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Abstract. Existence principles for the BVP (é(u')) = f(t,u,u'), u(t;i+) = Ji(u(ts)), v (t+) =
M; (W' (t;)), i = 1,2,...,m, u(0) = u(T), v/(0) = /(T) are presented. They are based on the
method of lower/upper functions which need not be well-ordered.
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1. Formulation of the problem

Let meN, 0=ty <t; < - <ty <tmy1 =T and D = {t1,ts,...,t,,}. Define Cp
(or C}) as the sets of functions u : [0,7] — R,

U[0]<t) if t e [O,tﬂ,
U(t) _ U[l] (t) lf t c (tl,tQ],

Ufm] (t) if te (tm,T],

where up) is continuous on [t;,¢;41] (or continuously differentiable on [¢;,%;11]) for
i=0,1,...,m. We put |lullp = [Julle + [[t/[|cc, Where |lu[|oc = sup ess;cio 1y |u(t)]-
Then Cp and Cl, respectively with the norms ||.||o and ||.||p become Banach spaces.
Further, ACp is the set of functions u € Cp which are absolutely continuous on each

subinterval (t;,t;41), 2 =0,1,...,m.
We consider the problem
(1.1) (o(u'(1)) =f(t,u(t),w'(t)) ae. on [0,T],
(1.2) u(ti+) = Ji(u(ty)), o' (t+) =MW (t;)), i=1,2,...,m,
(1.3) u(0) = u(T), '(0) =v(T),
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where u/(t;) = v/ (t;—) = limy_,_u/(¢) for i = 1,2,...,m + 1, ¥/(0) = «/(0+) =
lim; o4 ©/(t), f is an L;-Carathéodory function, functions J;, M; are continuous on
R and ¢ is an increasing homeomorphism such that ¢(0) = 0 and ¢(R) = R. A
typical example of a proper function ¢ is the p-Laplacian ¢,(y) = |y[P~?y, where
p> 1.

A solution of the problem (1.1)—(1.3) is a function u € C1, such that ¢(u’) € ACp
and (1.1)-(1.3) hold.

A function o € C} is called a lower function of (1.1)—(1.3) if ¢(¢’) € ACp and

¢(o'(t)) = f(t,o

(1.4) o(ti+) = Ji(o(t:)

0(0) = o(T), o'(

Similarly, a function o € C}, with ¢(¢’) € ACp is an upper function of (1.1)-(1.3)
if it satisfies the relations (1.4) but with reversed inequalities.

The aim of this paper is to offer existence principles for problem (1.1)—(1.3) in

terms of lower/upper functions. Hence our basic assumption is the existence of
lower /upper functions. We will suppose that either

(t),0'(t)) forae. te[0,T],
), o'(ti+) > M;(o'(t;)), i =1,2,...,m,
0) = o'(T).

Y

(1.5) o1 and oy are respectively lower and upper functions of (1.1)—(1.3)
such that o1 < o9 on [0,7]

or

(1.6) o1 and oy are respectively lower and upper functions of (1.1)—(1.3)
such that o1 £ 09 on [0,T], i.e. o1(7) > 02(7) for some 7 € [0,T].

Note that problems with ¢-Laplacians and impulses have not been studied yet.
As concerns problem (1.1), (1.3) (without impulses), there are various results about
its solvability. For example the papers [4] and [19] present some results about the
existence or multiplicity of periodic solutions of the equation

(1.7) (6p(u)" = [f(t,u)

under non resonance conditions imposed on f. The paper [10] presents general
existence principles for the vector problem (1.1), (1.3). Using this the authors
provide various existence theorems and illustrative examples. The vector case is
also considered in [9], [11] and [12]. The existence of periodic solutions of the
Liénard type equations with p-Laplacians has been proved in the resonance case
under the Landesman-Lazer conditions in [5] and [6]. Multiplicity results of the
Ambrosetti-Prodi type for this problem (with a real parameter) can be found in [8].

