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Summary. In this paper, using the lower/upper functions argument, we establish new existence
results for the nonlinear impulsive periodic boundary value problem

(1.1) u" =f(t,u,u),
(1.2) uti+) = Ji(u(ty), u'(ti+) =M;(u'(t), i=1,2,...,m,
(1.3) w(0) =u(T), '(0)=u/(T),

where f € Car([0,T] x R?) and J;, M; € C(R). The main goal of the paper is to obtain the results
in the case that the lower/upper functions o; /o9 associated with the problem are not well-ordered,
ie. 01 £ o3 on [0,T].
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0. Introduction

The paper is a continuation of [12], where we have proved solvability of the problem
(1.1) - (1.3) provided there exists a well-ordered pair o < g9 on [0, T] of lower /upper
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functions associated with the problem. Moreover, in [12], the monotonicity of the
impulse functions J;, M; required in [1], [3], [5] - [9] and [13] has been replaced by
weaker conditions. Here we extend the results of [12] to the case of lower/upper
functions which are not well-ordered; i.e.,

(0.1) o1(1) > o9(7) for some 7 € [0, T].

As far as we know, there is no existence result for impulsive periodic problems having
only lower/upper functions satisfying (0.1). The first step in this direction we did
in [11] where we worked with strict lower/upper functions and with the case m = 1.
Throughout the paper we keep the following notation and conventions:
For a real valued function u defined a.e. on [0, T], we put

T
[ulloo = sup fu(t)] and IIUII1=/0 Ju(s)] ds.

te[0,T]

For a given interval J C R, by C(J) we denote the set of real valued functions which
are continuous on J. Furthermore, C!'(J) is the set of functions having continuous
first derivatives on J and IL(.J) is the set of functions which are Lebesgue integrable
on J.

Let m e Nand let 0 =1y < t; <ty < -+ < t,, < tppr1 = T be a division of
the interval [0, T]. We denote D = {t,,ts,...,t,} and define CL[0,T] as the set of
functions u : [0,7] — R,

U[U](t) if t e [O,tl],
U(t) _ U[l](t) if t e (tl,tQ],

u[m}(t) if te€ (tm, 1],

where uy; € C'[t;, t;44] for i = 0,1,...,m. Moreover, AC}[0,T] stands for the set
of functions u € C}[0,T] having first derivatives absolutely continuous on each
subinterval (¢;,t;41), 2 = 0,1,...,m. For v € C5[0,7] and i = 1,2,...,m + 1 we
write

PN — ol (4 ) — T ! ’ ! 1 ’
(0.2) u'(t;) = u'(t;—) tggl_ u'(t), u'(0) =u'(0+) 1tl_l)lo“r}r u'(t)
and ||u|lp = [|u|le + ||'||o- Note that the set CL[0,7] becomes a Banach space

when equipped with the norm ||.||p and with the usual algebraic operations.

We say that f : [0,7T] x R? — R satisfies the Carathéodory conditions on [0, T] x
R% if (i) for each z € R and y € R the function f(.,x,y) is measurable on [0, T7;
(ii) for almost every ¢ € [0, 7] the function f(%,.,.) is continuous on R?;  (iii) for
each compact set K C R? there is a function mg(t) € L[0, T] such that |f(t,z,y)| <
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mg (t) holds for a.e. t € [0, 7] and all (z,y) € K. The set of functions satisfying the
Carathéodory conditions on [0, 7] x R? will be denoted by Car([0,T] x R?).

Given a Banach space X and its subset M, let cl(M) and OM denote the closure
and the boundary of M, respectively.

Let © be an open bounded subset of X. Assume that the operator F : cl(Q2) — X
is completely continuous and Fu # u for all u € 9 Q. Then deg(I—F, Q) denotes the
Leray-Schauder topological degree of I — F with respect to €2, where I is the identity
operator on X. For the definition and properties of the degree see e.g. [4] or [10].

1. Formulation of the problem and main assump-
tions

Here we study the existence of solutions to the problem

(1.1) u" =f(t,u,u’),
(1.3) u(0) = u(T), u'(0)=1d'(T),

where v/(t;) are understood in the sense of (0.2), f € Car([0,T] x R?), J; € C(R)
and M; € C(R).

