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0. Introduction

This paper deals with the space G(a,b) of regulated functions on a compact interval
[a,b]. Tt is known that when equipped with the supremal norm G(a,b) becomes a
Banach space, and linear bounded functionals on its subspace G (a,b) of functions
regulated on [a,b] and left-continuous on (a,b) can be represented by means of
the Dushnik-Stieltjes (interior) integral. This result is due to H. S. Kaltenborn [7],
cf. also Ch. S. Honig [5, Theorem 5.1]. Together with the known relationship between
the Dushnik-Stieltjes integral, the o-Young-Stieltjes integral and the Perron-Stieltjes
integral (cf. Ch. S. Honig [6] and S. Schwabik [11],[12]) this enables us to see that F
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is a linear bounded functional on Gy (a,b) if and only if there exists a real number
q and a function p(t) of bounded variation on [a, b] such that

F(z) = qz(a) +/ p(t)d[z(t)] for any z € Gy(a,b),

where the integral is the Perron-Stieltjes integral. We will give here the proof of this
fact based only on the properties of the Perron-Stieltjes integral. To this aim, the
proof of the existence of the integral

[ #odiae)

for any function f of bounded variation on [a, b and any function g regulated on [a, b]
is crucial. Furthermore, we will prove extensions of some theorems (e.g. integration-
by-parts and substitution theorems) needed for dealing with generalized differential
equations and Volterra-Stieltjes integral equations in the space G(a, b).

1 . Preliminaries

Throughout the paper R denotes the space of real n-vectors, R = R. Given z € R",
its arguments are denoted by zy,%9,...,2, (x = (z1,29,..., z,)). N stands for
the set of all natural numbers (N = {1,2,...}). Given M C R, xp denotes its
characteristic function (xa () =1if ¢t € M and xp(t) =0if t & M.)

Let —0o < a < b < oo. The sets d = {tg,1,...,t,} of points in the closed
interval [a, b] such that a =ty < t; < --- < t,, = b are called divisions of [a, b]. Given
a division d of [a, b], its elements are usually denoted by tg,t1,...,t,. The couples
D = (d,§), where d = {tg, t1,...,t,} is a division of [a,b] and £ = (&,&s, ..., &n) €
R™ is such that

tj_lggjétj for all j:1,2,...,m

are called partitions of [a, b].
A function f : [a,b] — R which possesses finite limits

ft+) = lim f(r) and f(s-) = lim f(7)

T—5—

for all ¢ € [a,b) and all s € (a,b] is said to be regulated on [a,b]. The set of all
regulated functions on [a,b] is denoted by G(a,b). Given f € G(a,b), we define

fla=) = fla), f(b+) = (D),
ATF(t) = f(t+) = f(t), A7) = f(t) — f(t-)

and
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Af(t) = ft+) = f(E=).

for any t € [a,b]. (In particular, we have A~ f(a) = ATf(b) = 0, Af(a) = AT f(a)
and Af(b) =A™ f(b).)

It is known (cf. [5, Corollary 3.2a]) that if f € G(a,b), then for any € > 0 the
set of points ¢ € [a, b] such that

AT > or |ATf()]>e

is finite. Consequently, for any f € G(a,b) the set of its discontinuities in [a, b] is
countable. The subset of G(a,b) consisting of all functions regulated on [a, b] and
left-continuous on (a, b) will be denoted by G (a,b).

A function f : [a,b] — R is called a finite step function on [a,b] if there exists
a division {tg,t1,...,t,} of [a,b] such that f is constant on every open interval
(tj—1,t;), 7 =1,2,...,m. The set of all finite step functions on [a, ] is denoted by
S(a,b). A functlon f : [a,b] — R is called a break function on |a,b] if there exist
sequences

{te}rz C [a, 0], {012}120:1 CR and {02}211 CR

such that ¢ #¢; for k#j, ¢, =0 if ty =a, ¢f =0 if t =b,

Z(‘ck‘jL‘ck ) <00
k=1
and
(1.1) FO=> g+ ¢f for t € [a,b]
<t tp<t
or equivalently

= Z ¢k Xl (8) + ¢ X@ey(t)  for t € a,b].
k=1

), then ATf(ty) = ¢f and A~ f(t;) = ¢, for any

Clearly, if f is given by (1.
t) = f(t+) if t € [a,b] \ {tx}?2,. Furthermore, we have

ke N and f(t—) = f(
f(a) =0 and

oo
varl f = Z (‘cﬂ + ‘c,ﬂ)
k=1

for any such function. The set of all break functions on [a, b] is denoted by B(a, b).
BV (a,b) denotes the set of all functions with bounded variation on [a, b] and

I fllev = |f(a)| +varlf for f € BV(a,b).
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It is known that for any f € BV (a,b) there exist uniquely determined functions
¢ € BV(a,b) and f® € BV (a,b) such that f¢ is continuous on [a, b], f® is a break
function on [a,b] and f(t) = f°(t) + f°(¢) on [a,b] (the Jordan decomposition of
f € BV(a,b)). In particular, if W = {wy}ren is the set of discontinuities of f in
[a, b], then

(1.2) )= > (A F(wr) X (1) + A F(0) X (1)) € [a,8].

