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1 Introduction, notations

Our concern in this paper lies with the weighted inequalities(∫
Ω

|f(x)|pV (x) dx

)1/p

≤ c

(∫
Ω

|∇f(x)|p dx
)1/p

, f ∈ W 1,p
0 (Ω), (1.1)

and
‖f |Lp[log(1 + L)]α‖ ≤ c‖∇f |Lp‖, f ∈ W 1,p

0 (Ω), (1.2)
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where either Ω is a bounded domain in RN or Ω = RN and V is a weight
on Ω, that is, a.e. non-negative and locally integrable function on Ω, and
the constant c on the right hand sides is independent of f and N . Both
inequalities can naturally be interpreted as imbedding theorems independent
of the dimension.

Variants and generalizations of the above inequalities in RN or on domains
in RN have been intensively studied during last decades. They appear under
various names as the trace inequality or the uncertainty principle and they
have many relevant applications in analysis. It would be a difficult task to col-
lect even the most important references and we shall make no attempt to do
that. We shall just recall several basic facts and explain our motivation. Nec-
essary and sufficient conditions for the imbedding of W 1,p into Lq(V ) depend-
ing on the dimension have been studied e.g. in [1] (Adams’ inequality), let us
recall Maz’ya’s works using capacities, [19], [20]. For p = q = 2 and N ≥ 3,
a necessary and sufficient condition is due to Kerman and Sawyer [13]—this
is connected with Sawyer’s necessary and sufficient conditions for validity of
two weight inequalities for the Riesz potentials, see [22]. Observe that due
to the nature of these two-weight conditions (which require an information
on the acting of Riesz potentials on weights in question) and of capacities,
of importance are sufficient conditions (close to necessary ones as much as
possible of course) in amenable terms of various classes and/or spaces of
functions. Fefferman in [6] gave the following sufficient condition: Let us
recall that the Fefferman-Phong class Fp, 1 ≤ p ≤ N/2, consists of functions
V such that

‖V ‖Fp = sup
x∈RN
r>0

r2

(
1

|B(x, r)|

∫
B(x,r)

|V (y)|p dy
)1/p

<∞.

Then (see [6]) for N ≥ 3, 1 < p ≤ N/2, and V ∈ Fp inequality (1.1) holds
with RN in place of Ω. Note that Chiarenza and Frasca [4] gave a very fine
alternative proof making use of of the maximal operator.

For N = 2 and functions in W 1,2
0 (Ω) (Ω a bounded smooth domain) there

is the sufficient condition V ∈ L logL(Ω) for (1.1) due to Gossez and Loulit in
[8] and a more general condition in terms of Lorentz-Zygmund spaces based
on a fine critical imbedding theorem due to Brezis and Wainger [3], see Krbec
and Schott [16]; this is, however, strictly limited to planar domains.

Dimension free estimates answer the natural question about existence of
some residual improvement of the integrability properties independent of the
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dimension. They are also linked with other interesting concepts concerning
the Sobolev spaces, for instance, properties of contraction semigroups and
find applications even in quantum physics (see e.g. [18] for some of the ref-
erences). One of the major triggering moments was the celebrated Gross
logarithmic inequality [9], generalized later in various directions by several
authors, see, e.g. [11], [10]. Recall that the Gross logarithmic inequality (see
e.g. [18] for a detailed discussion),∫

RN
|f(x)|2 log

(
|f(x)|2

‖f‖2
2

)
dx+N‖f‖2

2 ≤
1

π

∫
RN
|∇f(x)|2 dx, (1.3)

gives, for a function f living, say, in a bounded domain Ω ⊂ RN and with
‖f |W 1,2

0 (Ω)‖ ≤ 1,∫
Ω

|f(x)|2 log |f(x)| dx ≤ 1

2π

∫
Ω

|∇f(x)|2 dx (1.4)

(since under our assumptions log ‖f‖2 ≤ 0). Note that one can formally put
0 in the integral on the left-hand side of (1.3) and (1.4) if |f(x)| = 0 (which
corresponds well to elementary limit limt→0+ t

δ log t = 0 for any δ > 0). The
left hand side of (1.3) contains generally both positive and negative values
and the estimate says that the final balance of that, containing a logarithmic
residuum integrability improvement is estimated by a multiple of the L2-norm
of the gradient.

