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1. Preliminaries

Throughout the paper R denotes the space of real numbers, [0,7] is the closed
interval 0 < ¢ < T, (0,T) is the open interval 0 < ¢ < T, while [0,T) and (0,7T] are
the corresponding half-open intervals.

Any function f : [0,7] — R which possesses finite limits

f(t+)= lim f(r) and f(s—)= lim f(7)

T+ T—+5—

forallt € [0,T) and s € (0,7 is said to be regulated on [0, T]. The space of functions
regulated on [0, T is denoted by G, while G,., stands for the set of all functions f € G
such that

(1.1) f(0+) = F(0), f(t) = 3[f(t=) + f(t+)] forall ¢e€(0,T), f(T-)=f(T).
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Functions fulfilling (1.1) are usually called regular on [0, T.
Given f € G, t € [0,T), s € (0,T] and r € (0,T), we put

ATF(E) = ft+) = f(t), Af(s) = f(s) = f(s=) and Af(r)=f(r+)—f(r-).

BV denotes the space of functions of bounded variation on [0,7]. The subspace of
BV consisting of the functions of bounded variation on [0,7] and regular on [0, T]
will be denoted by BV ..

As usual, I; stands for the space of measurable and Lebesgue integrable func-
tions on [0,7], Lo denotes the space of measurable and essentially bounded func-
tions on [0,7"] and AC stands for the space of functions absolutely continuous on
[0, 7.

The integrals which occur in this paper are the Perron-Stieltjes ones. Let us

mention here some of their further properties often needed later on.
Let the functions f, g be regulated on [0, 7. If the integral

T
| )90
0
has a finite value, then by [Ku57, Theorem 1.3.4] the function
T
h:tE[O,T]b—)/ fdgeR
0

is regulated on [0,7]. Let us note that the integral

T
| )90
0
has a finite value if both the functions f, g are regulated on [0,7] and at least one

of them has a bounded variation on [0,7] (cf. [Tv89, Theorem 2.8]). In this case
the above mentioned [Ku57, Theorem 1.3.4] implies that

h(t+) = h(t) + f()ATg(t) and h(s—) = h(s) — f(s)A7g(s)

holds for all ¢ € [0,T) and s € (0,T]. Moreover, if g € BV, then h € BV as well.

1.1. Proposition. (Substitution Theorem) Let f,g,h : [0,T] — R be such that h
is bounded on [0,T] and the integral

T
/0 F()dlg(®)]

exists. Then the integral

T
/0 B(t) (£)dg(8)]
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exists if and only if the integral

T T
| nwal [ e

exists, and in this case the relation

/OT h(t)d[/OTf(S)d[g(s)]] = /OTh(t)f(t)d[g(t)]
holds.

For the proof see [Tv89, Theorem 2.19]. O

1.2. Proposition. (Integration-by-parts formula) If f € BV and g € G, then both
the integrals

T T
/ F(0)dlg(t)]  and / dLf (B9 (t)
0 0

exist and

T T
/0 F()dlg(e)] + /0 af (H)g(t)
— F(T)9(T) — F(0)g(0) — A*F(0)A*g(0)
+

Y [ATF(B)AT(t) = ATF(OATg(O)] + AT F(T)Ag(T).
0<t<T

For the proof see [Tv89, Theorem 2.15]. O

Further properties of the Perron-Stieltjes integral with respect to regulated func-
tions were described in [Tv89] and [Tv91]. (See also [SchTvVe79] and [PeTv93].)

Distributions considered in this paper are linear continuous functionals on the
topological vector space 2 of functions ¢ : R — R possessing for any j € N U {0}
a derivative ¢(9) of the order j which is continuous on R and such that ¢U)(t) = 0
for any ¢ € R\ (0,7). The space 2 is endowed with the topology in which the
sequence @y € 2 tends to g € 2 in 2 if and only if

lim o | = 0
for all non negative integers j. The space of distributions on [0,7] (i.e. the dual
space to 2) is denoted by 2*. Given a distribution f € 2* and a test function

© € 7, the value of the functional f on ¢ is denoted by (f, ). For any f € L1, the
relation

T
pED —>/0 f(t)p(t)dt
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defines a distribution on [0, T'] which will be denoted by the same symbol f, i.e.