k=1
Moreover, if we put

n

(1L3) £ = D0 (A7 (00 Xt (B) + A F(08) X1 (1)) on [a,]

k=1

for any n € N, then
(1.4) Tim |[f7 = fPllsv =0
(cf. e.g. [14, the proof of Lemma 1.4.23]). Obviously,
S(a,b) C B(a,b) C BV (a,b) C G(a,b).
Given f € G(a,b), we define

|F]l = sup [f(£)].

tela,b]

Clearly, ||f]| < oo for any f € G(a,b) and when endowed with this norm, G(a,b)
becomes a Banach space (cf. [5, Theorem 3.6]). It is known that S(a,b) is dense in
G(a,b) (cf. [5, Theorem 3.1]). It means that f: [a,b] — R is regulated if and only
if it is a uniform limit on [a, b] of a sequence of finite step functions. Obviously,
Gy (a,b) is closed in G(a,b) and hence it is also a Banach space. (Neither S(a,b)
nor B(a,b) are closed in G(a,b), of course.)

For some more details concerning regulated functions see the monographs by
Ch. S. Honig [5] and by G. Aumann [1] and the papers by D. Frankova [2] and [3].

The integrals which occur in this paper are the Perron-Stieltjes integrals. We
will work with the following definition which is a special case of the definition due
to J. Kurzweil [8].

Let —0o < a < b < co. An arbitrary positive valued function ¢ : [a, b] — (0, 00)
is called a gauge on [a,b]. Given a gauge ¢ on [a, b, the partition (d,§) of [a,b] is
said to be d-fine if

[t 1,t] C (& —0(§5),& +0(E)) forany j=1,2,...,m
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Given functions f, g : [a,b] — R and a partition D = (d, &) of [a, b], let us define

m

Sp(fAg) =" f(E)gt;) — g(tj—1)]-

J=1

We say that I € R is the Kurzweil integral of f with respect to g from a to b and
denote

b b
I= [ fdgo) or 1= [ fag
if for any £ > 0 there exists a gauge § on [a, b] such that
I —Sp(fAg)| <e

for all d-fine partitions D of [a, b].

The Perron-Stieltjes integral with respect to a function not necessarily of boun-
ded variation was defined by A. J. Ward [15] (cf. also S. Saks [10, Chapter VI]). It
can be shown that the Kurzweil integral is equivalent to the Perron-Stieltjes integral
(cf. [11, Theorem 2.1], where the assumption g € BV (a,b) is not used in the proof
and may be omitted). Consequently, the Riemann-Stieltjes integral (both of the
norm type and of the o-type, cf. [4]) is its special case. The relationship between
the Kurzweil integral, the o-Young-Stieltjes integral and the Perron-Stieltjes integral
was described by S. Schwabik (cf. [11] and [12]).

Since we will make use of some of the properties of the o-Riemann-Stieltjes inte-
gral, let us indicate here the proof that this integral is included in the Kurzweil in-
tegral. (For the definition of the o-Riemann-Stieltjes integral, see e.g. [4, Sec. 11.9].)

1.1. Proposition. Let f,g : [a,b] — R and I € R be such that the o-Riemann-
Stieltjes integral O'fab fdg exists and equals I. Then the Perron-Stieltjes integral

fab fdg exists and equals I, as well.

Proof. Let

b

o / fdg=1¢€eR,
i.e. for any £ > 0 there is a division dy = {s¢, $1...,8my} 0f [a,b] such that for any
division d = {tg,11,...,t,} which is its refinement (dy C d) and any & € R™ such
that D = (d, ) is a partition of [a, b] the inequality

SD(ng)—I <eg
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is satisfied. Let us define

{ %min{|t—sj|;j:0,1,...,m0} if t¢do,

0:(t) =
() € lftEdO

Then a partition D = (d, &) of [a,b] is d.-fine only if for any j = 1,2,...,mg there
is an index 7; such that s; = &;,. Furthermore,

m

So(f Ag) = | FE)a(t) = ()] + FE)9() = 9(t;-1)]

J=1

for any partition D = (d, ) of [a, b]. Consequently, for any d.-fine partition D = (d, £)
of [a, b] the corresponding integral sum Sp(f Ag) equals the integral sum Sp/(f Ag)
corresponding to a partition D' = (d',&'), where d' is a division of [a, b] such that
dy C d', and hence

‘SD/(ng) —I‘ <e.

This means that the Kurzweil integral fab fdg exists and

b b
/fdgza/ fdg=1
holds. O

To prove the existence of the Perron-Stieltjes integral fab fdg for any f €
BV (a,b) and any g € G(a,b) in Theorem 2.8 the following assertion is helpful.

1.2. Proposition. Let f € BV (a,b) be continuous on [a,b] and let g € G(a,b),
then both the o-Riemann-Stieltjes integrals

b b
a/ fdg and 0/ gdf

Proof. Let f € BV (a,b) which is continuous on [a,b] and g € G(a,b) be given
According to the integration-by-parts formula [4, I1.11.7] for o-Riemann-Stieltjes

exi1st.

integrals to prove the lemma it is sufficient to show that the integral o fab gd f exists.
First, let us assume that an arbitrary 7 € [a, 0] is given and g = X[4,-]. Let us put

g — {a,b} if T=aor 7=0,
"7 {a,7,b} if 7€ (a,b).
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It is easy to see that then for any partition D = (d, ) such that
do Cd = {to,t1,... tm}
we have 7 =t for some k£ € {0,1,...,m} and
f(r) = fla) if &>,
fltier) = fla) if G=1.