The papers which are devoted to the lower /upper functions method for the prob-
lem (1.1), (1.3) mostly deal with the condition (1.5), i.e. they assume well-ordered
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01/05. We can refer to the papers [1] and [3] which study the problem (1.1), (1.3)
under the Nagumo type two-sided growth conditions and to the paper [17] where
the second order equation with a ¢-Laplacian is considered provided a functional
right-hand side of this equation fulfils one-sided growth conditions of the Nagumo
type. The significance of the lower /upper functions method is shown in the papers
[7] and [18] where this method is used in the investigation of singular periodic prob-
lems with a ¢-Laplacian. The paper [2] is, to our knowledge, the only one presenting
the lower /upper functions method for the problem (1.7), (1.3) (with a ¢-Laplacian)
under the assumption that o7 > o9, i.e. lower/upper functions are in the reverse
order. If ¢ = ¢, the authors get the solvability of (1.7), (1.3) for 1 < p < 2, only.
Therefore the existence principles (Theorems 2.3 and 2.4) which we state here for the
impulsive problem (1.1)—(1.3) and the case (1.6) are new even for the non-impulsive
problem (1.1), (1.3).

We will work with the following assumptions, where the sets A;, B(t) C R,
t € [0, 7], will be determined later, according to whether (1.5) or (1.6) is assumed:

x> o(t;) = Ji(x) > Ji(o1(t:)) o ‘
(1.8) { T < ooty = Jix) < Ji(oa(t:)) for xe A;, i=1,2,...,m;

y <oy(ti) = Mi(y) < Mi(o'(t:)),
1.9 1=1,2,...,m;
a0 {200 Z 0 M,
(1.10) there is h € IL; such that

|f(t,z,y)| < h(t) for ae. t €[0,T] and all z,y € R;

there are w : [0,00) — (0, 00) continuous and h € LL; such that
(1.11) = oo and [f(t,z,y)| < w(o(ly]) (ly + h(t))

forae tE [0,7], all z € B(t) and |y| > 1,

there are ¢;, d; € R, ¢; <op(t) <d; on (tj_1,t;], k=1,2,

(1.12) such that f(t,z,¢;) <0, f(t,z,d;) >0 forae. t € (t;_1,t]

and all z € B(t), j=1,2,...,m+1, and ¢; > ¢py1,dy < dppya,
Mz(cz) S Ci+17 Mz(dz) Z di+17 Z = 172, o,

2. Main results

Below we formulate our main results:

[. EXISTENCE PRINCIPLES FOR WELL-ORDERED CASE

2.1. Theorem. Assume that (1.5), (1.8) with A; = [01(t;),02(t:)], ¢ = 1,2,...,m
(1.9) and (1.11) with B(t) = [01(t), 0(t)] hold. Then the problem (1.1) — (1.3) has
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a solution u satisfying
(2.1) or <u<oy on [0,T].

2.2. Theorem. Assume that (1.5), (1.8) with A; = [01(t;), 02(t;)], ¢ = 1,2,...,m,
(1.9) and (1.12) with B(t) = [01(t), 02(t)] hold.
Then the problem (1.1) — (1.3) has a solution u satisfying (2.1) and

(22) Cj S Ul(t) S dj fOT’ t e (tj—latj]; ] = 1,2,. co,m+ 1.

II. EXISTENCE PRINCIPLES FOR NON-ORDERED CASE

2.3. Theorem. Assume that (1.6), (1.8) with A; = R, i = 1,2,...,m, (1.9) and
(1.10) hold. Then the problem (1.1) — (1.3) has a solution u satisfying

(2.3) |u(ty)| < max{|oi(t,)|, |o2(t.)|}  for some t, € [0,T].

2.4. Theorem. Assume that (1.6), (1.8) with A; = R, ¢ = 1,2,...,m, (1.9) and
(1.12) with B(t) = R hold. Then the problem (1.1) —(1.3) has a solution u satisfying
(2.2) and (2.3).

Note that Theorems 2.2 and 2.4 impose no growth restrictions on f. For example,
taking f(t,z,y) = y (y*2?"+1) — 2?1 +¢(t), where e € Cp, k, n € N, we can check
that there are ¢; € (—00,0) d; € (0,00), j = 1,2,...,m + 1, such that ¢; > ¢p41,
di < dpy1, f(t,z,¢;) <0 and f(t,z,d;) > 0 for a.e. t € (t;_1,t;] and all z € R,
j=1,2,... m+1.