T
(f, ) :/0 f)p(t)dt forall o€ 2.

In this sense, the zero distribution 0 € 2* on [0, T'] is identified with an arbitrary
measurable function vanishing a.e. on [0,7]. Obviously, if f € G, then f =0¢€ 2*
only if f(t—) = f(s+) = 0 for all ¢ € (0,7] and all s € [0,7). Consequently, if
[ € Gy, then f =0 € 2" if and only if f(¢f) = 0 for all £ € [0,T]. This means
that for a given g € L; 7 there may exist at most one function f € G,., such that
f(t) = g(t) a.e. on [0,T7].

Given two distributions f,g € 2%, f = g means that f —g = 0 € 2*. In
particular, for given functions f,g: [0,7] — R, f = g holds if and only if f(¢) = g(¢)
a.e. on [0,7]. Whenever a relation of the form f = g for distributions or functions
f and g (written without arguments) occurs in the following text, it is understood
as the equality in the above sense.

Given an arbitrary f € 2*, f’ denotes its distributional derivative, i.e.

fripea = (fl o) =—(f¢).

reg

Analogously, for j € N,
fD:ped = (F9),0) = (=1)/(f, o).

For absolutely continuous functions their distributional derivatives coincide with
their classical derivatives, of course. It is well-known that if f € 2*, then f' =0 if
and only if f € ;| and there exists ¢y € R such that f(¢) = ¢y a.e. on [0,7T] (cf.
[Ha52, Sec.3]). It follows easily that if k is a non negative integer, then f(¥) =0 ¢ 2*
if and only if there exist ¢g,c1,...,ck_1 € R such that

f)=co+eit+--+cp 1t" ! ae on [0,7].

Let us notice that if u € G,,, and v € G,,, are such that v’ = v, then u € AC.
Indeed, for

we have (w —u)" = 0,w(0) = u(0) and consequently (as w — u € G,.,) w(t) = u(t)
on [0,T].

1.3. Definition. Let f € G and g € BV be such that
(1.2) AT F()ATg(t) = AT f(t)A™g(t) forall t€ (0,T).
Then we define

T
(1.3) F'a: 0e P (flg.0) = / g(Dp(t)ALf (1)

and
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T
(1.4) 9 we? s (fdp) = /0 F (e dlg (D))

1.4. Remark. Let us notice that the condition (1.2) is satisfied e.g. in the following
cases :

(i) both f and g are regular on [0,7] ,
(ii) at least one of the functions f or ¢ is continuous on (0,7),

(iii) one of the functions f,g is left-continuous on (0,7"), while the other is right-
continuous on (0,7).

If fely; and g € G, then (1.3) implies that the product fg is given by

T
fag:0 €2 = (fg,0) :/0 f(®)g(t)p(t)dt,

i.e. the product of the functions f and g is in such a case represented by the function
te€[0,T] — f()g(t).

1.5. Lemma. Let f € G and g € BV satisfy (1.2). Then

(L5) Fo=( [ o)
and
(16) 1o = ([ )’

Proof. In virtue of Propositions 1.1 and 1.2 we have for any ¢ € 2

Gaor= [ a [[avene]en =- [ ([ arome)do,

i.e. (1.5) is true. The formula (1.6) could be verified analogously. O

1.6. Remark. It follows from Definition 1.3 and from the integration-by-parts for-
mula (cf. Proposition 1.2) that for any couple of functions f € G, g € BV fulfilling
the condition (1.2) the relation

(f9)' =19+ 1y
holds.

1.7. Remark. It is easy to see that for 7 € (0,T), f(t) =0 for t < 7, f(7) = 1,
f(t) =1fort > 7 and g = f', we obtain from Definition 1.3 fg = %g, i.e. Definition
1.3 seems not to be contradictory to the known definitions of the product of measures

and regulated functions based on the sequential approach (cf. [Li88]).
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2. Homogeneous equation

Let us consider the equation

(2.1) (p')" + q'u =0,
where
(2.2) P, EBV,,, pt)#0on [0,7] and p '€ BY.