1.1. Definition. A solution of the problem (1.1) - (1.3) is a function u € ACL[0, T
which satisfies the impulsive conditions (1.2), the periodic conditions (1.3) and for
a.e. t € [0,T] fulfils the equation (1.1).

1.2. Definition. A function o; € AC}4[0,T] is called a lower function of the prob-
lem (1.1) - (1.3) if

(1.4) ol (t) > f(t,o1(t),01(t)) fora.e. te€][0,7T],
(15) 0'1(tr|‘) :Ji(O'l(ti)), O'i(tl—F) Z MZ(O{(tZ)), 1= 1,2,...,m,
(1.6) 01(0) = ou(T),  01(0) = o1 (T).

Similarly, a function oo € ACL[0,77] is an upper function of the problem (1.1) -
(1.3) if

(1.7) ol(t) < f(t,00(t), 04(t)) for ae. te0,T],
(18) UQ(ti+) = Ji(O'Q(ti)), O';(ti—F) < Mz(U;(tz)), 1= 1,2,...,m,
(19)  02(0) = 0o(T),  03(0) < 03(T).
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A straightforward illustration of Definition 1.2 is the following proposition pro-
viding a simplest example of conditions ensuring the existence of lower and upper
functions for (1.1) - (1.3).

1.3. Proposition. Let oy € R. For i = 1,2,...,m assume that M;(0) = 0, o; =
Ji(a; 1) where a,, = ap, f(t,0;,0) <0 for a.e. t € (t;,t;41), and put o1(t) = o; on
(tiytiz1], 01(t) = o on [0,t1]. Then oy is a lower function of (1.1)-(1.3).

Let By € R. Fori = 1,2,...,m assume that M;(0) = 0, 3; = J;(8i—1) where
Bm = Bo, f(t,5:;,0) > 0 for a.e. t € (t;,tir1), and put o2(t) = F; on (t;,ti11],
oa(t) = By on [0,t1]. Then oy is an upper function of (1.1)-(1.3).

1.4. Remark. In particular, if M;(0) = 0, J;(ag) = o, Ji(Bo) = Gy for i =
1,2,...,mand f(t,ap,0) <0, f(t,5,0) > 0 for a.e. t € [0,T], then o1(t) = o and
o9(t) = Po, t € [0,T], are respectively lower and upper functions of (1.1) - (1.3).

1.5. Assumptions. In the paper we work with the following assumptions:

(1.10) 0=ty <ty < - <ty <tmy1 =T <00, D= {ty,ts,...,tn},
' f e Car([0,T] x R?), J, € C(R), M; e C(R), i =1,2,...,m;

(1.11) o1 and oy are respectively lower and upper functions of (1.1) - (1.3);

== J >
T < O'Q(ti) — Jz(l') < Ji(O'g(ti)), 1= 1,2, cee,m;
—

(1.13) { v <oilt) = Mily) <MiGi(n),
y > oh(t) = Mi(y) > M(o4(t;)), i=1,2,...,m.

1.6. Operator reformulation of (1.1)-(1.3). Put
t(s=T)
G(t,s) = T

s(t—T)
T

and define an operator F : CL[0,T] — C}[0,7T] by

if 0<t<s<T,

if 0<s<t<T,

(1.14) (Fu)(t) = u(0) + u'(0) — u/(T) + /0 G(t,s) f(s,u(s),u'(s)) ds

=30 2 ) (1 u0) — (0) + 3 Gl 8) O ((0) — ()

=1

Then, as in [11, Lemma 3.1], we get that F is completely continuous and u is a
solution of (1.1) - (1.3) if and only if Fu = u.
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In the proof of our main result we will need the next proposition which concerns
the case of well-ordered lower /upper functions and which follows from [12, Corollary
3.5].

1.7. Proposition. Assume that (1.10) holds and let « and (3 be respectively lower
and upper functions of (1.1) - (1.3) such that

(1.15) a(t) < B(t) for t€[0,T] and o(t+) < B(7+) for T €D,

and

y<a

(1.17)

y> ) = Miy) >
Further, let h € L

(1.18)  |f(t,z,y)| < h(t)  fora.e. t€[0,T] and all (x,y) € [a(t), 5(t)] x R
and let the operator F be defined by (1.14). Finally, for r € (0,00) denote

(1.19)  Qa, B,7) = {u € C,[0,T] : a(t) <u(t) < B(t) forte[0,T],
a(t+) < u(r+) < B(t+) for T €D, ||u'|| < T}

Then deg(I—F,Q(a,3,7)) =1 whenever Fu # u on 0Q(«, #,7) and

M where A= min (t; —t;_1).