Since f is assumed to be continuous, it is easy to show that for a given £ > 0, there
exists a division d, of [a, b] such that dy C d, and

1Sp(gAf) = [f(r) = fla)]] < ¢
holds for any partition D = (d, ) of [a, b] with d, C d, i.e.

Sp(gAf) = {

b
O'/ X[a,r1df = f(7) — f(a) forall 7 € a,b]

By a similar argument we could show the following relations:

b
O'/ Xlandf = f(7) = f(a) forall 7€ (a,b],

b
o [ Xewdf = F0) = £) forall 7€ fad],

and
b
0’/ Xrpdf = f(b) — f(r) forall 7€ la,b),

as well.
It follows that the integral

a/abgdf

exists for any f € BV (a, b) continuous on [a, b] and any g € S(a,b) (cf. Remark 2.2).
Now, if ¢ € G(a,b) is arbitrary, then there exists a sequence {g,}%>, C S(a,b)
such that

lim ||g, — g|| = 0.
n—oo

Since by the preceding part of the proof of the lemma all the integrals o f: gnd f
have a finite value, by means of the convergence theorem [4, Theorem II1.15.1] valid
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for o-Riemann-Stieltjes integrals we obtain that the integral o fab gdf exists and
the relation

b b
lima/ gndf:a/ gdf e R

n— 00

holds. This completes the proof. O

A direct corollary of Proposition 1.2 and of [4, Theorem I1.13.17] is the following
assertion which will be helpful for the proof of the integration-by-parts formula
Theorem 2.15. (Of course, we could prove it by an argument similar to that used in
the proof of Proposition 1.2, as well.)

1.3. Corollary. Let f € BV (a,b) and g € G(a,b). Let
ATf()ATg(t) = A" f()Ag(t) =0 for all t € (a,b).

Then both the o-Riemann-Stieltjes integrals

b b
a/ fdg and a/ gdf

exist. 0

It is well known (cf. e.g. [14, Theorems 1.4.17, 1.4.19 and Corollary 1.4.27] that
if f € G(a,b) and g € BV (a,b), then the integral fab fdg exists and the inequality

b
| [ rdg| < 5 (varte)
a
holds. The Kurzweil integral is an additive function of intervals and possesses the
usual linearity properties. For the proofs of these assertions and some more details

concerning the Kurzweil integral with respect to functions of bounded variation see
e.g. [8], [9], [13] and [14].

2 . Perron-Stieltjes integral with respect to regu-
lated functions

In this section we deal with the integrals

[ o) and [ gaire,
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where f € BV (a,b) and g € G(a,b). we prove some basic theorems (integration -
by - parts formula, convergence theorems, substitution theorem and unsymmetric
Fubini theorem) needed in the theory of Stieltjes integral equations in the space
G(a,b). However, our first task is the proof of existence of the integral fab fdg for
any f € BV (a,b) and any g € G(a,b). First, we will consider some simple special
cases.

2.1. Proposition. Let g € G(a,b) be arbitrary. Then for any T € [a,b] we have
b

(2.1) / X[a,1dg = g(T+) — g(a),
(2.2) /bxmdg—g (=) — g(a),
(2.3) /bebdg =g(b) — g(m—),
2.4 [ xeos = g0) - otr4)
and

(2.5) / xdg = g(r+) — g(r),

where X1q)(t) = x@)(t) = 0 and the convention g(a—) = g(a), g(b+) = g(b) is used.

Proof. Let g € G(a,b) and 7 € [a, b] be given.
a) Let f = X[a,77- It follows immediately from the definition that

/ " fdg = g(r) — gla).

In particular, 2.1 holds in the case 7 = b. Let 7 € [a, b), let £ > 0 be given and let

5.0 slt—t] if T<t <),
o € it t=r.

It is easy to see that any d.-fine partition D = (d, &) of [r, b] must satisfy
&L =to=71, ti<T+e and Sp(fAg)=g(t1)— g(7).

Consequently,

/ fdg=g(r+) —g(7)

and
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/abfdgz/anngr/bedg

=g(7) — g(a) + g(7+) — g(7) = g(7+) — g(a),

i.e. the relation (2.1) is true for every 7 € [a, b].

b) Let f = Xpo,r). If 7 =@, then f =0, g(7—) — g(a) = 0 and (2.2) is trivial. Let
7 € (a,b]. For a given £ > 0, let us define a gauge d. on [a, 7] by

5.0 Hr—t] ifa<t<r,
S € if t=r.

Then for any d.-fine partition D = (d, &) of [a, 7] we have

b = gm =T, b1 <T—¢ and SD(f Ag) = g(tmfl) - g(a)

It follows immediately that

/T fdg=g(r—) —g(a)

and in view of the obvious identity
b
/ fdg =0,

¢) The remaining relations follow from 2.1, 2.2 and the equalities

this implies (2.2).

X[m,b] = Xap] — Xa,7)s  X(m,0] = Xa,0] — XJa,7]
and

X[T] = X[G,T} - X[aﬂ—)'
U

2.2. Remark. Since any finite step function is a linear combination of functions
Xirp) (@ <7 <b) and x(ry (@ <7 < b), it follows immediately from Proposition 2.1

that the integral f: fdg exists for any f € S(a,b) and any g € G(a,b).