2.1. Definition. A function u : [0,T] — R is called a solution to the equation (2.1)
on the interval [0,T] if u € G,., and (pu')’ + ¢'u is the zero distribution on [0, 7.

2.2. Proposition. A function u € G,., is a solution to the equation (2.1) on [0,T]
if and only if uw € AC, v’ € Ly o and there is v € BV, such that the couple (u,v)
is a solution on [0,T] to the system of integral equations

t
(2.3) u(t) = u(0) +/0 p L(s)v(s)ds, te€]0,T)

(2.4) v(t) = v(0) —/0 dlg(s)]u(s), t €[0,T].

Proof. a) Let u € G,,, and v € BV, fulfil (2.3) and (2.4) on [0,T]. Then obviously

Ly €L -

u = 2
By Lemma 1.5 we have

v = —qu.

Moreover, making use of the Substitution Theorem (cf. Proposition 1.1) and of
Lemma 1.5 we obtain

i = ([ wfa [ ewimar]) = (

t’U(T)dT)I = .

Hence
(pu") 4+ ¢'u=v"+ ¢u=0.

b) Let u € G,., be a solution to (2.1) on [0,T]. Then

(/UtP(S)d[u(S)] + /Ot (/08 d[q(T)]u(T))ds)” 0.
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Hence there are ¢y and ¢; € R such that

t t s
(2.5) / p(s)d[u(s)] +/ (/ d[q(T)]u(T)) ds—cy—cit=0
0 0o \Jo
holds for a.e. t € (0,T). The left-hand side of (2.5) being a regulated function which

is regular on [0,7], the relation (2.5) is true for a.e. ¢ € [0,7] if and only if it is
true for each ¢ € [0, T]. In particular, inserting ¢ = 0 we get ¢y = 0. Moreover,

t t s
[ pratuen=ae— [ ([ da@pum)as
0 o Jo
t s
_ / (c1 - / dlo(r)Ju(r))ds for all t€ (0,7,
0 0
Let us denote
t
o(t) = e1 — / dlg(s)]u(s), for te0,T]
0
Then v € BV ., v(0) = ¢; and the couple (u,v) fulfils the relations (2.4) and
t t
(2.6) / p(s)dlu(s)] = / v(s)ds tel0,T].
0 0
In particular,
t
/ p(s)dlu(s)] € AC.
0
Furthermore, differentiating the relation (2.6) we get

(2.7) pu’ = .

Making use of the Substitution Theorem (cf. Proposition 1.1) and of Lemma 1.5 we
obtain from (2.7) that
t !
) =p!( / )
0
S

= pls)dlu(s)
‘@al [ pnaue]) = ([ Cdu(e)) =

p to=p t(pu

:(/Otp

(2.8) u =p o

i.e.

Consequently v = p v € L. It follows that uw € AC and the relation (2.8)
is true if and only if the relation (2.3) is true. This completes the proof of the
proposition. O
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2.3. Remark. It follows from the proof of Proposition 2.2 that for any solution u
of the equation (2.1) on [0, 7] there exists a function w € BV such that

u'(t) =w(t) ae. on [0,7] and p(t)w(t) =v(t) on [0,T].

The system (2.3), (2.4) may be rewritten in the vector form

(2.9) #(t) = (0) + / d[A(5)}s(s),

where
u(t) 0 (fp_l(s)ds

(2.10) z(t) = and A(t) = , te0,T].
(U(ﬂ) —q(t) 0

Obviously, A(t) is a 2 x 2-matrix valued function of bounded variation on [0, 7).
The system (2.9) is a generalized linear differential equation considered e.g. in [Sch92]
(cf. also [SchTvVe79] or [Sch85]). Under our assumptions A(0+) = A(0), A(T—) =
A(T),

~ B 1 0 -
(2.11) det (I — A”A(t)) = det (A_q(t) 1) =1 for te (0,7]
and
(2.12) det (I +ATA(t)) = det ! 0 =1 for te[0,7).
—ATg(t) 1 ’

Hence the following assertion is an immediate consequence of [Sch92, Proposition
2.1 and Theorem 6.5] (cf. also [SchTvVe79, Theorem III.1.4]).