Note also that in [2] Adams considered more general and dimension de-
pendent inequalities (with norms taken with respect to the Gaussian measure
exp(−|x|2) dx).

In [15] we have employed the Gross theorem to show that∫
B

|f(x)|2 log(1 + |f(x)|) dx ≤ c‖f |W 1,2
0 (B)‖2 (1.5)

(W 1,2
0 (B) = C∞0 (B)

W 1,2(B)
, B being the unit ball in RN) with a constant c

independent of f and N .
In this paper we will study the general form of (1.5), namely,∫

Ω

|f(x)|p[log(1 + |f(x)|)]α dx ≤ c‖∇f |Lp(Ω)‖p (1.6)
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for 1 < p < ∞, α > 0, and f ∈ W 1,p
0 (Ω), and also we will establish the

weighted dimension-free imbedding of the form∫
Ω

|f(x)|pV (x) dx ≤ c‖∇f |Lp(Ω)‖p,

for f ∈ W 1,p
0 (Ω), Ω being a bounded domain and/or RN .

We shall tacitly assume that all functions here are real-valued (complex-
valued functions can be considered, too). Various constants independent of f
will be denoted by the same generic symbol c, C etc. if no misunderstanding
can arise.

We shall use the standard notation ‖ . ‖k,p for the norm in W k,p; if k = 0,
then W k,p = Lp with the norm denoted by ‖ . ‖p; sometimes we shall use
symbols like ‖f |L2‖ etc. for the sake of better legibility. If V is a weight in
a domain Ω ⊂ RN then the weighted Lebesgue space Lp(V ) = Lp(Ω, V )
is defined as the space of all measurable f on Ω with the finite norm

‖f |Lp(V )‖ =
(∫

Ω
|f(x)|pV (x) dx

)1/p
. If f is a measurable function in RN ,

then f ∗ will denote its non-increasing rearrangement. The symbol Lp,q will
stand for the usual Lorentz space (1 ≤ p, q <∞, or 1 ≤ p <∞ and q =∞).

If Φ is a Young function, that is, Φ is even, convex, Φ(0) = 0,
limt→∞ Φ(t)/t) = ∞, and Ω ⊂ RN is measurable, then m(Φ, f) =∫
Ω
Φ(f(x)) dx is the modular and the (quasi)norm in the corresponding Or-

licz space LΦ = LΦ(Ω) is the Minkowski functional of the modular unit ball,
namely, ‖f |LΦ‖ = inf{λ > 0 : m(Φ, f/λ) ≤ 1} (the Luxemburg norm). We
refer to [14] and [21] for the theory of classical Orlicz spaces and of modular
spaces, resp. We shall restrict ourselves to a characterization of weighted Or-
licz spaces LΦ(V ) = LΦ(Ω, V ), generated by the modular

∫
Ω
Φ(f(x))V (x) dx

as special Musielak-Orlicz spaces. Let us recall the latter concept in a form
adapted to our needs (see [21] for the general case). Let us assume that
Φ = Φ(x, t) : Ω × R → [0,∞) is a Young function of the variable t for each
fixed x ∈ Ω and a measurable function of the variable x for each fixed t ∈ R.
The function Φ with these properties is called the generalized Young function
or the Musielak-Orlicz function. Then

%(f) =

∫
Ω

Φ(x, f(x)) dx

is a modular on the set of all measurable functions on Ω so that we can
consider the corresponding Orlicz space.
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The weighted Orlicz spaces can be described in this language. Let V be
a weight on Ω and let Φ be a Young function. Define

Φ1(x, t) = Φ(t)V (x), x ∈ Ω, t ∈ R.

Then Φ1 is a generalized Young function and the resulting Musielak-Orlicz
space LΦ1(Ω) is nothing but the weighted Orlicz space LΦ(Ω, V ) with the
modular

%(f, w) =

∫
Ω

Φ(f(x))V (x) dx,

with the corresponding Luxemburg norm, and usually denoted by LΦ(V ) in
the following.

The symbol Lp[log(1 +L)]α (α > 0) will denote the Orlicz space with the
generating Young function t 7→ |t|p[log(1 + |t|)]α, t ∈ R, and Lexp tα for α > 0
will stand for the space with the Young function t 7→ exp(|t|α) − 1, t ∈ R.
For α = 1 we shall simply write Lp log(1 + L) and Lexp.