Other simple cases are covered by
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2.3. Proposition. Let T € [a,b]. Then for any function f : [a,b] — R the following
relations are true

b B —f(r) if T <,
(26) / fdXio) = { 0  if =0,
b B —f(r) if T>aq,
(27) / fdXiom = { 0  if r=a,
b B f(r) if 7> a,
(28) / Tdxirn = { 0  if r—a,
b B f(r) if T<b,
(29) / T dxen = { 0 if r=0
and
b _f(a’) Zf T =a,
(2.10) / fdxi = 0 if a<T<b,
' fo) i T=b,

where x1q)(t) = x@)(t) = 0 and the convention gla—) = g(a), g(b+) = g(b) is used.
For the proof see [14, 1.4.21 and 1.4.22]. O

2.4. Corollary. Let W = {wy,ws,...,w,} C [a,b], ¢ € R and h : [a,b] — R be

such that

(2.11) h(t)y=c forall t€[a,b]\W.
Then

(2.12) / Fdh = fO)A) — ] — f(a)h(a) - ¢

holds for any function f : [a,b] — R.
Proof. A function h : [a,b] — R fulfils (2.11) if and only if

h(t) =c+ > [h(w;) — dxpw,)(t) on [a,b].

Thus the formula (2.12) follows from (2.6) (with 7 = b) and from (2.10) in Propo-
sition 2.3. O
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2.5. Remark. It is well known (cf. [14, 1.4.17] or [13, Theorem 1.22]) that if
g € BV(a,b), h:[a,b] — R and h, : [a,b] — R, n € N, are such that fab hndg exist
for any n € N and limy, o ||k, — k]| = 0, then fab hdg exists and

b b
(2.13) lim hndg:/ hdg

n—o0 a

holds. To prove an analogous assertion for the case g € G(a,b) we need the following
auxiliary assertion.

2.6. Lemma. Let f € BV(a,b) and g € G(a,b). The the inequality

(2.14) S (f Ag)l < (If (@)l + £ (b)] + varg f) gl

holds for an arbitrary partition D of [a,b].

Proof. For an arbitrary partition D = (d, &) of [a,b] we have (putting £ = a and
€m+1 = b)

m+1

1Sp(f Ag)l =1f(b)g(b) — fla)g(a) = Y [f(&) — F(&-1)]g(t;m)]

j=1

m+1

< (I£®)+ 1/ |+Z|f§ 7(&1)1)llol
< (If @]+ 1£®)] +varl f)g]]

2.7. Theorem. Let g € G(a,b) and let hy,, h: [a,b] — R be such that
b
/ hndg exzists for any n € N and lim ||h, — h||sy = 0.
a n—o00

Then fab hdg exists and (2.13) holds.
Proof. Since

FO] < 1f(@)]+[f(0) = fa)] < [f(a) + vargf,
we have by (2.14)

1Sp((hm — i) Ag)| < 2[[ P — hi[|sv [| 9]
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for all m,k € N and all partitions D of [a, b]. Consequently,

b
‘ / (M, — hk)dg‘ < 2[| A — Iy |9

holds for all m, k € N. This immediately implies that there is a ¢ € R such that

b
lim h,dg = q.

n— 00

It remains to show that

b
(2.15) q:/ hdg.

For a given € > 0, let ng € N be such that

b
(2.16) ‘/ hpydg — q‘ <e and ||h,, — bl <e,

and let 0. be such a gauge on [a, b] that

b
(2.17) ‘SD(hno Ag) —/ hnodg‘ <e

for all d.-fine partitions D of [a,b]. Given an arbitrary d.-fine partition D of [a, b],
we have by (2.16), (2.17) and Lemma 2.6

lg — Sp(h Ag)|
<Jo= [ st + | [ ads = (i 530
+ |So(hny Ag) = Sp(h Ag)|

< 22 + [Sp([hng — h Ag)| < 2¢ + 2[|hn, — hllsv gl < 22 (1 + lgl])

wherefrom the relation (2.15) immediately follows. This completes the proof of the
theorem. O

Now we can prove the following

2.8. Theorem. Let f € BV (a,b) and g € G(a,b). Then the integral

/abfdg
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exists and the inequality

(218) | [ rdg| < (5@1+ @)+ vark ) ]

holds.

Proof. Let f € BV (a,b) and g € G(a,b) be given. Let W = {wy}ren be the set of
discontinuities of f in [a,b] and let f = f° + f® be the Jordan decomposition of f
(i.e. f€ is continuous on [a,b] and f® is given by (1.2)). We have

Tim [1£2 = ¥l = 0
for f2, n € N, given by (1.3). By (2.3) and (2.4),
b n
2.19) [ £ =37 A" Fwn) o) - g(wnt)
a k=1

+ A f(we)(g(b) — g(wr—))]

holds for any n € N. Thus according to Theorem 2.7 the integral fab fPdg exists
and

b b
(2.20) / f?dg = lim / frdg.
a n—oo a

The integral fab f°dg exists as the o-Riemann-Stieltjes integral by Proposition 1.2.
This means that fab fdg exists and

b b b b b
[ rag= [ sag [ rrag= [ reags im [ g
a a a a n—00 a
The inequality (2.18) follows immediately from Lemma 2.6. O
2.9. Remark. Since

> I[ATF(we)(g(b) = glwt)) + A f(wi) (9(6) — g(we—))] |

<2)lg] 3 (1A% F(wi)] + A~ F(w)]) < 2lg](vark f) < oo

k=1
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we have in virtue of (2.19) and (2.20)
b [
(221) [ 1249 =3 18 ) 9(0) - g(unt)
a k=1

+ A f(we) (g(b) — glwr—))].

