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Abstract. Existence principle for the impulsive periodic boundary value problem
u′′+ c u′= g(x)+ e(t), u(ti+) = u(ti)+ Ji(u, u′), u′(ti+)= u′(ti) +Mi(u, u′), i = 1, . . .,m,
u(0) = u(T ), u′(0)= u′(T ) is established, where g ∈ C(0,∞) can have a strong singu-
larity at the origin. Furthermore, we assume that 0<t1 < . . . < tm <T, e ∈ L1[0, T ],
c ∈ R and Ji, Mi, i = 1, 2, . . . , m, are continuous mappings of G[0, T ] × G[0, T ] into
R, where G[0, T ] denotes the space of functions regulated on [0, T ].

The principle is based on an averaging procedure similar to that introduced by Manásevich
and Mawhin for singular periodic problems with p – Laplacian in [11].
Mathematics Subject Classification 2000. 34B37, 34B15, 34C25
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1 Preliminaries

Starting with Hu and Lakshmikantham [7], periodic boundary value problems
for nonlinear second order impulsive differential equations of the form

u′′ = f(t, u, u′),



u(ti+) = u(ti) + Ji(u(ti)),

u′(ti+) = u′(ti) + Mi(u
′(ti)),

i = 1, 2, . . . , m,

u(0) = u(T ), u′(0) = u′(T )

have been studied by many authors. Usually it is assumed that the function
f : [0, T ]× R2 → R fulfils the Carathéodory conditions,

0 <t1 < t2 < . . . < tm <T are fixed points of the interval [0, T ] (1.1)
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and Ji, Mi : R → R, i = 1, 2, . . . , m, are continuous functions and fulfil
some monotonicity type conditions. A rather representative (however not
complete) list of related papers is given in references. In particular, in [2],
[3], [5], [9], [10] existence results in terms of lower/upper functions obtained
by the monotone iterative method can be found. All of these results impose
monotonicity of the impulse functions and existence of an associated pair of
well-ordered lower/upper functions. The papers [4] and [30] are based on
the method of bound sets, however the effective criteria contained therein
correspond to the situation when there is a well-ordered pair of constant
lower and upper functions. Existence results which apply also to the case
when a pair of lower and upper functions which need not be well-ordered
is assumed were provided only by Rach̊unková and Tvrdý, see [18], [20]–
[22]. Analogous results for impulsive problems with quasilinear differential
operator were delivered by Rach̊unková and Tvrdý in [23]–[25]. When no
impulses are acting, periodic problems with singularities have been treated
by many authors. For rather representative overview and references, see
e.g. [15] or [16]. To our knowledge, up to now singular periodic impulsive
problems have not been treated. For singular Dirichlet impulsive problems
we refer to the papers by Rach̊unková [14], Rach̊unková and Tomeček [17]
and Lee and Liu [8].

In this paper we establish an existence principle suitable for finding pos-
itive solutions to impulsive periodic problems of a more general form

u′′ = f(t, u, u′), (1.2)




u(ti+) = u(ti) + Ji(u, u′),

u′(ti+) = u′(ti) + Mi(u, u′), i = 1, 2, . . . ,m,
(1.3)

u(0) = u(T ), u′(0) = u′(T ), (1.4)

where Ji, Mi are continuous functionals and f can have a singularity for
u = 0.

1.1 . Notation. Throughout the paper we keep the following notation and
conventions: for a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup esst∈[0,T ] |u(t)| and ‖u‖1 =

∫ T

0

|u(s)| ds.
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For a given interval J ⊂ R, by C(J) we denote the set of real valued
functions which are continuous on J. Furthermore, C1(J) is the set of
functions having continuous first derivatives on J and L1(J) is the set of
functions which are Lebesgue integrable on J.

Any function x : [0, T ] → R which possesses finite limits

x(t+) = lim
τ→t+

x(τ) and x(s−) = lim
τ→s−

x(τ)

for all t ∈ [0, T ) and s ∈ (0, T ] is said to be regulated on [0, T ]. The linear
space of functions regulated on [0, T ] is denoted by G[0, T ]. It is well known
that G[0, T ] is a Banach space with respect to the norm x∈G[0, T ]→‖x‖∞
(cf. [6, Theorem I.3.6]).