(1.20) r> ||h|l; + A ; i=1,2,....,m+1

Proof. Using the Mean Value Theorem, we can show that

ledlo + 11l
A

holds for each u € C}[0,T] fulfilling «(¢t) < u(t) < B(t) for t € [0,T] and a(r+) <
u(t+) < B(7+) for 7 € D. Thus, if we denote by ¢ the right-hand side of (1.21), we
can follow the proof of [12, Corollary 3.5]. O

(1.21) [/ [loo < [IAl[x +

2. A priori estimates

The proof of our main existence result (Theorem 3.1) is based on the evaluation of
the topological degree of a proper auxiliary operator by means of Proposition 1.7. To
this aim we need a priori estimates for certain sets of functions which are provided
in this section.
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2.1. Lemma. Let p; € (0,00), he L[0,T], M; € C(R), i = 1,2,...,m. Then there
exists d € (p1,00) such that the estimate

(2.1) [0/l < d

is valid for each function u € AC}[0,T] satisfying (1.3),

(2.2) u'(§&u)| < pr for some &, € [0,T],
(23) Ul(ti—F) = Mi(u'(ti)), 1= 1,2,...,m,
and

(2.4) " (t)| < h(t) for a.e. t€0,T].

Proof. Suppose that u satisfies (1.3) and (2.2) - (2.4). Since M; € C(R) for i =
1,2,...,m, we have

(2.5) bi(a) := sup |M;(y)] < oo for a€ (0,00), i=1,2,...,m.
ly|<a

Furthermore, due to (1.3), we can assume that &, € (0,7], i.e. there is j €
{1,2,...,m + 1} such that &, € (t;_1,t;]. We will distinguish 3 cases: either j =1
orj=m-+lorl<j<m+1.

Let j = 1. Then, using (2.2) and (2.4), we obtain

(2.6) [u'(t)] < ay on [0,],

where a; = p; + ||h||1. Hence, in view of (2.5), we have |u/(t;+)| < bi(ay), wherefrom,
using (2.4), we deduce that [u'(t)| < bi(a1) + [|hlly for ¢t € (t1,5]. Continuing by

induction, we get |u'(t)| < a1 = bi(a;) + ||kl on (¢, tipq] for i =2,...,m, i.e.
(2.7) ||| < d:=max{a; : i =1,2,...,m+1}.

Assume that j = m + 1. Then, using (2.2) and (2.4), we obtain
(2.8) [u'(t)] < amyr on (tm, T1,

where @31 = p1 + ||h]|1. Furthermore, due to (1.3), we have |u/(0)] < @p41 which
together with (2.4) yields that (2.6) is true with a; = a1 + ||||;. Now, proceeding
as in the case j = 1, we show that (2.7) is true also for j = m + 1.

Assume that 1 < j < m + 1. Then (2.2) and (2.4) yield |v/(t)| < aj41 = p1 +

[12ll on (), t1]- TF j < m, then [u/ ()] < ajpa = biji(ajer) + [[Rfls on (41, 840)
Proceeding by induction we get (2.8) with a1 = by(am) + ||h]|1, wherefrom (2.7)
again follows as in the previous case. O
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2.2. Lemma. Let py,d € (0,00) and J; € C(R), i = 1,2,...,m. Then there exists
¢ € (po,00) such that the estimate

(2.9) [ulloo < ¢

is valid for each function u € CL[0,T] satisfying (1.3), (2.1),

(2.10) u(ti+) = Li(u(t)), i=1,2,...,m,
and
(2.11) |u(ry)| < po for some T, € [0,T]

and for each J; € C(R), i=1,2,...,m, such that

(2.12) Ji(=a,a) C (=b,b) = Ji(—a,a) C (=b,b)
for i=1,2,...,m, a € (0,00), b€ (a,o0).