As a direct consequence of Theorem 2.8 we obtain

2.10. Corollary. Let h,, € G(a,b), n € N, and h € G(a,b) be such that
lim ||, — h|| = 0.
n—o0

Then for any f € BV (a,b) the integrals

b b
/fdh and /fdhn,neN, exist

and

2.11. Lemma. Let h: [a,b] - R, ¢ € R and W = {wy}ren C [a,b] be such that
(2.11) and

o0

(2.22) > h(wg) = ¢] < 00

k=1
hold. Given n € N, let us put Wy, = {wy, ws, ..., w,} and

c if te€la,b]\ Wy,
(2.23) ha(t) =
ht) if te W,
Then h,, € BV (a,b) for any n € N, h € BV (a,b) and
(2.24) Tim [[hy, = hllsvy =0

Proof. The functions h,, n € N, and h evidently have a bounded variation on [a, b].
For a given n € N, we have

0 if teW,or tela,b\W
hn(t) if t = wy for some k > n.

hn(t) - h’(t) = { .
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Thus,
(2.25) nlg{)lo hn(t) = h(t) on la,b]
and, moreover,
Z | (hn(t5) = h(t;)) = (hu(ti1) = h(t;-)) | <2 D [h(wy) — ¢

holds for any n € N and any division {tg,t1,...,tn,} of [a,b]. Consequently,

(2.26) varh (hy —h) <2 ) [h(wg) — |
k=n+1

holds for any n € N. In virtue of the assumption (2.22) the right-hand side of (2.26)
tends to 0 as n — oo. Hence (2.24) follows from (2.25) and (2.26). O

2.12. Proposition. Let h : [a,b] — R, ¢ € R and W = {wg}ren be such that
(2.11) and (2.22) hold. Then

o0

[ g = 3 lh(u) ~ Ag(un) +clg®) - g(a)

@ k=1
holds for any g € G(a,b).
Proof. Let g € G(a,b) be given. Let W,, = {wy,ws, ..., w,} for n € N and let the
functions h,, n € N, be given by (2.23). Given an arbitrary n € N, then (2.1) (with
7 =10) and (2.5) from Proposition 2.1 imply

n

[ g = Y lhtws) = dglwn) + clo(®) - o)

a k=1

Since (2.22) yields

Z‘ (wg —cAg(wk)‘<2||g||Z|hwk —c <0

k=1

and Lemma 2.11 implies
lim ||h, — hllgy =0,
n—o00

we can use Theorem 2.7 to prove that

o0

[ g = lim [ hadg = Y (hwn) - IAg(w) + elo(t) - o)

n— 00
k=1
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2.13. Proposition. Let h:[a,b] — R, c € R and W = {wy }ren fulfil (2.11). Then

.27 [ = rO0) = - @@

holds for any f € BV (a,b).

Proof. Let f € BV (a,b). For a given n € N, let W,, = {wy, ws, ..., w,} and let h,
be given by (2.23). Then

(2.28) lim ||h, — h|| = 0.

n— 00
Indeed, let € > 0 be given and let ng € N be such that k£ > ny implies
(2.29) |h(wy) —¢| < e.

(Such an ng exists since |h(wg) — ¢| = |A7h(wy)| = |[ATh(wg)| for any & € N and
the set of those £ € N for which the inequality (2.29) does not hold may be only

finite.) Now, for any n > ny and any ¢ € [a,b] such that t = wy for some k£ > n
(t € W\ W,) we have

i (8) = (D) = [ (w) = h(wi)| = |e = h(wg)] <e.

Since h,,(t) = h(t) for all the other ¢ € [a,b] (¢t € ([a,b] \ W) UW,), it follows that
|hn(t) — h(t)| < € on [a,b], i.e.

|hn — | < e.

This proves the relation (2.28).
By Corollary 2.4 we have for any n € N

/ fdh, = FB)Rb) — ] — F(a)[h(a) — c].