A very suitable tool in the following will be the general imbedding theorem
due to Ishii (see [12] and [21]). We state it in a slightly modified form, suitable
for our purposes. Note that the norm of the imbedding in the theorem
is independent of the dimension since it is a reformulation of an abstract
theorem, which holds true in general Musielak-Orlicz spaces.

Proposition 1.1 (Ishii). Let U and V be weights in a measurable set G ⊂
RN , and let Φ and Ψ be Young functions. Then LΦ(G,U) ↪→ LΨ(G, V ) if
and only if there exists K > 1 such that the function

x 7→ sup
t>0

[Ψ(t)V (x)− Φ(Kt)U(x)] , x ∈ G,

is integrable over G.

2 Imbeddings on bounded domains based on

the Gross inequality

We shall first discuss weighted consequences of the Sobolev imbedding theo-
rem and of the general Gross logarithmic inequality.

Since we are interested in large N ’s we shall tacitly assume that N ≥ 3
in the following to avoid unnecessary technicalities.
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First of all let us briefly discuss a straightforward approach based on
Sobolev imbeddings. It is not difficult to see that V ∈ LN/p is a sufficient
condition for (1.1). One can do a little bit better: Since W 1,p(Ω) is imbedded
into the Lorentz space LNp/(N−p),p we have∫

Ω

|f(x)|pV (x) dx ≤
∫ |Ω|

0

(f ∗(t))pV ∗(t) dt

≤
∫ |Ω|

0

t(N−p)/Nf ∗(t)ptp/NV ∗(t)
dt

t

≤ sup
0<s<∞

sp/NV ∗(s)

∫ |Ω|
0

(
t(N−p)/Npf ∗(t)

)p dt
t
,

where we have used the Hardy-Littlewood rearrangement inequality. Hence
(1.1) holds if V ∈ LN/p,∞. In particular, V ∈ Lexp (or Lexp tβ with any β ≥ 1)
is sufficient for (1.1) in any RN . Nevertheless, a dimension-free imbedding
would require a detailed inspection of the behaviour of the imbedding con-
stants and also of the equivalence of the exponential norm of V with the
asymptotic estimates for the LN/p,∞ norms in dependence on N . We shall
not pursue this line here.

Instead, we shall employ the dimension-free estimates for functions in
W 1,p(RN), generalizing the Gross inequality. Recall that the original Gross
theorem (see (1.3)) states that∫

RN
|f(x)|2 log

(
|f(x)|2

‖f‖2
2

)
dx+N‖f‖2

2 ≤
1

π

∫
RN
|∇f(x)|2 dx (2.1)

for all f ∈ W 1,2(RN) If, say, ‖f |W 1,2(RN)‖ ≤ 1, we obtain from (2.1)∫
RN
|f(x)|2 log |f(x)| dx ≤ 1

2π

∫
RN
|∇f(x)|2 dx (2.2)

(since under our assumption log ‖f‖2 ≤ 0). Note in passing that due to the
presence of the log function the Gross inequality expresses a fine balance for
the small and large values of |f |.

We shall start with the general form of (2.1) for 1 < p <∞, see Gunson
[10]: It holds∫

RN
|f(x)|p log(|f(x)|) dx+ γN,p ≤

∫
RN
|∇f(x)|p dx, (2.3)
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for all f ∈ W 1,p(RN), ‖f‖p = 1, with

γN,p =
N

p
+
N log π

2p
+
N log p

p2
− N(p− 1) log(p− 1)

p2

− 1

p
log

(
Γ(1 +N/2)

Γ(1 +N/p′)

)
= T1 + T2 + T3 − T4 − T5,

(2.4)

where Γ is the Euler Gamma function and p′ = p/(p− 1).
Substituting f(x)/‖f‖p into (2.3) we get the more usual Lebesgue norm

form of the above inequality, namely,∫
RN
|f(x)|p log

|f(x)|
‖f‖p

dx+ γN,p ‖f‖pp ≤
∫

RN
|∇f(x)|p dx. (2.5)

In the remainder of this section Ω will be for simplicity the unit ball B in
RN and we shall consider functions in W 1,p

0 = W 1,p
0 (B).

