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Summary. In the paper we present some new existence results for nonlinear second order
generalized periodic boundary value problems of the form (0.1), (0.2). These results are based
on the method of lower and upper functions associated with the problem and their relation to
the Leray-Schauder topological degree of the corresponding operator. Our main goal consists
in a fairly general definition of lower and upper functions as couples of functions from AC [a, b] x
BV [a,b]. Some conditions ensuring the existence of such functions are indicated, as well.
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0. Introduction

In this paper we give existence theorems for the generalized periodic boundary
value problem

(0'1) u" = f(t7u7u’)7

(0.2) u(a) = u®), u'(a) = wu'(b)).

Using these results (Theorems 4.1 - 4.3) we can get both the existence and
multiplicity for solutions of various periodic problems and their generalizations.

One of such possible applications is shown in Corollary 4.4 which generalizes
some results of [3], for other applications see [8] or [9].
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The main tool of our arguments is a connection between the existence of lower
and upper functions for (0.1), (0.2) (called also lower and upper solutions by some
authors) and the Leray-Schauder topological degree of an operator associated
with (0.1), (0.2).

The notions of lower and upper functions of the second order boundary value
problems have a long history starting in 1931 when G. Scorza Dragoni [10] used
them for the Dirichlet problem. So far there have been a lot of definitions in-
troduced. Classically, we understand lower and upper functions as C2-functions.
Differential equations with Carathéodory right hand sides or with singularities
involved their generalization, for example as AC'-functions, C' -functions having
left and right second derivatives or W?!-functions. The majority of existence
results was gained under the ordering assumption that a lower function is less
than or equal to an upper one. During the last two decades the extension to non-
ordered or reversely ordered lower and upper functions was attained. See [1] and
the references mentioned there. Here, we introduce a definition (cf. Definition
1.7) of lower and upper functions of the problem (0.1), (0.2) which generalizes
those of [1], [4], [5], [6] or [7] and consider the both cases of their ordering as well
as the non-ordered one.

1. Preliminaries

Throughout the paper we assume:
—0<a<b<oo,w:R — R is continuous and nondecreasing and f : [a, ] x
R? ~ R fulfils the Carathéodory conditions on [a,b] x R?, i.e. f has the following
properties: (i) for each x € R and y € R the function f(.,z,y) is measurable
on [a, b]; (ii) for almost every ¢ € [a, b] the function f(t,.,.) is continuous on R?;
(iii) for each compact set KC R? the function mk (t) = sup (4,y)ex |f(t 2, y)| is
Lebesgue integrable on [a, b].

Furthermore, we keep the following notation:
L[a, ] is the Banach space of Lebesgue integrable functions on [a,b] equipped
with the usual norm denoted by ||.||.. Furthermore, for ¥ € NU{0}, C*[a,b] and
AC*[a,b] are the Banach spaces of functions having continuous k-th derivatives
on [a,b] and of functions having absolutely continuous k-th derivatives on [a, b],
respectively. As usual, the corresponding norms are defined by

k

lzllce =) max [z (#)] and lellacr = [lzflce + |2

k+1) ||]L
t€la,b]

The symbols Cla, b] or AC [a, b] are used instead of C°[a, b] or AC°]a, b]. Moreover,
BV [a, b] is the set of functions of bounded variation on [a,b]. For u € BV [a,b],



u?*® and u* denote its singular and absolutely continuous parts, respectively.
Furthermore, if u € BV [a, b], then its one-sided derivatives are denoted by Dt u
and D™ u.

Car([a, b] x R?) is the set of functions satisfying the Carathéodory conditions
on [a,b] x R?.

Finally, for a given Banach space X and its subset M, cl(M) stands for the
closure of M and M denotes the boundary of M.

If Q is an open bounded subset in C'[a,b] and the operator T : cl(Q) ~
C'[a,b] is compact, then deg(I — T, ) denotes the Leray-Schauder topological
degree of I — T with respect to €2, where I stands for the identity operator on
C![a, b]. For a definition and properties of the degree see e.g. [2].

By a solution of (0.1),(0.2) we understand a function u € AC1[a, b] satisfying
(0.1) for a.e. t € [a,b] and having the property (0.2).

The following estimate will be helpful later.

1.1. Lemma. Let a function m € Lla,b] and sets % (t) C R, t € [a,b], be such
that m(t) < 0 on a subset of [a,b] of a positive measure,

(1.1) m(t) < f(t,z,y) for a.e. t € [a,b] and any (z,y) € Z(t) x R
and
(1.2) w(y) 2y for all y € [=[jml[L, [Im]|L].

Letu be an arbitrary solution of (0.1), (0.2) such that u(t) € % (t) for allt € [a, b].
Then

(1.3) lu'lle < lImlle.

If we suppose m(t) > 0 on a subset of [a,b] of a positive measure and

(1.4) m(t) > f(t,z,y) for a.e. t € [a,b] and any (z,y) € Z(t) xR
and
(1.5) w(y) <y for all y € [=[jml|L, |Im/|L]

instead of (1.1) and (1.2), then the estimate (1.3) remains valid, as well.

Proof. We shall restrict ourselves only to the proof of the former assertion. The
latter can be proved by a similar argument.

Let u be an arbitrary solution of (0.1), (0.2) such that u(t) € Z(t) for all
t € [a,b] and let (1.1) and (1.2) be fulfilled. Then

(1.6) m(t) <u'(t) fora.e. tE€la,b].



Certainly, there is ¢y € (a,b) such that u'(tp) = 0. Hence

t

(1.7) —|Iml|l. < = [ |m(s)|ds < u'(t) for t € (to,b)]
to

and
to

(1.8) lImll. < —/ m(s)|ds < —u'(t) for t € [a, o).
t

In particular, with respect to (0.2),

(1.9) w(w'6) =u'(a) < [ m(s)|ds <jm]..