Making use of (2.28) and Corollary 2.10 we obtain we obtain

/fdh— hrn/ Fdhy = FO)RO) — ] — f(a)[hla) — d.
]

2.14. Corollary. Let h € BV (a,b), ¢ € R and W = {wy}ren fulfil (2.11). Then
(2.27) holds for any f € G(a,b).

Proof. By Proposition 2.12, (2.27) holds for any f € BV (a,b). Making use of the
density of S(a,b) C BV (a,b) in G(a,b) and of the convergence theorem mentioned
in Remark 2.5 we complete the proof of our assumption. O
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2.15. Theorem. (Integration-by-parts) If f € BV (a,b) and g € G(a,b), then
both the integrals fab fdg and fab gdf exist and

(2.30) / Fdg+ / gdf = f(b)g(b) — f(a)g(a)

+ Y [ATFAg(t) — AT (B AT(8)].

t€(a,b]

Proof. The existence of the integral f: gdf is well known, while the existence of

fab gdf is guaranteed by Theorem 2.8. Furthermore,

/abfdg+/abgdf

_ / F()dlg(t) + Atg(t)] + / gl (1) — A~ F(1)
- / FHAIATg(1)] + / g(H)dIAF (1),

It is easy to verify that the function h(t) = ATg(¢) fulfils the relation (2.11) with
¢ =0 and h(b) = 0. Consequently, Proposition 2.13 yields

[ roaiaton = - s@atgto)
Similarly, by Corollary 2.14 we have
[ ataa s =000
Hence
ean [ g+ [Cowar= [ soaisenr+ [ gware-
+ F@)AYg(a) + A (B (h).

The first integral on the right-hand side may be modified in the following way:

e32) [ sodgen) = [ redaenl+ [ A @)
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Making use of Proposition 2.12 and taking into account that Ag;(¢t) = Ag(¢) on
[a, b] for the function g; defined by g;(t) = g(t+) on [a, b], we further obtain

(23 [ A s = 3 A rwgt)
a tela,b]
Similarly,
@30 [ e@dse= [ genase- / A*g()lf(t-)
— [ stenife-)) - > At

The function f(t—) is left-continuous on [a, b], while g(t+) is right-continuous on
[a,b). It means that both the integrals

[ reodlgen) and [ gendisie-)

exist as the o-Riemann-Stieltjes integrals (cf. Corollary 1.3), and making use of the
integration-by-parts theorem for these integrals (cf. [4, Theorem I1.11.7]) we get

23 [ relsen]+ [ analse) = 16-)a0) - f@las),

Inserting (2.32) - (2.35) into (2.31) we get

/ fdg+ / gdf = F(b-)g(b) — f(a)g(a+t)

+ Y ATF(B[ATg() + ATg(t)]
te(a,b]

= ) [ATF() + ATF()]ATg(t)
t€la,b)

+ f(a)A%g(a) + A7 f(b)g(b)
f()g(b) — f(a)g(a)

+ 3 [ATF()ATg(E) — AT F(H) A g(1)]

t€la,b]

and this completes the proof O
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The following proposition describes some properties of indefinite Perron-Stieltjes
integrals.

2.16. Proposition. Let f : [a,b] — R and g : [a,b] — R be such that fab fdg
exists. Then the function
t
~ [ 14y

(i) if g € G(a,b), then h € G(a,b) and

is defined on [a,b] and

(2.36) ATh(t) = f(t)ATg(t), ATh(t) = f(t)A g(t) on a,b];

(ii) if g € BV (a,b) and f is bounded on |a,b], then h € BV (a,b).

Proof. The former assertion follows from [8, Theorem 1.3.5]. The latter follows
immediately from the inequality

S| [ sa0] <2151 0] = slart
j=1 7ti-1 =

which is valid for any division {to,t1,...,tx,} of [a,b]. O

In the theory of generalized differential equations the substitution formula

2:37) [ 10l [ rease] = [ aosoae

is often needed. In [4, I1.19.3.7] this formula is proved for the o-Young-Stieltjes
integral under the assumption that g € G(a,b), h is bounded on [a,b] and the
integral fab fdg as well as one of the integrals in (2.37) exists. In [14, Theorem
[.4.25] this assertion was proved for the Kurzweil integral. Though it was assumed
there that g € BV (a, b), this assumption was not used in the proof. We will give here
a slightly different proof based on the Saks-Henstock lemma (cf. e.g. [13, Lemma
1.11)).

2.17. Lemma. (Saks-Henstock) Let f,g : [a,b] — R be such that the integral
fab fdg exists. Let € > 0 be given and let 6 be a gauge on [a,b] such that

Sp(f Ag) —/abfdg\ <e
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holds for any 0-fine partition D of [a,b]. Then for an arbitrary system {([3:, vil, 04),
i=1,2,...,k} of intervals and points such that
(2.38) a<h <o << <Hh<o<ulh
and
[Bi, i) C [os — 6(03),00 +d(0y)], i=1,2,...,k,
the inequality

(2.39) \Z[ o) ~90)] - [ o] <=

holds. O

Making use of Lemma 2.17 we can prove the following useful assertion

2.18. Lemma. If f : [a,b] = R and g : [a,b] — R are such that fab fdg exists,
then for any € > 0 there exists a gauge § on |a,b] such that

(2.40) i\ F&)latt) — o))~ [ o] <=

-1
holds for any §-fine partition (d,§) of |a, b].
Proof. Let § : [a,b] — (0,00) be such that

S0(7 ) - /fdg\—\zf@ ) ot~ [ sag] <

tj—1

for all d-fine partitions D = (d, £) of [a, b]. Let us choose an arbitrary d-fine partition
D = (d,§) of [a,b]. Let v; =t,, and §; = t,,_1, 7 =1,2,...,k, be all the points of
the division d such that

Vi

FElg(vi) — 9(Bi)] — g fdg > 0.