Proof. We will argue similarly as in the proof of Lemma 2.1. Suppose that u satisfies
(1.3), (2.1), (2.10), (2.11) and that J;, i = 1,2, ..., m, satisfy (2.12). Due to (1.3) we
can assume that 7, € (0,7],1i.e. thereis j € {1,2,..., m+1} such that 7, € (¢;_1,;].
We will consider three cases: j = 1,7 =m+1,1 < j <m+1.If j =1, then
(2.1) and (2.11) yield |u(t)| < a1 = po +dT on [0,t]. In particular, |u(t)| < ay.
Since J; € C(R), we can find by(a;) € (0,00) such that |Ji(z)| < bi(ay) for all
z € (—ay,a) and consequently, by (2.12), also |J;(z)| < b1 (a;) for all z € (—ay, a1).
Therefore, by (2.1), |u(t)] < [u(t;+)|+dT = |, (u(t))|+d T < as = by(a;)+dT on
(t1,ts]. Proceeding by induction we get |u(t)| < a;r1 = b;i(a;) +d T for t € (¢;,t;11]
and i = 2,...,m. As a result, (2.9) is true with ¢ = max{a; : i =1,2,...,m + 1}.
Analogously we would proceed in the remaining cases j = m+1lorl < j <m+1. O

Finally, we will need two estimates for functions u satisfying one of the following
conditions:

(2.13) u(sy) < o1(sy) and  w(t,) > o9(t,) for some s,,t, € [0,T],
(2.14) u>oy on [0,7] and inf |u(t) —o1(t)] =0,

te[0,T
(2.15) u<oy on [0,7] and inf |u(t) — o9(t)| = 0.

te[0,T]

Let us denote

(2.16) B = {u € C[0,T] : u satisfies (1.3),(2.10), (2.3) and one
of the conditions (2.13),(2.14), (2.15)}.
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2.3. Lemma. Assume that oy, 0o € ACL[0,T], J;, M;, J; € C(R), i =1,2,...,m,
satisfy (1.12), (1.13) and

(2.17) { z>oi(t) = Ji(z) > Ji(or(t)),

z < oo(t) = Ji(x) < Ji(oa(t;)), i=1,2,...,m.
Let the set B be defined by (2.16). Then each function u € B satisfies

|u'(&u)] < p1 for some &, € [0,T], where

(2.18) 92 ) /
pr= 1 (llorlleo + lloalloo) + [l [loo + [loryfloo + 1.

Proof. e PART 1. Assume that u € B satisfies (2.13). There are 3 cases to
consider:

CAseE A. If min{oy(t),02(t)} < u(t) < max{oy(t),o0q(t)} for t € [0,T], then,
by the Mean Value Theorem, there is &, € (0,%;) such that

(2.19) [0/ (€u)] < = ([lo1llec + llo2]loo)-

2
t

CASE B. Assume that u(s) > o01(s) for some s € [0,7] and denote v = u — 0.
Due to (2.13) we have

(2.20) v, = inf wv(t) <0 and v* = sup wv(t)> 0.
t€[0,T] t€[0,T]

We are going to prove that
(2.21) v'(a) = 0 for some « € [0,T] or v'(t;+) =0 for some ¢; € D.

Suppose, on the contrary, that (2.21) does not hold.
Let v'(0) > 0. Then, according to (1.3) and (1.6), v'(T) > 0, as well. Due to the
assumption that (2.21) does not hold, this together with (1.5) yields that

0 <V (tm+) =t (tm+) — 01 (tm+) < My (v (E0)) — My (0 (Em)),

which is by (1.13) possible only if '(t,,) > o} (tn), i.e. v'(t,) > 0. Continuing in
this way on each (¢;,t;41],i=0,1,...,m — 1, we get

(2.22) v'(t) >0 for t€[0,7] and o'(7+) >0 for T€D.

If v(0) > 0, then v(t) > 0 on (0,¢;] due to (2.22). Further, it follows by (1.5),
(2.10) and (2.17) that u(t;+) > o1(t1+), i.e. v(t1+) > 0. Continuing by induction
we deduce that v > 0 on [0, T], contrary to (2.20).
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If v(0) < 0, then by (1.3) and (1.6) we have v(T) < 0. Further, by virtue of
(2.22) we obtain v < 0 on (t,,, 7] and, in particular, v(ty+) < 0. S0, I (u(tn)) <
Jm(01(tm)) wherefrom u(t,,) < o1(t,;,) follows, due to (2.17). Thus, we have v < 0
on (tm_1,tm). Continuing by induction we get v < 0 on [0,7], contrary to (2.20).