If w'(b) > ||m||L held, then by (1.2) we would have w(u'(b)) > w(||m||L) > ||m||L,
a contradiction. This together with (1.7) yields

(1.10) |/ (D)] < [Im]|e..

Now, making use of (0.2), (1.2) and (1.7) we obtain for ¢ € [a, to]

t b t
Wﬂzw@—/hMﬂ®>—thMﬂ®—/hMﬂ®2ﬂWM-

This together with (1.7) yields
(1.11) —||m|lL < u'(t) for all t € [a,b].

On the other hand, in virtue of (1.9),(1.10) and (1.2) we have for t € [to, b]

b to b
o' (#) <u'(b)+/t |m(s)|ds</ im(s)|ds +/t im(s)|ds < [[m]r.

This together with (1.8) and (1.11) completes the proof of (1.3). O

1.2. Remark. If m(t) > 0 were fulfilled a.e. on [a,b], then in the case that we
suppose (1.1) and (1.2), the set of solutions u of (0.1), (0.2) such that u(t) € % (t)
on [a, b] would be empty. Analogous situation would occur if m(t) < 0 held a.e.
on [a,b] and we supposed (1.4) and (1.5).

Furthermore, we can see that provided w(y) = y (i.e. the boundary conditions
(0.2) reduce to the periodic ones), we get (1.3) under the assumption (1.1) as
well as under (1.4).



The equation (0.1) may be rewritten as the system of two equations of the
first order

=y, Yy =f(tzy).

Generalization of the notions of lower and upper functions for systems of differ-
ential equations of the first order leads to the following concepts of ”coupled”
lower and upper functions which will be suitable for our purposes.

1.3. Definition. Functions (o1, p1) € ACla,b] x BV [a,b] are said to be lower
sing

functions of the equation (0.1) (on [a,b]), if the singular part pi™* of p; is non-
decreasing on [a, b] and the following relations are satisfied:

(1.12) o1(t) —o1(a) = / p1(s)ds on [a,b],

(1.13) pi(t) > f(t,01(t), p1(t))  ae. on [a,b].
1.4. Definition. Functions (o2, p2) € AC][a,b] x BV [a,b] are said to be upper

sing

functions of the equation (0.1) (on [a, b]), if the singular part p5™ of ps is nonin-
creasing on [a, b] and the following relations are satisfied:

(1.14) o2(t) — oa(a) = / p2(s)ds on [a,b],

(1.15) po(t) < f(t,02(t), p2(t)) a.e. on [a,b].

1.5. Remark. If (o1, p1) and (02, p2) are respectively lower and upper functions
to the given equation, then the monotonicity properties of the singular parts of
the functions p; (i = 1,2) yield the relations

(1.16) p1(t+) — p1(t) > 0 and pa(t+) — p2(t) <O0for all ¢ € [a,b)
p1(s) — p1(s=) > 0and pa(s) — p2(s—) <0 for all s € (a,b].

1.6. Remark. Obviously, if (o1, p1) are lower functions of the equation (0.1),
then o7 (t) = p1(t) for any point ¢ of continuity of p; in (a,b), while the relations
Dtoi(t) = pi(t+) and Doy (s) = p1(s—) are satisfied for any t € [a,b) and
s € (a,b]. Analogous relations are true for upper functions (o2, p2) of (0.1), of
course. On the other hand, for a given i € {1,2}, ¢'(¢) need not be defined
even for any t € [a,b] where D o;(t) = D7 0;(t) = o!(t) and thus o/ (t) need
not be defined for any t € [a,b], which generalizes the notion of W?!-lower and
-upper functions introduced in [1]. Other definitions which generalize the notions
of W?-!-lower and -upper functions, but not so suitable for our purposes, were
given by Ch. Fabry and P. Habets in [4]. Recently, it was shown by I. Vrko¢ in
[11] that our Definitions 1.3 and 1.4 are equivalent to those from [4].



1.7. Definition. Lower functions (o1, p1) of (0.1) which satisfy
(L.17) o1(a) =01(b) and  pi(at) > w(p(b-))

are called lower functions of the problem (0.1), (0.2).
Upper functions (o9, p2) of (0.1) which satisfy

(118) o2(@) = a(b) and  po(a+) < wpa(b-)
are called upper functions of the problem (0.1), (0.2).

1.8. Remark. If f(¢,r,,0) < 0 a.e. on [a,b] and w(0) < 0, then (r;,0) are
lower functions of (0.1), (0.2) and, similarly, if f(¢,72,0) > 0 a.e. on [a,b] and
w(0) > 0, then (r2,0) are upper functions of (0.1), (0.2). On the other hand, it
is easy to see that if f(¢,0(t), p(t)) > 0 a.e. on [a,b] and w fulfils(1.2), then (o, p)
could not be lower functions of (0.1), (0.2). Analogously, f(t,o(t), p(t)) < 0 a.e.
on [a,b] with (1.5) can be true for no upper functions (o, p) of (0.1), (0.2).

Let us denote

(1.19) L:z € AC'[a,b] = (2" — x,2(a) — x(b),z'(a)) € La,b] x R?
and
(1.20) F:z € C'a,b] — Fz € L[a,b] x R?,

where

(F)(t) = (f(t, 2(t),2'(1)) — x(1),0,w(z' (b)) ae. on [a,b].