2.4. Theorem. Let us assume (2.2). Then for any ug,vy € R and any ty € [0,T],
there exists a unique solution u € AC of the equation (2.1) on [0,T] and a unique
function v € BV, such that

p(t)u' (t) = v(t) a.e. on [0,T], wu(to) =uo and wv(ty) =vp.
2.5. Remark. It follows easily from the basic properties of the Perron-Stieltjes
integral that the relations

At(0) = A w(T) =0 and Awv(t) = —Aq(t)u(t), te (0,T)

hold for any couple of functions v € AC, v € BV satisfying the system (2.3),(2.4)
on [0,T] (cf. e.g. [SchTvVe79, Proposition III.1.6]).
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2.6. Remark. Theorem 2.4 could be obtained from Proposition 2.2 by making use
of a somewhat modified version of [Mi83, Theorem 1.3.1], as well.

2.7. Corollary. There exists a unique system of functions {u1,v1,uz,v2} possess-
ing the following properties:

(2.13) ur,ug € AC, wulj,uh €Ly, wv1,v9 €BV,,
(2.14) vi+qdu; =0 and pu,=v; (i=1,2),
and

(215) u1(0) == 1,’01(0) == O,UZ(O) == 0,1)2(0) = 1.

2.8. Definition. The system {u1,v1,us,v2} of functions possessing the properties
(2.13)-(2.15) given by Corollary 2.7 will be called the fundamental system of solutions
to (2.1) on [0,T].

2.9. Corollary. Let us assume (2.2) and let {uy,v1,u2,v2} be the fundamental sys-
tem of solutions to (2.1) on [0,T]. Then a function u € G, is a solution to the
equation (2.1) on [0,T] if and only if there are a and € R such that

u(t) = aui (t) + Pua(t) on [0,T].

2.10. Proposition. Let {u,v1,us,v2} be the fundamental system of solutions to
(2.1) on [0,T]. Then the relation

(2.16) u (t)v2(t) —ua(t)vr(t) =1
holds for all t € [0,T].
Proof. In virtue of (2.14) we have
(w12 — ugv1)' = v (puy) — up(pui) — ui(q'uz) — uz(qd'w).

Since p € BV ,., and by (2.13) v}, u) € Lj «, the products v/ (pu$) and ub(pu)) are
functions essentially bounded on [0,7] and they are given for a.e. ¢ € [0,T] by

(w5 (put) ) (1) = i (Dp(us (1) and  (uy(put) ) (1) = w(E)p(E)us (1),
respectively. Furthermore, by Definition 1.3 and Lemma 1.5 we have

!

tatue) = [ dlae) = ([ unlouaoe)

and
!

watatu) = [ o) = ([ wilopuate)aia))’
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Thus
/
(’u,11)2 — U2U1) = 0,
i.e. there exists a ¢ € R such that
(2.17) up(t)va(t) —ua(t)vi(t) = ¢
holds for a.e. ¢ € [0,T]. As the left-hand side of the relation (2.17) is a regular

function of bounded variation on [0, 7] , it follows that (2.17) holds for each ¢ € [0, T'].
Inserting t = 0 we obtain ¢ = 1, i.e. the relation (2.16) is true. O

3. Nonhomogeneous equation

This section is devoted to the nonhomogeneous equation
(3.1) (p) + q'u = f",
where p and ¢ fulfil the assumptions (2.2) and

(3.2) J € Greg-

3.1. Definition. A function u : [0,7] — R is said to be a solution to the equation
(3.1) on the interval [0,T] if u € G,., and (pu') + ¢'u — f" is the zero distribution
on [0,T].