Now, assume that v'(0) < 0. Then v'(t1) < 0, i.e. u/(t;) < of(t1) wherefrom, by
(1.5), (1.13) and the assumption that (2.21) does not hold, the inequality v'(t;+) =
u'(t1+) — o (t1+) < 0 follows. Similarly as in the proof of (2.22) we show that

(2.23) v'(t) <0 for t€[0,7] and o'(7+) <0 for T €D.

Now, having (2.23), we consider as above two cases: v(0) > 0 and v(0) < 0, and
construct a contradiction by means of analogous arguments.

So we have proved that (2.21) is true, which yields the existence of &, € [0,T]
having the property

(2.24) [0/ (&) | < llot]loe + 1.

Case C. If u(s) < o2(s) for some s € [0,T], we put v = u — 09 and, using the
properties of oy instead of o1, we can argue as in CASE B and show that there exists
&, € [0,T] such that

(2.25) [0 ()| < llog]loe + 1.

Taking into account (2.19), (2.24) and (2.25) we conclude that (2.18) is valid for
any u € B fulfilling (2.13).

e PART 2. Let u € B satisfy (2.14). Then u > oy on [0, 7] and either there is
o, € [0,T] such that u(a,) = o1(ay,) or there is t; € D such that u(t;+) = o1 (t;+).

CASE A. Let the first possibility occur. If o, € (0,7) \ D, then necessar-
ily v'(cw,) = of(cw). Consequently, the estimate (2.24) is valid. If a,, = 0, then
inf {u(t) —oy(t) : t € [0,T]} = u(0) —01(0) = u(T) — 01(T) = 0, which, by virtue
of (1.3) and (1.6), implies 0 < u'(0) — 01(0) < u'(T) — o1 (T) < 0, i.e. u/(0) = o7(0)
and the estimate (2.24) is valid with &, = 0. If «, = t; for some t; € D, then
0 = u(t;) —o1(tj) = u(tj+) —o1(t;+). Having in mind that u > oy on [0, 7], we get
u'(tj+) > o1 (t;+) and «'(t;) < o1(t;). On the other hand, with respect to (1.13), the
last inequality gives also M;(u'(t;)) < M,(o}(t;)), which leads to o} (t;+) = u'(¢;+).
Thus, (2.24) is fulfilled for some &, € (¢;,%;+1) which is sufficiently close to ¢;.

CAsE B. Let the second possibility occur, i.e. u(t;+) = oy (t;+) for some ¢; € D.
According to (1.5) and (2.10), we have jj (u(tj)) = J;(o1(t;)). Taking into account
(2.17), we see that this can occur only if u(t;) < o1(¢;). On the other hand, by the
assumption (2.14) we have u > oy on [0,T]. Hence we conclude that u(t;) = oy (¢))
and so, arguing as before, we get (2.24) again.

To summarize: (2.18) holds for any v € B fulfilling (2.14).
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e PART 3. Let u € B satisfy (2.15). Then using the properties of o9 instead
of o1, we argue analogously to PART 2 and prove that (2.25) is valid for each v € B
which satisfies (2.15). In particular, (2.18) holds for any u € B fulfilling (2.15). O

2.4. Lemma. FEach u € B satisfies the condition

(2.26) min{o; (7,+), o2(1u+) } < u(1,+) <max{oi(1,+), o2(7u+)}
for some 1, €[0,T).

Proof. Assume, on the contrary, that there is u € B for which (2.26) does not hold.
If u(0) < min{o(0),02(0)} then, taking into account the continuity of the functions
u, o1 and oy on [0,t;], we deduce that u(t) < min{o(t),02(t)} is true for each
t € [0,t;]. Consequently, due to (1.12), we have u(t;+) < min{oy(t;+), o2(t1+)}. It
is easy to see that proceeding by induction we get

u(t) < min{oy(t),02(t)} and wu(t+) < min{o;(7+),02(7+)}

for each t € [0,7) \ D and 7 € D, a contradiction to (2.13). Similarly, we can see
that «(0) > max{o;(0),02(0)} implies that

u(t) > max{o(t),02(t)} and wu(r+) > max{o(7+),09(7+)}
hold for each t € [0,7) \ D and 7 € D, again a contradiction to (2.13). The proof

will be completed by an obvious observation that u can satisfy neither (2.14) nor
(2.15) whenever it does not satisfy (2.26). O

3. Main results

Our main result is the following theorem which is the first known existence result
for impulsive periodic problems with nonordered lower and upper functions.