Let m ∈ N and let 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T be a
division of the interval [0, T ]. We denote D = {t1, t2, . . . , tm} and define
C1

D[0, T ] as the set of functions u : [0, T ] → R such that

u(t) =





u[0](t) if t ∈ [0, t1],

u[1](t) if t ∈ (t1, t2],

...
...

u[m](t) if t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . , m . In particular, if u ∈ C1
D[0, T ],

then u′ possesses finite one-sided limits

u′(t−) := lim
τ→t−

u′(τ) and u′(s+) := lim
τ→s+

u′(τ)

for each t ∈ (0, T ] and s ∈ [0, T ). Moreover, u′(t−) = u′(t) for all t ∈
(0, T ] and u′(0+) = u′(0). For u ∈ C1

D[0, T ] we put

‖u‖D = ‖u‖∞ + ‖u′‖∞.

Then C1
D[0, T ] becomes a Banach space when endowed with the norm ‖.‖D.

Furthermore, by AC1
D[0, T ] we denote the set of functions u ∈ C1

D[0, T ]
having first derivatives absolutely continuous on each subinterval (ti, ti+1),
i = 1, 2, . . . , m + 1.

We say that f : [0, T ] × R2 7→ R satisfies the Carathéodory conditions
on [0, T ] × R2 if (i) for each x ∈ R and y ∈ R the function f(., x, y) is
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measurable on [0, T ]; (ii) for almost every t ∈ [0, T ] the function f(t, ., .)
is continuous on R2; (iii) for each compact set K ⊂ R2 there is a function
mK(t) ∈ L[0, T ] such that |f(t, x, y)| ≤ mK(t) holds for a.e. t ∈ [0, T ] and
all (x, y) ∈ K. The set of functions satisfying the Carathéodory conditions
on [0, T ]× R2 is denoted by Car([0, T ]× R2).

Given a subset Ω of a Banach space X, its closure is denoted by Ω. As
usual, the symbol I stands for the identity operator or the identity matrix.

Finally, we will write ē instead of
1

T

∫ T

0

e(s) ds and ∆+u(t) instead of

u(t+)− u(t).

If f ∈ Car([0, T ] × R2), problem (1.2)–(1.4) is said to be regular and
a function u∈AC1

D[0, T ] is its solutions if

u′′(t) = f(t, u(t), u′(t)) holds for a.e. t ∈ [0, T ]

and conditions (1.3) and (1.4) are satisfied. If f /∈ Car([0, T ]×R2), problem
(1.2)–(1.4) is said to be singular.

In this paper we will deal with rather simplified, however the most typical,
case of the singular problem with

f(t, x, y) = c y + g(x) + e(t) for x ∈ (0,∞), y ∈ R and a.e. t ∈ [0, T ],

where

c ∈ R, g ∈ C(0,∞), e ∈ L1[0, T ]. (1.5)

1.2. Definition. A function u∈AC1
D[0, T ] is called a solution of problem

u′′ + c u′ = g(u) + e(t), (1.3), (1.4) (1.6)

if u > 0 a.e. on [0, T ],

u′′(t) + c u′(t) = g(u(t)) + e(t) for a.e. t ∈ [0, T ],

and conditions (1.3) and (1.4) are satisfied.
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2 Green’s functions and operator represen-

tations for impulsive two-point boundary

value problems

For our purposes an appropriate choice of the operator representation of
(1.2)–(1.4) is important. To this aim, let us consider the following impulsive
problem with nonlinear two-point boundary conditions

u′′ + a2(t) u′ + a1(t) u = f(t, u, u′) a.e. on [0, T ], (2.1)

∆+u(ti) = Ji(u, u′), ∆+u′(ti) = Mi(u, u′), i = 1, 2, . . . , m, (2.2)

P

(
u(0)
u′(0)

)
+ Q

(
u(T )
u′(T )

)
= R(u, u′), (2.3)

and its linearized version

u′′ + a2(t) u′ + a1(t) u = h(t) a.e. on [0, T ], (2.4)

