ∈ [0, T ],
p > 1, β1, β2, β3 ∈ (0, p − 1), α1 ∈ (0, p − 1 + β2), α2, α3 ∈ (0, 1). Then for each γ > 0,
there exists a solution of the differential equation

(|u′|p−2 u′)′ = q1(t) + q2(t) |u|α1 +
q3(t)

|u|α2
+

q4(t)

|u|α3 |u′|β1
+ q5(t) |u′|β2 +

q6(t)

|u′|β3

satisfying boundary conditions (3.21).

Theorem 3.10. Suppose f ∈ Car([0, T ]×(0,∞)×(R\{0})) and the following conditions
are satisfied:





ϕ(t) ≤ f(t, x, y) ≤ (h1(x) + h2(x)) [ω1(φ(|y|)) + ω2(φ(|y|))]
for a.e. t ∈ [0, T ] and each (x, y) ∈ (0,∞)× (R \ {0}),
where ϕ ∈ L∞[0, T ] is positive,

h1, ω1 ∈ C[0,∞) are positive and nondecreasing,

h2, ω2 ∈ C(0,∞) are positive and nonincreasing,
∫ 1

0

h2(s) ds < ∞

(3.28)

and
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lim inf
x→∞

V (x)

H(T x)
> 1 (3.29)

where

V (x) =

∫ φ(x)

0

φ−1(s) ds

ω1(s + 1) + ω2(s)
, H(x) =

∫ x

0

(h1(s + 1) + h2(s)) ds for x ∈ [0,∞).

Then for each δ ∈ B, problem (3.19), (3.22) has a solution.

Sketch of proof. Step 1. Regularization.
A sequence of auxiliary regular differential equations (φ(u′))′ = fn(t, u, u′) is con-

structed with fn ∈ Car([0, T ]× R2) satisfying

fn(t, x, y) = f(t, x, y) for a.e. t ∈ [0, T ] and each x ≥ 1

n
, |y| ≥ 1

n
, n ∈ N.

Step 2. Existence of solutions of regular problems (3.6), (3.22).
Fix δ ∈ B. From (3.28), (3.29) and from the properties of δ we obtain the existence

of positive constants M0 and M1 such that ‖u‖∞ < M0, ‖u′‖∞ < M1 for each solution of
problem (3.24), (3.22) with λ ∈ [0, 1] and n ∈ N. Set α(x) = min{x(t) : 0 ≤ t ≤ T} and
β(x) = δ(x′) for x ∈ C1[0, T ]. Then system (3.10) has a unique solution (A,B) = (0, 0)
for each µ ∈ [0, 1]. Therefore, by Theorem 3.2, for each n ∈ N there exists a solution un

of problem (3.6), (3.22) and ‖un‖∞ < M0, ‖u′‖∞ < M1.

Step 3. Properties of solutions of regular problems (3.6), (3.22).
By Step 2, {un} is bounded in C1[0, T ] and from (3.28) it follows that {u′n} is equicon-

tinuous on [0, T ]. The assumption (3.28) and the properties of δ show that un has a unique
zero ξn, ξn ∈ (0, T ), u′n is increasing on [0, T ], u′n(ξn) = 0 and

|u′n(t)| ≥
∣∣∣
∫ t

ξn

ϕ(s) ds
∣∣∣, un(t) ≥

∫ t

ξn

(t− s) ϕ(s) ds (3.30)

for t ∈ [0, T ]. According to the Arzelà-Ascoli theorem, there exists a subsequence {ukn}
converging in C1[0, T ] to some u and from (3.30) we see that u and u′ vanish at a unique
point. Since

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ],

Theorem 3.6 gives that u is a solution of problem (3.19), (3.22). ¤

Remark 3.11. Problem (3.19), (3.22) was investigated in [148]. The conditions for the
solvability of this problem are stronger there than those in Theorem 3.10. This is due
to the fact that [148] uses the Vitali convergence theorem in limit processes whereas
Theorem 3.10 is proved by Theorem 3.6.

Example. Let ϕ ∈ L∞[0, T ] be positive, p > 1, cj > 0 (1 ≤ j ≤ 4), β ∈ (0, 1), α, γ, δ,
λ ∈ (0,∞) and α + γ < p− 1. Then for each δ ∈ B, the differential equation

(|u′|p−2 u′)′ = ϕ(t)
(
1 + c1 uα +

c2

uβ

)(
1 + c3 |u′|γ +

c4

|u′|λ
)

has a solution u satisfying boundary conditions (3.22).
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3.4 . Historical and bibliographical notes

The general existence principles presented in Theorems 3.2 and 3.4 are special cases of
the principles stated by Agarwal, O’Regan and Staněk in [17] for a class of second-order
functional differential equations. Some general existence principles for second-order regu-
lar differential equations with the φ-Laplacian and Dirichlet or mixed boundary data have
been established using the nonlinear alternative of Leray-Schauder type by O’Regan [115].

Second-order differential equations with the p-Laplacian and the φ-Laplacian occur
in the study of the p-Laplace equations ([95]), general diffusion theory ([23], [41]), non-
Newtonian fluid theory ([86]) and the turbulent flow of a polytropic gas in a porous
medium ([64], [37]).

In recent years problems for p(t)-Laplacian equations have been studied (e.g. [67],
[68]). The p(t)-Laplacian is defined by u → (|u′|p(t)−2 u′)′ where p ∈ C[0, T ] and p > 1 on
[0, T ]. The p(t)-Laplacian is a generalization of the p-Laplacian.

4 . Singular Dirichlet BVPs with φ-Laplacian

Motivated by various significant applications to non-Newtonian fluid theory, diffusion of
flows in porous media, nonlinear elasticity and theory of capillary surfaces (see [23], [64],
[118], and Section 3.4), several authors have proposed the study of equations (φp(u

′))′ +
f(t, u, u′) = 0 with the p-Laplacian (φp(u

′))′, where p ∈ (1,∞) and φp(y) = |y|p−2 y for
y ∈ R. Usually the p-Laplacian is replaced by its abstract and more general version, which
leads to clearer exposition and better understanding of the methods that are employed to
derive existence results. Therefore, similarly to Section 3, we will work with a φ-Laplacian
which satisfies (3.3), i.e. φ is an increasing homeomorphism with φ(R) = R.

We will consider a singular Dirichlet problem of the form

(φ(u′))′ + f(t, u, u′) = 0, u(0) = u(T ) = 0 (4.1)

and its special cases, in particular, a problem of the form

u′′ + f(t, u, u′) = 0, u(0) = u(T ) = 0, (4.2)

where φ(y) = y on R.
We will investigate problems (4.1) and (4.2) on the set [0, T ]×A. In general, the func-

tion f depends on a time variable t ∈ [0, T ] and on two space variables x and y, where
(x, y) ∈ A and A is a closed subset of R2 or A = R2.

We assume that problems (4.1) and (4.2) are singular, which means, by Section 1, that
f does not satisfy the Carathéodory conditions on [0, T ]×A. In what follows, the types
of singularities of f will be exactly specified for each problem under consideration.

In accordance with Section 1 we define:

Definition 4.1. A function u : [0, T ] → R with φ(u′) ∈ AC[0, T ] is a solution of problem
(4.1) if u satisfies (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 a.e. on [0, T ] and fulfils the boundary
conditions u(0) = u(T ) = 0.
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A function u ∈ C[0, T ] is a w-solution of problem (4.1) if there exists a finite number
of singular points tν ∈ [0, T ], ν = 1, . . . , r, such that if we denote J = [0, T ] \ {tν}r

ν=1,
then φ(u′) ∈ ACloc(J), u satisfies (φ(u′(t)))′ + f(t, u(t), u′(t)) = 0 a.e. on [0, T ] and fulfils
the boundary conditions u(0) = u(T ) = 0.

Note that the condition φ(u′) ∈ AC[0, T ] implies u ∈ C1[0, T ] and the condition
φ(u′) ∈ ACloc(J) implies u ∈ C1(J). We will mention some papers where f is supposed
to be continuous on (0, T )× R2 and can have only time singularities at t = 0 and t = T.
Then any solution (any w-solution) u of (4.1) moreover satisfies φ(u′) ∈ C1(0, T ). If we
investigate the solvability of problem (4.1) or (4.2) on the set [0, T ]×A and A 6= R2, we
impose on its solution u in addition the condition

(u(t), u′(t)) ∈ A for t ∈ [0, T ]. (4.3)

If u is a w-solution, then one requires it to satisfy (4.3) for t ∈ J only.

In some cases, see e.g. (4.9), f does not depend on y. Then we work with a set A
which is a closed subset of R or A = R and condition (4.3) has the form u(t) ∈ A for
t ∈ [0, T ].

Remark 4.2. We will carry out the investigation of the singular problem (4.1) in the
spirit of the existence principles presented in Sections 1 and 3:

• the singular problem is approximated by a sequence of solvable regular problems;

• a sequence {un} of approximate solutions is generated;

• a convergence of a suitable subsequence {ukn} is investigated;

• the type of this convergence determines the properties of its limit u and, among
others, determines whether u is a w-solution or a solution of the original singular
problem.

There are more possibilities how to construct an approximating sequence of regular
problems. Their choice depends on the type of singularities of the nonlinearity f in (4.1)
(time, space), on the type of singular points corresponding to a solution (w-solution) of
(4.1) (type I, type II), on the type of results desired (existence of a solution, a positive
solution, a w-solution, uniqueness), and so on. A common idea is that approximate
functions fn have no singularities, fn 6= f on neighbourhoods Un of singular points of f,
fn = f elsewhere, and limn→∞ meas (Un) = 0.

Having such a sequence of {fn} we study problems

(φ(u′))′ + fn(t, u, u′) = 0, u(0) = u(T ) = εn, n ∈ N, (4.4)

where εn ∈ R, limn→∞ εn = 0. In some proofs, one simply puts εn = 0 for n ∈ N.
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Solvability of (4.4) can be investigated by means of various methods which have been
developed for regular Dirichlet problems (fixed point theorems, topological degree argu-
ments, the topological transversality method, variational methods, lower and upper func-
tions, the Fredholm nonlinear alternative, etc.). See also Section 3. Using one of the above
methods we generate a sequence of approximate solutions {un} of (4.4). The crucial in-
formation which enables us to realize the limit process concerns a priori estimates of the
approximate solutions un.

4.1 . Method of lower and upper functions

It is well known that for regular second order boundary value problems the lower and
upper functions method is a profitable instrument for proofs of their solvability and for
a priori estimates of their solutions. See e.g. [51], [52], [98], [100], [130] or [154]. Hence,
it seems to be a good idea to extend this method to the singular problem (4.1). In
literature there are several definitions of lower and upper functions for regular boundary
value problems. (Note that in some papers they are called lower and upper solutions.)
Here we will use the following definition which is the same both for regular problems
with f ∈ Car([0, T ] × R2) and for singular ones with f ∈ Car((0, T ) × R2) having time
singularities at t = 0 and t = T.

Definition 4.3. A function σ : [0, T ] → R with φ(σ′) ∈ AC[0, T ] is called a lower
function of (4.1) if σ satisfies

(φ(σ′(t))′ + f(t, σ(t), σ′(t)) ≥ 0 for a.e. t ∈ [0, T ] (4.5)

and
σ(0) ≤ 0, σ(T ) ≤ 0. (4.6)

If the inequalities in (4.5) and (4.6) are reversed, then σ is called an upper function
of (4.1).

For the special case (4.2) we admit a more general definition.

Definition 4.4. A function σ ∈ C[0, T ] is called a lower function of (4.2) if there exists
a finite set Σ ⊂ (0, T ) such that σ ∈ AC1

loc([0, T ] \Σ), σ′(τ+), σ′(τ−) ∈ R for each τ ∈ Σ,

σ′′(t) + f(t, σ(t), σ′(t)) ≥ 0 for a.e. t ∈ [0, T ], (4.7)

σ(0) ≤ 0, σ(T ) ≤ 0, σ′(τ−) < σ′(τ+) for each τ ∈ Σ. (4.8)

If the inequalities in (4.7) and (4.8) are reversed, then σ is called an upper function of
(4.2).

Remark 4.5. (i) If, moreover, f is continuous on (0, T ) × R2, then a lower (upper)
function σ of (4.1) is supposed to satisfy φ(σ′) ∈ C1(0, T ) and a lower (upper) function
of (4.2) belongs also to C2(0, T ).
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(ii) If the boundary conditions in (4.1) or in (4.2) are replaced by inhomogeneous ones,
i.e. they have the form

u(0) = a, u(T ) = b

for some a, b ∈ R, then the corresponding boundary inequalities in (4.6) or in (4.8) are
modified to

σ(0) ≤ a, σ(T ) ≤ b.

We present straightforward extensions of the classical lower and upper functions
method to a singular problem with the p-Laplacian

(φp(u
′))′ + f(t, u) = 0, u(0) = a, u(T ) = b, (4.9)

where {
φp(y) = |y|p−2 y, p > 1, a, b ∈ R, f ∈ Car((0, T )× R),

f can have time singularities at t = 0 and t = T.
(4.10)

Recall that f has time singularities at t = 0 and t = T if there exist x, y ∈ R such that

∫ ε

0

|f(t, x, y)| dt = ∞,

∫ T

T−ε

|f(t, x, y)| dt = ∞

for each sufficiently small ε > 0.
Making use of ideas of the papers [106] by Lomtatidze and Torres and [85] by Habets

and Zanolin, one can prove the following result for the special case of (4.9) with p = 2.

Theorem 4.6. Let p = 2 and (4.10) hold. Let σ1 and σ2 be a lower and an upper function
for problem (4.9) and σ1 ≤ σ2 on [0, T ]. Assume also that there is a function h ∈ L1(I)
on each compact interval I ⊂ (0, T ) such that

|f(t, x)| ≤ h(t) for a.e. t ∈ (0, T ) and each x ∈ [σ1(t), σ2(t)],

and ∫ T

0

t (T − t) h(t) dt < ∞.

Then problem (4.9) has a w-solution u ∈ C[0, T ] ∩ AC1
loc(0, T ) such that

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ]. (4.11)

If for a.e. t ∈ (0, T ) the function f(t, x) is nonincreasing in x, then the w-solution is
unique. If h ∈ L1[0, T ], then u belongs to AC1[0, T ], i.e. u is a solution of (4.9).

Theorem 4.6 can be proved by means of the Schauder fixed point theorem which is
applied to the operator T : C[0, T ] → C[0, T ], where

(T u)(t) = a +
t

T
(b− a) +

∫ T

0

G(t, s) f ∗(s, u(s)) ds.
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Here G is the Green function of the problem −u′′ = 0, u(0) = u(T ) = 0 and f ∗ is given
by

f ∗(t, x) =





f(t, σ1(t)) if x < σ1(t),

f(t, x) if σ1(t) ≤ x ≤ σ2(t),

f(t, σ2(t)) if x > σ2(t)

for a.e. t ∈ [0, T ] and each x ∈ R.

Remark 4.7. By virtue of (4.11) we can investigate problem (4.9) on [0, T ]×At, where
At = [σ1(t), σ2(t)] for t ∈ [0, T ]. Therefore, in Theorem 4.6, instead of f ∈ Car((0, T )×R)
it is sufficient to assume f ∈ Car((0, T )× At).

Jiang in [91] dealt with problem (4.9) under the assumption (4.10) and, in addition,

f ∈ C((0, T )× R). (4.12)

He modified Theorem 4.6 for p 6= 2.

Theorem 4.8. Let (4.10) and (4.12) hold. Let σ1 and σ2 be a lower and an upper function
for problem (4.9) and σ1 ≤ σ2 on [0, T ]. Assume also that there is a function h ∈ C(0, T )
such that

|f(t, x)| ≤ h(t) for t ∈ (0, T ), x ∈ [σ1(t), σ2(t)],

and that there exist µ, ν ∈ [0, p− 1) such that

∫ T

0

tµ (T − t)ν h(t) dt < ∞. (4.13)

Then problem (4.9) has a w-solution u ∈ C[0, T ] satisfying φp(u
′) ∈ C1(0, T ) and

(4.11).

In contrast to p = 2, there is no Green function for p 6= 2, which makes the proof of
Theorem 4.8 more difficult and complicated than that for p = 2.

Remark 4.9. Motivated by physical and technical problems, there is a lot of papers
studying problems with both time and space singularities. If such a problem has a sin-
gularity at x = 0, one often searches for solutions (w-solutions) which are positive on
(0, T ). Although they vanish at 0 and T, they are still called positive solutions (posi-
tive w-solutions) in literature. In this case, problems (4.1) and (4.2) are investigated on
the set [0, T ] × A, where A = [0,∞) × R, and f in (4.1) or (4.2) is supposed to satisfy
f ∈ Car((0, T ) × D), where D = (0,∞) × R (or more specifically f is supposed to be
continuous on (0, T )×D). In this case lower and upper functions have to be positive on
(0, T ) and consequently a lower function σ1 has to satisfy σ1(0) = σ1(T ) = 0.

Having in mind Remarks 4.7 and 4.9 we will search for positive w-solutions of a singular
problem

u′′ + f(t, u) = 0, u(0) = u(T ) = 0, (4.14)
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where{
f ∈ Car((0, T )× (0,∞)) can have

time singularities at t = 0, t = T and a space singularity at x = 0.
(4.15)

Recall that f has a space singularity at x = 0 if

lim sup
x→0+

|f(t, x)| = ∞ for a.e. t ∈ [0, T ].

Let us present a simple application of Theorem 4.6 in the spirit of Habets and Zanolin
[85].

Theorem 4.10. Let a function f be positive and satisfy (4.15). Assume that for a.e.
t ∈ (0, T ) the function f(t, x) is nonincreasing in x. Suppose that there exists a lower
function σ1 of problem (4.14) such that σ1 > 0 on (0, T ) and

∫ T

0

f(s, σ1(s)) ds < ∞.

Then problem (4.14) has a unique positive solution u ∈ AC1[0, T ] such that σ1 ≤ u on
[0, T ].

Theorem 4.10 follows from Theorem 4.6 and Remark 4.7 if we put h(t) = f(t, σ1(t))
and

σ2(t) =

∫ T

0

G(t, s) f(s, k) ds + k,

where k = max{σ1(t) : t ∈ [0, T ]} and G is the Green function of the problem

−u′′ = 0, u(0) = u(T ) = 0.

The next result can be viewed as a corollary of [106, Theorem 1.1], where Lomtatidze
and Torres studied an equation including an additional term g(t, u) u′.

Theorem 4.11. Let (4.15) hold. Let σ1 and σ2 be a lower and an upper function of
problem (4.14) and

σ2(0) > 0, σ2(T ) > 0, 0 < σ1 ≤ σ2 on (0, T ).

Let, moreover, for every 0 < η < min{σ2(t) : t ∈ [0, T ]} there exist hη ∈ C(0, T ) such that

|f(t, x)| ≤ hη(t) for t ∈ (0, T ) and all x ∈ [σ1η(t), σ2(t)],

where σ1η(t) = max{η, σ1(t)} and
∫ T

0

t (T − t) hη(t) dt < ∞.

Then problem (4.14) has a positive w-solution u ∈ C[0, T ] ∩ AC1
loc(0, T ) such that

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ].
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Sketch of the proof. Step 1. Construction of auxiliary intervals.
A decreasing sequence {an} ⊂ (0, T ) and an increasing sequence {bn} ⊂ (0, T ) are

constructed such that, among other, limn→∞ an = 0, limn→∞ bn = T.

Step 2. Construction of auxiliary regular problems.
For t ∈ [0, T ], x ∈ R, n ∈ N, functions χn, αn, β, fn are given by

χn(x) =

{
σ1(an) if x < σ1(an),

x if x ≥ σ1(an),

αn(t) =





σ1(an) if 0 ≤ t ≤ an,

σ1(t) if an ≤ t ≤ bn,

σ1(bn) if bn ≤ t ≤ T,

β(t) =





v1(t) if 0 ≤ t ≤ a1,

σ2(t) if a1 ≤ t ≤ b1,

v2(t) if b1 ≤ t ≤ T,

fn(t, x) =





1
2
[f(t, χn(x)) + |f(t, χn(x))|] if t ∈ (0, an] ∪ [bn, T ),

f(t, χn(x)) if t ∈ (an, bn),

where v1 and v2 are solutions of some auxiliary linear Dirichlet problems.