3.1. Theorem. Assume that (1.10) - (1.13) and (0.1) hold and let h € L[0,T] be
such that

(3.1) |f(t,z,y)| < h(t) for a.e. t €[0,T] and all (x,y) € R®.
Further, let
(3.2) y M;(y) >0 foryeR and i=1,2,...,m.

Then the problem (1.1) - (1.3) has a solution u satisfying (2.26).
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Proof. e STEP 1. We construct a proper auziliary problem.
Let 0y and o9 be respectively lower and upper functions of (1.1)-(1.3) and let p;
be associated with them as in (2.18). Put

h(t) = 2h(t)+1 for ae. te0,T]
and, by Lemma 2.1, find d € (p;,00) satisfying (2.1). Furthermore, put
po = llo1lloe + llozfloe 41
and, by Lemma 2.2, find ¢ € (py, 0o) fulfilling (2.9). In particular, we have
(3.3) ¢ > [lo1]le + [[o2][o0 + 1.

Finally, for a.e. ¢t € [0,7] and all z,y € R define functions

( f(t,z,y) — h(t) — if ©<—-c—1,
f(t, z, y)+(x+c)(h(t)+1) if —c—1l<z<-—c
(B4)  fltwy) =14 f(tay) if —ce<w<e
ft,z,y) + (x—c)( (t)+1) if e<z<c+1,
[ f(t,z,y)+h(t) + if ©>c+1,
((z if v <-—c—1,
Ji(=¢)(c+1+2x)—z(z+c) if —c—1<2x<—c,
35)  Ji(x) =< Ji(x) if —e<z<e,

Ji@)(c+1l—a)+ax(x—c) if c<ax<c+]1,
x if r>c+1, i=1,2,...,m,

\

and consider an auxiliary problem
(3.6) u" = ft,u, '), (2.10), (2.3), (1.3).

Due to (1.10), f € Car([0,T] x R) and J; € C(R) for i = 1,2,...,m. Since ¢ > py,
according to (3.3) - (3.5) the functions oy and o9 are respectively lower and upper
functions of (3.6). By (3.1) we have

(3.7) 1f(t,z,y)| < h(t) forae. te[0,7] and all (z,y) € R?

(3.8) f(t,z,y) <0 fora.e. t€[0,7] and all (z,y) € (—o0, —c— 1] X R,
f(t,z,y) >0 fora.e. t€[0,7] and all (z,y) € [c+ 1,00) X R.
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Furthermore, in view of (3.5), it is easy to check that the condition (2.12) is satisfied.
Moreover, due to (1.12), we see that (2.17) holds if |z| < ¢. We are going to show
that (2.17) is valid also for |z| > c. First, assume that > ¢. In this case it suffices
to verify the first condition in (2.17). Let i € {1,2,...,m} be given. Notice that,
due to (3.3) and (1.12), we have

(3.9) ¢ > max{oy(t;),o1(t;+)} > Ji(o1(t;)) and  Ji(¢) > Ji(o1(t:))-
In view of (1.5), (3.3) and (3.5), this yields that
Ji(x) = x> oy (ti+) = Ji(ou (1))

holds for # > ¢ + 1, i.e. the first condition in (2.17) is satisfied also for z > ¢+ 1. If
z € (¢,c+ 1], then the values J;() are convex combinations of the values J;(c) and
x, which both are according to (3.9) greater than J;(0y(¢;)), and so we can conclude
that the first condition in (2.17) is satisfied for all z € (¢,00). Similarly, we can
prove that the second condition in (2.17) is satisfied for x € (—o0, —c).

Now, put

m

(310) A* =1+ max |Ji(z)] and o3(t) = —A*, o4(t) = A* on [0, T].