∆+u(ti) = di, ∆+u′(ti) = d ′i, i = 1, 2, . . . , m, (2.5)

P

(
u(0)
u′(0)

)
+ Q

(
u(T )
u′(T )

)
= δ, (2.6)

where




Ji and Mi : G[0, T ]×G[0, T ]→R, i = 1, 2, . . . , m,

are continuous mappings,

Ji(u, 0) = Mi(u, 0) = 0 for u ∈ G[0, T ] and i = 1, 2, . . . ,m

(2.7)

and




a1, h ∈ L[0, T ], a2 ∈ C[0, T ], f ∈ Car([0, T ]× R2),

δ ∈ R2, di, d ′i ∈ R, i = 1, 2, . . . ,m,

P, Q are real 2× 2−matrices, rank(P, Q) = 2,

R : G[0, T ]×G[0, T ]→R2 is a continuous mapping.

(2.8)

Solutions of problems (2.1)–(2.3) and (2.4)–(2.6) are defined in a natural
way quite analogously to the above mentioned definition of regular periodic
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problems. Problem (2.4)–(2.6) is equivalent to the two-point problem for
a special case of generalized linear differential systems of the form

x(t)− x(0)−
∫ t

0

A(s) x(s) ds = b(t)− b(0) for t ∈ [0, T ], (2.9)

P x(0) + Qx(T ) = δ, (2.10)

where

x(t) =

(
x1(t)
x2(t)

)
=

(
u(t)
u′(t)

)
, A(t) =

(
0 1

−a1(s) −a2(s)

)
, (2.11)

b(t) =

∫ t

0

(
0

h(s)

)
ds +

m∑
i=1

(
di

d ′i

)
χ(ti, T ](t), t ∈ [0, T ],

and χ (ti, T ] (t) = 1 if t∈ (ti, T ], χ (ti, T ] (t) = 0 otherwise. Solutions of

(2.9), (2.10) are 2 -vector functions of bounded variation on [0, T ] satisfying
the two-point condition (2.10) and fulfilling the integral equation (2.9) for all
t ∈ [0, T ], cf. e.g. [28]. Assume that the homogeneous problem

u′′ + a2(t) u′ + a1(t) u = 0, P

(
u(0)
u′(0)

)
+ Q

(
u(T )
u′(T )

)
= 0 (2.12)

has only the trivial solution. Then, obviously, the homogeneous problem
corresponding to (2.9), (2.10) has also only the trivial solution. In view of
[29, Theorems 4.2 and 4.3] (see also [27, Theorem 4.1]), problem (2.9), (2.10)
has a unique solution x and it is given by

x(t) = X(t) D−1 δ +

∫ T

0

Γ(t, s) d[b(s)], t ∈ [0, T ], (2.13)

where X is the fundamental matrix solution of the homogeneous equation
x′ − A(t) x = 0 fulfilling the condition X(0) = I, D = P X(0) + QX(T )
and

Γ(t, s) = (γi,j(t, s))i,j=1,2

is Green’s matrix for the problem

x′ − A(t) x = 0, P x(0) + Qx(T ) = 0.
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Recall that, for each s ∈ (0, T ), the matrix function t → Γ(t, s) is ab-
solutely continuous on [0, T ] \ {s} and

∂

∂ t
Γ(t, s)− A(t) Γ(t, s) = 0 for a.e. t ∈ [0, T ],

P Γ(0, s) + Q Γ(T, s) = 0,

Γ(t+, t)− Γ(t−, t) = I for t ∈ (0, T ).

Moreover, the component γ1,2 of Γ is absolutely continuous on [0, T ] for
each s ∈ (0, T ) and

∂

∂ t
γ1,2(t, s) = γ 2,2(t, s) for a.e. t ∈ [0, T ].

Denote G(t, s) = γ1,2(t, s). Then G(t, s) is Green’s function of (2.12).
Furthermore, we have

∂

∂s
Γ(t, s) = −Γ(t, s) A(s) for all t ∈ (0, T ) and a.e. s ∈ [0, T ].

In particular,

γ1,1(t, s) = − ∂

∂s
G(t, s)+a1(s) G(t, s) for all t ∈ [0, T ] and a.e. s ∈ [0, T ].