Then L is a linear bounded operator and the operator F is continuous.
After a careful computation we can check that if we put

(1.21)
eZafsft + etfs eZs _ 82b
( ) (2 ) if t<s,
2 (ea —eb)
I‘[) (ta 5) =
e2bfsft _ etfs eZs + eZa _ 2ea+b etfs _ esft
N o) 2ty
2 (e —eb)
and
2a+b—t b+t at+b—t t
(122)  Ti)=-"— 17 and To(t) = - % on[a,8],

(eb _ea)z eb —



then

Ol (t, s
max |F0(t S)| +supts€[a b] ‘ 0 )‘
t,s€[a,b]

)

ma (I04 ()] + [T (0)]) + max (JP2()] + P4 (1)]) < o0

and for any (y,r1,72) € L[a,b] x R? the unique solution of the linear boundary
value problem

is defined by
b
£(t) = / Po(t, s)y(s)ds + Ty (f)r + Ta(t)r on [a, Bl

Furthermore, the operator L1 defined by

(1.23) Lt :(y,r1,72) € Lla,b] x R* = L* (y,r1,72) € C'a, b],

where

b
(LT (y,r1,7m2))(t) = / To(t, s)y(s)ds + Ty (t)r1 + Ta(t)r2 on [a,b],

is linear and bounded and the operator L*F : C![a,b] ~ C'[a,d] is compact.
The problem (0.1),(0.2) is equivalent to the operator equation

(I-L*F)z =0
and if for some open bounded set © C C![a, b] the relation
(1.24) deg(I-LTF,Q) #0

is true, then the problem (0.1), (0.2) possesses at least one solution in Q.
2. Strict lower and upper functions and topolog-
ical degree

The following definition is motivated by the similar one used in [1] for the periodic
problem z'' = f(t,z), x(a) = z(b),2'(a) = 2'(b).



2.1. Definition. Lower functions (o1, p1) of (0.1), (0.2) such that o; is not
a solution of this problem are called strict lower functions of (0.1), (0.2) if there
exists € > 0 such that

(2.1) p1(t) > f(t,z,y) for ae. tE€ [a,b
and all (z,5) € [o1(1), 0 (1) + €] X [p1(8) — &, pr (1) +].

Analogously, upper functions (o2, p2) of (0.1), (0.2) are said to be strict upper
functions of (0.1), (0.2) if o3 is not a solution of this problem and there exists
€ > 0 such that

(2.2) py(t) < f(t,z,y) for ae. t€la,b]
and all (z,3) € [o2(t) — 2, 02(0)] X [po(t) — & po(8) + ]

In this section we want to prove theorems giving sufficient conditions for
(1.24) in terms of strict lower and upper functions of (0.1),(0.2). We shall need
the following two lemmas.

2.2. Lemma. Let (01,p1) and (o2, p2) be respectively strict lower and upper
functions of the problem (0.1), (0.2) such that

(2.3) o1(t) < o2(t) on [a,b]-
Then for any solution u of (0.1), (0.2) fulfilling

(2.4) o1(t) < ult) < oa(t) on [a,b]
we have o1 (t) < u(t) < o2(t) on [a,b].

Proof. 1) Suppose

(25)  ulto) = o2(to) = max (u(t) - 02(t)) =0 and to € (a,b).

In particular, u'(tg) — p2(to—) > 0 > u'(to) — p2(to+) and thus, with respect to
(1.16),

(2.6) u'(to) = lim p(t) = p2(to)-

Hence, if € > 0 is such that (2.2) is true, then there is § € (0,b—t#p] such that the
relations o2 (t) — e < u(t) < o2(t) and pa(t) — e < u'(t) < p2(t) + € are satisfied



for all t € [to — d,t0 + 0] and consequently, making use of (2.2), (2.6) and the
sing

monotonicity of p5"¢, we get for any t € [to, o + 0]

t

1) 0 [ (fsule)u'(s) = e ds = [ (a(6) - ph(s))ds

= u'(t) — p5°(t) — u'(to) + p3 (o) = u'(t) — pa(t) + p5"*(t) — p5"*(to)
< u'(t) — pa(t).
By (1.16), (2.7) and (2.4) we have

¢

0> ult) — oa(t) = / (u'(5) = pa()) ds = 0 on [t o + 3],
to

i.e. u(t) = oa(t) on [tg,to + I].

Let us put t* = sup {T € [to,b] : u(t) = o2(t) on [to,T]}. Then ¢* > tg + 4,
u(t*) = o9(t*) and u'(t*) = p2(t*—). Let us assume that ¢t* < b. Then, by (1.16),
we have u/(t*) > pa(t*+). If u' (t*) > pa(t*+) were valid, then 0 = u(to)—o2(to) =
u(t*) — o2(t*) could not be the maximum value of u(t) — o2(t) on [a,b] and this
would contradict the assumption (2.5). Thus, u'(t*) = p2(t*+). Repeating the
above considerations with ¢* in place of ty, we would obtain further that there
is 0* € (0,b — t*] such that u(t) = o3(t) on [t*,t* + §*], a contradiction with the
definition of ¢*. It means that t* = b and u(t) = 02(t) on [to,b]. Similarly, we
could prove that u(t) = o2(t) on [a, to], i.e. u(t) = o2(t) on [a, b]. This contradicts
our assumption that oo is not a solution of the problem (0.1), (0.2) on [a, b], i.e.
u(t) < o2(t) on (a,b).

ii) Suppose

(2.8) 0= u(b) — 02(b) = u(a) — oa(a) = max (u(t) - 02(t)).

t€la,b]
This is possible only if u'(a) < pa(a+) and u'(b) > p2(b—). On the other hand,
by (0.2) and (1.18) we have 0 > u'(a) — pa(a+) > w(u'(b)) — w(p2(b—)) > 0 and
hence

(2.9) u'(a) = pa(a+t).