Step 3. Convergence of the sequence of approximating solutions.
Solvability of a sequence of regular problems

u′′ + fn(t, u) = 0, u(0) = σ1(an), u(T ) = σ1(bn), n ∈ N, (4.16)

is investigated. The functions α1 and β are a lower and an upper function of (4.16) with
n = 1, and hence, by Theorem 4.6, there is a w-solution u1 of (4.16) with n = 1 such that
α1 ≤ u1 ≤ β on [0, T ]. Further, α2 and u1 are a lower and an upper function of (4.16)
with n = 2, and so Theorem 4.6 guarantees the existence of a w-solution u2 of (4.16) with
n = 2 such that α2 ≤ u2 ≤ u1 on [0, T ]. In this way a sequence of w-solutions is obtained
and then a limit process is applied. ¤

At the end of this subsection we will show another existence assertion in terms of
the lower and upper functions for a problem with the p-Laplacian of the form

(φp(u
′))′ + ψ(t) g(t, u) = 0, u(0) = u(1) = 0, (4.17)

where φp(y) = |y|p−2y, p > 1. Here we assume that
{

ψ : (0, 1) → (0,∞) is continuous

and can have time singularities at t = 0 and t = 1,
(4.18)

{
g : [0, 1]× (0,∞) → R is continuous

and can have a space singularity at x = 0.
(4.19)

In this setting, using the paper by Agarwal, Lü and O’Regan [2], we offer the following
result about the existence of positive w-solutions of (4.17).
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Theorem 4.12. Let (4.18) and (4.19) hold. Assume that the following conditions are
satisfied:

{
{ρn} is a nonincreasing sequence of real numbers,

limn→∞ ρn = 0 and n0 ∈ N, n0 ≥ 3 being fixed,
(4.20)

max

{∫ 1
2

0

φ−1
p

(∫ 1
2

s

ψ(t) dt

)
ds,

∫ 1

1
2

φ−1
p

(∫ s

1
2

ψ(t) dt

)
ds

}
= b0 < ∞ (4.21)

and

ψ(t) g(t, ρn) ≥ 0 for t ∈ [
1

2n+1
, 1), n ≥ n0.

Further assume that σ1 and σ2 are a lower and an upper function of problem (4.17) with
σ1 > 0 on (0, 1), max{ρn0 , σ1(t)} ≤ σ2(t) for t ∈ [0, 1] and

(φp(σ
′
2(t))

′ + ψ(t) g(
1

2n0+1
, σ2(t)) ≤ 0 for t ∈ (0,

1

2n0+1
).

Then problem (4.17) has a positive w-solution u ∈ C[0, 1] with φp(u
′) ∈ C1(0, 1) and

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, 1].

In Section 4.3 we will show how lower and upper functions for regular problems can
be applied to get not only a w-solution but also a solution of a given singular problem
(see Theorem 4.18).

4.2 . Positive nonlinearities

Many papers studying problem (4.1) or (4.2) with a space singularity at x = 0 concern
the case that the nonlinearity f is positive. Such problems are refered to as positone
ones in literature, see [11], [12] or [144]. The positivity of f implies that each solution
is concave and hence positive on (0, T ), and if, moreover, f has a space singularity at
x = 0 but not at y, then each solution has only two corresponding singular points 0, T
which are of type I. This makes the study of such problems easier than of those having
sign-changing f or space singularities at y.

First we will discuss mixed singularities at t and x. In Section 1.1 we have presented
problem (1.3), (1.4) the solvability of which was investigated by Taliaferro [149]. This
problem has mixed singularities: the time ones at t = 0 and t = 1 as well as the space
one at x = 0. Among many papers generalizing Taliaferro’s existence results we choose
the paper by Tineo [150] devoted to the existence of positive solutions or w-solutions to
a singular problem

u′′ + f(t, u, u′) = 0, u(0) = u(1) = 0, (4.22)

where {
f : (0, 1)× (0,∞)× R→ (0,∞) is continuous and can have

time singularities at t = 0, t = 1 and a space singularity at x = 0.
(4.23)



46 Irena Rach̊unková, Svatoslav Staněk, Milan Tvrdý

Theorem 4.13. ([150, Theorem 0.1]) Let (4.23) hold. Suppose that there are continuous
functions ϕ : (0, 1) → (0,∞), ψ : (0, 1) → [0,∞) and g : (0,∞) → (0,∞) such that g is
decreasing and

f(t, x, y) ≤ ϕ(t) g(x) + ψ(t) |y| for t ∈ (0, 1), x ∈ (0,∞), y ∈ R,

∫ 1

0

t (1− t) ϕ(t) dt < ∞,

∫ 1

0

ψ(t) dt < ∞.

Assume further that for each constant M > 0 there exists a continuous function εM :
(0, 1) → (0,∞) such that

εM(t) ≤ f(t, x, y) for t ∈ (0, 1), x ∈ (0,M ], y ∈ R.

Then problem (4.22) has a positive w-solution u ∈ C[0, 1] ∩ C2(0, 1). If, moreover,
∫ 1

0

g(k t (1− t)) ϕ(t) dt < ∞ for all k > 0,

then u belongs to AC1[0, 1], which means that u is a solution of (4.22).

The proof of Theorem 4.13 proceeds according to Remark 4.2. Solvability of auxiliary
regular problems is obtained by the Leray-Schauder degree argument and the limit process
is guaranteed by means of a priori estimates of the approximate solutions.

Example. Let α, β ∈ (0, 2), k, λ ∈ (0,∞), ε ∈ C(0, 1), ε > 0 on (0, 1). By Theorem 4.13
the problem

u′′ +
1

tα (1− t)β uλ
+ tk |u′|+ ε(t) = 0, u(0) = u(1) = 0

has a positive w-solution u ∈ C[0, 1] ∩ C2(0, 1). If α + λ, β + λ ∈ (0, 1) then, moreover,
u ∈ C1[0, 1]. Hence u is a solution.

Let us turn back to problem (4.14) with f satisfying (4.15). Wang in [156] considered
f which can have at most linear growth in x. He illustrated his result by functions

f(t, x) =
1

tα xβ
with α ∈ (1, 2), β > 0

or

f(t, x) = δ x exp

(
1

x

)
with a sufficiently small δ > 0.

For f which is moreover continuous on (0, T )× (0,∞), Agarwal and O’Regan [3], [4], [12]
proved the existence of a positive w-solution of (4.14) with f increasing in x for large x.
An example of such f is

f(t, x) = δ

(
1

xα
+ xβ + 1

)
, α, β, δ ∈ (0,∞).
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If f has sublinear growth in x (i.e. β ∈ (0, 1)), then (4.14) has a positive w-solution for
each δ > 0. If f has linear or superlinear growth in x (i.e. β = 1 or β ∈ (1,∞)), then
(4.14) has a positive w-solution for any sufficiently small δ > 0. A formula for an upper
bound of δ is also given.

Now let us consider space singularities at x and y. We will present conditions ensuring
solvability of problems with singularities in space variables x and y and with singular
points both of type I and of type II. The main difficulty in the study of singular points
of type II is the fact that their location in [0, T ] is not known. This is the reason why in
mathematical literature there are only few papers concerning solvability of such problems
and no results about w-solutions are known.

The first existence result in this direction was reached by Staněk [144] in 2001. The fol-
lowing theorem can be viewed as a corollary of [144, Theorem 1].

For a fixed A > 0 we consider a singular problem

u′′ + µ f(t, u, u′) = 0, u(0) = u(T ) = 0, (4.24)

with a positive real parameter µ, where
{

f is continuous on DA = [0, T ]× (0, A)× [−2 A
T

, 0
) ∪ (

0, 2 A
T

]

and can have space singularities at x = 0, x = A, y = 0.
(4.25)

Sufficient conditions on µ and f for the solvability of (4.24) in the set [0, T ]×A, where
A = [0, A]× [−2 A

T
, 2 A

T
], are given in the next theorem.

Theorem 4.14. Let (4.25) hold. Suppose that there exists δ > 0 such that f satisfies

δ ≤ f(t, x, y) ≤ g(x) ω(|y|) on DA,

where ω ≥ δ is continuous on
(
0, 2 A

T

]
and g ∈ C(0, A) ∩ L1[0, A]. Let

µT =




∫ 2 A
T

0

y

ω(y)
dy




(∫ A

0

g(x) dx

)−1

.

Then for any µ ∈ (0, µT ] problem (4.24) has a solution uµ ∈ AC1[0, T ] satisfying

0 < uµ(t) < A for t ∈ (0, T ). (4.26)

Take notice of the fact that for any solution u of problem (4.24) there is a point
tu ∈ (0, T ) with u′(tu) = 0. Since f has a singularity at y = 0 and we do not know
the position of tu ∈ (0, T ), tu is a singular point of type II.

To prove Theorem 4.14 a two-parameter family of regular problems is constructed and
their solvability is established by the topological transversality method. Then, a priori
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bounds for approximate solutions of regular problems are derived. Using these bounds
and the Arzelà-Ascoli theorem, a solution of (4.24) is obtained by a limiting process.

Example. Let A > 0, a, b, c, d, γ ∈ [0,∞), a + b + d > 0, α, β ∈ (0, 1). Then for
a sufficiently small µ > 0 the problem

u′′ + µ
(
1 +

a

uα (A− u)β
+ b uγ

) (
1 + c u′2

) (
1 +

d

u′2

)
= 0, u(0) = u(T ) = 0

has a solution uµ satisfying (4.26). The upper bound µT is explicitly expressed in [144].

The next existence result is in the spirit of Staněk [147], where a more general state-
dependent functional differential equation was studied. Here we consider problem (4.1)
with the φ-Laplacian and a function f satisfying

{
f ∈ Car([0, T ]×D), D = (0,∞)× (R \ {0}),
and f can have space singularities at x = 0, y = 0.

(4.27)

Theorem 4.15. Let (4.27) hold and let φ be odd. Suppose that there exists δ ∈ (0,∞)
such that f satisfies

δ ≤ f(t, x, y) ≤ (
h1(x) + h2(x)

) (
ω1(φ(|y|)) + ω2(φ(|y|)))

for a.e. t ∈ [0, T ] and all (x, y) ∈ D, where h1, ω1 ∈ C[0,∞) are positive and nondecreas-
ing, h2, ω2 ∈ C(0,∞) ∩ L1[0, 1] are positive and nonincreasing and

∫ ∞

0

ds

ω1(s)
= ∞.

Let
T

2
< lim inf

u→∞
u

K−1
(
T (h1(u) + h2(u))

) ,

where K−1 denotes the inverse function to K : [0,∞) → [0,∞),

K(u) =

∫ φ(u)

0

ds

ω1(s) + ω2(s)
.

Then problem (4.1) has a positive solution u ∈ AC1[0, T ].

In the proof of this result the solvability of a sequence of regular problems is ob-
tained by the Leray-Schauder degree theory. Limit processes are guaranteed by Vitali’s
convergence theorem.

Example. Let c ∈ L∞[0, T ], p ∈ (1,∞), β ∈ (0, 1), γ, η ∈ (0, p), δ ∈ (0,∞) and
α ∈ (0, p− γ). Further, let c(t) ≥ δ a.e. on [0, T ]. Then the problem

(|u′|p−2 u′)′ + c(t)

(
1 + uα +

1

uβ

) (
1 + |u′|γ +

1

|u′|η
)

= 0, u(0) = u(T ) = 0

has a positive solution.
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4.3 . Sign-changing nonlinearities

Results about the solvability of singular Dirichlet problems with sign-changing nonlinear-
ities mostly concern w-solutions. Making use of the arguments of Section 1 we can show a
new existence principle giving positive solutions to singular Dirichlet problems of the form

u′′ + f(t, u, u′) = 0, u(0) = u(T ) = 0, (4.28)

where {
f ∈ Car((0, T )×D) can change its sign, D = (0,∞)× R,

and f can have mixed singularities at t = 0, t = T, x = 0.
(4.29)

For k ∈ N, k ≥ 3
T
, t ∈ [0, T ], x ∈ R, put ∆k = [0, 1

k
) ∪ (T − 1

k
, T ],

γk(t) =





1
k

if t < 1
k
,

t if t ∈ [0, T ] \∆k,

T − 1
k

if t > T − 1
k
,

δk(x) =

{ |x| if |x| ≥ 1
k
,

1
k

if |x| < 1
k
.

Then we construct the sequence of regular functions

fk(t, x, y) = f(γk(t), δk(x), y) for a.e. t ∈ [0, T ], each x, y ∈ R (4.30)

and the sequence of regular problems

u′′ + fk(t, u, u′) = 0, u(0) = u(T ) =
1

k
, (4.31)

where fk ∈ Car([0, T ]× R2), k ∈ N, k ≥ 3
T

.

Theorem 4.16. (Existence principle for solutions of (4.28)) Let (4.29) hold. As-
sume that

{
there exists a bounded set Ω ⊂ C1[0, T ] such that

problem (4.31) has a solution uk ∈ Ω for each k ∈ N, k ≥ 3
T
,

(4.32)

{
there exists a function ε ∈ C[0, T ], ε(0) = ε(T ) = 0,

such that uk(t) ≥ ε(t) > 0 for t ∈ (0, T ) and each k ∈ N, k ≥ 3
T

(4.33)

and

the sequence {fk(t, uk(t), u
′
k(t))} is uniformly integrable on [0, T ]. (4.34)

Then {
there exist a function u ∈ Ω and a subsequence {ukn} ⊂ {uk}
such that limn→∞ ‖ukn − u‖C1 = 0,

(4.35)

and

u ∈ AC1[0, T ] is a positive solution of problem (4.28). (4.36)
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Proof. Since f can have singularities both at t and at x, we cannot obtain Theorem
4.16 as a direct consequence of some of the theorems in Section 1. Nevertheless, we can
use the ideas of their proofs and argue as follows.

Step 1. Convergence of the sequence of approximating solutions.
By (4.32) we get that {uk} and {u′k} are bounded in C[0, T ]. The boundedness of {u′k}

implies the equicontinuity of {uk} on [0, T ]. Condition (4.34) yields the equicontinuity of
{u′k} on [0, T ] and hence the Arzelà-Ascoli theorem gives the assertion (4.35).

Step 2. Convergence of the sequence of regular right-hand sides.
The conditions ukn(0) = ukn(T ) = 1

kn
imply u(0) = u(T ) = 0. By (4.33) we get

u(t) > 0 on (0, T ). Choose ξ ∈ (0, T ) such that f(ξ, ·, ·) : D → R is continuous. Then, by
virtue of (4.30) and (4.33), we have

ukn(ξ) ≥ ε(ξ) >
1

kn

, ξ ∈ [0, T ] \∆kn , fkn(ξ, ukn(ξ), u′kn
(ξ)) = f(ξ, ukn(ξ), u′kn

(ξ))

for a sufficiently large kn. Therefore

lim
n→∞

fkn(t, ukn(t), u′kn
(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. (4.37)

Step 3. Properties of the limit u.
By (4.34), (4.37) and Vitali’s convergence theorem, we get that f(t, u(t), u′(t)) belongs

to L1[0, T ] and we can pass to the limit in the sequence

u′kn
(t) = u′kn

(0)−
∫ t

0

fkn(s, ukn(s), u′kn
(s)) ds, t ∈ [0, T ],

thus obtaining

u′(t) = u′(0)−
∫ t

0

f(s, u(s), u′(s)) ds, t ∈ [0, T ].

Hence (4.36) is true. ¤

Remark 4.17. Having in mind the absolute continuity of the Lebesgue integral we see
that if there exists ϕ ∈ L1[0, T ] such that

|fk(t, uk(t), u
′
k(t))| ≤ ϕ(t) for a.e. t ∈ [0, T ] and each k ∈ N, k ≥ 3

T
, (4.38)

then condition (4.34) is valid.

In Section 4.1, the classical lower and upper functions method has been extended
to singular problems (see Theorems 4.6, 4.8, 4.11 and 4.12). Motivated by Agarwal,
O’Regan, Lakshmikantham and Leela [14], we will show another approach which consists
in the employment of a sequence of lower and upper functions of approximating regular
problems.
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Theorem 4.18. Let (4.29) and (4.30) hold. Assume that there exists k0 ∈ N such that
for each k ∈ N, k ≥ k0, the following conditions are satisfied:

{
αk and β are a lower and an upper function of (4.31) and

α′k, β′ ∈ L∞[0, T ], 1
k
≤ αk(t) ≤ β(t) for t ∈ [0, T ],

(4.39)

{
|fk(t, x, y)| ≤ ψ(t) g(x) ω(|y|) for a.e. t ∈ [0, T ]

and for all x ∈ (0, ‖β‖∞), y ∈ R,
(4.40)

with
{

positive functions ψ ∈ L1[
1
k
, T − 1

k
], ω ∈ C[0,∞) and

a positive nonincreasing function g ∈ C(0,∞).
(4.41)

Further assume that there is a function α ∈ C[0, T ] with α(0) = α(T ) = 0, α > 0
on (0, T ), αk ≥ α on [0, T ], such that

∫ T

0

ψ(t) g(α(t)) dt <

∫ ∞

0

ds

ω(s)
. (4.42)

Then problem (4.28) has a positive solution u ∈ AC1[0, T ] satisfying

α(t) ≤ u(t) ≤ β(t) for t ∈ [0, T ].

Sketch of the proof. Theorem 4.18 can be proved by means of Theorem 4.16 in
the following way.

Step 1. Construction of the sequence of regular problems.
Condition (4.42) implies that there exists ρ > 0 such that

∫ T

0

ψ(t)g(α(t)) dt <

∫ ρ

0

ds

ω(s)
. (4.43)

For k ∈ N, k ≥ k0, put ρk = max{ρ, ‖α′k‖∞, ‖β′‖∞} and consider a sequence of regular
problems

u′′ + f̃k(t, u, u′) = 0, u(0) = u(T ) =
1

k
, (4.44)

where for a.e. t ∈ [0, T ] and all (x, y) ∈ R2 we set

f̃k(t, x, y) = χk(y) fk(t, x, y)

and

χk(y) =





1 if |y| ≤ ρk,

2− |y|
ρk

if ρk < |y| < 2 ρk,

0 if |y| ≥ 2 ρk.
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Then αk and β are respectively a lower and an upper function of (4.44), f̃k satisfies (4.40)
and, moreover, there exists h̃k ∈ L1[0, T ] such that

|f̃k(t, x, y)| ≤ h̃k(t) for a.e. t ∈ [0, T ], all x ∈ [αk(t), β(t)], y ∈ R.

The classical existence result based on the lower and upper functions method for regular
problems (see e.g. [154]) guarantees that for each k ≥ k0 problem (4.44) has a solution
uk with

α ≤ αk ≤ uk ≤ β on [0, T ]. (4.45)

Step 2. A priori estimates of approximate solutions.
Using (4.40), (4.41) and (4.43) we deduce that ‖u′k‖∞ ≤ ρ, which implies that uk is

also a solution of (4.31) for k ≥ k0. Hence, if we put ε(t) = α(t) for t ∈ [0, T ] and

Ω = {x ∈ C1[0, T ] : α ≤ x ≤ β on [0, T ], ‖x′‖∞ ≤ ρ},

we get that (4.32), (4.33) are fulfilled.

Step 3. Uniform integrability of regular right-hand sides.
By (4.40), (4.41) and (4.45) we get

|fk(t, uk(t), u
′
k(t))| ≤ ψ(t) g(uk(t)) ω(|u′k(t)|) ≤ M ψ(t) g(α(t)) = ϕ(t)

for a.e. t ∈ [0, T ], where M = max{ω(|s|) : s ∈ [−ρ, ρ]}. By virtue of (4.43), ϕ ∈ L1[0, T ]
and we conclude by Remark 4.17 that condition (4.34) is valid. Therefore the assertion
follows from Theorem 4.16 and condition (4.45). ¤

Remark 4.19. If f does not depend on y, then (4.42) takes the form

∫ T

0

ψ(t) g(α(t)) dt < ∞.

In the rest of this section we present a selection of existence results about w-solutions
which can be obtained by theorems from Section 4.1. Consider a singular Dirichlet prob-
lem

u′′ + f(t, u) = 0, u(0) = u(T ) = 0, (4.46)

where {
f ∈ Car((0, T )× (0,∞)) can change its sign and

can have singularities at t = 0, t = T and at x = 0.
(4.47)

The first result is due to Lomtatidze [105].

Theorem 4.20. Let (4.47) hold. Assume that f is nonincreasing as a function of its
second argument and that there is ε > 0 for which

f(t, ε) ≥ 0 for a.e. t ∈ [0, T ], meas {t ∈ (0, T ) : f(t, ε) > 0} > 0.
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Then the condition
∫ T

0

t (T − t) |f(t, δ)| dt < ∞ for any δ ∈ (0, ε]

is necessary and sufficient for problem (4.46) to have a unique positive w-solution u ∈
C[0, T ] ∩ AC1

loc(0, T ).

The proof of Theorem 4.20 is based on the lower and upper functions method via
Theorem 4.11. More general results were obtained by Lomtatidze and Torres in [106],
where a differential equation having moreover the term g(t, u) u′ was investigated.