Inserting (2.11) into (2.13) we get that, for each h∈L[0, T ], c, di, d ′i ∈R,
i = 1, 2, . . . , m, the unique solution u of problem (2.4)–(2.6) is given by





u(t) = U(t) δ +

∫ T

0

G(t, s) h(s) ds

+
m∑

i=1

(
− ∂

∂s
G(t, ti) + a1(t) G(t, ti)

)
di +

m∑
i=1

G(t, ti) d ′i

for t ∈ [0, T ],

(2.14)

where U(t) = (u11(t), u12(t)) is the first row of the matrix X(t) D−1. Now,
choose an arbitrary w ∈ C1

D[0, T ] and put




h(t) = f(t, w(t), w′(t)) for a.e. t ∈ [0, T ],

di = Ji(w, w′), d ′i = Mi(w,w′), i = 1, 2, . . . , m,

δ = R(w,w′).
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Then h ∈ L[0, T ], c, di, d ′i ∈ R, i = 1, 2, . . . ,m, and there is a unique
u ∈ AC1

D[0, T ] fulfilling (2.4)–(2.6) and it is given by (2.14). Therefore, we
conclude that u ∈ C1

D[0, T ] is a solution to (2.1)–(2.3) if and only if




u(t) = U(t) R(u, u′) +

∫ T

0

G(t, s) f(s, u(s), u′(s)) ds

+
m∑

i=1

(
− ∂

∂s
G(t, ti) + a1(t) G(t, ti)

)
Ji(u, u′)

+
m∑

i=1

G(t, ti) Mi(u, u′) for t ∈ [0, T ].

(2.15)

Let us define operators F1 and F2 : C1
D[0, T ] → C1

D[0, T ] by

F1(u)(t) =

∫ T

0

G(t, s) f(s, u(s), u′(s)) ds, t ∈ [0, T ]

and

F2(u)(t) = U(t) R(u, u′) +
m∑

i=1

(
− ∂

∂s
G(t, ti) + a1(t) G(t, ti)

)
Ji(u, u′)

+
m∑

i=1

G(t, ti) Mi(u, u′), t ∈ [0, T ].

The former one, F1, is a composition of the Green type operator

h ∈ L1[0, T ] →
∫ T

0

G(t, s) h(s) ds ∈ C1[0, T ],

which is known to map equiintegrable subsets1 of L1[0, T ] onto relatively
compact subsets of C1[0, T ] ⊂ C1

D[0, T ], and of the superposition operator
generated by f ∈ Car([0, T ]×R2), which, similarly to the classical setting,
maps bounded subsets of C1

D[0, T ] to equiintegrable subsets of L1[0, T ].
Therefore, it is easy to see that F1 is completely continuous. Furthermore,
since R, Ji, Mi, i = 1, 2, . . . , m, are continuous mappings, the operator F2

is continuous as well. Having in mind that F2 maps bounded sets onto
bounded sets and its values are contained in a 2(m+1) -dimensional sub-
space2 of C1

D[0, T ], we conclude that the operators F2 and F = F1 + F2

are completely continuous as well.

1i.e. sets of functions having a common integrable majorant
2i.e. spanned over the set {u11, u12, δ, G(., ti),

(− ∂
∂sG(., ti)+a1G(., ti)

)
, i = 1, . . . ,m}
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So, we have the following assertion.

2.1. Proposition. Assume (1.1), (2.7) and (2.8). Furthermore, let problem
(2.12) have Green’s function G(t, s) and let U ∈ AC1

D[0, T ] have the same
meaning as in (2.16). Then u ∈ AC1

D is a solution to (2.1)–(2.3) if and only
if u = F (u), where F : C1

D[0, T ] → C1
D[0, T ] is the completely continuous

operator given by





F (u)(t) = U(t) R(u, u′)

+

∫ T

0

G(t, s) (f(t, u(s), u′(s))−a1(s) u(s)−a2(s) u′(s)) ds

+
m∑

i=1

(
− ∂

∂s
G(t, ti)+a1(t)G(t, ti)

)
Ji(u, u′)

+
m∑

i=1

G(t, ti) Mi(u, u′), t ∈ [0, T ].