£ Jol<ct
By (3.5) and (3.10) we have A* > ¢+ 2 and
(3.11) Ji(z) = A* ifand only if z = A*

is true for any ¢ = 1,2, ..., m. According to Remark 1.4, (3.2) and (3.8), the functions
o3 and oy are respectively lower and upper functions of (3.6) which are well-ordered,
i.e.

o3(t) < ou(t) for t €[0,T] and o3(r+) < o4(r+) for 7 €D.

Similarly, since A* > ¢+ 2 > pg, we get by (3.3) the relations

o3(t) < o2(t) for t €[0,T], o3(74) < oo(7+) for 7 € D
and

o1(t) < o4(t) for t €[0,T],, oi(7+) <ou4(t+) for T€D.

To summarize, we have three pairs {o3,04}, {03,02} and {0y, 04} of well-ordered
lower and upper functions of the problem (3.6)~.
Having G from (1.14), define an operator F: C}[0,T]+~ CL[0,T] by

(3.12) (Fu)(t) = u(0) + /(0) / G(t, 5) (s, u(s), u/(s)) ds
—Z?,ftt T (u(0) — ) + 3 Gl0.1) (M (1) — (1),
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Then, by [11, Lemma 3.1], F is completely continuous and u is a solution of (3.6)
if and only if it is a fixed point of F.

e STEP 2. We prove the first a priori estimate for solutions of (3.6).

Denote

(3.13) Qo = {u € CH[0,T] : |Julloo < A%, ||1]|0e < C*},

*

where C*= + ||kl +1 and A is defined in (1.20).

By virtue of (1.19) and (3.10), we have Qy = Q(o3,04,C*). We are going to prove
that for each solution u of (3.6), the estimate

(314) u € CI(QO) = u €

is true. To this aim, suppose that u is a solution of (3.6) and u € cl(€y), i.e.
lu]lo < A* and ||u']|oc < C*. By the Mean Value Theorem, there are & € (¢;,t;11),
i=1,2,...,m,such that |u'(§)] < 2A*/A. Hence, by (3.7), we get

(3.15) /|| < C*,

where C* is defined in (3.13). It remains to show that ||u|l« < A*. Assuming the
contrary there are two cases to distinguish:

CASE A. Let
(3.16) sup {u(t): t € 0,7} = A".
Then, due to (3.11), there is 7 € [0,T) such that
(3.17) u(t) = u(r+) = A"
Recall that A* > ¢+ 2. Consequently, (3.17) implies that
(3.18) u(t) >c+1 for t € [r,7+ 4]
is true for some ¢ > 0. Furthermore, we have
(3.19) W' (74) = 0.

Indeed, if 7 = 0, then (1.3) and (3.16) give u(0) = u(T) = A* and 0 > u/(7+) =
u'(0) = u/'(T) > 0. If 7 € D, then (3.16) and (3.17) yield v/(7+) < 0 and /(1) > 0,
wherefrom, in view of (3.2), «/(74) > 0. So, (3.19) holds. Finally, if 7 € (0,7") \ D,
then the validity of (3.19) is evident.

Now, by (3.8) and (3.18), we obtain that »”(¢) > 0 holds a.e. on [r, 7 + §]. Con-
sequently, in view of (3.19), we have u/(t) > u'(7+) = 0 on (7,7+4), a contradiction
to (3.16) and (3.17).
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CaAse B. If inf{u(t): ¢t € [0,T]} = —A*, we construct a contradiction similarly
as in CASE A.

Therefore, ||ul|s < A* holds for each solution u of (3.6). This together with
(3.15) shows that the estimate (3.14) is valid for each solution u of (3.6).

e STEP 3. We prove the second a priori estimate for solutions of the problem
(3.6).  Define sets

O ={ueQ: ult)>o(t) for t €[0,T], u(t+) > o1(7+) for 7 € D},
Qo ={ueQ: ult) <o(t) for t €[0,T], u(t+) < oo(r+) for 7 € D}

and Q= O\ cl(Q; UQy). Then O N Yy =0 and
(3.20) Q= {u e Q: usatisfies (2.13)}.