3. A fixed point operator

We will transform the problem (1.1)-(1.3) into a fixed point problem in C}. First,
we borrow some ideas from [10] to get the following two lemmas.

3.1. Lemma. For each ¢ € Cp and d € R, the function
T
Upg:R— R, wwmy—d+/’¢1@+aﬂ)m
0

has exactly one zero point a(¢,d) in R.

Proof. Choose ¢ € Cp and d € R. Since ¥, is continuous, increasing on R and
U, 4(R) = R, there is a unique real number a(¢, d) such that

(3.1) \I/g,d(a(é, d)) = O. D
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3.2. Lemma. The mapping a : Cp X R — R defined by (3.1) is continuous and
maps bounded sets into bounded sets. !

Proof. (i) Assume that A C Cp x R and v € (0,00) are such that ||¢||- + |d] <~
for each (¢,d) € A and that there is a sequence {a(¢,,d,)}>>; C a(A) such
that lim, . a(l,,d,) = oo or lim, . a(l,,d,) = —oo. Let the former possibil-
ity occur. Then, by (3.1), we have 0 = lim, o Yy, 4, (a(ln, dy)) > lim, oo (—7 +
T¢ " (a(ly,d,) — 7)) = oo, a contradiction. The latter possibility can be argued
similarly.

(ii) Let lim,—oo(ln,dn) = (bo,do) in Cp x R. By (i) the sequence {a(l,,d,)}>>,
is bounded and hence we can choose a subsequence such that lim,, ., a(, ,dy,) =
ap € R. By (3.1), we get

T
0= qukn7dkn (a(ékn, dkn)) = dkn -+ / ¢_1 (&(fkn, dkn) + gkn(t)) dt,
0

which, for n — oo, yields

T
0_d0+/ ¢ (ao + 4o(t)) dt.
0

Thus, with respect to Lemma 3.1, we have ag = a({y, dy) = lim,, . a(l,, d,). n

3.3. Lemma. The operator N : Cl, — Cp given by

3:2) WO [ Flsa(s).(6) ds+D [0 1) =0 (0)] xp, 7900

is absolutely continuous. 2

Proof. The continuity of A follows from the continuity of all the mappings involved
in the right-hand side of (3.2). Furthermore, let H C C}, be bounded. We need to

show that the closure N'(H) of N (H) in Cp is compact. To this aim, let ||z||p <
v < oo for each x € H. Then there are ¢ € (0,00) and h € L; such that

Z [qS(M,(a:'(t,))) — gb(m’(tl))} <c and |[f(t,z(t),2'(t))] < h(t) a.e. on[0,T]
for all x € 'H. Therefore
(3.3) IN(2)]|oo < [|R|l1 + ¢ for each x € H.

IThe norm of (¢,d) € Cp x R is defined by ||| + |d|.
2As usual, x s stands for the characteristic function of the set M C R.
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Put (N (2))(t) = fot f(s,z(s),2'(s)) ds. Then, for t;, ty € [0,T], we have

(N (2))(F2) = (N1(2)) (02)] < |/t2 h(s) ds|,

wherefrom, by (3.3), we deduce that the functions in A (H) are uniformly bounded
and equicontinuous on [0, T]. Hence, making use of the Arzela-Ascoli Theorem in C
(the space of functions continuous on [0, 7] with the norm ||.||~), we get that each
sequence in N7 (H) contains a subsequence convergent with respect to the norm ||. || .
This shows that N7(H) is compact in Cp. We know that the operator Ny = N — N
is continuous. By (3.3), it maps bounded sets into bounded sets. Moreover, its

values are contained in an m-dimensional subspace of Cp. Thus, No(H) is compact
in (CD. ]

3.4. Theorem. Leta: Cp xR — R and N : C}, — Cp be respectively defined by
(3.1) and (3.2). Furthermore define J : C +— C{, by

(B4 (T@)0) =3 ) ()] xg, )0

i=1

35 FW = [ 07 (oW (@) + W) ds
+2(0) +#/(0) = 2/(T) + (T () (1)

Then F : Cl, — C} is an absolutely continuous operator. Moreover, u is a solution
of the problem (1.1) — (1.3) if and only if F(u) = u.