(2.16)

In particular, if a1(t) = a2(t) = 0 on [0, T ] ,

P =

(
1 0
0 0

)
and Q =

(
0 0
1 0

)
,

then problem (2.12) reduces to the simple Dirichlet problem

u′′ = 0, u(0) = u(T ) = 0

and its Green’s function is well-known:

G(t, s) =





s (t− T )

T
if 0 ≤ s < t ≤ T,

t (s− T )

T
if 0 ≤ t ≤ s ≤ T

(2.17)

and

∂

∂s
G(t, s) =





T − t

T
if 0 ≤ s < t ≤ T,

− t

T
if 0 ≤ t ≤ s ≤ T.
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Furthermore, it is easy to verify that

X(t) =

(
1 t
0 1

)
for t ∈ [0, T ], D−1 =

1

T

(
T 0
−1 1

)

and

U(t) =
1

T
(T − t, t) .

Consequently,

U(t) δ = d holds for each d ∈ R and δ =

(
d
d

)
.

Now, notice that the periodic boundary conditions (1.4) can be reformulated
as

u(0) = u(0) + u′(0)− u′(T ), u(T ) = u(0) + u′(0)− u′(T ),

i.e., in the form (2.3), where

R(u, v) =

(
u(0) + v(0)− v(T )
u(0) + v(0)− v(T )

)
for u, v ∈ G[0, T ].

In particular,

U(t) R(u, u′) = u(0)+u′(0)−u′(T ) for each t ∈ [0, T ] and each u ∈ G[0, T ].

To summarize, the following assertion is a corollary of Proposition 2.1:

2.2 . Corollary. Assume (1.1), (2.7) and (2.8) and let the function G(t, s)
be given by (2.17). Then u ∈ AC1

D is a solution to (1.2)–(1.4) if and only
if u = F (u), where F : C1

D[0, T ] → C1
D[0, T ] is the completely continuous

operator given by




(Fu)(t) = u(0) + u′(0)−u′(T ) +

∫ T

0

G(t, s) f(t, u(s), u′(s)) ds

−
m∑

i=1

∂

∂s
G(t, ti) Ji(u, u′)

+
m∑

i=1

G(t, ti) Mi(u, u′), t ∈ [0, T ].

(2.18)

10



2.3 . Remark. Similarly, u ∈ AC1
D is a solution to the impulsive Dirichlet

problem (1.2), (1.3), u(0) = u(T ) = c if and only if u = Fdir u, where





(Fdiru)(t) = c +

∫ T

0

G(t, s) f(t, u(s), u′(s)) ds

−
m∑

i=1

∂

∂s
G(t, ti) Ji(u, u′) +

m∑
i=1

G(t, ti) Mi(u, u′), t ∈ [0, T ].

3 Existence principle

3.1. Theorem. Let assumptions (1.1) , (1.5) and (2.7) hold. Furthermore,
assume that there exist r ∈ (0,∞), R ∈ (r,∞) and R ′ ∈ (0,∞) such that

(i) r < v < R on [0, T ] and ||v′||∞ < R ′ for each λ ∈ (0, 1] and for
each positive solution v of the problem

v′′(t) = λ (−c v′(t) + g(v(t)) + e(t)) for a.e. t ∈ [0, T ], (3.1)

∆+v(ti) = λJi(v, v′), i = 1, 2, . . . , m, (3.2)

∆+v′(ti) = λMi(v, v′), i = 1, 2, . . . , m, (3.3)

v(0) = v(T ), v′(0) = v′(T ); (3.4)

(ii) (g(x) + ē = 0) =⇒ r < x < R;

(iii) (g(r) + ē) (g(R) + ē) < 0.

Then problem (1.6) has a solution u such that

r < u <R on [0, T ] and ‖u′‖∞ <R ′.