Similarly as in part i) of the proof, we can deduce from the relations (2.8) and
(2.9) that u(t) = o2(t) on [a,b]. This being impossible by Definition 2.1, we
conclude that u(t) < o2(t) on [a, b].

iii) Similarly we can show that under our assumptions the relation u(t) >
o1(t) is true for all ¢ € [a, b], as well. O



2.3. Lemma. Let (01,p1) and (o2, p2) be respectively strict lower and upper
functions of (0.1), (0.2) such that (2.3) is true. Let us put

5 f(t,o1(t),y) —on(t) if = <ou(t),
(2.10) flt,z,y) = flt,z,y) —= if o1(t) << oa(t),
f(t,o2(t),y) —oa(t)  if oa(t) <.

Then fe Car([a, b] x R?) and for any solution u of the problem

(2.11) u' —u = f(t,u,u), (0.2)
the relations (2.4) are satisfied.

Proof. In view of (2.10), we have f € Car([a,b] x R?). Let u be an arbitrary
solution of the problem (2.11) and let

(2.12) u(to) — 03(t0) = max (u(t) - ag(t)) > 0.

By (0.2) and (1.18) it suffices to consider the cases tg € (a,b) and tg = a. If to €
(a,b), then similarly as in the proof of Lemma 2.2 we obtain that lim; ., p2(t) =
p2(to) = u'(to). If to = a, then like in the second part of the proof of Lemma 2.2
we get u'(a) = p2(a+). In particular, in both cases, if € > 0 is such that (2.2) is
satisfied, then there is § € (0,b — o] such that u'(t) € [p2(t) — €, p2(t) + €] and
u(t) > o2(t) on [to, to + d]. Hence, owing to (2.10) we have

u(t) = ph(t) = f(t,02(t),u'(t)) +u(t) — o2(t) — pa(t)
> f(t,o2(t),u'(t)) — py(t) >0 ae. on [to,to + 0]
and like in (2.7) for ¢ € (o, to + d] we obtain
0< [ (e = pi(s)) ds < ') = ).
Consequently,
0< /t (u'(s) - pQ(s)) ds < (u(t) - 02(t)) - (u(to) - 02(750)) on (to,to + 0.

As this contradicts the assumption (2.12), it follows that u(t) < o2(t) on [a,b].
Similarly we could show that o1 (t) < u(t) on [a,b]. O



2.4. Theorem. Let (01,p1) and (o2,p2) be respectively strict lower and up-
per functions of (0.1), (0.2) satisfying (2.3). Further, let us assume that either
(1.1) and (1.2) or (1.4) and (1.5) are satisfied with m € L[a,b] and %(t) =
[01(t),02(t)] for t € [a,b]. Let us denote

(2.13)

0 = {:v € Cla,b] : o1(t) < 2(t) < o2(t) and ||'||c < ||m|l. on [a,b]}
and let the operators L™ and F be given by (1.23) and (1.20), respectively. Then
deg(I—L*F, Q) = 1.

Proof. Assume (1.1) and (1.2) and for some ¢ € (0,00) put
flt,z,—c) if y < —c,

g(t,z,y) = q fLzy) if [yl <c
f(t,z,c) if y>c

w(—c) ify < —c,
wly)=q wly) iyl <e

w
w(c) ify>ec

and

Let f be given by (2.10), where we put g instead of f and choose ¢ > ||m||. such
that (o1, p1) and (o2, p2) are strict lower and upper functions of

214) W' =gltauwu’), ue)—u(®) =0, u'(a)=i(w()).
Now consider the parameter system of boundary value problems

(2.15) )
u' —u = Af(tu,u'), w(a)—ud) =0, u(a)=Aw('(b), Xe]l0,1].

Defining for z € C![a,b] and for a.e. t € [a, b]
(Fz)(t) = (F(t,2(t), 7' (1), 0,@(x' (b)),

we get a continuous operator F : C![a,b] — La,b] x R? and the system (2.15)
can be rewritten as the parameter system of operator equations

w —ALTFu =0, Xel0,1].



For A € [0,1], a function u € Cl[a,b] is a solution to (2.15) if and only if it
satisfies the relation

b ~
u(t) = A(/ Fo(t,s)f(s,u(s),u'(s))ds+F2(t)zﬁ(u'(b))> on [a,b],

where 'y and I’ are defined by (1.21) and (1.22). Therefore there is r € (0, c0)
such that

QO CH(r) = {a: € Clia,b] : ||zl < 7“}

and for any A € [0, 1] any solution u to (2.15) belongs to (). Thus, the operator
I - AL*F is a homotopy on .#(r) x [0,1] and

deg (I - L*F, A (r)) = deg (I, A (r)) = 1.

Now, let A = 1 and let u be an arbitrary solution of the corresponding problem
(2.15). We can apply Lemma 2.3 and get (2.4). Hence u is a solution of (2.14).
Since g(t,z,y) > m(t) for a.e. t € [a,b] and all (z,y) € [01(F),02(F)] x R,
o1(t) < u(t) < oa(t) on [a,8] and @(y) = w(y) for y € [—[mlc, [mlL], we
can use Lemma 1.1 and get ||u||lc < [|m]|. < c. It follows that u is a solution
of (0.1), (0.2). Consequently, we can make use of Lemma 2.2 to show that
o1(t) < u(t) < o2(t) on [a,b].

To summarize, for A = 1 and for any solution u of (2.15) we have u € Q;.
Since F = F on cl(€;), this means that

deg (I —L'F, Ql)
=deg (I- LTF, ) = deg (I - LTF, #(r)) = 1.

The case that (1.4) and (1.5) are satisfied instead of (1.1) and (1.2) could be
treated in a similar way. O

Now, we prove an analogous theorem provided 04,05 are ordered in the op-
posite way, i.e.

(2.16) o3(t) < o1(t) for all ¢ € [a,b].