A very similar result for a simpler case of problem (4.46) with f satisfying (4.49) was
proved by Habets and Zanolin in [85]. The analogue of their results was proved by Jiang
[91] for a singular Dirichlet problem with the p-Laplacian

(φp(u
′))′ + f(t, u) = 0, u(0) = u(T ) = 0, (4.48)

where φ(y) = |y|p−2 y, p > 1 and

{
f ∈ C((0, T )× (0,∞)) can change its sign and

can have singularities at t = 0, t = T and at x = 0.
(4.49)

Theorem 4.21. ([91, Theorem 3]) Let (4.49) hold. Assume that

(i) there exists a constant L > 0 such that for any compact set K ⊂ (0, T ) there is
ε = εK > 0 such that

f(t, x) > L for all t ∈ K, x ∈ (0, ε],

(ii) for any δ > 0 there are hδ ∈ C(0, T ) and µ, ν ∈ [0, p− 1) such that

|f(t, x)| ≤ hδ(t) for all t ∈ (0, T ), x ≥ δ

and ∫ T

0

tµ (T − t)ν hδ(t) dt < ∞.

Then problem (4.48) has a positive w-solution u ∈ C[0, T ] with φp(u
′) ∈ C1(0, T ). If,

moreover, for each t ∈ (0, T ) the function f(t, x) is nonincreasing in x, then u is a unique
w-solution.

Another existence result for differential equation where the nonlinearity f can depend
on u′ is due to Jiang in [92]. He studied the singular Dirichlet problem of the form

u′′ + f(t, u, u′) = 0, u(0) = u(1) = 0, (4.50)



54 Irena Rach̊unková, Svatoslav Staněk, Milan Tvrdý

where {
f ∈ C((0, 1)× (0,∞)× R) can change its sign

and can have singularities at t = 0, t = 1 and x = 0.
(4.51)

Motivated by the example

f(t, x, y) =
δ

tm (1− t)n

( 1

xα
+ xβ + sin(8 π t)

) (
1 + t (1− t) |y| 1γ )

(4.52)

with real numbers α > 0, β ≥ 0, γ > 1, δ > 0, 0 ≤ m, n < 2, he proved existence
of a positive w-solution of (4.50) for f satisfying (4.51) and having superlinear growth
in x for large x and sublinear growth in y for large |y|. Particularly, if f in (4.50) has
the form (4.52), then an upper bound for δ is found guaranteeing that (4.50) has a positive
w-solution. The proof is based on the papers [85] and [4].

Let us turn back to problem (4.17). Using the lower and upper functions method
established in Theorem 4.12 we can get sufficient conditions for the existence of positive
w-solutions. Specifically, we report the result motivated by Agarwal, Lü and O’Regan [2].

Theorem 4.22. Let (4.18) − (4.21) hold. Assume that there exist n0 ∈ N, n0 ≥ 3 and
c0 ∈ (0,∞) such that

ψ(t) g(t, x) ≥ c0 for t ∈ [
1

2n+1
, 1− 1

2n+1
], x ∈ (0, ρn], n ≥ n0

and
|g(t, x)| ≤ η(x) + h(x) for (t, x) ∈ [0, 1]× (0,∞),

where η ∈ ACloc(0,∞) is positive, h ∈ C[0,∞) is nonnegative and h
η

is nondecreasing on
(0,∞). Further assume that

η′ < 0 a.e. on (0, R) and
η′

η2
∈ L1[0, R] for any R > 0

and that there exists r ∈ (0,∞) such that

b0 <

(
φ−1

p

(
1 +

h(r)

η(r)

))−1 ∫ r

0

du

φ−1
p (η(u))

.

Then problem (4.17) has a positive w-solution u ∈ C[0, 1] with φp(u
′) ∈ C1(0, 1).

4.4 . Sign-changing solutions and w-solutions

If we consider a singular differential equation with a space singularity at x = 0, a question
about the existence of sign-changing solutions of such an equation can arise. A single
result in this direction was proved by Rach̊unková and Staněk in [124], where an equation
of the form (r(u) u′)′ = µ q(t) f(t, u) has been studied.
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Here we will present this result for a simplified equation

u′′ + µ f(t, u) = 0 (4.53)

with a positive real parameter µ and with boundary conditions

u(0) = u(T ) = 0, max{u(t) : t ∈ [0, T ]} min{u(t) : t ∈ [0, T ]} < 0. (4.54)

We assume that {
f : [0, T ]× (R \ {0}) → R is continuous

and can have a space singularity at x = 0.
(4.55)

By a solution of problem (4.53), (4.54) we mean a function u ∈ C1[0, T ] having precisely
one zero tu ∈ (0, T ). Moreover, u ∈ C2((0, T ) \ {tu}) fulfils (4.54) and there exists µu > 0
such that u satisfies (4.53) for µ = µu and t ∈ (0, T ) \ {tu}.
Theorem 4.23. Let (4.55) hold. Assume that for each t ∈ [0, T ] the function f(t, x) is
nondecreasing with respect to x on (−∞, 0) and nonincreasing on (0,∞) and

ε ≤ f(t, x) sign x ≤ g(x) for (t, x) ∈ [0, T ]× (R \ {0}),
where ε ∈ (0,∞) and g ∈ C(R \ {0}) ∩ L1[−1, 1].

Then for each A ∈ (0,∞) and B ∈ (−∞, 0) there exist solutions u and v of problem
(4.53), (4.54) satisfying

max{u(t) : t ∈ [0, T ]} = A and min{v(t) : t ∈ [0, T ]} = B. (4.56)

By virtue of Theorem 4.23, any solution u of problem (4.53), (4.54) vanishes at some
point tu ∈ (0, T ). Since f has a singularity at x = 0 and we do not know the position
of tu, we see that tu is a singular point of type II.

The proof of Theorem 4.23 is based on a combination of four main theorems in [124],
where a new method of proofs was developed. It is based on ”gluing” the positive and
negative parts of solutions and smoothing them.

In accordance with the paper [125] by Rach̊unková and Staněk we define a w-solution
of problem (4.53), (4.54) as a function u ∈ C[0, T ] having precisely one zero tu ∈ (0, T ).
Further, u ∈ C2((0, T ) \ {tu}) fulfils (4.54), there exist finite limits

lim
t→tu−

u′(t), lim
t→tu+

u′(t)

and there exists µu > 0 such that u satisfies (4.53) for µ = µu and t ∈ (0, T ) \ {tu}.
In [125], the following existence result for w-solutions is proved.

Theorem 4.24. Let all assumptions of Theorem 4.23 be satisfied.

Then for each t0 ∈ (0, T ) and each A ∈ (0,∞), B ∈ (−∞, 0) problem (4.53), (4.54) has
just two different w-solutions vanishing at t0 and having their maximum value on [0, T ]
equal to A, and just two different w-solutions vanishing at t0 and having their minimum
value on [0, T ] equal to B.
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In the proof of Theorem 4.24, w-solutions are constructed by means of solutions of
auxiliary Dirichlet problems on [0, t0] and [t0, T ].

Example. Let α, β ∈ (0, 1), a ∈ (0,∞), b ∈ (−∞, 0) and

f(x) =





a

xα
for x > 0,

b

(−x)β
for x < 0.

Consider the differential equation

u′′ + µ f(u) = 0. (4.57)

By Theorem 4.23, for each A > 0 and B < 0 there exist solutions u and v of problem
(4.57), (4.54) satisfying (4.56). Moreover, by Theorem 4.24, for each t0 ∈ (0, T ) and for
each A > 0 there exist just two different w-solutions u1 and u2 of problem (4.57), (4.54)
satisfying

max{u1(t) : t ∈ [0, T ]} = max{u2(t) : t ∈ [0, T ]} = A.

Further, for each t0 ∈ (0, T ) and for each B < 0 there exist just two different w-solutions
v1 and v2 of problem (4.57), (4.54) satisfying

min{v1(t) : t ∈ [0, T ]} = min{v2(t) : t ∈ [0, T ]} = B.

4.5 . Historical and bibliographical notes

A systematic study of solvability of Dirichlet problems having both time and space sin-
gularities was initiated in 1979 by Taliaferro [149], who found necessary and sufficient
conditions for the existence of solutions (w-solutions) of problem (1.3), (1.4). A contribu-
tion to the more general problem (4.22) was published by Bobisud, O’Regan and Royalty
[38] in 1988. In 1989, in contrast to the shooting method used in [149] and the topological
transversality method applied in [38], Gatica, Oliker and Waltman [76] proved a fixed
point theorem for decreasing maps on cones and applying it they obtained solvability
of (4.14). However, in these works the nonlinearity f had to be bounded in its space
variables x and y for large x and large |y|.

An extension of the above results permitting linear growth of f in its third variable y
for large |y| was treated by Baxley [25] in 1991 and by Tineo [150] in 1992. The condition
of boundedness of f in its second variable x for large x was overcome by Agarwal and
O’Regan in [3] (1996), where the existence of a positive w-solution was proved even for
f having superlinear growth for large x. In 1999, the first multiplicity result for Dirich-
let problems with time and space singularities was reached. Particularly, Agarwal and
O’Regan [6] proved the existence of two different positive w-solutions. All these results
rely on the fact that nonlinearities in the equations considered are positive.

In 1987, this assumption was removed by Lomtatidze [105] for problem (4.14). We
can also refer to papers by Janus and Myjak [88] for a nonhomogeneous equation (1.3)
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and by Habets and Zanolin [85] for the continuous case of (4.14) which appeared in 1994.
From papers providing more general existence results for problems with sign-changing
nonlinearities we mention the recent papers by Jiang [92] (2002), by Agarwal, Staněk
[18] (2003) or by Lomtatidze, Torres [106] (2003). These papers deal with problems of
the type (4.2).

Existence results for problems of the type (4.1) with the φ-Laplacian and sign-changing
nonlinearities were presented by Wang and Gao in [158] (1996), where Taliaferro’s results
were extended. Existence results in the spirit of Habets and Zanolin which are applicable
to problems with the p-Laplacian of the form (4.48) were given by Jiang in [91] (2001). In
2003, Agarwal, Lü and O’Regan [2] published the existence result for the problem with
the p-Laplacian of the form (4.17).

Further results and references for positive and for sign-changing nonlinearities can be
found in the monographs by Kiguradze [97] (1975), by Kiguradze and Shekhter [98] (1987),
by O’Regan [116] (1994), by Agarwal and O’Regan [11] (2003) and in [12] (2004). Note
that there exists a large group of papers investigating Dirichlet boundary value problems
having only time singularities. These results are not discussed here but some of them can
be found in the above cited monographs.

In the study of Dirichlet problems with space singularities and singular points both
of type I and of type II the first existence result was reached by Staněk [144] in 2001,
and the existence of sign-changing solutions was proved by Rach̊unková and Staněk [124]
in 2003. Numerical algorithms and computation of solutions and w-solutions of singu-
lar Dirichlet problems were given by Baxley [26] (1995) and by Baxley and Thompson
[29] (2000).

5 . Singular periodic BVPs with φ-Laplacian

The aim of this section is to present existence results for singular periodic problems of
the form

(φ(u′))′ = f(t, u, u′), (5.1)

u(0) = u(T ), u′(0) = u′(T ), (5.2)

where 0 < T < ∞, φ : R → R is an increasing and odd homeomorphism such that
φ(R) = R and

f ∈ Car([0, T ]× ((0,∞)× R)) and f can have a space singularity at x = 0. (5.3)

In accordance with Section 1.3, this means that

lim sup
x→0+

|f(t, x, y)| = ∞ for a.e. t ∈ [0, T ] and some y ∈ R

may happen.
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Remark 5.1. Physicists say that f has an attractive singularity at x = 0 if

lim inf
x→0+

f(t, x, y) = −∞ for a.e. t ∈ [0, T ] and some y ∈ R

since near the origin the force is directed inward. Alternatively, f is said to have a repulsive
singularity at x = 0 if

lim sup
x→0+

f(t, x, y) = ∞ for a.e. t ∈ [0, T ] and some y ∈ R

holds.

In the setting of Section 1.3, problem (5.1), (5.2) is investigated on the set [0, T ]×A,
where A = [0,∞) × R. In contrast to the Dirichlet problem (4.1), where each solution
vanishes at t = 0 and t = T and hence enters the space singularity x = 0 of f, all known
existence results for the periodic problem (5.1), (5.2) under the assumption (5.3) concern
positive solutions which do not touch the space singularity x = 0 of the function f.

Definition 5.2. A function u : [0, T ] → R is a positive solution to problem (5.1), (5.2)
if φ(u′) ∈ AC[0, T ], u > 0 on [0, T ], (φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and
(5.2) is satisfied.

The restriction to positive solutions causes that the general existence principle in
Theorem 1.8 about a limit of a sequence of approximate solutions need not be employed
here. On the other hand, the singular problem (5.1), (5.2) will be also investigated through
regular approximating periodic problems having differential equations of the form

(φ(u′))′ = h(t, u, u′), (5.4)

where h ∈ Car([0, T ] × R2). As usual, by a solution of the regular problem (5.4), (5.2)
we understand a function u such that φ(u′) ∈ AC[0, T ], (5.2) is true and (φ(u′(t)))′ =
h(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Notice that the requirement φ(u′) ∈ AC[0, T ] implies that u ∈ C1[0, T ].
We will also discuss various special cases of (5.1) including the classical one with

φ(y) ≡ y or those with f not depending on u′ or with f depending on u′ linearly.
Let us notice that the assumption that φ is an odd function is only technical and it

is sufficient to assume (3.3) as in Section 3 in most cases. We employ it just to simplify
some formulas occurring in this section.

5.1 . Method of lower and upper functions for regular problems

First, we will consider problem (5.4), (5.2), where h ∈ Car([0, T ] × R2). We bring some
results which will be exploited in the investigation of the singular problem (5.1), (5.2).
The lower and upper functions method combined with the topological degree argument
is an important tool for proofs of solvability of regular periodic problems. Several rather
general definitions of lower and upper functions are available (see e.g. [51], [52], [66], [98],
[130], [155]). However, for our purposes the following one seems to be optimal.
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Definition 5.3. We say that a function σ ∈ C[0, T ] is a lower function of problem
(5.4), (5.2) if there is a finite set Σ ⊂ (0, T ) such that φ(σ′) ∈ ACloc([0, T ] \ Σ), σ′(τ+),
σ′(τ−) ∈ R for each τ ∈ Σ and

(φ(σ′(t)))′ ≥ h(t, σ(t), σ′(t)) for a.e. t ∈ [0, T ], (5.5)

σ(0) = σ(T ), σ′(0) ≥ σ′(T ), (5.6)

σ′(τ+) > σ′(τ−) for all τ ∈ Σ. (5.7)

If the inequalities in (5.5)–(5.7) are reversed, σ is called an upper function of problem
(5.4), (5.2).

The role of lower and upper functions is demonstrated by the following ”maximum
principle”:

Lemma 5.4. Let σ1 and σ2 be a lower and an upper function of (5.4), (5.2) and σ1 ≤ σ2

on [0, T ].

Then for each d ∈ [σ1(0), σ2(0)] and each f̃ ∈ Car([0, T ]× R2) such that




f̃(t, x, y) < h(t, σ1(t), σ
′
1(t)) for a.e. t ∈ [0, T ], all x ∈ (−∞, σ1(t))

and all y ∈ R such that |y − σ′1(t)| ≤
σ1(t)− x

σ1(t)− x + 1
,

f̃(t, x, y) > h(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ], all x ∈ (σ2(t),∞)

and all y ∈ R such that |y − σ′2(t)| ≤
x− σ2(t)

x− σ2(t) + 1
,

(5.8)

any solution u of the problem

(φ(u′))′ = f̃(t, u, u′), u(0) = u(T ) = d

satisfies σ1 ≤ u ≤ σ2 on [0, T ].

Proof. Denote v = u − σ1 and assume that v(α) = min{v(t) : t ∈ [0, T ]} < 0. Since
d ∈ [σ1(0), σ2(0)] and thanks to (5.6) and (5.7), we may assume that α ∈ (0, T ) \ Σ,
v′(α) = 0, and there is β ∈ (α, T ] such that (α, β] ∩ Σ = ∅ and

v(t) < 0 and |v′(t)| < −v(t)

1− v(t)
for all t ∈ [α, β].

Using (5.5) (where σ = σ1) and (5.8), we obtain

(φ(u′(t))− φ(σ′1(t)))
′
< h(t, σ1(t), σ

′
1(t))− (φ(σ′1(t)))

′ ≤ 0 for a.e. t ∈ [α, β].

Hence

0 >

∫ t

α

(φ(u′(s))− φ(σ′1(s)))
′ ds = φ(u′(t))− φ(σ′1(t)) for all t ∈ (α, β],
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which leads to a contradiction with the definition of α, i.e. u ≥ σ1 on [0, T ]. Similarly we
can show that u ≤ σ2 on [0, T ]. ¤

Problem (5.4), (5.2) is often transformed to a fixed point problem (see e.g. [42], [107],
[110], [159]). Here we present one possibility how to find an operator representation of
(5.4), (5.2) in the space C1[0, T ]. Having in mind that the periodic conditions (5.2) can
be equivalently rewritten as

u(0) = u(T ) = u(0) + u′(0)− u′(T ),

let us consider the quasilinear Dirichlet problem

(φ(x′))′ = b(t) a.e. on [0, T ], x(0) = x(T ) = d (5.9)

with b ∈ L1[0, T ] and d ∈ R. A function x ∈ C1[0, T ] is a solution of (5.9) if and only if
there is a ∈ R such that

x(t) = d +

∫ t

0

φ−1
(
a +

∫ s

0

b(τ) dτ
)

ds for t ∈ [0, T ]

and ∫ T

0

φ−1
(
a +

∫ s

0

b(τ) dτ
)

ds = 0. (5.10)

Since φ is increasing on R and φ(R) = R, equation (5.10) has exactly one solution a =
a(b) ∈ R for each b ∈ L1[0, T ]. So, we can define an operator K : L1[0, T ] → C1[0, T ] by

(K(b))(t) =

∫ t

0

φ−1
(
a(b) +

∫ s

0

b(τ) dτ
)

ds for t ∈ [0, T ]. (5.11)

Let N : C1[0, T ] → L1[0, T ] and F : C1[0, T ] → C1[0, T ] have the form (N (u))(t) =
h(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and

(F(u))(t) = u(0) + u′(0)− u′(T ) + (K(N (u)))(t) for t ∈ [0, T ]. (5.12)

In view of the definition of K, a function x ∈ C1[0, T ] is a solution to (5.9) if and only if
x = d+K(b). Therefore, u ∈ C1[0, T ] is a solution to (5.4), (5.2) if and only if it is a fixed
point of F .

An alternative representation of the operator F can be obtained by inserting α(u) =
u(0)− d, β(u) = d− u(T ) and d = u(0) + u′(0)− u′(T ) into the operator P(1, u) defined
in the proof of Theorem 3.2. In this way we get

(F(u))(t) = u(0) + u′(0)− u′(T )

+

∫ t

0

φ−1
(
φ(u′(T ) + u(T )− u(0)) +

∫ s

0

(N (u))(τ) dτ
)

ds

for t ∈ [0, T ] and u ∈ C1[0, T ].
Taking into account [107, Proposition 2.2] or the proof of Theorem 3.2, we can sum-

marize:



Singularities and Laplacians in Nonlinear BVPs 61

Lemma 5.5. Let F : C1[0, T ] → C1[0, T ] be defined by (5.12).
Then F is completely continuous and u ∈ C1[0, T ] is a solution to (5.4), (5.2) if and

only if F(u) = u.

The next lemma describes the relationship between lower and upper functions and the
Leray-Schauder topological degree. We will consider the class of auxiliary problems

(φ(v′))′ = η(v′) h(t, v, v′), v(0) = v(T ), v′(0) = v′(T ), (5.13)

where η : R→ [0, 1] may be an arbitrary continuous function.

Lemma 5.6. Let σ1 and σ2 be a lower and an upper function of (5.4), (5.2) and σ1 < σ2

on [0, T ]. Furthermore, let there exist r∗ > 0 such that
{
‖v′‖∞ < r∗ for each continuous η : R→ [0, 1] and for

each solution v of (5.13) such that σ1 ≤ v ≤ σ2 on [0, T ].
(5.14)

Finally, assume that F : C1[0, T ] → C1[0, T ] is defined by (5.12) and, for ρ > 0, denote

Ωρ =
{
u ∈ C1[0, T ] : σ1 < u < σ2 on [0, T ] and ‖u′‖∞ < ρ

}
. (5.15)

Then

deg(I − F , Ωρ) = 1 for each ρ ≥ r∗ such that F(u) 6= u on ∂Ωρ.

Proof. Put Ω = Ωr∗ , R∗ = r∗ + ‖σ′1‖∞ + ‖σ′2‖∞,

η(y) =





1 if |y| ≤ R∗,

2− |y|
R∗ if R∗ < |y| ≤ 2 R∗,

0 if |y| > 2 R∗

and assume that F(x) 6= x for all x ∈ ∂Ω. Then σ1 and σ2 are a lower and an upper
function for the modified problem (5.13) and there is a ψ ∈ L1[0, T ] satisfying

|η(y) h(t, x, y)| ≤ ψ(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R.