3.2. Remark. Let us try similarly as in the classical case to find a particular solu-
tion y to the equation (3.1) in the form

(3.3) y = auy + Pug,

where u; and us € AC are functions from the fundamental system of solutions to
the corresponding homogeneous equation

(') + q'u=0

given by Definition 2.8 and « and g € G,., are such that

reg

(3.4) o'uy + Bug = 0.
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By the Substitution Theorem (cf. Proposition 1.1) and by Lemma 1.5 we have
t t ,
' = oo +fus) = p( [ o)) + [ B

— /Otp(s)d[/osa(S)d[Ul(S)]D, + (/Otp(s)d[/os ﬁ(s)dm(s)]])l

t

t
[ padm@l+ [ s due)

and
!

t
d'y = o (o + fua) = ( /0 dlq(s))(a(s)ur(s) + B(s)ua(s))

= (/Ota(s)d[/os dlg(r)ur(r)] ) + (/Otﬁ(s)d[/os dlg(r)us(r)] )’
= a(q'u1) + B(q'uz).
Hence by (2.14)
(py) + 'y = a(v] + q'u1) + By + g'uz) + /vy + Blvs
= a'vy + vy,

i.e. the function y of the form (3.3) is a solution to (3.1) on [0,T7] if and only if the
couple a, 3 € G,,, satisfies the relations (3.4) and

(3.5) vy + Blog = f".

Making use of Proposition 2.10 we could show that (3.4) and (3.5) are satisfied if
(3.6) o =—f"uy and B = f"u.

If we had p~'v; and p~tvy € BV, or f were continuous on [0, T, then the products
flul = f'(p~tvq1) and f'uly = f'(p'vs) would be defined by

!

it = ([ s o)

and
!

t
fuy = ([ il s)oal) |
0
respectively. Then we would have

!

P = (7w = 1 = (= [ A () (s)

and
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!

s = (faa) = £y = (7= [ )"

This means that we could put

t
(3.7) o= —fluyt /0 dLf ()]p~" (3)v2(s)
and

t
(3.8) B= flu— /0 dLf (s)]p~ " (s)v1(s)

and after inserting (3.7) and (3.8) into (3.3) we would get the following formula for
a particular solution y of the given equation (3.1):

(3.9) y(lt)Z/0 d[f (s)lp™" (s) (va(s)ur () — vi(s)ua(t)) on [0,T].

The distributions a and 3 given respectively by (3.7) and (3.8) are in general not
regular functions on [0,7], of course. Nevertheless it may be proved that under
our assumptions the formula (3.9) provides a solution to (3.1) on [0,7] (without

assuming that p~'v; and p~lvy € BV,,, or f is continuous on [0, 7).

3.3. Theorem. Let us assume (2.2) and (3.2). A function u € G,,, is a solution
to the equation (3.1) on [0,T] if and only if there are « and € R such that

(3.10) u(t) = aui(t) + Bus(t)

t
+/ d[f ()lp™" (s) (va(s)ur(t) — vi(s)uz(t)) on [0,T],
0

where {uy,u2,v1,v2} is the fundamental system of solutions to the corresponding
homogeneous equation (pu')' + ¢'u =0 on [0,T] given by Definition rm2.8.

Proof. a) Let the function u be given by (3.10). Then obviously u € G,.,. Further-
more,

u' = aul + Bu)
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In virtue of the Substitution Theorem (cf. Proposition 1.1) and of Lemma 1.5 we
have

Analogously

p((/otd[f(S)]p‘l(S)m(S)),uz) _ (/Ot d[f(s)]vl(s)uQ(s))l_

Obviously,

we have
(3.11) pu’ = (a + /Ot d[f(s)]p_l(s)v2(3)>v1
#(5- [ s On)n+ s

and consequently, taking into account the definition of the functions wy, us, v1 and
V9, we obtain

Y+ du= (ot [ A )0+ dw)
#(5= [ AW 66 0h + )
#([ A6 6 atohons) = o)) + 7 = 1.

b) Let u and w be solutions to (3.1) on [0, 7] and let y = v —w. Then (py') +¢'y =
0 and the proof of this theorem is completed by making use of Corollary 2.9. O
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Similarly as the corresponding homogeneous equation
(pu') +q'u=0

treated in the previous section the present equation can be rewritten as a system of
two linear generalized differential equations, as well.