We wish to have an inequality analogous to (2.2). First of all

T1 + T2 + T3 − T4 =
N

p

(
1 +

log π

2
+

log p

p
− log(p− 1)

p′

)
(2.6)

so that
|T1 + T2 + T3 − T4| ≤ c1(p)N.

Further,

Γ(1 +N/2)

Γ(1 +N/p′)
∼ eN/p

′

eN/2
· (N/2)N/2−1/2

(N/p′)N/p′−1/2

∼ eN/p
′

eN/2
· (p′)N/p

′−1/2

2N/2−1/2

NN/2−1/2

NN/p′−1/2

∼ eN/p
′

eN/2
· (p′)N/p

′

2N/2
· N

N/2

NN/p′

∼
(
ep′

N

)N/p′ (
N

2e

)N/2
,

which gives

|T5| ∼ N

∣∣∣∣12 log
N

2e
− 1

p′
log

N

ep′

∣∣∣∣ , (2.7)
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hence |T5| ≤ c2(p)N logN , and we get∫
RN
|f(x)|p log

|f(x)|
‖f‖p

dx ≤ c(p)N logN‖f‖pp +

∫
RN
|∇f(x)|p dx, (2.8)

for all f ∈ W 1,p(RN).
Now we shall additionally need an asymptotic estimate for the best con-

stant in the Sobolev inequality.
The Sobolev imbedding theorem states in particular that W 1,p

0 =
W 1,p

0 (Ω), 1 ≤ p < N , N ≥ 3, where Ω is a domain in RN , is imbedded into
LNp/(N−p). Moreover (see, e.g. [23]), the best constant in the corresponding
inequality for spaces on RN is well known: If p < N , then(∫

RN
|f(x)|Np/(N−p) dx

)(N−p)/Np

≤ C‖∇f |Lp‖, f ∈ W 1,p(RN), (2.9)

where

C =
√

1/π
1

N1/p

(
p− 1

N − p

)1−1/p(
Γ(N)Γ(1 +N/2)

Γ(N/p)Γ(1 +N/p′)

)1/N

.

Let p ∈ (1,∞) be fixed and N > p. Invoking Stirling’s formula for the
Gamma function we have (Γ(ξ))1/ξ ∼ ξ as ξ →∞, hence

C ∼ 1

N1/p

(
p− 1

N − p

)1−1/p(
Γ(N)Γ(1 +N/2)

Γ(N/p)Γ(1 +N/p′)

)1/N

∼ 1

N1/pN1/p′

(
Γ(N)Γ(1 +N/2)

Γ(N/p)Γ(1 +N/p′)

)1/N

∼ 1

N

N [(N/2)Γ(N/2)]1/N (p′)1/N

(Γ(N/p))(p/N)(1/p)N1/N(Γ(N/p′)1/N

∼
(
(Γ(N/2))2/N

)1/2 1

(N/p)1/p ((γ(N/p′))p′/N)
1/p′

∼
(
N

2

)1/2
1

N1/pN1/p′ ∼
1

N1/2
.

(2.10)

Let f ∈ W 1,p(RN), supp f ⊂ B.
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Using (2.9), we get

‖f |Lp(B)‖p ≤ ‖f |LNp/(N−p)(B)‖p |B|p/N

≤ c

Np/2

(
πN/2

Γ(1 +N/2)

)p/N
‖∇f |Lp(RN)‖p

≤ c

Np/2

(
2

NΓ(N/2)

)p/N
‖∇f |Lp(RN)‖p

∼ c

Np/2
2p/N

1

(N1/N)
p

(
1

Γ(N/2)

)(2/N)(p/2)

‖∇f |Lp(RN)‖p

∼ c

Np/2

(
2

N

)p/2
‖∇f |Lp(RN)‖p

∼ 1

Np
‖∇f |Lp(RN)‖p.

(2.11)

Altogether

c(p)N logN ‖f |Lp‖p ≤ (c1(p)N + c2(p)N logN) ‖f |Lp‖p

≤ c(p) logN

Np−1
‖∇f |Lp‖p.