Then the system {([8;,vi],0:), i = 1,2,...,k}, where 0, = &,,, fulfils (2.38) and
(2.39) and hence we can use Lemma 2.17 to prove that the inequality

éi‘f@@ﬂgﬁﬂ—wﬂ@ﬂ—ié?fdd<<%

is true. Similarly, if w; = ¢, and 0; = t,,_1, ¢ = 1,2,...,r are all points of the
division d such that

ealot) 90— [ sag <o
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the the inequality

> |stenloted o001~ [ rag] <

i=1 i
follows from Lemma 2.17, as well. Summarizing, we conclude that

> [slatt) st = [ sl

j—

= i F(&la(n) — 9(8)] - /ﬁ " fag)

P

+ Z (ealate) —900] - | fdg|

€ € _
<§+§—6.

This completes the proof. O

2.19. Theorem. Let h: [a,b] — R be bounded on [a,b] and let f,q: [a,b] — R be
such that the integral fab fdg exists. Then the integral

[ nos@ago)

exists if and only if the integral

[ nwal [ st

exists, and in this case the relation (2.37) holds.

Proof. Let |h(t)] < C < oo on [a,b]. Let us assume that the integral

/ B(t) F(£)dg(1)]

exists and let € > 0 be given. There exists a gauge d; on [a, b] such that

> e ©)lo(t) - o] = [ b Oals(0)] < 5
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is satisfied for any d;-fine partition (d,&) of [a,b]. By Lemma 2.18 there exists a
gauge 0 on [a,b] such that 6(¢) < 6;(¢) on [a,b] and

tj
Z\f@ D=atol- [ g < o
tj—1
holds for any d-fine partition (d, &) of [a, b]. Let us denote

t
:/fdg for t € [a,b].

Then for any d-fine partition D = (d, &) of [a, b] we have
b
[Spiha) — [ ho) fBdig(o)]

he) / fdg - Zh@ E)la(t) — g(t; )]

J—

MEN(€)lalty) — o(ts-0] = [ (07 () (0]

T Ms TH'MS T_IMS

+\Zh@ &)l )—g(tj1)]—/abhfdg‘<e

n(e) / fdg — £(&)lot;) — olt;-1)]|

This implies the existence of the integral

b
/ hdk

and the relation (2.37). The second implication can be proved in an analogous
way. ]

The convergence result 2.10 enables us to extend the known theorems on the
change of integration order in iterated integrals

ey [owa] [weaase]. ([ owanen)ae

where —0o < ¢ < d < oo and h is of strongly bounded variation on [c,d] X [a, b]
(cf. [14, Theorem 1.6.20]). In what follows v(h) denotes the Vitali variation of the
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function h on [e,d] x [a,b] (cf. [4, Definition 111.4.1] or [14, 1.6.1]). For a given
t € [c,d], var®h(t,.) denotes the variation of the function s € [a,b] — h(t,s) € R on
[a, b]. Similarly, for s € [a, b] fixed, var?h(., s) stands for the variation of the function
t € [e,d] — h(t,s) € R on [c,d].

2.20. Theorem. Let h: [c,d] X [a,b] — R be such that
v(h) + var’h(c,.) 4+ varth(.,a) < oco.

Then for any f € BV (a,b) and any g € G(c,d) both the integrals (2.41) exist and

ewy [Cowa [l = [ ([ swameon)ao

Proof. Let us notice that by [14, Theorem 1.6.20] our assertion is true if ¢ is also
supposed to be of bounded variation. in the general case of g € G(a, b) there exists a
sequence {g,}5, C S(a,b) such that lim,_, ||g — gn|| = 0. Then, since the function

u(t) = / h(t, $)dLf (s)]

is of bounded variation on [c,d]| (cf. the first part of the proof of [14, Theorem
1.6.20]), the integral on left-hand side of (2.42) exists and by Corollary 2.10 and [14,
Theorem 1.6.20] we have

d

ey [Cowal [ a9 = im [ awal [ ]

n—00 c

m [ (/Cdgn(t)dt[h(t, s)])d[f(s)].

n—0o0 a

Let us denote
d
wy (1) = / (O difh(t,s)] for scab and neN.

Then w, € BV (a,b) for any n € N (cf. [14, Theorem 1.6.18]) and by [14, Theorem
[.4.17] mentioned here in Remark 2.5 we obtain

lim w,(s) :/ gn(t)di[h(t, s)] := w(s) on [a,b].

n—oo

[wn(s) = w(s)| < [lgn — gll (varch(., 5)) < llgn — gll(v(h) + vargh(.,a))
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for any s € [a,b] (cf. [14, Lemma 1.6.6]), we have
lim ||w, —w]|| =0.
n—o00

[t means that w € G(a,b) and by Theorem 2.8 the integral

/abw(sm[f(s)] _ / ( /Cdg(t)dt[h(t, $))dIf (s)

exists as well. Since obviously

lim b(/cdgn(t)dt[h,(t, 9])dlF(s)] = lim /abwn(s)d[f(s)]

:/abw(s)d[f(s)]:/ab</Cdg(t)dt[h(ta3)])d[f(3)]a

the relation (2.42) follows from (2.43). O

3 . Linear bounded functionals on G (a,b)

By Theorem 2.8 the expression

(3.) Fyfo) = aola) + [ pdg

is defined for any = € G(a,b) and any n = (p,q) € BV (a,b) x R. Moreover, for any
n € BV (a,b) x R, the relation (3.1) defines a linear bounded functional on G (a, b).
Proposition 2.3 immediately implies