Proof. Step 1. For λ ∈ [0, 1] and v ∈ C1
D[0, T ] denote





Ξλ(v) =

∫ T

0

g(v(s)) ds + T ē

+
m∑

i=1

Mi(v, v′) + λ c

m∑
i=1

Ji(v, v′).
(3.5)
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Notice that

Ξλ(v) = 0 holds for all solutions v ∈ C1
D[0, T ] of (3.1)– (3.4). (3.6)

Indeed, let v ∈ C1
D[0, T ] be a solution to (3.1)– (3.4). Then

∫ T

0

v′′(s) ds =
m∑

i=0

∫ ti+1

ti

v′′(s) ds =
m∑

i=0

[
v′(ti+1)− v′(ti+)

]

= v′(T )− v′(0)−
m∑

i=1

∆+v′(ti) = −λ

m∑
i=1

Mi(v, v′)

and

∫ T

0

c v′(s) ds = c

m∑
i=0

∫ ti+1

ti

v′(s) ds = c

m∑
i=0

[
v(ti+1)− v(ti+)

]

= c
[
v(T )− v(0)−

m∑
i=1

∆+v(ti)
]

= −λ c

m∑
i=1

Ji(v, v′).

Thus, integrating (3.1) over [0, T ] gives (3.6).

Step 2. Consider system (3.7), (3.2), (3.4), where (3.7) is the functional-
differential equation

v′′ = λ [−c v′ + g(v) + e(t)] + (1−λ)
1

T
Ξλ(v). (3.7)

Due to (3.6), we can see that for each λ∈ [0, 1] the problems (3.1)–(3.4) and
(3.7), (3.2)–(3.4) are equivalent. Moreover, for λ = 1, problem (3.7), (3.2),
(3.4) reduces to the given problem (1.6) (with u replaced by v).

Now, notice that in view of (2.17) we have

∫ T

0

G(t, s) ds =
1

2
t (t− T ) for t ∈ [0, T ]
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and define for λ ∈ [0, 1], u ∈ C1
D[0, T ], u > 0 on [0, T ], and t ∈ [0, T ]





Fλ(u)(t) = u(0) + u′(0)− u′(T )

+λ

∫ T

0

G(t, s) [− cu′(s) + g(u(s)) + e(s)] ds

+(1−λ)
t (t− T )

2 T
Ξλ(u)

−λ

m∑
i=1

∂

∂s
G(t, ti) Ji(u, u′) + λ

m∑
i=1

G(t, ti) Mi(u, u′).

(3.8)

In particular, if λ = 0, then

F0(u)(t) = u(0) + u′(0)− u′(T ) +
t (t− T )

2 T
Ξ0(u) for t ∈ [0, T ].

Let us put

Ω = {u ∈ C1
D[0, T ] : r < u < R on [0, T ] and ‖u′‖∞ < R ′ }.

Arguing similarly to the regular case (see Corollary 2.2), we can conclude that
for each λ ∈ [0, 1] the operator Fλ : Ω ⊂ C1

D[0, T ] → C1
D[0, T ] is completely

continuous and a function v ∈ Ω is a solution of (3.7), (3.2)–(3.4) if and
only if it is a fixed point of Fλ. In particular,

u∈Ω is a solution to (1.6) if and only if F1(u) = u. (3.9)

Step 3. We will show that

Fλ(u) 6= u for all u ∈ ∂ Ω and λ ∈ [0, 1]. (3.10)

Indeed, for λ ∈ (0, 1] relation (3.10) follows immediately from assump-
tion (i), while for λ = 0 it is a corollary of assumption (ii) and of the
following claim.

Claim. u ∈ Ω is a fixed point of F0 if and only if there is x ∈ R such
that u(t) ≡ x on [0, T ], x ∈ (r,R) and

g(x) + ē = 0. (3.11)

Proof of Claim. Let u ∈ Ω be a fixed point of F0, i.e.

u(t) = u(0) + u′(0)− u′(T ) +
t (t− T )

2 T
Ξ0(u) for all t ∈ [0, T ]. (3.12)

13



Inserting t = 0 into (3.12), we get u(0) = u(0) + u′(0) − u′(T ), which
implies that u′(0) = u′(T ). Similarly, inserting t = T we get u(T ) = u(0).
Furthermore,

u′(t) =
2 t− T

2T
Ξ0(u) for t ∈ [0, T ].