We can construct (see the proof of Theorem 2.1 in [135]) the function f̃ ∈ Car([0, T ]×R2)
so that

f̃(t, x, y) = η(y) h(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R,

|f̃(t, x, y)| ≤ ψ̃(t) for a.e. t ∈ [0, T ], all (x, y) ∈ R2 and some ψ̃ ∈ L1[0, T ]

and f̃ satisfies the assumptions of Lemma 5.4 with η(y) h(t, x, y) in place of h(t, x, y).

Define F̃ : C1[0, T ] → C1[0, T ] by

F̃(u) = α(u(0) + u′(0)− u′(T )) +K(Ñ (u)),

where



62 Irena Rach̊unková, Svatoslav Staněk, Milan Tvrdý

(Ñ (u))(t) = f̃(t, u(t), u′(t)) for u ∈ C1[0, T ] and a.e. t ∈ [0, T ],

α(x) =





σ1(0) if x < σ1(0),

x if σ1(0) ≤ x ≤ σ2(0),

σ2(0) if x > σ2(0)

and let K : L1[0, T ] → C1[0, T ] be given in (5.11). By Lemma 5.5, the operator F̃ is
completely continuous. Moreover, it follows from the definition of the operator K that
the problem

(φ(u′))′ = f̃(t, u, u′), u(0) = u(T ) = α(u(0) + u′(0)− u′(T ))

is equivalent to the operator equation F̃(u) = u. We can find r0 ∈ (0,∞) such that for
any λ ∈ [0, 1], each fixed point u of the operator λ F̃ belongs to B(r0) = {x ∈ C1[0, T ] :

‖x‖∞ + ‖x′‖∞ < r0}. So, I − λ F̃ is a homotopy on B(r0)× [0, 1] and

deg(I − F̃ ,B(r0)) = deg(I,B(r0)) = 1.

Put Ω1 =
{
u ∈ Ω : σ1(0) < u(0) + u′(0) − u′(T ) < σ2(0)

}
. Clearly, F̃ = F on Ω1 and

u ∈ Ω1 whenever F(u) = u and u ∈ Ω. Using Lemma 5.4, we can prove that

(F̃(u) = u) =⇒ u ∈ Ω1

which, by the excision property of the degree, yields

deg(I − F , Ω) = deg(I − F , Ω1) = deg(I − F̃ , Ω1) = deg(I − F̃ ,B(r0)) = 1.

Finally, according to (5.14) all fixed points u of F such that σ1 < u < σ2 on [0, T ] belong
to Ω. Thus

deg(I − F , Ωρ) = deg(I − F , Ω) = 1

for each ρ ≥ r∗ such that F(x) 6= x on ∂Ωρ. ¤

Lemma 5.6 offers a possibility to get existence results for problems having a pair of
lower and upper functions σ1 and σ2 satisfying

σ1 ≤ σ2 on [0, T ]. (5.16)

In such a case we say that σ1 and σ2 are well-ordered and the existence of an a priori
estimate r∗ with the property (5.14) is usually ensured by conditions of Nagumo type.
The most general known version of such conditions is provided by the next lemma which
is a modified version of the result by Staněk [142, Lemma 1].
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Lemma 5.7. Let σ1, σ2 ∈ C[0, T ] satisfy (5.16) and assume that





ψ ∈ L1[0, T ] is nonnegative, ε1, ε2 ∈ {−1, 1},

ω ∈ C(R) is positive and
∫ 0

−∞

ds

ω(s)
=

∫ ∞

0

ds

ω(s)
= ∞.

(5.17)

Then there is an r∗ > 0 such that

‖v′‖∞ < r∗ (5.18)

holds for each v ∈ C1[0, T ] such that φ(v′) ∈ AC[0, T ], v(0) = v(T ), v′(0) = v′(T ),
σ1 ≤ v ≤ σ2 on [0, T ] and, for a.e. t ∈ [0, T ],

{
ε1 (φ(v′(t)))′ ≤ (ψ(t) + v′(t)) ω(φ(v′(t))) if v′(t) > 0,

ε2 (φ(v′(t)))′ ≤ (ψ(t)− v′(t)) ω(φ(v′(t))) if v′(t) < 0.
¤

Lemma 5.6 provides also a crucial argument for the proof of existence of a solution
even in the case that the given problem possesses lower and upper functions σ1 and σ2

which do not satisfy (5.16), i.e. if

σ1(τ) > σ2(τ) for some τ ∈ [0, T ]. (5.19)

In such a case, the following a priori estimate is available.

Lemma 5.8. Let ψ ∈ L1[0, T ]. Then there is r∗ > 0 such that (5.18) holds for each
v ∈ C1[0, T ] fulfilling φ(v′) ∈ AC[0, T ], v(0) = v(T ), v′(0) = v′(T ) and (φ(v′(t)))′ > ψ(t)
(or (φ(v′(t)))′ < ψ(t))) for a.e. t ∈ [0, T ].

Proof. We will restrict ourselves to the case that (φ(v′(t)))′ > ψ(t) for a.e. t ∈ [0, T ].
(The other case can be proved by a similar argument.) By the proof of [137, Lemma
1.1], we can see that ‖w‖∞ < ‖ψ‖1 holds for each w ∈ AC[0, T ] such that w(0) = w(T ),
w(tw) = 0 for some tw ∈ (0, T ) and w′(t) > ψ(t) for a.e. t ∈ [0, T ]. The assertion of the
lemma follows by setting w = φ(v′) and

r∗ = φ−1(‖ψ‖1). (5.20)

¤

The next lemma provides an existence principle which will be helpful later:

Lemma 5.9. Let σ1 and σ2 be a lower and an upper function of (5.4), (5.2) and let (5.19)
be true. Furthermore, let there be m ∈ L1[0, T ] such that

h(t, x, y) > m(t) (or h(t, x, y) < m(t)) for a.e. t ∈ [0, T ] and all x, y ∈ R
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and let r∗ > 0 be given by (5.20), where ψ = |m|+ 2.

Then problem (5.4), (5.2) has a solution u satisfying

‖u′‖∞ < r∗ (5.21)

and

min{σ1(τu), σ2(τu)} ≤ u(τu) ≤ max{σ1(τu), σ2(τu)} for some τu ∈ [0, T ]. (5.22)

Sketch of the proof. We follow the ideas of the proof of Theorem 3.2 in [135].
Assume e.g. that h(t, x, y) > m(t) for a.e. t ∈ [0, T ] and all x, y ∈ R.

Step 1. Construction of an auxiliary problem and the operator representation.
Define ψ(t) : = −(|m(t)| + 2) for a.e. t ∈ [0, T ], find r∗ > 0 as in Lemma 5.8 and set

c∗ = ‖σ1‖∞ + ‖σ2‖∞ + T r∗. Consider the auxiliary problem

(φ(u′))′ = f̃(t, u, u′), u(0) = u(T ), u′(0) = u′(T ), (5.23)

where

f̃(t, x, y) =





−(|m(t)|+ 1) if x ≤ −(c∗ + 1),

h(t, x, y) + (x + c∗) (|m(t)|+ 1 + h(t, x, y))
if − (c∗ + 1) < x < −c∗,

h(t, x, y) if − c∗ ≤ x ≤ c∗,

h(t, x, y) + (x− c∗) |m(t)| if c∗ < x < c∗ + 1,

h(t, x, y) + |m(t)| if x ≥ c∗ + 1.

We have




f̃(t, x, y) < 0 if x ≤ −(c∗ + 1),

f̃(t, x, y) > 0 if x ≥ c∗ + 1,

f̃(t, x, y) = h(t, x, y) if x ∈ [−c∗, c∗],

(5.24)

and

f̃(t, x, y) > ψ(t) for a.e. t ∈ [0, T ] and all x, y ∈ R (5.25)

and σ1 and σ2 are a lower and an upper function of (5.23). Moreover, σ3(t) ≡ −c∗ − 2
and σ4(t) ≡ c∗ + 2 form another pair of a lower and an upper function for (5.23) and

σ3 < min{σ1, σ2} ≤ max{σ1, σ2} < σ4 on [0, T ].

Denote Ω0 = {u ∈ C1[0, T ] : σ3 < u < σ4 on [0, T ], ‖u′‖∞ < r∗},
Ω1 = {u ∈ Ω0 : σ3 < u < σ2 on [0, T ]}, Ω2 = {u ∈ Ω0 : σ1 < u < σ4 on [0, T ]}

and Ω = Ω0 \ Ω1 ∪ Ω2. By Lemma 5.5, problem (5.23) is equivalent to the operator
equation F̃(u) = u in C1[0, T ], where F̃(u) = u(0)+u′(0)−u′(T )+K(Ñ (u)), (Ñ (u))(t) =
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f̃(t, u(t), u′(t)) and K : L1[0, T ] → C1[0, T ] is given by (5.11). Clearly, F̃(u) = F(u) for
u ∈ C1[0, T ] such that ‖u‖∞ ≤ c∗.

Step 2. A priori estimates. We show that

‖u′‖∞ < r∗ and ‖u‖∞ < c∗

is true for all u ∈ Ω such that F̃(u) = u.

Step 3. Existence of a solution to (5.4), (5.2).
Let F̃(u) = u and u ∈ ∂Ω. By Step 3, we have F(u) = F̃(u) = u and u solves (5.4),

(5.2). Let F̃(u) 6= u on ∂Ω. Then using Lemma 5.6 we get

deg(I − F̃ , Ω0) = deg(I − F̃ , Ω1) = deg(I − F̃ , Ω2) = 1.

Furthermore, by (5.19), we have Ω1 ∩ Ω2 = ∅. Therefore, due to the additive property of
the degree,

deg(I − F̃ , Ω) = deg(I − F̃ , Ω0)− deg(I − F̃ , Ω1)− deg(I − F̃ , Ω2) = −1

which implies that F̃ has a fixed point u ∈ Ω. It follows by Step 3 that ‖u‖∞ < c∗ which,
by virtue of (5.24), means that u solves (5.4), (5.2).

We can proceed analogously when h(t, x, y) < m(t) for a.e. t ∈ [0, T ] and all x, y ∈ R.
¤

5.2 . Method of lower and upper functions for singular problems

Now, we consider problem (5.1), (5.2) where f satisfies (5.3). We present sufficient con-
ditions in terms of lower and upper functions for the existence of positive solutions to
(5.1), (5.2). Lower and upper functions σ1 and σ2 are defined in the same way as for the
regular problem (5.4), (5.2) (see Definition 5.3). However, since problem (5.1), (5.2) is
investigated on [0, T ]×A where A = [0,∞)× R, only such σ1 and σ2 which are positive
a.e. on [0, T ] make sense.

The first existence result concerns problem (5.1), (5.2) having well-ordered lower and
upper functions.

Theorem 5.10. Let there exist lower and upper functions σ1 and σ2 of problem (5.1),
(5.2) such that (5.16) is true and σ1 > 0 on [0, T ]. Furthermore, let for a.e. t ∈ [0, T ] and
each (x, y) ∈ [σ1(t), σ2(t)]× R the inequalities

{
ε1 f(t, x, y) ≤ (ψ(t) + y) ω(φ(y)) if y > 0,

ε2 f(t, x, y) ≤ (ψ(t)− y) ω(φ(y)) if y < 0
(5.26)

hold with ε1, ε2, ω and ψ satisfying (5.17).
Then problem (5.1), (5.2) has a positive solution u such that

σ1 ≤ u ≤ σ2 on [0, T ]. (5.27)
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Proof. Step 1. The case σ1 < σ2.
Assume that σ1 < σ2 on [0, T ]. Consider the auxiliary problem (5.4), (5.2) with

h(t, x, y) = f(t, max
{
σ1(t), min{x, σ2(t)}, y) for a.e. t ∈ [0, T ] and (x, y) ∈ R2. Clearly,

h ∈ Car([0, T ]× R2) and h(t, x, y) = f(t, x, y) if x ∈ [σ1(t), σ2(t)]. Further, σ1 and σ2 are
a lower and an upper function of (5.4), (5.2). Choose an arbitrary continuous η : R→ [0, 1]
and let v be an arbitrary solution of (5.13) fulfilling σ1 ≤ v ≤ σ2 on [0, T ]. Since (5.26) is
satisfied with h in place of f, we have for a.e. t ∈ [0, T ]

ε1 (φ(v′(t)))′ = ε1 η(v′(t)) h(t, v(t), v′(t)) ≤ η(v′(t)) (ψ(t) + v′(t)) ω(φ(v′(t)))

≤ (ψ(t) + v′(t)) ω(φ(v′(t))) if v′(t) > 0

and

ε2 (φ(v′(t)))′ ≤ (ψ(t)− v′(t)) ω(φ(v′(t))) if v′(t) < 0.

Hence we can apply Lemma 5.7 to deduce that (5.14) is satisfied. Let F : C1[0, T ] →
C1[0, T ] and Ω = Ωr∗ be defined by (5.12) and (5.15), respectively. Then there are two
possibilities: either F has a fixed point u ∈ ∂Ω or F(u) 6= u on ∂Ω.
(a) Let F(u) = u for some u ∈ ∂Ω. In view of Lemma 5.5 and of the definition of h, it
follows that u is a solution to (5.1), (5.2) fulfilling (5.27).
(b) If F(u) 6= u on ∂Ω, then by Lemma 5.6 we have deg(I − F , Ω) = 1, which implies
that F has a fixed point u ∈ Ω. As in (a), this fixed point is a solution to (5.1), (5.2)
fulfilling (5.27).

Step 2. The case σ1 ≤ σ2.
For each k ∈ N, the function σ̃k = σ2 + 1

k
is also an upper function of (5.4), (5.2) and

σ1 < σ̃k on [0, T ]. Hence, in the general case, when the strict inequality between σ1 and
σ2 need not hold, we can use Step 1 to show that for each k ∈ N there exists a solution
uk to (5.4), (5.2) such that

uk(t) ∈ [σ1(t), σ2(t) + 1
k
] for t ∈ [0, T ] and ‖u′k‖∞ < ρ∗,

where ρ∗ > 0 is the a priori estimate given by Lemma 5.7 with σ2 + 1 in place of σ2.
Using the Arzelà-Ascoli theorem and the Lebesgue dominated convergence theorem for
the sequence {uk} we get a solution u of (5.1), (5.2) as the C1-limit of a subsequence
of {uk}. ¤

Remark 5.11. Theorem 5.10 provides the existence of a positive solution to problem
(5.1), (5.2) with f(t, x, y) = −h(x) y + g(t, x), if h ∈ C[0,∞), g ∈ Car([0, T ] × (0,∞))
and if the existence of well-ordered and positive lower and upper functions is ensured.
Indeed, for a.e. t ∈ [0, T ] and each (x, y) ∈ [σ1(t), σ2(t)]× R, we have

|f(t, x, y)| ≤ |h(x)| |y|+ |g(t, x)| ≤ K (ψ(t) + |y|)

where K = 1 + max{|h(x)| : x ∈ [δ, ‖σ2‖∞]}, ψ(t) = sup{|g(t, x)| : x ∈ [δ, ‖σ2‖∞]} and
δ = min{σ1(t) : t ∈ [0, T ]}. (By assumption, we have δ > 0.)
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Now, we will consider problem (5.1), (5.2) which has lower and upper functions, but
no pair of them is well-ordered. We will deal with the periodic problem for the equation

(φ(u′))′ = g(u) + p(t, u, u′). (5.28)

Theorem 5.12. Assume g ∈ C(0,∞), p ∈ Car([0, T ]× R2) and

lim
x→0+

∫ 1

x

g(ξ) dξ = +∞. (5.29)

Let there exist lower and upper functions σ1 and σ2 of problem (5.28), (5.2) such that
(5.19) is true and σ2 > 0 on [0, T ]. Furthermore, let there exist an m ∈ L1[0, T ] such that

g(x) + p(t, x, y) > m(t) for a.e. t ∈ [0, T ] and all x > 0, y ∈ R (5.30)

holds and let r∗ be given by (5.20) with ψ = |m|+ 2.
Then problem (5.28), (5.2) has a positive solution u satisfying (5.21) and (5.22).

Proof. We will use the ideas of [138]. Similarly to [138, Lemma 2.5] we can deduce from
(5.29) and (5.30) that σ1 is positive on [0, T ]. Thus, δ := min {{σ1(t), σ2(t)} : t ∈ [0, T ]} >
0. Put R = ‖σ1‖∞+‖σ2‖∞ and B = R+r∗ T. Furthermore, as p ∈ Car([0, T ]×R2), there is
p̃ ∈ L1[0, T ] such that |p(t, x, y)| ≤ p̃(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [0, B]× [−r∗, r∗].
Put

K = ‖p̃‖1 r∗ +

∫ B

δ

|g(ξ)| dξ.

By (5.29) there exists ε ∈ (0, δ) such that g(ε) > 0 and

∫ δ

ε

g(ξ) dξ > K. (5.31)

For a.e. t ∈ [0, T ] and (x, y) ∈ R2, define

h(t, x, y) = g̃(x) + p(t, x, y), where g̃(x) =

{
g(ε) if x < ε,

g(x) if x ≥ ε.

Then h ∈ Car([0, T ]×R2), σ1 and σ2 are lower and upper functions of (5.4), (5.2) and, by
(5.30), h(t, x, y) > m(t) for a.e. t ∈ [0, T ] and all x > 0, y ∈ R. By Lemma 5.9, problem
(5.4), (5.2) has a solution u satisfying (5.21) and δ ≤ u(tu) ≤ R for some tu ∈ [0, T ]. In
particular, u ≤ B for all t ∈ [0, T ]. It remains to show that u ≥ ε on [0, T ].

Let t0, t1 ∈ [0, T ] be such that u(t0) = min{u(t) : t ∈ [0, T ]} and u(t1) = max{u(t) :
t ∈ [0, T ]}. We have u′(t0) = u′(t1) = 0 and u(t1) ∈ [δ, B]. Put v(t) = φ(u′(t)) for
t ∈ [0, T ]. Then u′(t) = φ−1(v(t)) on [0, T ], v(t0) = v(t1) = φ(0) and

∫ t1

t0

(φ(u′(s)))′ u′(s) ds =

∫ t1

t0

v′(s) φ−1(v(s)) ds =

∫ v(t1)

v(t0)

φ−1(ξ) dξ = 0.



68 Irena Rach̊unková, Svatoslav Staněk, Milan Tvrdý

Thus, multiplying both sides of the equality (φ(u′(t)))′ = h(t, u(t), u′(t)) by u′(t) and
integrating from t0 to t1, we get

∫ u(t1)

u(t0)

g̃(ξ) dξ ≤
∫ t1

t0

|p(t, u(t), u′(t))| |u′(t)| dt ≤ ‖p̃‖1 r∗.

Therefore

g(ε) (ε− u(t0)) +

∫ δ

ε

g(ξ) dξ =

∫ δ

u(t0)

g̃(ξ) dξ

≤
∫ u(t1)

u(t0)

g̃(ξ) dξ +

∫ B

δ

|g(ξ)| dξ ≤ ‖p̃‖1 r∗ +

∫ B

δ

|g(ξ)| dξ = K.

Since g(ε) > 0, this contradicts (5.31) whenever u(t0) = min{u(t) : t ∈ [0, T ]} < ε. Hence,
u(t) ≥ ε on [0, T ] which means that u is a solution to (5.28), (5.2). ¤

Remark 5.13. Let g and p fulfil the assumptions of Theorem 5.12 and f(t, x, y) = g(x)+
p(t, x, y). Then the condition (5.29) implies that

lim sup
x→0+

g(x) = +∞, (5.32)

which means by Remark 5.1 that f and g have a space repulsive singularity at x = 0.
Each repulsive singularity having the property (5.29) is called a strong singularity of f
and the corresponding function g is usually called a strong repulsive singular force. On
the contrary, if (5.32) holds together with

lim
x→0+

∫ 1

x

g(ξ) dξ ∈ R, (5.33)

then the singularity of f at x = 0 is called a weak singularity and g is called a weak
repulsive singular force.

5.3 . Attractive singular forces

This section is devoted to singular problem (5.1), (5.2) where f can have an attractive
singularity at x = 0. (See Remark 5.1.)

In what follows we use the standard notation for mean values of integrable functions:
for y ∈ L1[0, T ], the symbol y stands for

y : =
1

T

∫ T

0

y(t) dt.