2.5. Theorem. Let (01,p1) and (02, p2) be respectively strict lower and upper
functions of (0.1),(0.2) satisfying (2.16). Further, let us assume that either (1.1)



and (1.2) or (1.4) and (1.5) are satisfied with m € L[a,b] and % (t) = R. Let
A € R be such that ||o1||c + ||oz|lc + (b—a)|lm||L < A and let

2 ={zeC' 0l : lzle < 4 [l2'lc < |mlh.
and there exists t, € [a,b] such that o3(ty) < z(tz) < o1 (tz)}
Then
(2.17) deg(I — L*F, Q) = —1.

Proof. Put A = A+ (b— a). Assume (1.1) and (1.2) and consider an auxiliary
equation

(2.18) u" =gt u,u’),

where
F(t,y) +|m(t)] ifz > A+1,
ft,z,y) + (x — A)|m(t)] fA<z<A+1,

g(t,x,y): f(t,w,y) _ lf—égil?SA, B
ftey) + A+ o)f(tey) + Im@)] if —A-1<z< -4
—|m(t)] ifr <—-A4-1.

We have g € Car([a, b] x R?) and

(2.19) g(t,z,y) > —(Im(t)| + 1)

for a.e. t€[a,b] and all (z,y) € [-(A+2), (A +2)] xR
The couples of functions (o1, p1) and (o2, p2) are respectively strict lower and
upper functions to the problem (2.18), (0.2). Furthermore, in virtue of the
assumption (1.1), also (o3,p3) = (—(A + 2),0) and (04,p4) = (A + 2,0) are
respectively strict lower and upper functions to the problem (2.18), (0.2) which
are "well-ordered”, i.e. o3(t) < 04(t) on [a,b]. Let us define sets

@ ={reCal] : olc < A+2[llc < [ml +1},
Ay = {a: €N : o1(t) < z(t) on [a,b]}

and
Ay = {a: €0 : 2(t) < oa(t) on [a,b]},

and an operator



G : 2 € C'a,b— Gz € L[a,b] x R?,
where
(G2)(t) = (9(t, z(t),2'(t)),0,w(z' (b)) a.e. on [a,b].

Owing to Theorem 2.4 we have
deg(I—L*G,Q) =deg(I-L"G,A;) =deg(I - LTG, As) = 1.

Let us denote A = Q \ cl(A; U Ay). Then
A= {a: € Q) : thereis t, € [a,b] such that oa(t;) < z(ty) < al(tw)}

and by the additivity of the degree we have
deg(I-LTG,A)
=deg(I-L"G,Q) —deg(I-L*G,A;) —deg(I-LTG,A,) = —1.
Let u be a solution to (2.18), (0.2) and let v € A. Then there is ¢, € (a,b) such
that o2 (ty) < u(ty) < o1(ty). Consequently, for any ¢ € [a,b] we have

220 [u®)] =Jutt) + [ w©ds| < Jolle + ol + 6~ @l

u

wherefrom by (2.19) and Lemma 1.1 the relation |jullc < A follows. Therefore
u is a solution of (0.1), (0.2) and using Lemma 1.1 and (2.20) once more we get
[[u'|lc < ||m|lL and [Jullc < 4, i.e. u € Q2. Consequently, the excision property
of the degree yields

deg(I-L*TG,Qy) = —1,
wherefrom, since G = F on cl(2;), we obtain (2.17).

In the case that (1.4) and (1.5) are satisfied instead of (1.1) and (1.2) we can
argue similarly. O

The case
(2.21) there are r and s € [a,b] such that o1(r) < o2(r) and o2(s) < o1(s)

is treated by the following theorem.



2.6. Theorem. Let (01,p1) and (02, p2) be respectively strict lower and upper
functions of (0.1), (0.2) satisfying (2.21). Further, let us assume that either (1.1)
and (1.2) or (1.4) and (1.5) are satisfied with m € L[a,b] and % (t) = R. Let
A € R be such that ||o1]||c + |loz2llc + (b — a)||m]||lL < A and let

Q3 = {:r € C'a,b] : ||z|lc < A, [|2'||c < ||m|lL and there exist
Tz, Sz € [a,b] such that o1(ry) > x(ry) and o2(s;) < w(sx)}
Then
deg(I—L*F,Q3) = —1.

Proof. Let ¢g,G, fT, A1, Ay and ) have the same meaning as in the proof of The-
orem 2.5. Taking into account that in the case (2.21), @\ cl(A; U Ay) is the set
of all z € Q for which there exist 7, and s, € [a, b] such that oy (r;) > 2(r;) and
o2(s) < x(sy), it is easy to see that the proof of this theorem can be completed
by an argument analogous to that used in the proof of Theorem 2.5. O

3. Lower and upper functions and topological de-
gree

In this section we give proper modifications of the results described in the pre-

vious section to the case of lower and upper functions which need not be strict.

3.1. Lemma. Let the assumptions of Theorem 2.4 be fulfilled but with (o1, p1)
and (o2, p2) not necessarily strict. For a.e. t € [a,b] and any ¢ € [0,1] let us put

(3.1) wi(t,C) = Sup oer |p (1)—z1<¢ |[F (01 (1), pr (1) — f(E,01(2), 2)],
(32) wa(t, C) = SUP zer |ps (1)—z1<c | (£, 02(1), p2(8)) — f(E,02(t), 2)].
Furthermore, let us define
(3.3)

o1(t) —x

f(t,Ul(t),y) _Ul(t) - W1(t, m) Zf T < Ul(t),
ht,z,y) =< [t z,y) - if @€ [o1(t),02(t)],
x — o2(t) .
f(t,02(t),y) _0'2(t) + wg(t, m) Zf xr > O'Q(t)
and



w(=|lmllL) +y +[lmll. for y < —[lmllL,
w(y) =< wly) for |y| < lmll.,
w(llm|lL) +y — llm|l. for y > [ImllL.
Then h € Car([a,b] x R?) and for any solution u of the problem
(3.4 W —u = h(tu),  u(a) = u(d), () = B (D)
the relations (2.4) and (1.3) are true.
Proof. The functions w; : [a,b] x [0,1] = RT (i = 1,2) given by (3.1) and (3.2)

are nondecreasing in the second variable and belong to the class Car([a, b] x [0, 1]).
Hence h € Car([a,b] x R?) as well. Let u be an arbitrary solution of (3.4) and
suppose

ulto) — 03(t0) = max (u(t) - ag(t)) > 0.