3.1. Lemma. Let n = (p,q) € BV(a,b) x R be given. Then

(3.2) Fy(X[a) = ¢,
Fy(X(zy) =p(7) for any 7 € [a,b),

O

3.2. Corollary. If n = (p,q) € BV (a,b) x R and F,(z) = 0 for all v € S(a,b)

which are left-continuous on (a,b), then p(t) =0 on [a,b] and ¢ = 0. .
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3.3. Lemma. Letx € G(a,b) be given. Then for a given n = (p,q) € BV (a,b) xR,

(3.3) F,(x)=z(a) if p=0 on [a,b] and q=1,
Fy(x)=z(b) if p=1 on [a,b] and ¢q=1,
Fﬂ(x) = x(r—) if p= Xa,r) ON [Cl, b]a T € (Cl, b] and q=1,
F,(z) =x(1+) if p=Xgun on [a,b], T €[a,b) and ¢=1.
Proof follows from Proposition 2.1. O

3.4. Corollary. If x € G(a,b) and F,(x) = 0 for all n = (p,q) € BV(a,b) x R,
then

(3.4) z(a) = z(a+) = z(7—) = x(7+) = 2(b—) = x(b)

holds for any T € (a,b). In particular, if x € G,(a,b) (x is left-continuous on (a,b))
and F,(x) =0 for all n = (p,q) € BV (a,b) x R, then x(t) =0 on [a, b]. 0

3.5. Remark. The space BV (a,b) x R is supposed to be equipped with the usual
norm (||nllsvxzr = |¢| + ||pllsv for n = (p,q) € BV (a,b) x R). Obviously, it is a
Banach space with respect to this norm.

3.6. Proposition. The spaces G,(a,b) and BV (a,b) x R form a dual pair with
respect to the bilinear form

(3.5) r € Gy(a,b),n € BV (a,b) x R — F,(x).
Proof follows from Corollaries 3.2 and 3.4. U

On the other hand, we have

3.7. Lemma. If F is a linear bounded functional on G,(a,b) and

o(t) = { F(x@y) if te€la,b),

(3.6) _
F(xg) if t=0,

then p € BV (a,b) and

(3.7) Ip(a)] + |p(b)| + varip < 2||F|],
where
|F|| = sup |F' ()],

z€Gy (a,b),||z||<1
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Proof is analogous to that of part ¢ (i) of [5, Theorem 5.1]. Indeed, for an arbitrary
division {tg,t1,...,tm} of [a,b] we have

sup_|p(@)en + p(B)emss + _[plt;) = pltj-1)le
lej<1,c;€R

j=1
m—1
= sup ‘F (0 X(apl + Cmrt X6l = 3, €5 X(t-1t5]  Cm Xt 1,8))
lej[<L,c;€R j=1

lIR]|<2,h€GL (a,b)

< sup [F(h)] = 2[|F].

In particular, for ¢g = sgnp(a), ¢np1 = sgnp(b) and ¢; = sgn(p(t;) — p(tj_1)),
J=12,...,m, we get

p(a)] + |p(b)| + Z Ip(t;) = p(ti-2)| < 2| Fl,

and the inequality (3.7) immediately follows. O

Using the ideas from the proof of [5, Theorem 5.1] we may now prove the following
representation theorem.

3.8. Theorem. F is a linear bounded functional on G;(a,b) (F € G*(a,b)) if and
only if there is an n = (p,q) € BV (a,b) X R such that

b
(3.8) F(z) = F,,(x)( = qz(a) —|—/ pdx) for any = € G,(a,b).
The mapping
¢:neBV(a,b) xR — F, € G;(a,b)
18 an isomorphism.
Proof. Let a linear bounded functional F' on G (a,b) be given and let us put

F(xun) if 1€ a,b)

(3.9) ¢=FX@n) and p(t) = { F(xp) if t=0.

Then Lemma 2.6 implies n = (p,q) € BV (a,b) x R and by Lemma 3.1 we have

F(Xap) = Fy(Xan),
F(xwy) = Fy(xey) forany € la,b)
and
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F(xp) = Fylxp)-

Since all functions from S(a,b) NGy, (a,b) obviously are finite linear combinations of
the functions

Xiaps X(rps T € [a,0), xp,

it follows that F'(z) = F,(x) holds for any z € S(a,b) NGy (a,b). Now, the density
of S(a,b) NGy (a,b) in G, (a,b) implies that

F(z) = F,(x) forall z¢€ Gy(a,b).

This completes the proof of the first assertion of the theorem.
Given an z € G (a,b), then Lemma 2.6 yields

|1Fy(@)] < (Ip(a)] + [p(b)| + vargp + |g|) |||

and consequently,
1F, 1| < Tp(a)] + [p(d)] + vargp + [a] < 2([lpllev + lal) = 2[|nlsv <.

On the other hand, according to Lemma 3.7 we have

Ipllev < (Ip(a)] + |p(b)] + vargp) < 2(|F||.
Furthermore, in virtue of (3.9) we have |g| < ||F|| and hence

1nllsvxr = lIpllev + lal < 2[|F].
It means that
SIEN < vz < 3|1 F|

and this completes the proof of the theorem. O
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