3.4. Proposition. A function u € G,,, is a solution to the equation (3.1) on [0,T]
if and only if there is a function v € BV ,,, such that

t t
(3.12) mn—mm—Ap*@mwnzép*@mﬂmxemﬂL

and

t
(3.13) v(t) — v(0) —i—/o dlg(t)]u(s) =0, te [0,T]

hold. For a given solution u of the equation (3.1) on [0,T] this function v is deter-
mined uniquely.

Proof. a) Let u € G,,, be a solution to (3.1) on [0,7]. Then by Lemma 1.5 we have

reg

(/otP(S)d[U(S)] + /0lt (/05 d[Q(T)]u(r)> ds — f>” o,

i.e. there are ¢y, c; € R such that

t t s
(3.14) / p(s)du(s)] + / ( / d[q(T)]u(T)) ds — f(t) —co—eit =0 on [0,T].
0 0 0
(The left-hand side of (3.14) being regular on [0, 77, it equals 0 for a.e. t € [0,T] if

and only if it equals 0 for all ¢ € [0,7T7].)
In particular, we have ¢y = —f(0) and

(3.15) Ap®wm»ﬁm+ﬂmzﬂuwm te0,T],

where
t
(3.16) v(t) =1 —/0 dlg(s)]u(s), te€][0,T].

Obviously, v(0) = ¢; and hence the equations (3.16) and (3.13) coincide. Moreover,
v € BV, and v given by (3.16) is the only function in BV ., such that (3.15) holds.
Differentiating (3.15) we obtain

(3.17) pu' —v=f"
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By (3.15) the function

(0= [ plo)auts)] - 701 € 0.7
is absolutely continuous on [0,7] and according to Lemma 1.5 we have
' =pu — f.
Thus the product
p~ir =pHpu' — f)

is by Definition 1.3 well defined. Making use of the Substitution Theorem (cf.
Proposition 1.1) and of Lemma 1.5 we obtain

t

p o= ([ @aren) = ([ awen - [ o)

== ([ earen)

wherefrom by (3.17) the relation

5.18 = o= ( [ 5 @airen)

follows. By Lemma, 1.5 the relation (3.18) holds if and only if there is a d € R such
that

(3.19) u(t)—/o pl(s)v(s)ds—/0 p Y(s)d[f(s)]=d on [0,T].

(The left-hand side of (3.19) is regular on [0,T].) Obviously d = u(0) and hence the
equations (3.19) and (3.12) coincide. We have shown that for any solution v € G
of (3.1) on [0, 7] there is a unique v € BV, such that (3.12) and (3.13) hold.

b) On the other hand, if u € G,., and v € BV, fulfil (3.12) and (3.13), then by
Lemma 1.5 the relations (3.18) and

reg

(3.20) v +qu=0

are true. It is easy to see that

p(p~'v) = .

Furthermore, by the Substitution Theorem (cf. Proposition 1.1) and Lemma 1.5

oo 1) =o( [ v o) = ([ pa] [ @aro))

([ o) =r
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Consequently, the relations (3.18) and (3.20) yield

(pe!)' +q'u = (p(p~"v) +p(p~" 1)) =/
:v'—i—f"—v':f"
i.e. w is a solution to (3.1) on [0,7T]. O

3.5. Remark. Results analogous to Theorem 3.3 and Proposition 3.4 for a system
similar to (3.12),(3.13) and corresponding to the case that f’ € BV and f’ is right-
continuous on (0,T] were given in [Mi83, Theorem I1.3.4].

The system (3.12),(3.13) may be rewritten in the vector form

t
a(t) — z(0) —/0 d[A(s)]z(s) = g(t) —9(0), t€[0,T],

u(t) o o H(s)d[f(s)]
z(t) = ( ) , g(t) = ) , t€[0,T]

where

and the 2 x 2-matrix valued function A(t) is given by (2.10), i.e.
0 (fpfl(s)ds
At) = , te[0,T].
—q(?) 0

A has a bounded variation on [0, T,
det (I . A—A(t)) —1

(cf. (2.11) and g is regulated and regular on [0,7]. Moreover, A and g are regu-
lar on [0,7T]. Consequently, [Tv91, Proposition 2.5] (whose assumption on the left-
continuity of A(t) and f(¢) on (0,7] was not exploited in the proof) ensures the
existence and uniqueness of solutions of the corresponding initial value problems.
This enables us to prove the following assertion.