In virtue of (0.2) and (1.18) it suffices to consider the cases a < tp < b and
to = a. As in the proof of Lemma 2.3 we have

! _ . _
u'(to) = tll{?o p2(t) = pa(to)

in the former case and u'(a) = p2(a+) in the latter. Making use of the continuity
of o2, u and u’ we conclude that in both cases there are 6 > 0 and n € (0,1)
such that for all ¢ € [to, to + ] we have

u(t) — o5 (t)

2t) = ()] < 1 < =TI <ule) (1)

and, with respect to (3.2),
|f(t) 02(t)7 pQ(t)) - f(ta UQ(t)) u’(t))|

<ws(t, p2(t) — /(1)) < walt, u(t) — aa(t)

u(t) — o2(t) + 1)'

Consequently, by means of (1.15), for any t € [to, o + ] we get
u”(t) — p5(t)

=u(t) + f(t, o2(t),u' (1)) + walt, _u(t) —on(t)

U(t) — 0_2(t) + 1) - 02(t) - p,2(t)
>0+ f(t,02(t), p2(t)) — p5(t) > 0.



Like in the proof of Lemma 2.3 this yields a contradiction with the assumption
that u(tg) — o2 (to) is the maximal value of u(t) —o2(t) on [a, b]. Thus, the relation
u(t) < o2(t) is true on [a, b]. Similarly we can show that o1 (¢) < u(t) on [a,b] as
well, i.e. u satisfies (2.4). Therefore u is a solution of (0.1) on [a, b]. Moreover,
w satisfies (1.2) or (1.5) for all y € R. Hence by Lemma 1.1 we get (1.3). O

3.2. Lemma. Let the assumptions of Lemma 3.1 be fulfilled. Then for any
> 0 the couples (o1 — p, p1) and (o2 + p, p2) are respectively strict lower and
upper functions to the problem (3.4).

Proof. Let (01, p1) and (o2, p2) be respectively lower and upper functions to the
problem (0.1), (0.2) such that (2.3) is true. Let an arbitrary p > 0 be given and
let us define

02(t) = 02(t) + pon [a,b].

Obviously, the couple (2, p2) satisfies the boundary conditions (1.18). Further,
making use of (1.15) and (3.2), we get for a.e. t € [a, b

52(0) + (1,520 p2(8)) = i+ F(02(0),po(0) + a2 17
> f(t,02(t), p2(t)) > pa(t).

This means that (g2, p2) are upper functions to (3.4) and & is not a solution of
(3.4).

o=

Now, let us put ¢ = g Since € < §, for any ¢ € [a,b] and any couple

M

(x,y) € R? such that

(3.5) |z —o2(t)] <e and |y—pa2(t)] <e
we obtain & — o3(t) > £ and |y — p2(t)] < _z=oat) and hence also
? 2 ? z—oa(t) + 1
anltsly = po(0)) < wlt, — 272
2 1Y~ P2 = )+ 17

Consequently, for a.e. t € [a,b] and all (z,y) € R? fulfilling (3.5) we can compute

x+ h(t,z,y)

Tr — Uz(t)
"x—o(t)+ 1
> f(t7 UQ(t)7p2(t)) Z pIQ(t)a

>z —03(t) +walt ) —w2(t; |y = p2(B)]) + f(t, 02(2), p2 (1))



i.e. the functions (o2, p2) are strict upper functions to the problem (3.4). Anal-
ogously we could show that for any p > 0 the functions (o7 — p, p1) are strict
lower functions of (3.4). O

3.3. Theorem. Let the assumptions of Theorem 2.4 be fulfilled, but with (o1, p1)
and (o2, p2) not necessarily strict. Then either the problem (0.1), (0.2) has a so-
lution which belongs to 0Q; or

(3.6) deg(I— L*F,Q;) = 1.

Proof. Let (o1,p1) and (o2, p2) be respectively lower and upper functions to
the problem (0.1), (0.2) fulfilling the relation (2.3). Let us choose an arbitrary
> 0. By Lemma 3.2 the couples (o7 — u, p1) and (o2 + u, p2) are respectively
strict lower and upper functions to the modified problem (3.4). It means that
by Theorem 2.4

deg(I-LTH,Q,) =1,
where H: z € C'[a,b] = Hz € L[a,b] x R?,

(Hz)(t) = (h(t,z(t),z'(t)),0,w(z'(b))) a.e. in [a,b],
0 = {# € C' (a0 01(t) — < 2(t) < o2(t) + pronfa, Band ' e < [lie}

and either m(t) = m(t) — p—wi (¢, 1) or m(t) = m(t) + p+w2(t, 1) (according to
whether we assume (1.1), (1.2) or (1.4), (1.5)). On the other hand, by Lemma
3.1 the problem (3.4) does not possess any solution in Q, \ cl(€2;). Moreover,
H = F on cl() and so if the problem (0.1), (0.2) has no solution belonging
to 98y, the modified problem (3.4) has no solution belonging to 9%, either.
Therefore, by the excision property of the degree we have (3.6). O

In the case that o; and oy fulfil the relation (2.16) or (2.21), making use of
Theorem 3.3 we can modify the proofs of Theorems 2.5 and 2.6 in such a way
that we get the following assertions.

