
Derandomization and Distinguishing Complexity

Eric Allender�

Rutgers University
allender@cs.rutgers.edu

Michal Koucký�

Rutgers University
mkoucky@paul.rutgers.edu

Detlef Ronneburger�

Rutgers University
detlef@paul.rutgers.edu

Sambuddha Roy�

Rutgers University
samroy@paul.rutgers.edu

Abstract

We continue an investigation of resource-bounded Kol-
mogorov complexity and derandomization techniques begun
in [2, 3].

We introduce nondeterministic time-bounded Kolmogorov
complexity measures (KNt and KNT) and examine the
properties of these measures using constructions of hitting
set generators for nondeterministic circuits [22, 26].

We observe thatKNt bears many similarities to the non-
deterministic distinguishing complexityCND of [8]. This
motivates the definition of a new notion of time-bounded
distinguishing complexityKDt, as an intermediate notion
with connections to the classFewEXP. The set ofKDt-
random strings is complete forEXP underP/poly reduc-
tions.

Most of the notions of resource-bounded Kolmogorov com-
plexity discussed here and in the earlier papers [2, 3] have
close connections to circuit size (on different types of cir-
cuits). We extend this framework to define notions of Kol-
mogorov complexityKB andKF that are related to branch-
ing program size and formula size, respectively. The sets of
KB- andKF-random strings lie incoNP; we show that ora-
cle access to these sets enables one to factor Blum integers.
We obtain related intractability results for approximating
minimum formula size, branching program size, and circuit
size.

The NEXP � NC1 and NEXP � L/poly questions are
shown to be equivalent to conditions about theKF andKB
complexity of sets inP.

�Partially supported by NSF grant CCR-0104823.

1 Introduction

This paper continues a line of research begun in [2, 3],
in which recent progress in derandomization techniques is
employed to provide new insights about resource-bounded
Kolmogorov complexity. One topic that wasnot discussed
in the earlier papers is derandomization techniques fornon-
deterministiccircuits, as provided by [22] and [26]. We will
turn our attention to that task in Section 2, after first laying
some groundwork by presenting our basic definitions.

In the earlier papers [2, 3] we focused on notions of
resource-bounded Kolmogorov complexity, including Kt
and KT. The first of these was originally defined and stud-
ied by Levin [19]. In this paper we will be introducing sev-
eral more notions of resource-bounded Kolmogorov com-
plexity. In order to have a uniform framework for these new
definitions, we need to modify the definitions of Kt and KT
in minor ways that affect none of the theorems proved in the
earlier work.

Definition 1 LetU be a deterministic Turing machine.

KtU (x) = minfjdj+ log t : 8b 2 f0; 1; �g

8i � n+ 1 U(d; i; b) runs in

timet and accepts iffxi = bg

KTU (x) = minfjdj+ t : 8b 2 f0; 1; �g

8i � n+ 1 U(d; i; b) runs in

timet and accepts iffxi = bg

Here, we say thatxi = � if i > jxj.

As usual, we will choose a fixed “optimal” Turing ma-
chineU and use the notation Kt and KT to refer to KtU

and KTU . However, the definition of “optimal” Turing ma-
chine depends on the measure which is under considera-



tion. For instance,U is Kt-optimal if for any Turing ma-
chineU 0 there exists a constantc � 0 such that for allx,
KtU (x) � KtU 0(x) + c log jxj. Notice that there is an ad-
ditive logarithmic term instead of the “usual” additive con-
stant. This comes from the slight slow-down that is incurred
in the simulation ofU 0 by U . Similarly, U is KT-optimal
if for any Turing machineU 0 there exists a constantc > 0
such that for allx, KTU (x) � cKTU 0(x) logKTU 0(x). The
existence of optimal machines for Kt and KT complexity
follows via standard arguments. Definitions of Kt and KT
can be relativized to yield measures KtA and KTA by pro-
vidingU with access to oracleA.

There is not space here to survey all of the earlier work
on resource-bounded Kolmogorov complexity. Briefly, the
considerations that cause us to focus on these particular def-
initions are

� The KTA-complexity of a string of length2n (the truth
table of a Boolean functionf ) is closely related to the
size ofA-oracle circuits computingf .