3.6. Theorem. Let us assume (2.2) and (3.2) and let {uy,us,v1,v2} be the funda-
mental system of solutions to the corresponding homogeneous equation (pu') +q'u =
0 on [0,T] given by Definition 2.8. Then for any ug,vy € R there exists a unique
solution u € G,,, of (3.1) on [0,T] and a unique function v € BV ., such that (3.15),
u(0) = ug and v(0) = vy hold. This solution u(t) is given by (3.10), where o = ug
and 0 = vy. Furthermore,

(3.21) ott) = (o + [ a7 (oas) s 1)

0= [ A (6090
— AT ft)p~ (t)Aq(t) for all t € (0,T].
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Proof. It remains to show that in the formula (3.10) for u(¢) we may put a = uy
and # = w; and that the formula (3.21) is true. By (2.12) we have u;(0) = 1 and
u2(0) = 0. Hence (3.10) implies that u(0) = o = up. Furthermore, by (3.11) and
(3.17)

(3.22) v(t) = wq(t)v1(t) + wa(t)va(t) a.e. on [0,77],
where

t
(3.23) w1 (£) = g + /0 dLf(s)p~" (s)va(s), £ € [0,T]
and
(3.24) wa(t) = - /0 dlf () L(s)on(s), ¢ € [0,7]

It is easy to see that under our assumptions wy, and wy € G
(2.12)

reg and hence (cf. also

v(0) = v(04) = w1(0)v1(0) + w2(0)v2(0) = Bv2(0) = B,
i.e. we may put 8 = vg in (3.24). Furthermore, by (3.22)-(3.24) we have

v(t=) = wi(t)vr (t=) + wa(t)oa(t=) — A7 F(O)p~ (1) (01 (1) — va(t-))
for all t € (0,7).
Analogously
w(t+) = wi (o1 (t4+) + wa(t)va(t+) + AT f(#)p~ (8) (01 (t+) — v2(t+))
for all t € (0,7).

Since A~ f(t) = A*f(t) on (0,T) (f is regular on [0,T]), it follows that
o(t) = glo(t=) +o(t+)] = wi(t)vi(t) + wa(t)va(t)
+LATF(6)p L (1) (va(t) Ay () — v () Avy () for all £ (0,T).

Furthermore, we have

Avi(t) = —uy (H)Aq(t) and  Awvs(t) = —up(t)Aq(t)
on (0,T) (cf. Remark 2.5) and

w1 (H)va(t) — us(t)vr (£) = 1

on [0, T] (cf. Proposition 2.10). Hence the relation

v(t) = wi(H)or(t) + wa(t)oa(t) — A f(H)p " (£)Ag(t)

and consequently also the formula (3.21) hold for any ¢ € (0,T). (Let us recall that
the regularity of ¢ implies that Ag(t) = 2A ™ ¢(¢) holds for all ¢t € (0,7).)
Obviously, v(T') = w1 (T)v1(T) + we(T)v2(T), which completes the proof. O
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4. Example

In this section we will consider the boundary value problem

N
(4.1) u" +q'u= Zgjé’ﬁ,
j=1
(4.2) uw(0) =up, u(T) = ur,
where

0<T<T< - <Tn<T, u€eR, urelR

and functions g; (j = 1,2,...,N) continuously differentiable on [0,7] are given,
b7 = h’Tj, j=1,2,...,N,and h,;, j =1,2,..., N, stand for the regular Heaviside
functions with jumps at ¢ = 7, i.e.

0 for t <y,
hr, (1) = % for t =1y,
1 for ¢> 5.

A special case of the problem (4.1),(4.2) (with ¢/ = b, where b € L, », is piecewise
continuous and N = 1) was treated in [Ho85], where a procedure of its numerical
solution was suggested.