3.4. Theorem. Let the assumptions of Theorem 2.5 be fulfilled, but with (o1, p1)
and (02, p2) not necessarily strict. Then either the problem (0.1), (0.2) has a so-
lution which belongs to 0Qy or

deg(I—L*F, Q) = —1.



Proof. Let (01, p1) and (o2, p2) be respectively lower and upper functions to the
problem (0.1), (0.2) and let m, A, /I, g, G, (03, p3), (04,p4), Q, A1, Ay and A
have the same meaning as in the proof of Theorem 2.5. The couples (o1, p1) and
(02, p2) are respectively lower and upper functions to the problem (2.18), (0.2)
which need not be strict now. By Theorem 2.4 we have again

deg(I-L*G,Q) =1.
Let u be a solution of (0.1), (0.2) such that u € Q2. Then u is also a solution

to (2.18), (0.2). Moreover, as in the proof of Theorem 2.5, making use of (2.20)
and of Lemma 1.1 we can show that

(3.7) lulle <A and |lu'llc < [lm]l..
Thus, there exist 4 € {1,2} and t, € [a,b] such that
(3.8) u(ty) = oi(ty),

ie. u € 0A;.

On the other hand, let u be a solution of (2.18), (0.2) such that u € 0A; UJA,.
By Lemma 2.2 we have —(A+2) < u(t) < A+2 on [a, b]. Furthermore, by (2.19)
and Lemma 1.1 we get ||u'||c < ||m||L + 1. As in the proof of Theorem 2.5 this
implies by (2.20) that |lullc < A, i.e. u is a solution of (0.1), (0.2). Now, using
(2.20) and Lemma 1.1 once more we obtain again (3.7) and (3.8), i.e. u € 9Qs.

To summarize, (0.1), (0.2) possesses a solution belonging to 9, if and only
if (2.18), (0.2) possesses a solution belonging to dA; U 0A,.

Consequently, if the problem (0.1), (0.2) possesses no solution u such that
u € 0f)s, then making use of Theorem 3.3 we get

deg(I-LTG,A;)=1 and deg(I—-L"G,Ay)=1.

Finally, by the same argument as in the proof of Theorem 2.5 we can show
that any solution u € A of the problem (2.18), (0.2) belongs to Q. Therefore

deg(I - L*G, Q)
=deg(I—LTG,0Q) —deg(I-LTG,A;) —deg(I - LTG,As) = -1
and taking into account that F = G on cl(Q2), we complete the proof. O

3.5. Theorem. Let the assumptions of Theorem 2.6 be fulfilled, but with (o1, p1)
and (o2, p2) not necessarily strict. Then either the problem (0.1), (0.2) has a so-
lution which belongs to 0Q3 or

deg(I—L*F,Q3) = —1.

Proof follows from Theorem 3.3 by a modification of the proof of Theorem 2.6
similar to that used in the proof of Theorem 3.4. O



4. Existence theorems

Theorems 3.3 - 3.5 give directly existence results for our problem (0.1), (0.2).
Similarly asin [7] (cf. Theorem 6) it is possible to show the existence of a solution
to this problem even in the cases that the strict inequalities (2.3) and (2.16) are
replaced by the non-strict ones.

4.1. Theorem. Let the assumptions of Theorem 2.4 be satisfied but with (o1, p1)
and (o2, p2) not necessarily strict and instead of (2.3) let us assume

(4.1) o1(t) < oa(t) on [a,b].

Then the problem (0.1), (0.2) possesses a solution u such that u € cl(Qy) (with
O given by (2.13).

Proof. Consider an auxiliary problem

(42) W = it uu), (02),
where f is for a.e. t € [a,b] and any y € R given by

~ _f f,z,y) if ©<o9(t),
f(t,a:,y)_{ f(t,a;l(/t),y) it > oa(t).

Clearly, (o1, p1) are lower functions to (4.2). Now, let an arbitrary & € N be
given. The functions (o2 + ,p2) are then upper functions to (4.2) and by
Theorem 3.3 the problem (4.2) possesses a solution xy such that

wr(t) € [01(t),02() + 7] on [a,b] and |lzj[lc < [Iml|x.

Using the Arzela-Ascoli theorem and the Lebesgue Dominated Convergence The-
orem for the sequence {x)} we get a solution x € cl(2;) of (0.1), (0.2) as a C!-
limit of a proper subsequence of {z}. O

4.2. Theorem. Let the assumptions of Theorem 2.5 be satisfied but with (o1, p1)
and (02, p2) not necessarily strict and instead of (2.16) let us assume

(4.3) os(t) < o1 (t) on [a,b].

Then the problem (0.1), (0.2) possesses a solution u such that u € cl(Qz) (with
Oy given in Theorem 2.5).



Proof. For any k € N, a.e. t € [a,b] and any z,y € R put

gk(t;xay) - k(f(t,0'2(t),y) - f(t,l’,y)) (Z’ - (02(t) - %))

and

flt,z,y) if ©<oa(t)—%,
rs f(t)a (t)vy)'i_g‘(t:m:y) if 1‘6[0’ _2)0 (t)_l))
W20 =Y G o) it 7€ lo— Lioalt), |
flt,z,y) if > o09(t).

The couples (o1,p1) and (o2 — %,pg) are then respectively lower and upper
functions to

(44) u" = .ﬁc(ta u, U’), (02)

and satisfy (2.16). It is easy to verify that for any k € N the function f;
satisfies the assumptions for f of Theorem 2.5 with the same m € L[a,b]. Thus
by Theorem 3.4 for any k € N there are a solution zj, to the problem (4.4) and
a point s € [a, b] such that

lzelle <A+ 4, llwille <llmll and oa(se) — ¢ < @rlsk) < ou(si),

where A has the same meaning as in Theorem 2.5. Using the compactness of the
interval [a, b] and the Arzela-Ascoli theorem we get the existence of a subsequence
{zk,} in {z1}, s* € [a,b] and = € C![a,b] such that

lim ||zg, —z||ct =0 and lim s, = s™.
£—00 00

Obviously, z € cl(f2;) and by virtue of the Lebesgue Dominated Convergence
Theorem, z is a solution of (0.1), (0.2). O

4.3. Theorem. Let the assumptions of Theorem 2.6 be satisfied but with (o1, p1)
and (o2, p2) not necessarily strict. Then the problem (0.1), (0.2) possesses a so-
lution u such that u € cl(Qs3) (with Q3 given in Theorem 2.6).