Theorem 5.14. Let there exist r > 0, A > r and b ∈ L1[0, T ] such that b ≥ 0,

f(t, r, 0) ≤ 0 for a.e. t ∈ [0, T ], (5.34)

{
f(t, x, y) ≥ b(t)

for a.e. t ∈ [0, T ] and all x ∈ [A,B] and |y| ≤ φ−1(‖b‖1),
(5.35)

where
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B − A ≥ 2 T φ−1
(‖b‖1). (5.36)

Furthermore, let for a.e. t ∈ [0, T ] and each (x, y) ∈ [r, B]×R the inequalities (5.26) hold
with ε1, ε2, ω and ψ satisfying (5.17).

Then problem (5.1), (5.2) has a positive solution u such that

r ≤ u ≤ B on [0, T ]. (5.37)

Proof. For a given d ∈ R, let xd be a solution of (5.9). Then

φ(x′d(t)) = φ(x′d(t0)) +

∫ t

t0

b(s) ds for all t, t0 ∈ [0, T ].

Since b ≥ 0, it follows that x′d(T ) ≥ x′d(0). Since xd(0) = xd(T ), there is a td ∈ (0, T ) such
that x′d(td) = 0. Thus

φ(x′d(t)) =

∫ t

td

b(s) ds for t ∈ [0, T ]

and so ‖x′d‖∞ ≤ φ−1(‖b‖1) for each d ∈ R and ‖x0‖∞ ≤ T φ−1(‖b‖1). Put σ2 = A +
T φ−1(‖b‖1) + x0. Then

A ≤ σ2 ≤ A + 2 T φ−1(‖b‖1) ≤ B on [0, T ]. (5.38)

Having in mind (5.35) and (5.9), we can see that σ2 is an upper function of (5.1), (5.2).
Furthermore, σ1 = r is a lower function of problem (5.1), (5.2) and 0 < σ1 < σ2 on [0, T ].
By Theorem 5.10, problem (5.1), (5.2) has a positive solution u satisfying (5.37). ¤

Now, let us consider the Liénard periodic problem

(φ(u′))′ + h(u) u′ = g(t, u) + e(t), u(0) = u(T ), u′(0) = u′(T ), (5.39)

where g can have an attractive space singularity at x = 0.

Theorem 5.15. Assume

h ∈ C[0,∞), e ∈ L1[0, T ], g ∈ Car([0, T ]× (0,∞)), (5.40)

there exists α > 0 such that lim inf
|y|→∞

|φ(y)|
|y|α > 0, (5.41)

{
there exists r > 0 such that

g(t, r) + e(t) ≤ 0 for a.e. t ∈ [0, T ],
(5.42)

{
there exist A > r and g0 ∈ L1[0, T ] such that

g(t, x) ≥ g0(t) for a.e. t ∈ [0, T ] and all x ≥ A
(5.43)

and

g0 + e ≥ 0. (5.44)

Then problem (5.39) has a positive solution u such that u ≥ r on [0, T ].
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Sketch of the proof. We follow the ideas of the paper [136]. Define

f(t, x, y) = −h(x) y + g(t, x) + e(t) for a.e. t ∈ [0, T ] and all x ∈ (0,∞), y ∈ R.

Step 1. First, notice that, due to (5.42), σ1(t) ≡ r is a lower function of (5.39).

Step 2. Thanks to (5.41), (5.43) and (5.44), we can construct an upper function σ2 of
(5.39). To this aim, take an arbitrary C ∈ R and consider a parameter auxiliary problem

(φ(v′))′ + λh(v + C) v′ = λ b(t), v(0) = v(T ) = 0, λ ∈ [0, 1], (5.45)

where b(t) = g0(t) + e(t) for a.e. t ∈ [0, T ]. By (5.41), there are k > 0 and y0 > 0 such
that

|φ(y)| > k

2
|y|α for |y| ≥ y0. (5.46)

Multiplying (5.45) by v(t) and integrating over [0, T ], we obtain

−
∫ T

0

φ(v′(t)) v′(t) dt = λ

∫ T

0

b(t) v(t) dt. (5.47)

Using (5.46), (5.47) and the Hölder inequality, we can find ρ ∈ (0,∞), independent of
C ∈ R, such that v ∈ B(ρ) = {x ∈ C1[0, T ] : ‖x‖∞ + ‖x′‖∞ < ρ} holds for each
λ ∈ [0, 1] and each solution v of (5.45). Thus, choosing a proper operator representation
of problem (5.45) and using a standard homotopy and topological degree argument we
can show that, for each C ∈ R, problem (5.45) with λ = 1 has a solution vC ∈ B(ρ). Now,
it is already easy to see that if C > A + ρ, then σ2 = vC + C is an upper function of
(5.39). Indeed, we have σ2(0) = σ2(T ) = C and, due to (5.44),

φ(σ′2(T ))− φ(σ′2(0)) = T b = T [g0 + e] ≥ 0.

Moreover, σ2(t) ≥ C − ρ > A > r on [0, T ]. Hence, by (5.43), we have

(φ(σ′2(t)))
′
= −h(σ2(t)) σ′2(t) + g0(t) + e(t)

≤ −h(σ2(t)) σ′2(t) + g(t, σ2(t)) + e(t) = f(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ].

Step 3. Finally, similarly as in Remark 5.11, we show that f satisfies (5.26) with ω(s) ≡
1 + max{|h(x)| : x ∈ [r, ‖σ2‖∞]}, ψ(t) = |e(t)| + sup{|g(t, x)| : x ∈ [r, ‖σ2‖∞]} and
ε1 = ε2 = 1. Therefore, by Theorem 5.10, problem (5.39) has a positive solution u such
that u ≥ r on [0, T ]. ¤

Remark 5.16. If g does not depend on t, i.e. g(t, x) ≡ g(x) for a.e. t ∈ [0, T ] and all
x ∈ (0,∞), then the condition (5.42) is satisfied if lim infx→0+ (g(x) + ‖e‖∞) < 0 which
is true e.g. if lim infx→0+ g(x) = −∞ and sup ess{e(t) : t ∈ [0, T ]} < ∞. Similarly, the
conditions (5.43) and (5.44) are in such a case satisfied if lim infx→∞ (g(x) + e) > 0. In
particular, Theorem 5.15 applies to problem (5.39) if φ = φp, p > 1, sup ess{e(t) : t ∈
[0, T ]} < ∞, e > 0, g(t, x) = −β(t) x−λ, where β ∈ L1[0, T ], β ≥ ε > 0 a.e. on [0, T ] and
λ ≥ 1. Notice that the condition (5.41) is satisfied e.g. by φ(y) = (|y| y + y) ln(1 + 1

|y|) or
φ(y) = y (exp(y2)− 1).
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5.4 . Repulsive singular forces

In this section we study the singular problem (5.1), (5.2) with f having a repulsive
singularity at x = 0. Recall (see Remark 5.1) that this means that the relation

lim sup
x→0+

f(t, x, y) = ∞ for a.e. t ∈ [0, T ] and some y ∈ R

is true. In general, for the case of a repulsive singularity, the existence of a pair of
associated lower and upper functions having opposite order is typical. This causes that
such a case is more difficult and more interesting than that of an attractive singularity.
The next assertion deals with equation (5.28) and is a direct corollary of Theorem 5.12.

Theorem 5.17. Assume g ∈ C(0,∞), p ∈ Car([0, T ]×R2), (5.29) and (5.30) with some
m ∈ L1[0, T ]. Furthermore, let there be r > 0, A > r, B ≥ A and b ∈ L1[0, T ] such that
b ≤ 0, (5.36),

g(r) + p(t, r, 0) ≥ 0 for a.e. t ∈ [0, T ], (5.48)

and

g(x) + p(t, x, y) ≤ b(t) for a.e. t ∈ [0, T ] and all x ∈ [A,B] and |y| ≤ φ−1(‖b‖1) (5.49)

hold.

Then problem (5.28), (5.2) has a positive solution u such that u(tu) ∈ [r, B] for some
tu ∈ [0, T ].

Proof. By (5.48), σ2(t) ≡ r is an upper function of (5.28), (5.2). Furthermore, let x0 be
a solution of

(φ(x′))′ = b(t), u(0) = u(T ) = 0.

Using (5.49) and having in mind that b ≤ 0, we can show by a reasoning analogous to that
applied in the proof of Theorem 5.14 to construct an upper function that the function
σ1 = A + T φ−1(‖b‖1) + x0 is a lower function of (5.28), (5.2). Using Theorem 5.12 we
complete the proof. ¤

In particular, when restricted to the Duffing equation with the φ-Laplacian

(φ(u′))′ = g(u) + e(t), (5.50)

Theorem 5.17 has the following corollary.

Corollary 5.18. Let e ∈ L1[0, T ] with inf ess{e(t) : t ∈ [0, T ]} > −∞ and let g ∈
C(0,∞) have a strong repulsive singularity (5.29). Further, let

g∗ := inf{g(x) : x ∈ (0,∞)} > −∞ (5.51)

and let there be A > 0 such that

g(x) + e ≤ 0 for x ∈ [A, B], where B − A ≥ 2 T φ−1(‖e− e‖1).

Then problem (5.50), (5.2) has a positive solution u such that u(tu) ≤ B for some
tu ∈ [0, T ].
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Proof. By (5.29) we have (5.32) and consequently there is an r ∈ (0, A) such that
g(r) + e(t) ≥ 0 for a.e. t ∈ [0, T ]. The assertion follows from Theorem 5.17 if we put
b(t) = e(t)− e and m(t) = g∗ + e(t) a.e. on [0, T ]. ¤

Consider the periodic problem for the Liénard equation

(φp(u
′))′ + h(u) u′ = g(u) + e(t) (5.52)

with the p-Laplacian φp(y) = |y|p−2 y. To this end, the following easy corollary of the
continuation type principle due to Manásevich and Mawhin turned out to be essential.

Lemma 5.19. ([107, Theorem 3.1] and [89, Lemma 3]) Let p > 1, h ∈ C[0,∞), g ∈
C(0,∞) and e ∈ L1[0, T ]. Furthermore, assume there exist r > 0, R > r and R′ > 0 such
that

(i) the inequalities r < v < R on [0, T ] and ‖v′‖∞ < R′ hold for each λ ∈ (0, 1] and
for each positive solution v of the problem

(φp(v
′))′ = λ (−h(v) v′ + g(v) + e(t)), v(0) = v(T ), v′(0) = v′(T ), (5.53)

(ii) (g(x) + e = 0) =⇒ r < x < R,

(iii) (g(r) + e) (g(R) + e) < 0.

Then problem (5.52), (5.2) has at least one solution u such that r < u < R on [0, T ].

Under the assumptions ensuring that g is bounded below on (0,∞), the following
result was delivered by Jebelean and Mawhin.

Theorem 5.20. ([89, Theorem 2]) Let p > 1, h ∈ C[0,∞), e ∈ L1[0, T ] and let g ∈
C(0,∞) have a strong repulsive singularity (5.29). Furthermore, assume

lim inf
x→∞

g(x) > −∞ (5.54)

and

lim inf
x→0+

[g(x) + e] > 0 > lim sup
x→∞

[g(x) + e]. (5.55)

Then problem (5.52), (5.2) has a positive solution.

Proof. We will verify that the assumptions of Lemma 5.19 are satisfied.

Step 1. First, we will show that





there are R0 > 0 and R1 > R0 such that

v(tv) ∈ (R0, R1) for some tv ∈ [0, T ]

holds for each λ ∈ (0, 1] and each positive solution v of (5.53).

(5.56)
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To this aim, assume that λ ∈ (0, 1] and that v is a positive solution to (5.53). Integrating
the differential equation in (5.53) over [0, T ] and having in mind the periodicity of v, we
get: ∫ T

0

(g(v(t)) + e(t)) dt = 0. (5.57)

By the first inequality in (5.55), there is an R0 > 0 such that

g(x) + e > 0 whenever x ∈ (0, R0). (5.58)

If g(v(t)) + e > 0 were valid on [0, T ], we would have
∫ T

0

(g(v(t)) + e(t)) dt =

∫ T

0

(g(v(t)) + e) dt > 0.

Since this contradicts (5.57), we see that max{v(t) : t ∈ [0, T ]} > R0. Similarly, by the
second inequality in (5.55), there is an R1 > R0 such that g(x) + e < 0 for x ≥ R1 and
v(t1) < R1 for some t1 ∈ [0, T ]. Therefore (5.56) is true.

Step 2. Now we show that
{

there is R > 0 such that v < R on [0, T ]

for each λ ∈ (0, 1] and each positive solution v of (5.53).
(5.59)

Notice that, due to (5.54) and (5.58), we have g∗ = inf{g(x) : x ∈ (0,∞)} > −∞. Thus,
multiplying (5.53) by v and integrating over [0, T ], we get

‖v′‖p
p ≤

∫ T

0

(|g∗|+ |e(t)|) v(t) dt.

Furthermore, for R1 given as in Step 1 and 1
p

+ 1
q

= 1, we deduce that

‖v′‖p
p ≤

(∫ T

0

(|g∗|+ |e(t)|) dt

) (
R1 + T

1
q ‖v′‖p

)
.

The right-hand side being a linear function of ‖v′‖p, this is possible only if there is C1 > 0,
independent of v and λ and such that ‖v′‖p < C1. Therefore

v(t) = v(t1) +

∫ t

t1

v′(s) ds < R1 + T
1
q C1

for all λ ∈ (0, 1] and all positive periodic solutions v of (5.53), i.e. the assertion (5.59) is

true with R := R1 + T
1
q C1.

Step 3. Next we show that
{

there is R2 > 0 such that |v′| < λ
1

p−1 R2 on [0, T ]

for each λ ∈ (0, 1] and each positive solution v of (5.53).
(5.60)
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Having in mind that v satisfies the periodic conditions, we can see that there is t′ ∈ [0, T ]
such that v′(t′) = 0. Integrating the differential equation in (5.53) over [t′, t] and taking
into account (5.59), we get

|v′(t)|p−1 ≤ λ

(∫ R

0

|h(x)| dx + ‖e‖1 +

∣∣∣∣
∫ t

t′
|g(v(s))| ds

∣∣∣∣
)

for t ∈ [0, T ]. (5.61)

By (5.58), there is b > 0 such that g(x) ≥ −b for all x ∈ (0, R]. So, by (5.59),
g(v(t)) ≥ −b on [0, T ] holds for each possible positive solution v of (5.53). Therefore,
|g(v(t))| ≤ g(v(t)) + 2 b for all t ∈ [0, T ] wherefrom, using (5.57), we deduce

∣∣∣∣
∫ t

t′
|g(v(s))| ds

∣∣∣∣ ≤ 2 b T + ‖e‖1,

which inserted into (5.61) yields (5.60) with

Rp−1
2 =

∫ R

0

|h(x)| dx + 2 (b + ‖e‖1) > 0.

Step 4. We show that

{
there is r ∈ (0, R0) such that v > r on [0, T ]

for each λ ∈ (0, 1] and each positive solution v of (5.53).
(5.62)

Put hR := max{|h(x)| : x ∈ [0, R]}, R∗ =
Rp

2

q
+ R2 (hR R2 T + ‖e‖1) and

K∗ = R∗ +

∫ R

R0

|g(x)| dx. (5.63)

By (5.29), there is r > 0 such that

∫ R0

r

g(x) dx > K∗. (5.64)

Put w(t) = φp(v
′(t)) for t ∈ [0, T ]. Then |w(t)|q = |v′(t)|p for t ∈ [0, T ],

v′(t) = |w(t)|q−2 w(t) for t ∈ [0, T ] (5.65)

and

w′(t) = λ
(−h(v(t)) v′(t) + g(v(t)) + e(t)

)
for a.e. t ∈ [0, T ]. (5.66)

Multiplying (5.65) by w′(t) and (5.66) by v′(t) and subtracting we get

1
q

(|v′(t)|p)′ = λ
(
−h(v(t)) (v′(t))2 + g(v(t)) v′(t) + e(t) v′(t)

)
for a.e. t ∈ [0, T ]. (5.67)
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Now, suppose that min{v(t) : t ∈ [0, T ]} < r. Let us extend v to a T -periodic function on
R and choose t′ ∈ [0, T ] and t∗ ∈ (t′, t′+T ] so that v(t′) = r, v(t∗) = max{v(t) : t ∈ [0, T ]}
and v(t) ≥ r on [t′, t∗]. Integrating (5.67) from t′ to t∗, we get

λ

∫ v(t∗)

r

g(x) dx = −1

q
|v′(t′)|p − λ

(∫ t∗

t′
h(v(t)) (v′(t))2 dt +

∫ t∗

t′
e(t) v′(t) dt

)
.

Consequently, by (5.59) and (5.60),

∫ v(t∗)

r

g(x) dx ≤ λ
p

p−1

q
Rp

2 + hR λ
2

p−1 R2
2 T + ‖e‖1 λ

1
p−1 R2

≤ Rp
2

q
+ R2

(
hR R2 T + ‖e‖1

)
= R∗,

which, by virtue of (5.63), finally gives
∫ R0

r

g(x) dx =

∫ v(t∗)

r

g(x) dx−
∫ v(t∗)

R0

g(x) dx ≤ R∗ +

∫ R

R0

|g(x)| dx = K∗.

This being contradictory to (5.64) implies that v > r holds on [0, T ], i.e. (5.62) is true.

Step 5. To summarize, there are r, R and R′ such that the assumption (i) from Lemma
5.19 is satisfied. Furthermore, since by Step 1 we have

g(x) + e > 0 if 0 < x < R0 and g(x) + e < 0 if x > R1

and 0 < r < R0 < R1 < R, it is easy to see that also the assumptions (ii) and (iii) of
Lemma 5.19 are satisfied. ¤

Assume that the dissipativity condition

h(x) ≥ h∗ > 0 or h(x) ≤ −h∗ < 0 for all x ∈ [0,∞) (5.68)

is fulfilled instead of (5.54) and e ∈ L2[0, T ]. Then the existence of a positive solution to
problem (5.52) is ensured by Jebelean and Mawhin.

Theorem 5.21. ([90, Theorem 3]) Let p > 1, h ∈ C[0,∞), e ∈ L2[0, T ] and let g ∈
C(0,∞) have a strong repulsive singularity (5.29). Furthermore, assume (5.55) and (5.68).

Then problem (5.52), (5.2) has a positive solution.

Proof. The proof is analogous to that of Theorem 5.20, just the estimate (5.59) is, thanks
to (5.68), obtained more easily. Indeed: let λ ∈ (0, 1] and let v be a positive solution of
(5.53). Let R0, R1 and t1 be found as in Step 1 of the proof of Theorem 5.20, i.e. R0 is
such that (5.58) is true, R1 > R0, g(x) + e < 0 for x ≥ R1 and v(t1) < R1. Integrating
equality (5.67) over [0, T ], we get h∗ ‖v′‖2 ≤ ‖e‖2 and, consequently,

v(t) = v(t1) +

∫ t

t1

v′(s) ds < R1 +
√

T
‖e‖2

h∗
+ 1 for all t ∈ [0, T ].
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Thus, (5.59) is true with R = R1 +
√

T ‖e‖2
h∗

+ 1. Now, we can repeat Steps 3–5 of the
proof of Theorem 5.20. ¤

Lemma 5.19 enables us to prove also the following result concerning both the non-
dissipative case and the case where g need not be bounded below on (0,∞). Recall that
the symbol πp is defined for p > 1 by

πp =
2 π (p− 1)

1
p

p sin (π
p
)

and (πp

T
)p is the first eigenvalue of the Dirichlet problem

(φp(u
′))′ + λ φp(u) = 0, u(0) = u(T ) = 0

(see [61]).

Theorem 5.22. Let p > 1, h ∈ C[0,∞), e ∈ L1[0, T ] and let g ∈ C(0,∞) have a strong
repulsive singularity (5.29). Furthermore, assume (5.55) and

{
there exist a, 0 ≤ a <

(πp

T

)p
, and γ ≥ 0 such that

g(x) x ≥ −(a xp + γ) for all x > 0.
(5.69)

Then problem (5.52), (5.2) has a positive solution.

Proof. Similarly to the proof of Theorem 5.21, it suffices to verify (5.59). Assume that
λ ∈ (0, 1], v is a positive solution to (5.53) and let R1 and t1 have the same meaning as
in Step 1 of the proof of Theorem 5.20. Multiplying (5.53) by v(t) and integrating over
[0, T ], we get

‖v′‖p
p ≤ a ‖v‖p

p + ‖e‖1 ‖v‖∞ + γ T. (5.70)

Since v(t1) ≤ R1, we have

0 < v(t) < R1 + T
1
q ‖v′‖p for t ∈ [0, T ], (5.71)

where 1
p

+ 1
q

= 1. Now put

y(t) =

{
v(t + t1)− v(t1) if 0 ≤ t ≤ T − t1,

v(t + t1 − T ))− v(t1) if T − t1 ≤ t ≤ T.