� Levin’s Kt complexity is essentially the same thing as
KTA for any setA complete for E.

� These definitions facilitate the presentation of results
relating new techniques in derandomization to tradi-
tional notions of Kolmogorov complexity.

In [3] the sets of strings with “high” complexity under these
measures were shown to be complete for various complex-
ity classes. Although these completeness results hold for a
wide range of possible choices of “high”, for convenience
we settle on the following definition.

Definition 2 For any Kolmogorov complexity measureK�,
defineRK� to be the setfx : K�(x) � jxj=2g.

A useful measure of the complexity of a languageL (stud-
ied in [1, 2]) is the measure of the simplest strings inL.

Definition 3 Let L be a language and letK� be a Kol-
mogorov complexity measure. We define the Kolmogorov
complexity ofL for lengthn as

K�L(n) = minfK�(x) : jxj = n andx 2 Lg

If L \ �n = ; thenK�L(n) is undefined.

2 Nondeterministic Kolmogorov
Complexity

Miltersen and Vinodchandran [22] proved that if there is a
set in NE\ coNE that does not have “strong” nondetermin-

istic circuits of subexponential size, then there is a hitting-
set generator computable in NP for co-nondeterministic cir-
cuits. Shaltiel and Umans [26] subsequently presented a
better construction of a hitting-set generator that hits co-
nondeterministic as well as nondeterministic circuits.

We recall some standard definitions:

Definition 4 A SNP-procedure (Strong NP procedure)
computing a functionf is a polynomial time nondetermin-
istic procedure, so that every computation path on inputx
either producesf(x) or rejects. Furthermore, at least one
computation path must producef(x).

We will also refer to functions computable in SNP/log. For
this, we assume that there is an advice functionh(n) pro-
viding a string of lengthO(logn), and a nondeterministic
machine as above that producesf(x) on every non-rejecting
computation path on input(x; h(jxj)). We place no restric-
tions on the behavior of the nondeterministic machine on
inputs(x; z) wherez 6= h(jxj).

Definition 5 A nondeterministic Boolean circuitC con-
tains, in addition toAND, OR, andNOT gates, choice
gates of fan-in0. The circuit evaluates to1 on an input
x, and we say thatC(x) = 1, if there is some assignment
of truth values to the choice-gates that makes the circuit
evaluate to1. A co-nondeterministic circuitC is defined
similarly: the circuit evaluates to1 on an inputx, and we
say thatC(x) = 1, if every assignment of truth values to
the choice-gates makes the circuit evaluate to1. Otherwise
C(x) = 0.

Similarly, a strong nondeterministic circuitC computing a
functionf has, in addition to its usual output, an extra out-
put bit, called the flag. For any inputx, and any setting of
the choice-gates, if the flag is on, the circuit should output
the correct value off(x). Furthermore, for anyx, there
should be some setting of the choice-gates that turns the
flag on. It is easy to see that a Boolean functionf has a
strong nondeterministic circuit of sizeO(s(n)) if and only
if f has a nondeterministic circuit of sizeO(s(n)) and a
co-nondeterministic circuit of sizeO(s(n)).

Definition 6 A hitting set generatorfor a class of circuits
C and threshold� is a procedureG that maps strings of
lengthn to a setHn of polynomial size with the property
that, for every circuit inC onn inputs that accepts at least
�2n strings in�n, C accepts an element ofHn.

In order to see what the techniques of [22, 26] tell us about
Kolmogorov complexity, it is necessary to present nonde-
terministic analogs of Kt and KT. We call the new notions
KNt and KNT.



Definition 7 LetU be a fixed nondeterministic Turing ma-
chine.

KNtU (x) = minfjdj+ log t : 8b 2 f0; 1; �g

8i � n+ 1 U(d; i; b) runs in

timet and accepts iffxi = bg

KNTU (x) = minfjdj+ t : 8b 2 f0; 1; �g

8i � n+ 1 U(d; i; b) runs in

timet and accepts iffxi = bg

As in the definition for Kt and KT, we have to be care-
ful of the properties we require of the optimal Turing ma-
chine. We define KNt as KNtU where the optimal machine
U has the property that for allU 0, we have KNtU (x) �
KNtU 0(x) + c We define KNT as KNTU , such that for all
U 0, we have KNTU (x) � c�KNTU 0(x) for some constantc.