Proof. If 01 and oy satisfy neither (4.1) nor (4.2), they fulfil (2.21) and hence by
Theorem 3.5 we have a solution u € cl(23) to (0.1), (0.2). O

4.4. Corollary. Let z1, 25 € Cla,b],

4.5 = t) < = mi t
o < = )



and let for a.e. t € [a,b] and all x,y € R

(4.6) ft,z,y) <0 if x€ (21(¢),22(t))
and
(4.7 ft,z,y) >0 if x<z(t) or x> 2(t).

Further, let m € L[a,b] be such that (1.1) is satisfied with % (t) = [z1(t), z2(¢)],
t € [a,b]. Then

(i) there are at least two different solutions u and v to the periodic boundary
value problem

(4.8) W' = f(tun'), ula)=u®), u'(a)=u'(b)
such that

(4.9) v(t,) <my for some t, € [a,b]

and

(4.10) max{ms,v(t)} < u(t) on [a,b];

(i1) if we suppose in addition that for any compact K C [ma,00) X R there
is a nonnegative function hy € L[a,b] such that

(4.11)  f(t,z1,91) — f(t,22,y2) > —h()|y1 — yol
for a.e. t € [a,b] and all (z1,y1), (z2,y2) € K such that x; > zo,
then u is the only solution of (4.8) bounded below by mo.

Proof. (i) Without any loss of generality we may assume that m(t) <0 a.e. on
[a,b], i.e. we have

f(t,z,y) > m(t) forae. t€]la,b]andall (z,y)€ R>.
Furthermore, by (4.5) there are ry, r9, such that

r1 < min z1(t) <my < my < max z3(t) < ro.
tela,b] t€la,b]

According to (4.6) the couples (m1,0) and (m2,0) are lower functions of (4.8)
and by (4.7) the couples (rq,0) and (rz,0) are upper functions of (4.8). Hence,
by Theorems 4.1 and 4.2 there are solutions v and v; of (4.8) such that

r1 < v(ty) < my for some t, € (a,b) and ma < vy(t) <re forall t € [a,b].



Suppose that v and v; are not ordered on [a, b], i.e. there is s, such that vy (s,) <
v(sy), and set

(4.12) o1(t) = max{u(t),vi(t)} for t € [a,b].

Then o1 € AC|a,b], o} € BV [a,b], o1 is not a solution of (4.8) but the functions
(01,01) are lower functions of (4.8). According to (4.7) we can find a number
r* > ||lo1||lc such that (r*,0) are upper functions of (4.8). This implies the
existence of a solution u of (4.8) satisfying o1 (t) < u(t) < r* on [a,b]. Provided
v and v, are ordered, we set u = wv;. (ii) Suppose (4.11) and let u; # u be
a solution of (4.8) such that ma < uy(t) on [a,b]. Set z(t) = wi(t) — u(t) and
choose a compact K such that (u(t),u'(t)) € K and (ui(t),u)(t)) € K for all
t € [a,b]. We can assume that max;c(q,5 2(t) = 2(to) > 0 and 2’(to) = 0 for some
to € [a,b). Then there exists t* > to such that 2/(t*) <0 and z(¢) > 0 on [to, t*].
Now, (4.11) implies

2"(t) > —hi(t)|2'(t)] = — (hi(t) sgn(2'(t))) 2" (t) for a.e. t € [to,t"].

Thus,
(+'tyexp ( / (hi(s) sm(='())) ds) ) > 0 on [t °]
and
“()esn ([ (e(s) sgn (= () ds) > 2'(t0) =0,
a contradiction. .

4.5. Remark. Provided z; is a constant function for some ¢ € {1,2}, it is a so-
lution of (4.8). In this case we can set v(t) = z;(t). If 21 is not constant, then
there exists s, € [a,b] such that v(s,) > z1(sy). Similarly, if z; is not constant,
we get u(ty) < z2(ty,) for some t, € [a,b]. These observations follow from the
fact that any solution of (4.8) cannot have all its values outside (21 (%), z2(t)).

4.6. Remark. In the case that f(¢,z,y) = g(t, z) the assertion (i) of Corollary
4.4 is fulfilled under the assumptions (4.5), (4.6) and (4.7). Thus our Corollary
4.4 generalizes Theorem 4.7 from [3]. Further, the assertion (ii) of Corollary 4.4
is true provided g is increasing in x on [m2, 00) for a.e. ¢ € [a,b].



4.7. Remark. The lower and upper functions method which is described in
this section (cf. Theorems 4.1 - 4.3 and Corollary 4.4) can be used for singular
boundary value problems, as well. For multiplicity results for periodic boundary
value problems which were obtained by this method, see [8].

4.8. Remark. Conditions ensuring the existence of constant lower and upper
functions of the problem (0.1), (0.2) were mentioned in Remark 1.8. In the
proof of Corollary 4.4 we constructed nonconstant lower functions whose first
component was the maximum of two solutions of the problem (4.8) (cf. (4.12)).
In general, it is not easy to find conditions which guarantee the existence of
nonconstant lower and upper functions. One of the possibilities is shown in [9]
where they are constructed as solutions of linear boundary value problems for
generalized linear differential equations.
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