We have y ∈ C1[0, T ], y(0) = y(T ) = 0 and ‖y + v(t1)‖p
p = ‖v‖p

p. Therefore, by the
generalized Poincaré-Wirtinger inequality (see e.g. [162, Lemma 3]),

‖y‖p ≤ T

πp

‖y′‖p =
T

πp

‖v′‖p .
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Hence, for an arbitrary ε > 0, there is a C1 > 0 such that

‖v‖p
p ≤

(
‖y‖p + v(t1) T

1
p

)p

≤ (1 + ε)

(
T

πp

)p

‖v′‖p
p + C1.

Inserting this into (5.70), choosing ε ∈ (
0, 1

a
(πp

T
)p − 1

)
and having in mind (5.71), we

deduce that
α ‖v′‖p

p ≤ T
1
q ‖e‖1 ‖v′‖p + C2

for some C2 > 0, where α =
(
1− a (1 + ε)

(
T
πp

)p)
> 0. However, this is possible only if

there is Rp ∈ (0,∞), independent of λ and v, such that ‖v′‖p < Rp. Therefore 0 < v(t) <

R1 + T
1
q Rp + 1 on [0, T ] for all λ ∈ (0, 1] and all positive T -periodic solutions v of (5.53),

i.e. the assertion (5.59) is true with R = R1 + T
1
q Rp + 1.

By virtue of (5.55), we can choose b > 0 so that inf{g(x) : x ∈ (0, R]} ≥ −b. Thus, we
can continue by Steps 3–5 of the proof of Theorem 5.20 to verify that the assumptions of
Lemma 5.19 are satisfied. ¤

Remark 5.23. Theorem 5.22 is a slightly modified scalar version of the result by Liu
[104, Theorem 1].

In the undamped case of the Duffing type equation

(φp(u
′))′ = g(u) + e(t), (5.72)

condition (5.69) can be replaced by a related asymptotic condition. It is shown in the next
theorem which has been proved for p = 2 by Rach̊unková and Tvrdý in [131, Theorem
3.1].

Theorem 5.24. Let p > 1, 1
p

+ 1
q

= 1, g ∈ C(0,∞) and e ∈ Lq[0, T ]. Furthermore,
assume (5.29),

lim inf
x→0+

g(x) > −∞, (5.73)

lim inf
x→∞

g(x)

xp−1
> −(πp

T

)p
. (5.74)

Further, assume that there exist r > 0 and A > r such that the conditions

g(r) + e(t) ≥ 0 for a.e. t ∈ [0, T ] (5.75)

and

g(x) + e ≤ 0 for x ∈ [A,B], (5.76)

where

B − A ≤ 2 T ‖e− e‖q−1
1 , (5.77)

are satisfied.
Then problem (5.72), (5.2) has a positive solution u such that u(tu) ∈ [r, B] for some

tu ∈ [0, T ].
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Proof. Step 1. Lower and upper functions.
By (5.75), σ2 ≡ r is an upper function of (5.72), (5.2). Let v be a solution of the

quasilinear Dirichlet problem (5.9) with b(t) = e(t) − e a.e. on [0, T ] and d = 0 and let
σ1 = A+T φ−1

p (‖e− e‖1)+v on [0, T ]. Let us recall that φ−1
p = φq. Hence φ−1

p (‖e− e‖1) =

‖e−e‖q−1
1 . Having in mind assumption (5.76), we can see, similarly to the proof of Theorem

5.17 (see also the proof of Theorem 5.14), that σ1 is a lower function of (5.72), (5.2) and
σ1(t) ∈ [A,B] for t ∈ [0, T ].

Step 2. Construction of an auxiliary problem having a right hand side bounded below.
By (5.29) we have (5.32) and hence there is a sequence {εn} ⊂ (0, r) such that

g(εn) > 0 for n ∈ N, lim
n→∞

εn = 0 and lim
n→∞

g(εn) = ∞. (5.78)

For n ∈ N and M ∈ R, M > r, define

gn,M(x) =





0 if x < 0,

g(εn)

εp−1
n

xp−1 if x ∈ [0, εn],

g(x) if x ∈ [εn,M ],

g(M) if x > M.

(5.79)

By (5.74), there are η ∈ (
0,

(πp

T

)p )
and x0 > 1 such that

g(x)

xp−1
≥ −

((πp

T

)p

− η
)

for all x ≥ x0.

Put

p(x) =





0 if x ≤ 0,

g(x0)

xp−1
0

xp−1 if x ∈ (0, x0),

g(x) if x ≥ x0

and qn,M(x) = gn,M(x) − p(x) for x ∈ R. By virtue of (5.73), there is γ ≥ 0 such
that qn,M(x) ≥ −γ for all x ∈ R, n ∈ N and M > r. Consequently, each function
g̃(x) = gn,M(x), n ∈ N, M > r, satisfies the estimate

g̃(x) x ≥ −
((πp

T

)p

− η
)
|x|p − γ |x| for all x ∈ R. (5.80)

Step 3. A priori estimates.
Now, we will give uniform a priori estimates for solutions of periodic problems associ-

ated to the equations
(φp(u

′))′ = g̃(u) + e(t), (5.81)

where g̃ may be an arbitrary function satisfying the estimate (5.80). To this aim, we will
prove the following assertion.
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Claim. Let γ ≥ 0 and η ∈ (
0, (πp

T
)p

)
. Then for any δ > 0, there are R ≥ δ and R′ > 0

such that the estimates

u ≤ R on [0, T ] and ‖u′‖p ≤ R′ (5.82)

hold whenever
{

g̃ ∈ C(0,∞) fulfils (5.80) and u is a solution of (5.81), (5.2)

such that min{u(t) : t ∈ [0, T ]} ≤ δ.
(5.83)

Proof of Claim. We will follow ideas from the proof of [138, Lemma 2.4]. Suppose
that for each k ∈ N there are gk ∈ C(0,∞) and a solution uk of

(φp(u
′))′ = gk(u) + e(t), u(0) = u(T ), u′(0) = u′(T ) (5.84)

such that

gk(x) x ≥ −
((πp

T

)p

− η
)
|x|p − γ |x| (5.85)

and

uk(tk) = δ for some tk ∈ [0, T ] and max{uk(t) : t ∈ [0, T ]}) > k. (5.86)

In particular, we have
lim
k→∞

max{uk(t) : t ∈ [0, T ]} = ∞. (5.87)

Let us extend uk and e to functions T -periodic on R. We have

(φp(u
′
k(t)))

′
= gk(uk(t)) + e(t) for a.e. t ∈ R.

Multiplying this equality by uk, integrating from tk to tk + T and making use of (5.85),
we obtain

‖u′k‖p
p = −

∫ tk+T

tk

gk(uk(s)) uk(s) ds−
∫ tk+T

tk

e(s) uk(s) ds

≤
((πp

T

)p

− η
)
‖uk‖p

p + γ T
1
q ‖uk‖p + ‖e‖q ‖uk‖p.

Let us set vk = uk − δ. By (5.87) we have limk→∞ ‖vk‖∞ = ∞. Therefore, applying the
Hölder inequality we can conclude that

lim
k→∞

‖v′k‖p = ∞. (5.88)

Furthermore, it is easy to verify that

‖v′k‖p
p ≤

((πp

T

)p

− ε
)
‖vk‖p

p + a ‖vk‖p + b (5.89)
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holds with some ε ∈ (
0, (πp

T
)p

)
and a, b ≥ 0 not depending on vk. This, together with

(5.88), gives
lim
k→∞

‖vk‖p = ∞. (5.90)

Moreover, as vk(tk) = vk(tk + T ) = 0, we can apply the generalized Poincaré-Wirtinger
inequality (see e.g. [162, Lemma 3]) to get

‖vk‖p
p ≤

(
T

πp

)p

‖v′k‖p
p for each k ∈ N.

Hence the inequality (5.89) can be rewritten as

(πp

T

)p

≤ ‖v′k‖p
p

‖vk‖p
p
≤

(πp

T

)p

− ε +
a

‖vk‖p−1
p

+
b

‖vk‖p
p
, (5.91)

which, in view of (5.90), leads to a contradiction
(πp

T

)p

≤
(πp

T

)p

− ε.

As a consequence, we can conclude that the sequences {‖vk‖∞} and {‖vk‖p} are bounded.
By (5.89), this implies that also the sequence {‖v′k‖p} is bounded. In particular, there
are R ∈ [δ,∞) and R′ ∈ (0,∞) such that u ≤ R and ‖u′‖p ≤ R′ hold whenever (5.83) is
true. This completes the proof of Claim.

Now, let R > B and R′ > 0 be constants given by Claim for δ = B. Put

K =

∫ R

A

|g(x)| dx + ‖e‖q R′.

It follows from (5.29) and (5.78) that we can choose ε = εn∗ ∈ {εn} such that
∫ A

ε

g(x) dx > K and g(ε) > 0. (5.92)

By (5.73), there is gR ∈ R such that

g(x) ≥ gR for x ∈ (0, R]. (5.93)

Define
g̃(x) = gn∗,R(x) for x ∈ R (5.94)

and consider the regular periodic problem for the auxiliary equation

(φp(u
′))′ = g̃(u) + e(t). (5.95)

Clearly, σ1 and σ2 are lower and upper functions of (5.95), (5.2) and g̃(x) + e(t) ≥
gR + e(t) for a.e. t ∈ [0, T ] and all x ∈ R. Thus, by Lemma 5.9, problem (5.95), (5.2)
possesses a solution u such that u(tu) ∈ [r, B] for some tu ∈ [0, T ]. In particular, min{u(t) :
t ∈ [0, T ]} ≤ B. Furthermore, by Step 2 it is easy to see that g̃ satisfies the estimate (5.80).
Thus, by Claim and by the definitions of R and R′, the estimates (5.82) are true.
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Step 4. Existence of a solution to (5.72), (5.2).
It remains to show that u ≥ ε on [0, T ]. Let t0, t1 ∈ [0, T ] be such that

u(t0) = min{u(t) : t ∈ [0, T ]} and u(t1) = max{u(t) : t ∈ [0, T ]}.
Due to the periodicity of u, we have u′(t0) = u′(t1) = 0. Multiplying the equality
(φp(u

′(t)))′ = g̃(u(t)) + e(t) by u′(t) and integrating, we get

∫ u(t1)

u(t0)

g̃(x) dx ≤ ‖e‖q R′.

Therefore, ∫ A

u(t0)

g̃(x) dx ≤
∫ R

A

|g(x)| dx + ‖e‖q R′ = K.

Let u(t0) < ε. Then, by (5.92),
∫ A

u(t0)

g̃(x) dx =

∫ ε

u(t0)

g̃(x) dx +

∫ A

ε

g(x) dx

= g(ε) (ε− u(t0)) +

∫ A

ε

g(x) dx >

∫ A

ε

g(x) dx > K,

a contradiction. So u(t) ≥ ε on [0, T ], which together with (5.79), (5.82) and (5.94) yields
that u is a solution of (5.72), (5.2). ¤

Examples. (i) Let p > 1, h ∈ C[0,∞), β > 0, α ≥ 1, e ∈ L1[0, T ]. Then, by Theorem
5.20, the problem

(|u′|p−2u′)′ + h(u) u′ =
β

uα
+ e(t), u(0) = u(T ), u′(0) = u′(T ) (5.96)

has a positive solution if e < 0. Integrating both sides of the differential equation in
(5.96) over [0, T ] and taking into account the positivity of g(x) = β x−α on (0,∞), we can
see that the condition e < 0 is also necessary for the existence of a positive solution to
(5.96).

(ii) Let p > 1, c 6= 0, a > 1, β > 0, α ≥ 1. Then, by Theorem 5.21, the problem

(|u′|p−2u′)′ + c u′ =
β

uα
− a exp(u) + e(t), u(0) = u(T ), u′(0) = u′(T )

has a solution for each e ∈ L2[0, T ].

(iii) Let p > 1, h ∈ C[0,∞), 0 < a < (πp

T
)p, β > 0 and α ≥ 1. Then, by Theorem 5.22,

the problem

(|u′|p−2u′)′ + h(u) u′ = −a up−1 +
β

uα
+ e(t), u(0) = u(T ), u′(0) = u′(T )
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has a positive solution for each e ∈ L1[0, T ].

For the classical case p = 2, the following result due to Omari and Ye is known. Its
proof combines the lower and upper functions method, the degree theory and connected-
ness arguments for some properly chosen truncated equations and a posteriori estimates.

Theorem 5.25. ([114, Theorem 1.2]) Assume e ∈ L∞[0, T ], (5.29), lim
x→0+

g(x) = ∞ and

lim inf
x→∞

g(x)

x
≥ −

(π

T

)2

and lim inf
x→∞

2 G(x)

x2
> −

(π

T

)2

,

where

G(x) =

∫ 1

x

g(ξ) dξ for x ∈ (0,∞).

Then the problem u′′ + h(u) u′ = g(u) + e(t), (5.2) has a solution if and only if it
possesses a lower function σ1 ∈ AC1[0, T ].

Hitherto we have assumed the strong singularity condition (5.29). The next existence
principle enables us to treat also problems with weak repulsive singularities. We shall
restrict ourselves to the case that φ(y) ≡ y and f does not depend on u′, i.e. we consider
the equation

u′′ = f(t, u), (5.97)

where f : [0, T ]× (0,∞) → R.

Theorem 5.26. Let f ∈ Car([0, T ] × (0,∞)), r > 0, A ≥ r and let µ ∈ L1[0, T ] and
β ∈ L1[0, T ] be such that µ(t) ≥ 0 on [0, T ],

β ≤ 0 and f(t, x) ≤ β(t) for a.e. t ∈ [0, T ] and all x ∈ [A,B] (5.98)

and

f(t, x) ≥ −µ(t) (x− r) for a.e. t ∈ [0, T ] and all x ∈ [r, B], (5.99)

where

B − A ≥ T

2
m, m(t) = max

{
sup{f(t, x) : x ∈ [r, A]}, β(t), 0

}
for a.e. t ∈ [0, T ]

and
{

v ≥ 0 on [0, T ] holds for each v ∈ AC1[0, T ] such that

v′′(t) + µ(t) v(t) ≥ 0 for a.e. t ∈ [0, T ], v(0) = v(T ), v′(0) = v′(T ).
(5.100)

Then problem (5.97), (5.2) has a positive solution u such that r ≤ u ≤ B on [0, T ].

Proof. The proof follows the ideas of the proof of [137, Theorem 2.5]. First, assume
that β < 0.

Step 1. Existence of a solution u to a certain auxiliary problem.
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Put

f̃(t, x) =





f(t, r)− µ(t) (x− r) if x ≤ r,

f(t, x) if x ∈ [r,B],

f(t, B) if x ≥ B

(5.101)

and consider the problem

u′′ = f̃(t, u), u(0) = u(T ), u′(0) = u′(T ). (5.102)

We have f̃ ∈ Car([0, T ]× R). By (5.98), (5.99) and (5.101), the inequalities

f̃(t, x) ≤ β(t) if x ≥ A (5.103)

and

f̃(t, x) ≥ −µ(t) min{x− r, B − r} (5.104)

are valid for a.e. t ∈ [0, T ] and all x ∈ R. In particular, f̃(t, x) ≥ −µ(t) (B − r). By
(5.104), σ2 ≡ r is an upper function of (5.102). Further, let σ0 be the solution of the
Dirichlet problem v′′ = b, v(0) = v(T ) = 0, where b(t) = β(t) − β for a.e. t ∈ [0, T ],
and let σc(t) = c + σ0(t) for t ∈ [0, T ] and c ∈ R. Then σ′′c = b a.e. on t ∈ [0, T ] and
σc(0) = σc(T ) = c. Moreover, σ′c(T )) − σ′c(0) = T b = 0. Let us choose c∗ > 0 so that
σ1 = σc∗ ≥ A on [0, T ]. Due to (5.103), where β < b a.e. on [0, T ], we can see that σ1

is a lower function of (5.102). Therefore, by Lemma 5.9, the regular problem (5.102) has
a solution u such that u(tu) ≥ r for some tu ∈ [0, T ].

Step 2. Lower estimate for u.
We shall show that

u ≥ r on [0, T ]. (5.105)

Set z = u− r. By virtue of (5.99) and (5.101), we have

z′′(t) + µ(t) z(t) = u′′(t) + µ(t) z(t) = f̃(t, u(t)) + µ(t) (u(t)− r) ≥ 0

for a.e. t ∈ [0, T ]. By (5.100), it follows that z(t) ≥ 0 on [0, T ], i.e. (5.105) is true.

Step 3. Upper estimate for u.
We shall show that

u ≤ B on [0, T ]. (5.106)

By the definition of m and by (5.101) and (5.103) we have

f̃(t, x) ≤ m(t) for a.e. t ∈ [0, T ] and all x ≥ r.

Hence, we can use Lemma 5.8 (see (5.20)) to get

‖u′‖∞ ≤ ‖m‖1 = m. (5.107)
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If u ≥ A were valid on [0, T ], then taking into account the periodicity of u′ and (5.103),
we would get

0 =

∫ T

0

f̃(t, u(t)) dt ≤
∫ T

0

β(t) dt = T β < 0,

a contradiction. Thus, there is τ ∈ [0, T ] such that u(τ) < A. Now, assume that u(s) > A
for some s ∈ [0, T ] and extend u to the function T -periodic on R. There are s1, s2 and
s∗ ∈ R such that s1 < s∗ < s2, s2 − s1 < T, u(s1) = u(s2) = A and u(s∗) = max{u(s) :
s ∈ [0, T ]} > A. In particular, due to (5.107),

2 (u(s∗)− A) =

∫ s∗

s1

u′(s) ds +

∫ s∗

s2

u′(s) ds ≤ T m,

wherefrom the estimate

u(t)− A ≤ T

2
m ≤ B − A on [0, T ]

follows. Consequently, (5.106) is true.
Step 4. Conclusion: u is a solution to (5.97), (5.2).

The estimates (5.105) and (5.106) mean that r ≤ u ≤ B holds on [0, T ]. By (5.101),
we conclude that u is a solution to (5.97), (5.2).

If β = 0, we can approximate the solution to (5.1), (5.2) by solutions of the problems

u′′ = f̃n(t, u), u(0) = u(T ), u′(0) = u′(T ),

where

f̃n(t, x) =





f(t, r) if x ≤ r,

f(t, x) if x ∈ [r, A],

f(t, x)− 1
n

x−A
x−A+1

if x ∈ [A, B],

f(t, B)− 1
n

B−A
B−A+1

if x ≥ B. ¤

Recently, using the Krasnoselskii fixed point theorem, Torres proved for the Hill equa-
tion

u′′ + µ(t) u = g(t, u) (5.108)

the existence result which is related to Theorem 5.26.

Theorem 5.27. ([152, Theorem 4.5]) Let µ ∈ L1[0, T ] be such that the problem

v′′ + µ(t) v = 0, v(0) = v(T ), v′(0) = v′(T ) (5.109)

possesses the Green function G(t, s) which is positive on [0, T ]× [0, T ]. Moreover, assume
that there is an R > 0 such that

g(t, x) ≥ 0 for all x ∈ (0, M
m

R] and g(t, x) ≤ 1
T M

x for all x ∈ [R, M
m

R]
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for a.e. t ∈ [0, T ], where

m = min{G(t, s) : t, s ∈ [0, T ]} and M = max{G(t, s) : t, s ∈ [0, T ]}.
Then problem (5.108), (5.2) has a positive solution.

It is easy to check that the function G(t, s) = sin
(

π
T
|t− s|) , t, s ∈ [0, T ], is the Green

function for v′′ + ( π
T
)2 v = 0, v(0) = v(T ), v′(0) = v′(T ) and G(t, s) ≥ 0 on [0, T ]× [0, T ].

Hence, the statement (5.100) holds if µ(t) ≡ µ1 =
(

π
T

)2
. Notice that µ1 =

(
π
T

)2
is the first

eigenvalue of the related Dirichlet problem and it is optimal in the sense that for µ(t) = µ
a.e. on [0, T ] and µ ∈ (µ1, 4 µ1) the corresponding Green function of v′′ + ( π

T
)2 v = 0,

v(0) = v(T ), v′(0) = v′(T ) is not nonnegative on [0, T ]× [0, T ].

In particular, when restricted to the Duffing equation

u′′ = g(u) + e(t), (5.110)

Theorem 5.26 has the following corollary.

Corollary 5.28. ([137, Corollary 3.7]) Suppose that g ∈ C(0,∞), e ∈ L1[0, T ],

e + lim sup
x→∞

g(x) < 0

and there is r > 0 such that

e(t) + g(x) +
(π

T

)2

x ≥
(π

T

)2

r for a.e. t ∈ [0, T ] and all x > r.

Then problem (5.110), (5.2) has a positive solution u such that u ≥ r on [0, T ].