Since p > 1 the constant on the right hand side tends even to 0 as N →∞.
Inserting this estimate into (2.8) we get

Lemma 2.1. Let 1 < p <∞. Then∫
B

|f(x)|p log
|f(x)|
‖f‖p

dx ≤ c‖∇f |Lp‖p, (2.12)

for all f ∈ W 1,p
0 (B), with a constant c independent of f and N . The same is

true for any fixed ball in RN with a possibly different constant c, depending
on this ball and independent of the dimension.

Now we are in position to prove the following theorem.

Theorem 2.2. Let N ≥ 3 and 1 < p <∞. Then there exists c independent
of N such that ∫

B

|f(x)|p log(1 + |f(x)|) dx ≤ c‖∇f |Lp‖p (2.13)
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for all f ∈ W 1,p
0 (B).

Moreover, if V ∈ Lexp t(B), then there exists c > 0 independent of N such
that ∫

B

|f(x)|pV (x) dx ≤ c‖∇f |Lp‖p

for all f ∈ W 1,p
0 (B).

Proof. Let f ∈ W 1,p
0 (B), ‖f |W 1,p

0 (B)‖ = 1/2. Denote the extension of f by
zero to the whole of RN by the same symbol. Consider function fε(x) =
|f(x)|+ ε2sε(x), with sε(x) = 1 if |x| ≤ 1, sε(x) = 1− (|x|− 1)/ε if 1 < |x| <
1+ε, that is, sε is radially decreasing from the value 1 to 0 for 1 ≤ |x| ≤ 1+ε,
and sε(x) = 0 if |x| > 1 + ε. Our first step will be to show that∫

RN
(|f(x)|+ ε2sε(x))p log(1 + |f(x)|+ ε2sε(x)) dx

≤ c‖∇f |Lp‖+ εc(N) <∞
(2.14)

with some constant c independent of the dimension and (small) ε. The final
step will be then to derive the desired weighted inequality from (2.13).

Let us turn our attention to (2.12). We have∫
RN

(|f(x)|+ ε2sε(x))p log(1 + |f(x)|+ ε2sε(x)) dx

≤
∫
|f(x)|≥2

(|f(x)|+ ε2)p log(1 + |f(x)|+ ε2) dx

+

∫
0<|f(x)|<2

(|f(x)|+ ε2)p log(1 + |f(x)|+ ε2) dx

+

∫
B

ε2p log(1 + ε2) dx+

∫
(1+ε)B\B

εp log (1 + ε) dx

= I1(ε) + I2(ε) + I3(ε) + I4(ε).

By virtue of (2.12) with 2B instead of B and ε small, since log(1 + |f(x)|+
ε2) ≤ 2 log(|f(x)|+ ε2) if |f(x)| ≥ 2,

I1(ε) ≤
∫
|f(x)|≥2

(|f(x)|+ ε2)p log(|f(x)|+ ε2) dx

≤ c

∫
RN
|∇(|f(x)|+ ε2sε(x))|p dx.
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For the right hand side there is the elementary estimate∫
RN
|∇(|f(x)|+ ε2sε(x))|p dx ≤ c‖∇f |Lp‖p + cε2p

∫
(1+ε)B\B

|∇sε(x)|p dx

(with c depending on p only). It is easy to estimate the last integral; we get

I1(ε) ≤ c‖∇f |Lp‖p + cε2p |2B| ≤ c‖∇f |Lp‖+ 2Ncε2p |B|

provided ε ≤ 1.
We estimate the second integral. Invoking the asymptotic estimate in

(2.10) we have, by Hölder’s inequality,

I2(ε) =

∫
0<|f(x)|<2

(|f(x)|+ ε2)p log(1 + |f(x)|+ ε2) dx

≤ c

(∫
0<|f(x)|<2

(|f(x)|+ ε2)Np/(N−p)
)(N−p)/N

|B|p/N

≤ c

N1/2
‖∇(|f(x)|+ ε2sε(x))|Lp‖p

≤ c

Np/2
‖∇f |Lp‖p + c(N)εp.