Since u′(0) = u′(T ), it follows that Ξ0(u) = 0. This means that u is
constant on [0, T ]. Denote x = u(0). Then 0 = Ξ0(u) = T (g(x) + ē), i.e.,
(3.11) is true. On the other hand, it is easy to see that if x ∈ R is such that
(3.11) holds and u(t) ≡ x on [0, T ], then u ∈ Ω is a fixed point of F0.
This completes the proof of Claim.

Step 4. By Step 3 and by the invariance under homotopy property of the
topological degree, we have

deg(I − F1, Ω) = deg(I − F0, Ω). (3.13)

Step 5. Let us denote

X = {u ∈ C1
D[0, T ] : u(t) ≡ u(0) on [0, T ]} and Ω0 = Ω ∩ X.

Notice that Ω0 = {u ∈ X : r < u(0) <R} and Ω0 = {u ∈ X : r≤u(0)≤R} .
By Claim in Step 3, all fixed points of F0 belong to Ω0. Hence, by
the excision property of the topological degree we have

deg(I − F0, Ω) = deg(I − F0, Ω0). (3.14)

Step 6. Define




F̃µ(u)(t) = u(0) +
[
1− µ +

µ

2
t (t− T )

] (
g(u(0) + ē

)

for t ∈ [0, T ], u ∈ Ω0 and µ ∈ [0, 1].

(3.15)

We have

F̃0(u) = u(0) + g(u(0)) + ē and F̃1(u) = F0(u) for each u ∈ X.

Similarly to Fλ, the operators F̃µ, µ ∈ [0, 1], are also completely contin-
uous and, by Claim in Step 3, we have

F̃1(u) 6= u for all u ∈ ∂ Ω0.
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Let i and i−1 be respectively the natural isometrical isomorphism R→ X
and its inverse, i.e.

i(x)(t) ≡ u for x∈R and i−1(u) = u(0) for u∈X,

and assume that µ ∈ [0, 1), x ∈ (0,∞), u = i(x) and F̃µ(u) = u. Then
[
1− µ +

µ

2
t (T − t)

] (
g(x) + e

)
= 0 for all t ∈ [0, T ].

If t = 0, this relation reduces to g(x) + e = 0, which is due to assump-
tion (ii) possible only if x ∈ (r, R). To summarize, we have

F̃µ(u) 6= u for all u ∈ ∂ Ω0 and all µ ∈ [0, 1].

Hence, using the invariance under homotopy property of the topological de-
gree and taking into account that dimX = 1, we conclude that

deg(I − F0, Ω0) = deg(I − F̃1, Ω0) = dB(I − F̃0, Ω0), (3.16)

where dB(I− F̃0, Ω0) stands for the Brouwer degree of I− F̃0 with respect
to the set Ω0 (and the point 0).

Step 7. Define Φ: x ∈ (0,∞) → g(x) + ē ∈ R. Then

(I − F̃0)(i(x)) = i(Φ(x)) for each x ∈ (0,∞).

In other words, Φ = i−1 ◦ (I − F̃0) ◦ i on (0,∞). Consequently,

dB(I − F̃0, Ω0) = dB(Φ, (r, R)). (3.17)

Now, put

Ψ(x) = Φ(r)
R− x

R− r
+ Φ(R)

x− r

R− r
.

We can see that Ψ has a unique zero x0 ∈ (r,R) and

Ψ′(x0) =
Φ(R)− Φ(r)

R− r
.

Hence, by the definition of the Brouwer degree in R we have

dB(Ψ, (r, R)) = sign Ψ′(x0) = sign (Φ(R)− Φ(r)) .
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By the homotopy property and thanks to our assumption (iii), we conclude
that

dB(Φ, (r, R)) = dB(Ψ, (r,R)) = sign (Φ(R)− Φ(r)) 6= 0. (3.18)

Step 8. To summarize, by (3.13)– (3.18) we have

deg(I − F1, Ω) 6= 0,

which, in view of the existence property of the topological degree, shows that
F1 has a fixed point u∈Ω. By Step 1 this means that problem (1.6) has
a solution.
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P. Drábek, A. Fonda, eds.) Elsevier 2006, pp. 607–723.
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