More detailed information on the sign properties of the associated Green functions is
provided by the next proposition which is due to Torres [152] (see also [163, Lemma 2.5]).
Before formulating it, let us define the function K : [0,∞] → (0,∞) by

K(z) =





2 π

z T 1+ 2
z

(
2

2 + z

)1− 2
z

(
Γ(1

z
)

Γ(1
2

+ 1
z
)

)2

if 1 ≤ z < ∞,

4

T
if z = ∞.

(5.111)

Let us recall that for a given z, 1 ≤ z ≤ ∞, K(z) is the best Sobolev constant for the
inequality C ‖u‖2

z ≤ ‖u′‖2
2, i.e.

K(z) = inf
{‖u′‖2

2

‖u‖2
z

: u ∈ H1
0 [0, T ] \ {0}

}
,

where H1
0 [0, T ] = {u ∈ AC[0, T ] : u′ ∈ L2[0, T ], u(0) = u(T ) = 0}.
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Proposition 5.29. ([152, Corollary 2.3]) Let 1 ≤ q ≤ ∞ and let µ ∈ Lq[0, T ]. Then
(5.100) is true provided

µ(t) ≥ 0 a.e. on [0, T ], µ > 0 and ‖µ‖q ≤ K(2 q∗), (5.112)

where
1

q
+

1

q∗
= 1 if 1 < q < ∞, q∗ = ∞ if q = 1, q∗ = 1 if q = ∞ (5.113)

and the function K is defined by (5.111).

Moreover, if ‖µ‖q < K(2 q∗), then the corresponding Green function is positive on
[0, T ]× [0, T ].

Notice that if µ(t) ≡ µ ∈ (0,∞) on [0, T ], then we can take q = ∞, q∗ = 1 and so we
get K(2 q∗) = K(2) =

(
π
T

)2
, which confirms the above mentioned fact that in such a case

(5.100) is satisfied if µ ∈ (0,
(

π
T

)2
].

Example. Consider the Brillouin beam focusing equation

u′′ + a (1 + cos t) u =
1

u
(5.114)

on the interval [0, 2 π], where a > 0 is a parameter. (See [35] for a description of the
model.) The problem of existence of a positive 2 π-periodic solution to (5.114) has been
considered by several authors (see e.g. [59], [152], [153], [161] and [163]). Put A = 1√

a
.

Then for all x ≥ A and t ∈ [0, 2 π] we have

f(t, x) :=
1

x
− a (1 + cos t) x ≤ β(t) :=

1

A
− a (1 + cos t) A

and β = 1
A
− aA = 0. So, the assumption (5.98) is satisfied with B = ∞ and T = 2 π.

Furthermore, for r ∈ (0, r0] and a.e. t ∈ [0, T ] define

mr(t) := max
{

sup{f(t, x) : x ∈ [r, A]}, β(t), 0
}
.

Let r0 = 1√
2 a

. Then 1
r
− a (1 + cos t) r ≥ 1

r0
− 2 a r0 = 0 holds for r ∈ (0, r0] and t ∈ [0, T ].

Consequently,

mr(t) =
1

r
− a (1 + cos t) r for a.e. t ∈ [0, T ] and all r ∈ (0, r0].

For a given r ∈ (0, r0], put Br = A+π mr. Now, it is easy to check that it is possible to find
r ∈ (0, r0] such that the assumption (5.99) is satisfied with B = Br and µ(t) = a (1+cos t)
whenever a < 1

2 π
≈ 0.15915. Finally, notice that by virtue of Proposition 5.29, the

assumption (5.100) is satisfied if

a ≤ Kmax := max

{
K(2 q∗)

‖1 + cos t‖q

: 1 ≤ q ≤ ∞
}
≈ 0.16488.
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(The maximum is attained at q ≈ 2.1941, see [153, Corollary 4.8].) By Theorem 5.26, we
can conclude that the equation (5.114) has a positive 2 π-periodic solution for a < 1

2 π
. To

compare, notice that for q = ∞ and T = 2 π, we get q∗ = 1 and

K(2 q∗)
‖1 + cos t‖∞ =

1

8
= 0.125.

Finally, let us note that using more sophisticated and involved techniques, Zhang proved
(see [163, Theorem 4.5] that for a < Kmax, b > 0, λ ≥ 1, e ∈ C[0, T ] and h ∈ C[0,∞)
the problem

u′′ + h(u)u′ + a (1 + cos t) u =
b

uλ
+ e(t), u(0) = u(2 π), u′(0) = u′(2 π)

has a positive solution.

The hitherto mentioned conditions for the existence of a positive solution of problem
(5.97), (5.2) concern the case when f(t, x) asymptotically behaves like −k x with k ≤ µ1,
µ1 = ( π

T
)2 being the first eigenvalue of the related Dirichlet problem. The next theorem

deals with the case corresponding to k lying between two adjacent higher eigenvalues.

Let us denote by {µk}∞k=1 the sequence of eigenvalues of the related linear Dirichlet
problem u′′ + µx = 0, u(0) = u(T ) = 0, that is

µk =

(
π k

T

)2

, k ∈ N. (5.115)

Furthermore, we set µ0 = 0.

Theorem 5.30. ([56, Theorem 1.1]) Assume that f : [0, T ]× (0,∞) → R is continuous
and there are positive constants c, c′, δ and ν ≥ 1 such that

c′

xν
≤ f(t, x) ≤ c

xν
for all x ∈ (0, δ). (5.116)

Moreover, let there exist a nonnegative integer k such that

−µk+1 < lim inf
x→∞

f(t, x)

x
≤ lim sup

x→∞

f(t, x)

x
< −µk uniformly in t ∈ [0, T ]. (5.117)

Then problem (5.97), (5.2) has a positive solution.

Sketch of the proof For a given e ∈ C[0, T ] denote by R(e) the unique solution of
the problem

u′′ + u = e(t), u(0) = u(T ), u′(0) = u′(T ).

It is known that R defines a compact linear operator on the space CT [0, T ] of continuous
T -periodic functions endowed with the sup norm ‖ . ‖∞. Problem (5.97), (5.2) is thus
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equivalent to finding a positive solution u ∈ CT [0, T ] of the fixed point problem u = T (u),
where

T (u) = R(u + f(·, u)) for u ∈ CT [0, T ].

For 0 < ε < M define Ωε,M = {u ∈ CT [0, T ] : ε < u < M on [0, T ]}. Then T : Ωε,M →
CT [0, T ] is a completely continuous operator.

The proof of the theorem consists in showing that there are ε, M such that deg(I −
T , Ωε,M) 6= 0:

Let k be from (5.117) and choose an arbitrary γ ∈ (µk, µk+1). Further, for λ ∈ [0, 1]
and u ∈ CT [0, T ], define

T̃ (u) = R(
γ u− 1

uν
+ u

)
and Tλ(u) = λ T̃ (u) + (1− λ) T (u)

Notice that

Tλ(u) = R
(

λ

(
γ u− 1

uν

)
+ (1− λ) f(., u) + u

)
.

Furthermore, T0 = T and T1 = T̃ . It can be shown that there are ε, M such that
0 < ε < M and u 6= Tλ(u) for all u ∈ ∂ Ωε,M . By the homotopy property of the degree, it
follows that deg(I − T , Ωε,M) = deg(I − T̃ , Ωε,M).

Define

S̃(u) = R
(

γ u− λ

u3
+ u

)
and Sλ(u) = λ T̃ (u) + (1− λ) S̃(u)

for u ∈ CT [0, T ] and λ ∈ [0, 1]. We have

Sλ(u) = R
(

γ u + u− (1− λ)
1

uν
− λ

1

u3

)
,

S0 = S̃ and S1 = T̃ . Now, we prove that u 6= Sλ(u) on ∂ Ωε,M for each λ ∈ [0, 1] and
for some suitable ε and M. Similarly to Step 1, this yields that deg(I − T̃ , Ωε,M) =

deg(I − S̃, Ωε,M).

The proof is completed by proving that deg(I − S̃, Ωε,M) 6= 0. ¤

Remark 5.31. Consider the problem

u′′ + k u =
β

uλ
+ e(t), u(0) = u(T ), u′(0) = u′(T ) (5.118)

with λ > 0, β > 0 and k ≥ 0. Denote

g(x) =
β

xλ
− k x for x > 0.
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If e ∈ L1[0, T ], k = 0 and λ ≥ 1, i.e. the function g has a strong singularity at x = 0, then
by [102, Theorem 3.12] problem (5.118) has a positive solution if and only if e < 0 and,
in the case λ ∈ (0, 1), this condition need not ensure the existence of a positive solution
to (5.118) (cf. [102, Theorem 4.1]). Further, if e ∈ C[0, T ] and λ ≥ 1, then by Theorem
5.30, problem (5.118) has a positive solution whenever the condition

k 6= (n
π

T
)2 for all n ∈ N

is satisfied. It is worth mentioning that the resonance case of k = ( π
T
)2 is covered neither

by Theorem 5.30 nor by Theorem 5.25 even for the strong singularity λ ≥ 1.
In comparison to these results, it should be pointed out that using Corollary 5.28,

we can obtain existence results also for the cases λ ∈ (0, 1) and k = ( π
T
)2. In particular,

for problem (5.118), with e ∈ L1[0, T ] we get the existence of a positive solution in the
following cases:

k = 0, e < 0 and inf ess{e(t) : t ∈ [0, T ]} > −
( π2

T 2 λβ

) λ
λ+1

(λ + 1) β

or

0 < k <
(π

T

)2

and inf ess{e(t) : t ∈ [0, T ]} > −
(π2 − T 2 k

T 2 λβ

) λ
λ+1

(λ + 1) β

or

k =
(π

T

)2

and inf ess{e(t) : t ∈ [0, T ]} > 0.

Notice that for the case 0 < k < ( π
T
)2, Theorem 5.27 provides a complementary existence

condition. For details, see [152, Corollary 4.6].

We close this section by mentioning some results concerning the case when the nonlin-
earity can have both a space singularity at x = 0 and superlinear descent for large x. The
first is due to del Pino and Manásevich. It was motivated by [165], where an equation
governing the nonlinear vibrations of a radially forced thickwalled and incompressible
material was derived. The proof makes use of a version of the Poincaré-Birkhoff theorem
due to Ding [60] together with an analysis of some oscillatory properties of solutions to
the related initial value problems.

Theorem 5.32. ([55, Theorem 2.1]) Let f : R × (0,∞) → R be continuous, locally
Lipschitz in x, T -periodic in t and such that for s, β ∈ R and α > 0, the solution u(t) of
the local initial value problem

u′′ = f(t, u), u(s) = α, u′(s) = β

is continuable to the whole real line R and u > 0 on R. Furthermore, assume that

0 < lim inf
x→0+

x f(t, x) ≤ ∞ and lim
x→∞

f(t, x)

x
= −∞

uniformly in t.
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Then there is n0 ∈ N such that for every n ≥ n0 there exist two distinct T -periodic
positive solutions un1, un2 of (5.97), (5.2) such that both un1− 1 and un2− 1 have exactly
2 n zeros in [0, T ). In particular, problem (5.97), (5.2) possesses infinitely many T -periodic
positive solutions.

The other result is due to Ge and Mawhin. It deals with the equation

u′′ = g(u) + p(t, u, u′). (5.119)

Its proof was obtained by use of some continuation theorems valid in absence of a priori
bounds and given by Capietto, Mawhin and Zanolin e.g. in [48] and [109].

Theorem 5.33. ([77, Theorem 1]) Let g ∈ C(0,∞) and p ∈ Car([0, T ] × R2). Further-
more, assume that there are constants α, β ≥ 1, M ≥ 0, L ≥ 0 such that

lim
x→0+

g(x) xα = ∞, lim
x→∞

g(x)

xβ
= −∞, (5.120)

|p(t, x, y)| ≤





M
(
|x| 1−α

2 + |y|
)

+ L if 0 < x < 1,

M
(
|x| 1+β

2 + |y|
)

+ L if x ≥ 1.
(5.121)

Then problem (5.119), (5.2) has a positive solution.

5.5 . Historical and bibliographical notes

In 1958 Bevc, Palmer and Süsskind [35] searched for positive 2 π-periodic solutions of
the Brillouin electron beam focusing system (5.114) which is a singular perturbation of
the Mathieu equation. Before, in 1950, Pinney [119] considered the so-called Ermakov-
Pinney equation r′′ + a(t) r = K

r3 , where a(t) is T -periodic and K > 0. Another example
of the singular problem mentioned in literature are the parametric resonances of certain
nonlinear Schrödinger systems (see [75]). As mentioned by Mawhin and Jebelean in their
exhaustive historical introduction to the paper [89], second order nonlinear differential
equations or systems with singularities appear naturally in the description of particles
submitted to Newtonian type forces or to forces caused by compressed gases. Their
mathematical study started in the sixties by Forbat and Huaux [73], Huaux [87], Derwidué
[58] and Faure [69], who considered positive solutions of equations describing e.g. the
motion of a piston in a cylinder closed at one extremity and submitted to a T -periodic
exterior force, to the restoring force of a perfect gas and to a viscosity friction. The
equations under their study may be after suitable substitutions transformed to

u′′ + c u′ =
β

u
+ e(t),

where c 6= 0 and β ∈ R can be either positive or negative. Equations of this form are
usually called Forbat’s equations and their Liénard type generalizations like

u′′ + h(u) u′ = g(t, u) + e(t) (5.122)
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are sometimes also referred to as the generalized Forbat’s equations. It is worth mention-
ing that, while Forbat and others relied on the dissipativeness properties, Faure made use
of the Leray-Schauder topological method.

Later, in the seventies, techniques of critical point theory were applied for the first
time by Gordon [80], who also introduced the strong force condition of the type (5.29).

In 1986, Gaete and Manásevich [77], using variational methods, proved the existence
of at least two different positive T -periodic solutions of the equation u′′ = p(t) u2−u+u−5

which governs the radial oscillations of an elastic spherical membrane made up of a neo-
Hookean material, and subjected to an internal pressure p : R → (0,∞) continuous,
T -periodic and non-constant.

In 1987, keeping in mind the model equation u′′ = β u−λ + e(t) with λ > 0, β 6= 0
and e ∈ L1[0, T ], Lazer and Solimini [102] employed topological arguments and the lower
and upper functions method to investigate the existence of positive solutions to the Duff-
ing equation u′′ = g(u) + e(t). The restoring force g was allowed to have an attractive
singularity or a strong repulsive singularity at origin. Starting with this paper, the in-
terest in periodic singular problems considerably increased. The results by Lazer and
Solimini have been generalized or extended e.g. by Habets and Sanchez [83] (1990),
Mawhin [108] (1991), del Pino, Manásevich and Montero [56] (1992), del Pino and Maná-
sevich [55] (1993), Fonda [70] (1993), Omari and Ye [114] (1995), Zhang [161] (1996) and
[163] (1998) and Ge and Mawhin [77] (1998). Some of these papers (e.g. [83], [114], [161]
or [163]) cover also the Liénard equation (5.122) with g(t, x) having at x = 0 an essentially
autonomous singularity. However, all of them, when dealing with the repulsive singularity,
supposed that the strong force condition of the type (5.29) is satisfied. Furthermore, ex-
cept for [55], [56] and [77], they dealt with restoring forces g(t, x) behaving at ∞ like −k x
with 0 < k < µ1, µ1 = ( π

T
)2 being the first Dirichlet eigenvalue of x′′+µx = 0. The paper

[56] was concerned with the cases corresponding to k lying between two adjacent higher
eigenvalues, while the papers [55] and [77] dealt with the superlinear case. Recently, Yan
and Zhang [160] (2003) proved an existence result assuming that the nonlinearity grows
semilinearly as x →∞ and fulfil a certain higher-order non-resonance condition in terms
of the periodic and antiperiodic eigenvalues. Let us mention also that Martinez-Amores
and Torres [111] considered in 1996 stability of periodic solutions of problems with singu-
larities of attractive type. Furthermore, in 1998, Torres delivered results on the existence
of bounded solutions to singular equations of repulsive type.

In 2001, Rach̊unková, Tvrdý and Vrkoč [137], motivated by results on the existence of
positive solutions to regular periodic problems by Nkashama and Santanilla [113] (1990)
and Sanchez [139] (1992), made use of the lower and upper functions method to deliver
related results in the form applicable also to singular problems. Unlike the above men-
tioned papers, their results concern also the resonance case k = µ1 and do not need any
strong force condition. Later, in 2002, further step was done by Bonheure, Fonda and
Smets [40] who made use of the properties of forced isochronous oscillators. Their results
are also valid in the resonance case k = µ1 with a weak singularity. It turned out that in
the resonance case k = µ1 problem (5.118) with λ ≥ 0 has a solution whenever there is
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a δ > 0 such that

min
t∈[0,T ]

∫ t+T

t

e(t) sin(π
s− t

T
) ds ≥ δ.

Analogous results were derived also by Bonheure and De Coster [39] in 2003 by means of
the lower and upper functions method. Simultaneously, Torres [152] noticed that having
a thorough analysis of the sign properties of the related Green’s functions, solvability of
the periodic problem with a weak singularity can be ensured also by the Krasnoselskii
fixed point theorem. His results turned out to be complementary to those already known
when 0 < k < µ1.

For related multiplicity results we refer to the papers by Fonda, Manásevich and
Zanolin [72] (1993), Rach̊unková [121] and [122] (2000) and Rach̊unková, Tvrdý and Vrkoč
[138] (2003). In particular, in [121] an extension of the results of Gaete and Manásevich
from [77] applicable to the equation modelling radial oscillations of an elastic spherical
membrane can be found.

The regular periodic problem with φ- or p-Laplacian on the left hand side was consid-
ered by several authors. For example, del Pino, Manásevich and Murúa [57] (1992) and
Yan [159] (2003) proved the existence or multiplicity of periodic solutions of the equation
(φp(u

′))′ = f(t, u) under non resonance conditions imposed on f. In 1998, general exis-
tence principles for the regular vector problem, based on the homotopy to the averaged
nonlinearity, were presented by Manásevich and Mawhin [107] (1998) (see also Mawhin
[110]). Multiplicity results of the Ambrosetti-Prodi type were given by Liu in [103] (1998).

The first steps to establish the lower/upper functions method for problems with a φ-
Laplacian operator on the left hand side were done by Cabada and Pouso in [42] (1997)
and by Jiang and Wang in [93] (1997), the latter paper dealing with the p-Laplacian.
They assumed the existence of a pair of well-ordered lower and upper functions and
both-sided Nagumo conditions. These results were extended by Staněk [142] (2001) to
the case when a functional right-hand side fulfils one-sided growth conditions of Nagumo
type. The paper by Cabada, Habets and Pouso [43] (1999) was the first to present
the lower/upper functions method for periodic problems with a φ-Laplacian operator
under the assumption that lower/upper functions are in the reverse order. If φ = φp the
authors got the solvability for 1 < p ≤ 2 only. The general existence principle valid also
when lower/upper functions are non-ordered was presented by Rach̊unková and Tvrdý in
[135] (2005) and for the case when impulses are admitted also in [134] (2005).

The singular periodic problem for the Liénard equation (φp(u
′))′+h(u) u′ = g(u)+e(t)

with p-Laplacian on the left hand side was treated by Liu [104] (2002) and Jebelean and
Mawhin [89] (2002) and [90] (2004). Their main tool was the existence principle due to
Manásevich and Mawhin from [107] (1998). Furthermore, in [89], the significance of the
lower/upper functions method was shown.

Extensions to vector systems of the second order were not the subject of this text. We
can only refer e.g. to the papers by Habets and Sanchez [84] (1990), Solimini [141] (1990),
Fonda [71] (1995) and Zhang [164] (1999) for the classical case and by Manásevich and
Mawhin [107] (1998) and Liu [104] (2002) for systems with p-Laplacian operators on their
left hand sides.
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6 . Other types of two-point second order BVPs

In Sections 4 and 5, under the assumption that φ satisfies (3.3), we have investigated the
nonlinear second order differential equation of the form

(φ(u′))′ + f(t, u, u′) = 0, (6.1)

subjected to Dirichlet and periodic boundary conditions, respectively. In this section
we will study solvability of equation (6.1) with some other types of two-point boundary
conditions on the interval [0, T ] ⊂ R.

We will focus our attention on problems with space or with mixed (time and space)
singularities. According to Section 1, solutions and w-solutions of the problems are de-
fined in the same way as for the Dirichlet problem (see Section 4.1) just replacing the
Dirichlet conditions by the boundary conditions under consideration. We can define lower
and upper functions of the second order boundary value problem in the same way as in
Definition 4.3 replacing inequalities (4.6) with inequalities corresponding to the boundary
conditions in question.