Finally, the third and the fourth integrals can be treated easily to show
that

I2 + I4 ≤ cε

with some constant c independent of f and N (and ε); we omit the details.
Hence the left hand side of (2.14) is finite. Fatou’s lemma gives∫

B

|f(x)|p log(1 + |f(x)|) dx ≤ c‖∇f |Lp(B)‖p,

where c is independent of N and f .
Since the modular and the norm convergence in Lp logL(B) are equivalent

we arrive at the imbedding W 1,p
0 (B) ↪→ Lp logL in any RN , N ∈ N, with the

norm independent of N .
Now our problem reduces to establishing a sufficient condition for the

imbedding Lp logL(B) ↪→ Lp(B, V ), where Lp logL(B) is the Orlicz space
generated by the Young function t 7→ tp log(1 + |t|). Ishii’s theorem gives
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a necessary and sufficient condition for that, namely, integrability of the
function

sup
t>0

[tpV (x)−Ktp log(1 +Kt)], x ∈ B, (2.15)

over B, for some K > 1. Let us rewrite the function in (2.15) as

sup
t>0

[tV (x)−Kt log(1 +Kt1/p)].

By virtue of the Young inequality the condition is V ∈ LΨ̃(B), where

Ψ̃ is the complementary function to Ψ(t) = |t| log(1 + t1/p). Note that
Ψ(t) ∼ |t| log(1 + t) and it is well known that the complementary function is
equivalent to t 7→ exp |t| − 1.

Remark 2.3. It is only a formal change to consider any bounded domain
instead of the unit ball in previous considerations.

As to an unbounded Ω a closer inspection of (2.4) shows that the term
γN,p is non-negative if p ∈ [2, p∗], where p∗ is the unique solution of the
equation

eπp1/p = 2(p− 1)1/p′
. (2.16)

Indeed, the term −T5 in (2.4) is non-negative if p ≥ 2. As to remaining
terms let us look at (2.6). An elementary calculation shows that the right
hand side of (2.6) is non-negative provided p ∈ (1, p∗), where p∗ is the unique
solution of (2.16). Consequently γN,p ≥ 0 if p ∈ (2, p∗).

3 Extrapolation of Sobolev imbeddings

In this section we will use extrapolation of Sobolev imbeddings to get the
residual dimension-free imbeddings for functions with no constraints on their
support.

The symbol W 1,p
0 will denote either W 1,p

0 (Ω) with some domain Ω ⊂ RN

or the space W 1,p(RN) (which coincides with W 1,p
0 (RN)).

Theorem 3.1. Let 1 < p < N/3. There exists a constant c independent of
N , α, and f ∈ W 1,p

0 such that

‖f |Lp(log(1 + L))α‖ ≤ c‖∇f |Lp‖ (3.1)

for every f ∈ W 1,p
0 and α ∈ (p2/(N − p), p/2].
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Corollary 3.2. Let V be a weight function on Ω, 1 < p < N/3, and assume
that V χ{V≥1} ∈ Lexp t1/α with α as in Theorem 3.1 and V χ{0<V <1} ∈ L1.
Then there exists a constant c independent of N such that

‖f |Lp(V )‖ ≤ c‖∇f |Lp‖

for every f ∈ W 1,p
0 (Ω). If |Ω| <∞, it is enough to assume that V ∈ Lexp t1/α.

Proof of Theorem 3.1. Let α > 0. Hölder’s inequality combined with the
Sobolev imbedding gives(∫

Ω

|f(x)|p [log(1 + ||f(x)||)]α dx
)1/p

≤
(∫

Ω

|f(x)|Np/(N−p) dx
)(N−p)/Np(∫

Ω

[log(1 + |f(x)|)]Nα/p dx
)1/N

≤ c

N1/2
‖∇f |Lp‖

(∫
Ω

[log(1 + |f(x)|)]Nα/p dx
)1/N

.

(3.2)

It is not difficult to see that for ε ∈ (0, 1),

log(1 + ξ) ≤ 1

ε
ξε, ξ > 0.

Indeed, consider h(ξ) = log(1 + ξ)− cεξε with cε to be specified later. Then
h(0) = 0 and

h′(ξ) =
1

1 + ξ
− εcεξε−1.

We wish to find cε such that h(ξ) ≤ 0, i.e.,

εcεξ
ε−1 + εcεξ

ε ≥ 1.

Plainly it is sufficient that cε = 1/ε so that

[log(1 + |f(x)|)]Nα/p ≤
(

1

ε

)Nα/p
|f(x)|Nαε/p,

and (∫
Ω

[log(1+ |f(x)|)]Nα/p dx
)1/N

≤
(

1

ε

)α/p(∫
Ω

|f(x)|Nαε/p dx
)1/N

.