Let us put

N

Wy f=3 ( [aanen- [ ([ sg}(a)d[hﬁ(aﬂ)ds)

=1
for t € [0,T]. It is easy to verify that
N ' N
f’ — Z (gj5Tj — /0 g;' (S)d[h.rj (s)]> and f// _ Zgj(s;—j-
; Pt

Jj=1

It means that the equation (4.2) is a special case of the equation (3.1) treated in the
previous section.

Let {ui,u2,v1,v2} be the fundamental system of solutions to the corresponding
homogeneous equation " 4+ ¢'u = 0 on [0, 7] defined by Definition 2.8. By Theorem
3.6, for any ug,v9 € R there exists a unique solution v € G,.,, v € BV,,, of the
system

(4.4) v+ qdu=0, u—v=f
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on [0,7] such that «4(0) = wy and v(0) = wvp hold. (The function w(¢) is then
a solution to the equation (4.1), of course.) Inserting (4.3) into (3.10) and (3.21),
where p(t) = 1 on [0,7T], we obtain that this solution is given for ¢ € [0,T] by

(4.5) u(t) = (uo + a(t))ui(t) + (vo — b(t))uz(t) on [0,T]
and
(4.6) v(t) = (uo + a(t))vi(t) + (vo — b(t))va(t) +v(t) on [0,T]
where .
a(t) = hey (8) (g5 (rj)v2(7)) + gj(75)ua(1))),
=1
JN
b(t) =Y hury (1) (g5 (7)) w1 (7)) + g (75)ua (7))
j=1
and

N
V() =Y (hry (D9 (75) = A hey (£)g5 () A g(2)).

In particular, it is easy to see that Au(t) =0 for t ¢ {7, 72,...,7n}. Furthermore,
it follows from (4.4) and (4.5) that Au(rg) = gi(7) for £ = 1,2,..., N. Moreover,
we have

ATp(0) =Aw(T) =0 and Av(t) = —Aq(t)u(t) forall te (0,T).
Obviously, the function (4.5) fulfils (4.1) if and only if vy € R is such that
us(T)vg = ur — (ug + a(T))u1 (T) + b(T)uz(T).

Hence under the assumption that us(7T") # 0 for any uy € R and any up € R the
function u(t) given on [0,7] by

(4.7) ult) = (uo + a(t))ul(t)

N <u1 — (UO:;(GJ’E)T))UI (T) i [b(T) _ b(t)]>u2(t)

is the unique solution of the boundary value problem (4.1), (4.2).

The formula (4.7) enables us to get respectively precise or approximate values
of the solution u(t) of the boundary value problem (4.1), (4.2) once the precise or
approximate values ui(t), us(t), ¢t € [0,7] and v(7;), j = 1,2,..., N are available.
For example, the following graph and numerical values of the solution u(t) were
obtained from the formula (4.7) by means of the software system MATHEMATICA in
the case N =1, ug = u; = 0, 7y = 450, T = 600, ¢1(t) = My = 10°, and

—=20__10"3  if ¢t < 300,

! — 2.85x2.1
7(t) = { 50103 if ¢ > 300.
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Figure 1:
160 | 360 | 560
-400000
-800000
t u(t) t u(t)
0 350 | -706107.543

50 | -119379.035 | 449 | -830379.019
100 | -236269.111 | 450 | -331468.874
150 | -348233.159 | 451 | 167442.655
200 | -452936.817 | 500 | 113340.584
250 | -548197.095 | 525 | 85265.310
300 | -632027.890 | 550 | 56967.483
400 | -772819.890 | 600 -5.82 x10~1!

This example (with the same values of parameters as those chosen above) was
numerically treated in [Ho85]. Acording to [Ho85] the solution u(t) of the boundary
value problem (4.1),(4.2) with

q(t) = E(tI)DI(t)’ ug=u1 =0 and f"= My,

describes the binding moment in the beam of the length 1 subjected to the pressure
(or pull) P at the ends ¢ = 0 and ¢ = 1 and to the revolution moment M; at the
point t = T.
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