Furthermore, with respect to (1.19) and (3.10) we have Q; = Q(oy,04,C*) and
Qg = Q(O’g,O'Q, C*)
We are going to prove that the estimate

(3.21) wed@) = |lulle < ¢

is valid for each solution u of (3.6). So, assume that u is a solution of (3.6) and
u € cl(Q). Then, due to (3.14), u fulfils one of the conditions (2.13), (2.14), (2.15)
and so, by (2.16), u € B. Since we have already proved that (2.17) holds, we can
use Lemma 2.3 and get &, € [0,T] such that (2.18) is true. Further, due to (1.3),
(2.3) and (3.7), we can apply Lemma 2.1 to show that u satisfies the estimate (2.1).
Finally, by Lemma 2.4 and (3.3), u satisfies also (2.11). Moreover, let us recall that
Jii=1,2,....m, verify the condition (2.12). Hence, by Lemma 2.2, we have (2.9),
i.e. each solution u of (3.6) satisfies (3.21).

e STEP 4. We prove the existence of a solution to the problem (1.1) — (1.3).

Consider the operator F defined by (3.12). We distinguish two cases:  either F
has a fixed point in dQ or it has no fixed point in oQ.

Assume that Fu = u for some u € 0€2. Then u is a solution of (3.6) and, with
respect to (3.21), we have ||ul| < ¢, which by (3.4) and (3.5) means that u is
a solution of (1.1) - (1.3). Furthermore, due to (3.14), u satisfies (2.14) or (2.15),
which directly implies that it satisfies (2.26) (cf. also Lemma 2.4).

Now, assume that Fu # u for all u € 9Q. Then Fu # u for all u € 0Qy U
0y U 0. If we replace f, h, J;, i = 1,2,...,m, a, 3 and r respectively by f, h,
Ji,1=1,2,...,m, o3, o4, and C* in Proposition 1.7, we see that the assumptions
(1.15)-(1.18) and (1.20) are satisfied. Thus, by Proposition 1.7, we obtain that

(3.22) deg(I—F,Q(03, 04, C*)) = deg(I — F, Q) = 1.
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Similarly, we can apply Proposition 1.7 to show that

(3.23) deg(I—F,Q(01,04,C*)) = deg(I - F, Q) =1
and
(3.24) deg(I = F,Q(03, 05, C*)) = deg(I — F, Q) = 1.

Using the additivity property of the Leray - Schauder topological degree we derive
from (3.22) - (3.24) that
deg(I—F,Q) =

Therefore, F has a fixed point v € Q. By (3.20), (3.21) and Lemma 2.4 we have
(2.26) and ||ul|s < c. This together with (3.4) and (3.5) yields that w is a solution
o (1.1) - (1.3) fulfilling (2.26). O

We close this paper by two simple examples of effective existence criteria which
are straightforward corollaries of Theorem 3.1 and Proposition 1.3.

3.2. Corollary. Let (1.10), (3.1) and (3.2) hold and let o, f; € R, i =0,1,...,m,
fulfil the assumptions of Proposition 1.3. Furthermore, assume that the implications

x> Q1 — JZ(.TL') > Ji(ai,l) and x < ﬂifl — JZ(.TL') < Jz(ﬂlfl)
are true fori=1,2,...,m. Then the problem (1.1) - (1.3) has a solution.

Proof. Let the functions o, and o5 be defined as in Proposition 1.3. By this propo-
sition they are respectively lower and upper functions of (1.1) - (1.3). If o; < 3; for
alli =0,1,...,m, then 0y < 09 on [0,7] and, by [11, Proposition 3.2], the problem
(1.1) - (1.3) has a solution u such that oy < u < 0y on [0,T]. If a; > 3; for some
7 €{0,1,...,m}, then the existence of a solution u to (1.1) - (1.3) follows by means
of Theorem 3.1. O

3.3. Remark. Notice that in the case o2 < oy on [0, T, the property (2.26) reduces
to
oo(1u+) < u(ry+) < oy(1,+) for some 7, €[0,7).

The next assertion follows from Theorem 3.1 if we take into account Remarks
1.4 and 3.3.

3.4. Corollary. Let (1.10), (3.1) and (3.2) hold. Assume that there are r1, 79 € R
such that f(t,71,0) < 0 < f(t,72,0) for a.e. t € [0,T]. Further, let the relations
Ji(rl) =Ty >T9 = JZ'(TQ),

r>r = Ji(z) > J;i(r1) and — x<ry = Ji(r) < Ji(re)

be true for i =1,2,...,m. Then the problem (1.1)-(1.3) has a solution u such that
ry < u(ty+) < ry for some t, € [0,T). U
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