(3.3)
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This means that the appropriate choice is

Nαε

p
=

Np

N − p
,

in another terms,

ε =
p2

α(N − p)
.

Inserting this into (3.3) and applying Sobolev’s inequality again we get(∫
Ω

[ log(1 + |f(x)|)]Nα/p dx
)1/N

≤
(

1

ε

)α/p(∫
Ω

|f(x)|Nαε/p dx
)1/N

≤
(
α(N − p)

p2

)α/p(∫
Ω

|f(x)|Np/(N−p) dx
)1/N

≤
(
α(N − p)

p2

)α/p(∫
Ω

|f(x)|Np/(N−p) dx
)((N−p)/Np)(p/(N−p))

≤
(
α(N − p)

p2

)α/p ( c

N1/2

)p/(N−p)
‖∇f |Lp‖p/(N−p).

Together with (3.2) this yields(∫
Ω

|f(x)|p [log(1 + |f(x)|)]α dx
)1/p

≤ c

N1/2

(
α(N − p)

p2

)α/p(
1

N1/2

)p/(N−p)
‖∇f |Lp‖1+p/(N−p).

Hence for N large we have(∫
Ω

|f(x)|p [log(1 + |f(x)|)]α dx
)1/p

≤ c
Nα/p

N1/2
‖∇f |Lp‖1+p/(N−p)

with some c independent of f and N . To achieve independence of the right
hand side of N we have to choose

α ≤ p

2
.
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Note that the best choice for spaces on bounded domains is α = p/2 and we
have than(∫

Ω

|f(x)|p[log(1 + |f(x)|)]α dx
)1/p

≤ c‖∇f |Lp‖1+p/(N−p). (3.4)

The power of the norm of the gradient on the right hand side of (3.4)
might look strange at a first look but one should realize that the expression
on the left hand side is not a norm but merely a power of the modular in
Lp[log(1 + L)]α. In the following we shall derive the inequality (3.1).

Let us repeat the above procedure once more, this time with f(x)/λ
instead of f (λ > 0 arbitrary). We get

λ1+p/(N−p)

c

(∫
Ω

(
f(x)

λ

)p [
log

(
1 +
|f(x)|
λ

)]α
dx

)1/p

≤ ‖∇f |Lp‖1+p/(N−p).

Let
‖∇f |Lp‖ = 1

and
λ1+p/(N−p) ≥ c (that is, λ ≥ c1−p/N),

then ∫
Ω

(
|f(x)|
λ

)p [
log

(
1 +
|f(x)|
λ

)]α
dx ≤ 1.

The last estimate says that ‖f |Lp[log(1 + L)]α‖ ≤ c1−p/N . Since c was inde-
pendent of N , plainly also ‖f |Lp[log(1 + L)]α‖ can be estimated from above
independently of N .

Proof of Corollary 3.2. According to Proposition 1.1 (Ishii’s theorem) we
have Lp[log(1 + L)]α ↪→ Lp(V ) if and only if the function

H(x) = sup
t>0

(tpV (x)−Kptp[log(1 +Kt)]α) (3.5)

is integrable over B. But (3.5) can be rewritten as

H(x) = sup
t>0

(
tV (x)−Kpt[log(1 +Kt1/p)]α

)
(3.6)

hence the necessary and sufficient condition for the imbedding is∫
Ω

Ψ(V (x)) dx <∞,
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where Ψ is a Young function complementary to Kpt[log(1 +Kt1/p)]α.
The function t 7→ Kp

[
log(1 +Kt1/p)

]α
is an inverse to the ∆3-function

Ψ̃(ξ) =
1

Kp

[
exp

(
ξ1/α

K2

)
− 1

]p
;

so that (see [14, I/§6]) we have Ψ(ξ) ∼ exp
(
ξ1/α

)
− 1 for ξ bounded away

from zero, say for ξ ≥ 1 (in the sense of the equivalence of Young func-
tions). As to values of V belonging to (0, 1) we have to look directly at the
integrability of the function in (3.6). Elementary calculations show that if
V (x) ≤ 1, then the expression on the right hand side of (3.6) is negative if
t > K−p

(
expK−p/α − 1

)
and the sup becomes a (fixed) multiple of V (x).
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