Proof. For x € C}, and t € [0, 7], we have

(3.6) (F(@))'(t) = ¢~ (aN (2), (T (2))(T)) + N (2))(1)).

Since the mappings a, V" and J included in (3.5) and (3.6) are continuous, it follows
that F is continuous in Cf,.

Choose an arbitrary bounded set H C Cl. We will show that then the set
F(H) is compact in Ci,. Let a sequence {v,} C F(H) be given. It suffices to
show that it contains a subsequence convergent in C{,. Let {x,} C H be such that
v, = F(x,) for n € N. By Lemma 3.3, there is a subsequence {xy,} such that
{N(z,)} is convergent in Cp. According to (3.3) and (3.4), there exists v € (0, 00)
such that [|N(2)|le + [(T(2))(T)| < v for all 2 € H. Hence, by Lemma 3.2, the se-
quence {a(N (zy, ), (T (zx,))(T))} C R is bounded and we can choose a subsequence
{z0,} C {x,} such that {a(N(z,), (T (z¢,))(T)) +N(ze,)} is convergent in Cp.
Consequently, {(F(zy,))'} and {F(z,,)} are convergent in Cp, as well. Finally, by a
direct computation we check that (1.1)—(1.3) is equivalent to the problem u = F(u).
For more details, see our preprint [15]. ]
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4. Proofs of the main results

Sketch of the proof of Theorem 2.1. We can modify the arguments and con-
structions of [13], where the case ¢(y) = y is considered. By virtue of Theorem 3.4,
the problem (1.1)—(1.3) has a solution if and only if the operator F which is defined
by (3.5) has a fixed point. To prove it we argue as follows: (i) we construct an aux-
iliary operator F and prove that its Leray-Schauder topological degree is nonzero
and consequently F has a fixed point u; (ii) using the method of a priori estimates
we show that u is a fixed point of F satisfying (2.1). Since the realization of these
ideas is quite close to the arguments of [13], we skip it. Detailed computation can
be found in our preprint [15]. O

Proof of Theorem 2.2. STEP 1. Define

c; for y<ygy,
(4.1) Bily) =4 vy for ¢; <y <d,, ji=12,....m+1,
d; for y>d;

> — y — B(y)

(42) f(t,.]?,y)—f(t, 76](@/))"’_ |y_6j<y)’+1
for a.e. t € (tj_1.t], v,y eR, 7=1,2,...,m+1;

and

TN aria y — B5(y) o i "
(4.3) M;(y) = M;(Bi(y)) + Y= iy 1 for y € R, 1,2,...,m.
Now, consider the auxiliary problem
(4.4) (G(u'(1))) =F(t,u(t), /() ae. on [0,T];
(4.5) u(ti4) = Ji(u(t)), o'(t+) = M;(W'(t;)), i=1,2,...,m,
(4.6) u(0) = u(T), Ai(u'(0)) =u(T).

We see that fand ]\AjZ have the same properties as f and M;. In particular, fsatisﬁes
(1.11) with w(s) = 1, M, fulfils (1.9) and 0, /05 are lower/upper functions for (4.4)—
(4.6). Since we work with (4.6) instead of (1.3), we have to replace the expression
x(0) +2'(0) — 2/(T") in (3.5) by z(0) + F1(2’(0)) — 2/(T'). Then we get the existence
of a solution u of (4.4)—(4.6) satisfying (2.1) in the same way as in the proof of
Theorem 2.1 for (1.1)—(1.3).

STEP 2. Having the solution u of (4.4)—(4.6), it remains to show that (2.2) is true.
(i) Let j € {1,2,...,m+ 1} and £ € [t;_1,t;) be such that
(4.7) sup{u'(t) : t € [0,T]} = u'({+) > d;.
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Then there is § > 0 such that (§,€ 4 6) C (tj_1,t;) and ' > d; on (£, & +9).
By (1.12),

u (t)

(p(u'(t)) = f(t,u(t),d;) + I T > 0 for ae. t € (£,€+0),

Le. o(u'(t)) > o(u'(€+)) and so u/(t) > v/ ({+) for each t € (£,& + ¢)), which
contradicts (4.7).