In the sequel we consider two-point linear boundary conditions arising in the study of
physical, chemical or engineering problems and having the form

{
a0 u(0)− b0 u′(0) = 0, a1 u(T ) + b1 u′(T ) = 0,

ai, bi ∈ R, a2
i + b2

i > 0, i = 0, 1.
(6.2)

Conditions (6.2) include conditions of the Dirichlet type (with b0 = b1 = 0), of the
Neumann type (with a0 = a1 = 0), of the mixed type (with a0 = b1 = 0 or b0 = a1 = 0),
of the Robin type (with ai > 0, bi > 0, i = 0, 1) and of the standard Sturm-Liouville type
(with ai, bi ∈ [0,∞), i = 0, 1). We will also mention problems involving inhomogeneous
form of the above boundary conditions, i.e.

{
a0 u(0)− b0 u′(0) = A, a1 u(T ) + b1 u′(T ) = B,

ai, bi ∈ R, a2
i + b2

i > 0, i = 0, 1, A, B ∈ R.
(6.3)

However, there is no restriction in assuming just the homogeneous conditions since a
change from u(t) to y(t) = u(t)−q(t), where q is a polynomial satisfying (6.3), will reduce
(6.3) to (6.2).

Consider a class of nonlinear singular boundary value problems whose importance
is derived, in part, from the fact that they arise when searching for positive, radially
symmetric solutions to the nonlinear elliptic partial differential equation

∆ u + g(r, u) = 0 on Ω, u |Γ= 0,

where ∆ is the Laplace operator, Ω is the open unit disk in Rn (centered at the origin), Γ is
its boundary, and r is the radial distance from the origin. Radially symmetric solutions to
this problem are solutions of the ordinary differential equation with the mixed boundary
conditions

u′′ +
n− 1

t
u′ + g(t, u) = 0, u′(0) = 0, u(1) = 0.
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See e.g. [30] or [78]. Particularly, Gatica, Oliker and Waltman [76] investigated the
singular problem

u′′ +
n− 1

t
u′ + ψ(t)

1

uα
= 0, u′(0) = 0, u(1) = 0, (6.4)

where {
n ≥ 2, α ∈ (0, 1), ψ ∈ C[0, 1) is non-negative,

ψ can have a time singularity at t = 1.
(6.5)

Theorem 6.1. ([76, Theorem 4.1]) Let (6.5) hold. Assume that

0 <

∫ 1

0

(1− t)−α ψ(t) dt < ∞.

Then problem (6.4) has a solution that is positive on [0, 1).

The technical arguments in the proof involve concavity of solutions and the use of
iterative techniques. The main tool is a fixed point theorem for decreasing mappings on
cones.

In the theory of diffusion and reaction a class of differential equations

u′′ − η2 gκ(u) = 0 (6.6)

appears. Here η2 is the (positive) Thiele modulus, u ≥ 0 is the concentration of one of the
reactants and κ is a positive parameter. The functions gκ are continuous on [0,∞),

lim
κ→0+

gκ(x) = g(x) for x ∈ (0,∞)

and g can have a space singularity at x = 0. The model functions are

gκ(x) =
x

κ + x1+γ
, (6.7)

where γ is a positive parameter. Aris [22] proposed such equations as descriptions of the
steady state for chemicals reacting and diffusing according to the Langmuir-Hinshelwood
kinetics. Bobisud [36] studied a class of equations (6.6) on [−1, 1] subjected to the inho-
mogeneous Robin boundary conditions

α u(−1)− u′(−1) = A, α u(1) + u′(1) = A, α, A > 0, (6.8)

and with functions gκ behaving qualitatively very much like the model functions in (6.7).
He proved that for η2 in (6.6) sufficiently small the limit problem with κ = 0 has a positive
solution which can be approximated uniformly on [−1, 1] by solutions of (6.6), (6.8) with
small κ.
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Motivated by problem (6.6), (6.8) as well as by problem (6.4), Baxley and Gersdorff
[28] studied a singular equation in which u′ can appear nonlinearly,

u′′ + h(t, u′)− η2 g(t, u) = 0, η2 > 0, (6.9)

with inhomogeneous Sturm-Liouville boundary conditions

u′(0) = 0, α u(T ) + β u′(T ) = A, α, A > 0, β ≥ 0, (6.10)

where
{

h ∈ C((0, T ]× [0,∞)) is non-negative

and can have a time singularity at t = 0,
(6.11)

{
g ∈ C([0, T ]× (0, A

α
]) is positive

and can have a space singularity at x = 0.
(6.12)

In contrast to Theorem 6.1 where positive singular nonlinearity ψ(t) x−α appears, the
next theorem applies to equations involving a negative singular term −η2 g(t, x).

Theorem 6.2. ([28, Theorem 17]) Let (6.11) and (6.12) hold. Assume that

h(t, 0) = 0 for t ∈ (0, T ]

and that there exists G ∈ L[0, A
α
] satisfying

g(t, x) ≤ G(x) on [0, T ]× (0, A
α
]. (6.13)

Then for η2 sufficiently small problem (6.9), (6.10) has a solution that is positive on
[0, T ].

Moreover, if η2 is sufficiently large, Baxley and Gersdorff guarantee the existence
of the so called dead core solutions which are defined as functions belonging for some
t0 ∈ (0, T ) to C1[0, T ] ∩ C2(t0, T ], satisfying equation (6.9) on (t0, T ], vanishing on [0, t0]
and fulfilling (6.10). The proof is based on a priori estimates of approximate solutions of
auxiliary regular problems and on the Arzelà-Ascoli theorem.

Agarwal, O’Regan and Staněk [16] considered a singular equation with a φ-Laplacian
generalizing (6.9) and subjected to inhomogeneous mixed conditions

(φ(u′))′ − µ f(t, u, u′) = 0, u′(0) = 0, u(T ) = b, b > 0, (6.14)

where µ is a real positive parameter and
{

φ(0) = 0, f ∈ Car([0, T ]× (R \ {b})× (R \ {0})),
f can have space singularities at x = b and y = 0.

(6.15)
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Theorem 6.3. ([16, Theorem 3.1]) Let (6.15) hold. Assume that there exist ε > 0,
ν ∈ (0, T ] and a positive non-decreasing function ρ ∈ C[0, T ] such that

f(t, x, ρ(t)) = 0 for a.e. t ∈ [0, T ] and all x ∈ [0, b),

ε ≤ f(t, x, y) for a.e. t ∈ [0, ν] and all x ∈ [0, b), y ∈ [0, ν].

Further, let for a.e. t ∈ [0, T ] and for all x ∈ [0, b), y ∈ (0, ρ(t)]

0 ≤ f(t, x, y) ≤ (h1(x) + h2(x)) (ω1(y) + ω2(y)),

where h1 ∈ C[0, b], ω1 ∈ C[0,∞) are non-negative, h2 ∈ C[0, b), ω2 ∈ C(0,∞) are positive,
h1 and ω2 are non-increasing, h2 and ω1 are non-decreasing and ω1 +ω2 is non-increasing
on a right neighbourhood of 0. Moreover, let

∫ b

0

h2(s) ds < ∞,

∫ 1

0

ω2(φ
−1(s)) ds < ∞.

Finally, let there exist µ∗ > 0 such that
∫ b

0

ds

Ω−1(µ∗ H(s))
= T, (6.16)

where

H(u) =

∫ u

0

(h1(s) + h2(s)) ds, Ω(u) =

∫ φ(u)

0

φ−1(s) ds

ω1(φ−1(s)) + ω2(φ−1(s))
.

Then for each µ ∈ (0, µ∗) problem (6.14) has a solution u satisfying

0 < u(t) ≤ b, 0 ≤ u′(t) ≤ ρ(t) for t ∈ [0, T ].

To prove this existence result the authors used regularization and sequential tech-
niques. First, they defined a family of auxiliary regular differential equations depending
on n ∈ N and then, using the topological transversality theorem, they obtained a sequence
of positive approximate solutions. Applying the Arzelà-Ascoli theorem and the Lebesgue
convergence theorem they showed that its limit is a solution of problem (6.14).

Remark 6.4. Note that if there exists µ0 ∈ (0,∞) such that

∫ b

0

ds

Ω−1 (µ0 H(s))
∈ (T,∞),

then µ∗ ∈ (0, µ0) satisfying (6.16) can be always found.

Comparing problem (6.9), (6.10) and problem (6.14), they seem to be in some sense
close, because both of them have negative singular nonlinearities in differential equations
and the boundary conditions of (6.14) are contained in (6.10). However, there is a large
difference between them. For example, positive solutions of (6.9), (6.10) do not touch
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the space singularity of f at x = 0. On the other hand, each solution u of (6.14) satisfies
u(T ) = b and hence enters the space singularity of f at x = b. Another difference between
them consists in the fact that f in (6.14) can have also a space singularity at y = 0 and
hence Theorem 6.3 can be used in the following example whereas Theorem 6.2 cannot.

Example. Let α ∈ (0,∞) and β ∈ (0, 1). By Theorem 6.3 there exists a positive number
µ∗ depending on β only such that for any µ ∈ (0, µ∗) the problem

u′′ − µ (1− |u|α)

(
1

|u′|β − 1

)
= 0, u′(0) = 0, u(1) =

1

2
,

has a solution u such that 0 < u(t) ≤ 1
2
, 0 ≤ u′(t) ≤ 1 for t ∈ [0, 1]. An explicit formula

for µ∗ can be found in [16].

Assumption (6.13) in Theorem 6.2 means that the space singularity of g at x = 0 is a
weak singularity. See Remark 5.1 for more detail. Note that the assumption (6.13) is not
satisfied for the problem

u′′ +
t2

32 u2
− λ2

8
= 0, u(0) = 0, 2 u′(1)− (1− ν) u(1) = 0, (6.17)

where λ ∈ (0,∞), ν ∈ (0, 1), which models the large deflection membrane response of
a spherical cap. This problem has been solved numerically by various techniques in
engineering literature [79], [112], [117]. Baxley in [27] proved existence and uniqueness of
a solution of this problem, gave qualitative information about the solution, and used this
information to suggest an approach to numerical computation. In the proof the maximum
principle plays a fundamental role. In contrast to (6.8), (6.11) and (6.14), problem (6.17)
has boundary conditions which are not included in the Sturm-Liouville ones, because
ν < 1 and so the coefficient −(1− ν) at u(1) is negative.

Existence results for equations whose nonlinearities have a singularity at x = 0 and
can be increasing for x → ∞ are proved in [4], where Agarwal and O’Regan obtained
the existence of a w-solution u > 0 on (0, 1] of such equations with mixed boundary
conditions. Their theorem can be applied for example to the problem

u′′ +
(

1

uα
+ uβ + 1

)
(1 + (u′)3) = 0, u′(0) = 0, u(1) = 0, (6.18)

with α ∈ (0, 1), β ≥ 0. We see that the nonlinearity

f(t, x, y) =

(
1

xα
+ xβ + 1

)
(1 + y3) (6.19)

has a weak space singularity at x = 0 and can be increasing for large x. If β ∈ (0, 1) the
growth of f is sublinear. For β = 1 or β > 1 the growth of f is linear or superlinear,
respectively.
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In the investigation of singular problems (6.1), (6.2) or (6.1), (6.3), lower and upper
functions of the corresponding regular problems can be a fruitful tool. See for example
papers by Kannan and O’Regan in [94] or by Agarwal and Staněk in [18]. We will
demonstrate the role of lower and upper functions on the following singular problem with
mixed boundary conditions

u′′ + f(t, u, u′) = 0, u′(0) = 0, u(T ) = 0, (6.20)

where 



D = (0,∞)× (−∞, 0), f ∈ Car((0, T )×D),

f can have time singularities at t = 0, t = T

and space singularities at x = 0, y = 0.

(6.21)

First, consider an auxiliary regular problem

u′′ + h(t, u, u′) = 0, u′(0) = 0, u(T ) = 0, (6.22)

where h ∈ Car([0, T ]× R2).

Definition 6.5. A function σ ∈ C[0, T ] is called a lower function of (6.22) if there exists
a finite set Σ ⊂ (0, T ) such that σ ∈ AC1

loc([0, T ] \Σ), σ′(τ+), σ′(τ−) ∈ R for each τ ∈ Σ,

σ′′(t) + f(t, σ(t), σ′(t)) ≥ 0 for a.e. t ∈ [0, T ], (6.23)

σ′(0) ≥ 0, σ(T ) ≤ 0, σ′(τ−) < σ′(τ+) for each τ ∈ Σ. (6.24)

If the inequalities in (6.23) and (6.24) are reversed, then σ is called an upper function of
(6.22).

In what follows we will need the classical lower and upper functions result for the
mixed problem (6.22).

Lemma 6.6. [98, Lemma 3.7] Let σ1 and σ2 be a lower and an upper function for problem
(6.22) such that σ1 ≤ σ2 on [0, T ]. Assume also that there is a function ψ ∈ L1[0, T ] such
that

|h(t, x, y| ≤ ψ(t) for a.e. t ∈ [0, T ], all x ∈ [σ1(t), σ2(t)], y ∈ R. (6.25)

Then problem (6.22) has a solution u ∈ AC1[0, T ] satisfying

σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ]. (6.26)

We will apply Lemma 6.6 to the singular mixed problem (6.20).



Singularities and Laplacians in Nonlinear BVPs 99

Theorem 6.7. ([123, Theorem 3.1]) Let (6.21) hold. Assume that there exist ε ∈ (0, 1),
ν ∈ (0, T ), c ∈ (ν,∞) such that

f(t, c (T − t),−c) = 0 for a.e. t ∈ [0, T ], (6.27)

0 ≤ f(t, x, y) for a.e. t ∈ [0, T ], and all x ∈ (0, c (T − t)], y ∈ [−c, 0), (6.28)

ε ≤ f(t, x, y) for a.e. t ∈ [0, ν], and all x ∈ (0, c (T − t)], y ∈ [−ν, 0). (6.29)

Then problem (6.20) has a solution u ∈ AC1[0, T ] satisfying

0 < u(t) ≤ c (T − t), −c ≤ u′(t) < 0 for t ∈ (0, T ). (6.30)

Proof. Let k ∈ N, k ≥ 3
T
.

Step 1. Approximate solutions.
For t ∈ [ 1

k
, T − 1

k
], x ∈ R and y ∈ R put

αk(t, x) =





c (T − t) if x > c (T − t),

x if c
k
≤ x ≤ c (T − t),

c
k

if x < c
k
,

βk(y) =





− ε
k

if y > − ε
k
,

y if −c ≤ y ≤ − ε
k
,

−c if y < −c,

γ(y) =





ε if y ≥ −ν,

ε c+y
c−ν

if −c < y < −ν,

0 if y ≤ −c.

For a.e. t ∈ [0, T ] and x, y ∈ R define

fk(t, x, y) =





γ(y) if t ∈ [0, 1
k
),

f(t, αk(t, x), βk(y)) if t ∈ [ 1
k
, T − 1

k
],

0 if t ∈ (T − 1
k
, T ].

Then fk ∈ Car([0, T ]× R2) and there is ψk ∈ L1[0, T ] such that

|fk(t, x, y)| ≤ ψk(t) for a.e. t ∈ [0, T ], all x, y ∈ R. (6.31)

We have got an auxiliary regular problem

u′′ + fk(t, u, u′) = 0, u′(0) = 0, u(T ) = 0. (6.32)

Conditions (6.27) and (6.28) yield

fk(t, c (T − t),−c) = 0 and fk(t, 0, 0) ≥ 0 for a.e. t ∈ [0, T ].

Put σ1(t) = 0, σ2(t) = c (T − t) for t ∈ [0, T ]. Then σ1 and σ2 are a lower and an upper
function of (6.32). Hence, by Lemma 6.6, problem (6.32) has a solution uk and

0 ≤ uk(t) ≤ c (T − t) on [0, T ]. (6.33)
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Step 2. A priori estimates of approximate solutions.
Since u′k(0) = 0 and fk(t, x, y) ≥ 0 for a.e. t ∈ [0, T ] and all x, y ∈ R, we get u′k(t) ≤ 0

on [0, T ]. Condition (6.33) and uk(T ) = 0 give uk(T ) − uk(t) ≥ −c (T − t), which yields
u′k(T ) ≥ −c. Since u′k is nonincreasing on [0, T ], we have proved

−c ≤ u′k(t) ≤ 0 on [0, T ]. (6.34)

Due to u′k(0) = 0, there is tk ∈ (0, T ] such that

−ν ≤ u′k(t) ≤ 0 for t ∈ [0, tk].

If tk ≥ ν, we get by (6.29)

u′k(t) ≤ −ε t for t ∈ [0, ν]. (6.35)

Assume that tk < ν and u′k(t) < −ν for t ∈ (tk, ν]. Then

u′k(t) ≤ −ε t for t ∈ [0, tk].

Since −ν < −εt for t ∈ (tk, ν], we get (6.35) again. Integrating (6.35) over [0, ν] and using
the concavity of uk on [0, T ] we deduce that

ε ν2

2 T
(T − t) ≤ uk(t) on [0, T ]. (6.36)

Step 3. Convergence of a sequence of approximate solutions.
Consider the sequence {uk}. Choose an arbitrary compact interval J ⊂ (0, T ). By

virtue of (6.33)–(6.36) there is k0 ∈ N such that for each k ∈ N, k ≥ k0,

c

k0

≤ uk(t) ≤ c(T − t), −c ≤ u′k(t) ≤ − ε

k0

on J, (6.37)

and hence there is ψ ∈ L1(J) such that

|fk(t, uk(t), u
′
k(t))| ≤ ψ(t) for a.e. t ∈ J. (6.38)

Using conditions (6.33), (6.34), (6.38), the Arzelà-Ascoli theorem and the diagonalization
principle, we can choose u ∈ C[0, T ]∩C1(0, T ) and a subsequence of {uk} which we denote
for the sake of simplicity in the same way such that

{
limk→∞ uk = u uniformly on [0, T ],

limk→∞ u′k = u′ locally uniformly on (0, T ).
(6.39)

Therefore we have u(T ) = 0.

Step 4. Convergence of the sequence of approximate problems.
Choose an arbitrary ξ ∈ (0, T ) such that

f(ξ, ·, ·) is continuous on (0,∞)× (−∞, 0).
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By (6.37) there exist a compact interval J∗ ⊂ (0, T ) and k∗ ∈ N such that ξ ∈ J∗ and for
each k ≥ k∗

uk(ξ) >
c

k∗
, u′k(ξ) < − ε

k∗
, J∗ ⊂ [ 1

k
, T − 1

k
].

Therefore
fk(ξ, uk(ξ), u

′
k(ξ)) = f(ξ, uk(ξ), u

′
k(ξ))

and, due to (6.39),

lim
k→∞

fk(t, uk(t), u
′
k(t)) = f(t, u(t), u′(t)) for a.e. t ∈ (0, T ). (6.40)

Choose an arbitrary t ∈ (0, T ). Then there exists a compact interval J ⊂ (0, T ) such that
(6.38) holds for all sufficiently large k. By virtue of (6.32) we get

u′k(
T
2
)− u′k(t) =

∫ t

T
2

fk(s, uk(s), u
′
k(s)) ds.

Letting k → ∞ and using (6.38), (6.39), (6.40) and the Lebesgue convergence theorem
on J, we get

u′(T
2
)− u′(t) =

∫ t

T
2

f(s, u(s), u′(s)) ds for each t ∈ (0, T ). (6.41)

Therefore u ∈ AC1
loc(0, T ) satisfies

u′′(t) + f(t, u(t), u′(t)) = 0 for a.e. t ∈ (0, T ). (6.42)

Further, according to (6.32) and (6.34) we have for each k ≥ 3
T∫ T

0

fk(s, uk(s), u
′
k(s)) ds = −u′k(T ) ≤ c,

which together with (6.28), (6.33), (6.34) and (6.40) yields, by the Fatou lemma, that
f(t, u(t), u′(t)) ∈ L1[0, T ]. Therefore, by (6.42), u ∈ AC1[0, T ]. Moreover for each k ≥ 3

T

and t ∈ (0, T )

|u′k(t)| ≤
∫ t

0

|fk(s, uk(s), u
′
k(s))− f(s, u(s), u′(s))| ds +

∫ t

0

|f(s, u(s), u′(s))| ds.

Hence by (6.39) and (6.40) for each ε > 0 there exists δ > 0 and for each t ∈ (0, δ) there
exists k0 = k0(ε, t) ∈ N such that

|u′(t)| ≤ |u′(t)− u′k0
(t)|+ |u′k0

(t)| < ε.

It means that u′(0) = limt→0+ u′(t) = 0. We have proved that u is a solution of problem
(6.20). ¤

Example. Let α > 0, β ≥ 0 be arbitrary numbers. By Theorem 6.7 problem (6.18) has
a solution u ∈ AC1[0, 1] satisfying

0 < u(t) ≤ 1− t, −1 ≤ u′(t) < 0 for t ∈ (0, 1).

Note that Theorem 6.7 guarantees solvability of problem (6.18) even for the nonlinearity
(6.19) having a strong space singularity (α ≥ 1) at x = 0.
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