(ii) Assume that
(4.8) sup{u'(t) : t € [0, 7]} =u'(t;) > d; for some t; € D.

If j =m+1,ie «(T) > dyi1, then, by (1.12), we have also «/(T") > d;. Since
(4.1) and (4.6) imply u/(T") < d;, we get a contradiction.

If ) <m+1, then

~ i u'(t) — d;

+ Ul<t> _ d] 4 1 > ](d]) - d]+17

so v/ (t;j+) > dji1. By part (i) we know that «'(¢f) — dj41 cannot achieve a
positive maximum inside (¢;,¢;41). Consequently, we have u'(¢;11) > dji1.
Repeating this procedure we get u'(T") > d,,11 and a contradiction as before.

We have proved that «'(t) < d; on (t;_1,t;], j = 1,2,...,m + 1. The remaining
inequalities in (2.2) can be derived analogously. Finally, since u fulfils (2.2), u is a
solution of (1.1)—(1.3). O

Sketch of the proof of Theorem 2.3. We borrow ideas of [14], where non-
ordered lower/upper functions to periodic impulsive problem without ¢-Laplacian
(¢(y) = y) have been studied. Here, we define the operator F by (3.5). Then,
according to F, we construct auxiliary operators and compute their Leray-Schauder
degrees by a similar procedure as in [14]. For this we need a priori estimates of
solutions of corresponding auxiliary problems. Now we consider problems with ¢-
Laplacians but the basic evaluation of estimates of ¢(u’) are similar to those of «’ in
[14] and hence we omit their computation here. For details see our preprint [16]. O

Proof of Theorem 2.4. First, we will prove the following a priori estimate:

CLAIM. There exist a; € (0,00), j = 1,2,...,m+ 1, such that for each function
u € C} satisfying (1.2), (1.3), (2.2) and (2.3), the estimates

(4.9) lu(t)| <a; for te(tjo,tj], j=1,2,....,m+1

are valid.
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Indeed, let u satisfy the assumptions of CLAIM and let
po = max{||o1]|c; |o2llec} and v = max{|c;|, |d;|}, i=1,2,...,m+ 1.
(i) If ¢, € [0,t1], then |u(t)| < y1t1 4 po for ¢ € [0,1]. Put
ad =yt +po and B = max{|J,(z)|: = € [~al,al]}.

Then
|U(t)| S Y2 (tg — tl) + b? for ¢ € (tl,tg].

Further, put
ad =y (ty —t;) +10 and b9 = max{|Jo(2)|: = € [~a3,aI]}.
Then
lu(t)] < s (ts — to) + 05 for t € (ty,ts).

By induction we get that |u(t)| < a? for t € (¢;_1,1;], where

ayy = Yit1 (tig1 — ;) + max{|J;(z)| : x € [—a},af]}, i=1,2,...,m.
(i) If ¢, € (¢j,t;41] for some j € {1,2,...,m}, we get similarly as in (i) that

lu(t)| < al for t € (ti_y,t;], i=1,2,...,m+1,

where

ajy1 = Vi1 (tiv1 = 1) + po,

als1 = Yir1 (tipr — ;) +max{|Ji(2)| : @ € [~al,a]]}, i=1,2,...j —Lj+1,...

R
a{ =7t —i—af;Hl.
Setting
a; = maX{po,ag,a;,...,a?"“} for j=1,2,...,m+1,

we complete the proof of CLAIM.

Now, take ; by (4.1) and for a; of CLAIM put

—a;  for x < —a;,
aj(r) = T for —a; <z <a;,
a; for x> a;

and

~ _ (). B y — Bi(y)
f(t,z,y) = f(t, J( ):ﬁ](y))‘i_ |y_5j<y)’_|_1

for a.e. t € (t;_1.t5], all z,yeR, j=1,2,...,m+ 1L

7m7

Finally, define M; by (4.3). We see that all assumptions of Theorem 2.3 are satisfied
for the problem (4.4)—(4.6) and consequently it has a solution u satisfying (2.3). As
in the proof of Theorem 2.2, Step 2, we get that u fulfils (2.2). Hence u satisfies

(1.2), (1.3) and, by CLAIM, also (4.8). Therefore, u is a solution of (1.1)—(1.3).

]
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