Remark: In precisely the same way that KT(x) is polyno-
mially related to the size of (deterministic) circuits comput-
ing the function whose truth table is given byx, it is easy
to see that KNT is polynomially related tostrong nondeter-
ministiccircuit size.

Theorem 8 The following are equivalent:

1. 9� > 08n9x 2 �n KNT(x) + log jxj > 2�KNt(x):
(That is, KNT and KNt are nearly as far apart as
possible.)

2. 9A 2NE/lin \ co-NE/lin, 9a such thatA requires
strong nondeterministic circuits of size2an.

3. 9A 2NE/lin \ co-NE/lin, 9a such thatA requires
nondeterministic circuits of size2an.

4. For all dense1 A in coNP/poly, KNtA(n) = O(logn).

5. For all denseA in NP/poly, KNtA(n) = O(logn).

6. For all dense A in NP/poly\ coNP/poly,
KNtA(n) = O(log n).

7. There existSNP/logcomputable hitting set generators
for nondeterministic linear-size circuits and threshold
1
2 (and similar conditions for co-nondeterministic and
strong circuits).

Remark: We wish to call attention to the equivalence of
conditions 4 and 5. For some notions of complexity such
as KT, there are dense sets in coNP with essentially maxi-
mal KT complexity (such asRKT), whereas there are good
reasons to believe that every dense language in NP/poly has
low KT-complexity. (Rudich gives evidence for this con-
jecture in [25].)

1A language isdenseif it contains at least a polynomially-large fraction
of the strings of each length.

Proof. (1 , 2) This equivalence is proved similarly to
related statements in [2]. Given any sequence of strings
x1; x2; : : : with jxmj = n = 2m, where KNT(xm) is large
and KNt(xm) is small (and must in fact be logarithmic,
since KNT is always linear at most) by concatenation one
can construct the characteristic sequence of a languageA in
NE/lin \ co-NE/lin that requires large strong nondetermin-
istic circuits. For the converse, given any such languageA,
the prefices of its characteristic sequence have logarithmic
KNt complexity and large KNT complexity.

(2 ) 3) We prove the contrapositive,:3 ) :2. Thus ev-
ery A 2 NE/lin \ co-NE/lin has “small” nondeterminis-
tic circuits (that is, of size less than2an for any a > 0).
Thus A 2 NE/lin \ co-NE/lin, and hence by hypothe-
sis has “small” nondeterministic circuits. This yields co-
nondeterministic circuits forA; we can combine the two
circuits to get strong nondeterministic circuits forA. This
proves:2. (Similar observations are made by Shaltiel and
Umans [26].)

(3 ) 2) This is trivial; a strong nondeterministic circuit
yields a nondeterministic circuit of roughly the same size.

(2 ) 4, 5, 6, and 7) In Corollaries 10 and 12 of [26],
Shaltiel and Umans show that there is a constantc and a
functionG(x; n) computable in deterministic polynomial
time with the property that ifx is a string of lengthnc such
that KNT(x) > jxj=2 (i.e., if x is the truth table of a func-
tion requiring large size on strong nondeterministic circuits)
thenG(x; n) produces a setHx;n that is a hitting set for
both nondeterministic and co-nondeterministic linear-size
circuits with threshold12 .

It is now straightforward to obtain a hitting set generator in
SNP/log; with logarithmic advice we can nondeterministi-
cally guess and verify a stringx that is a truth table for a
particular language in NE/lin\ co-NE/lin, and then run the
generatorG.

It is easy to see that any string in the hitting set output by
a SNP/log computable hitting set generator has low KNt
complexity; this shows that any set of density one-half
or greater accepted by linear-size nondeterministic or co-
nondeterministic circuits contains some strings of low KNt
complexity. The more general statements now follow by an
easy padding argument.

The implications (7) 6) (4) 6), and (5) 6) are either
trivial or follow via the argument above. Thus it suffices to
prove (6) 2).

(6 ) 2). DefineA = fx : jxj = 5m and KNt(x) > mg.
We claim thatA is in NE/lin\ co-NE/lin. To see this, re-
call that for a stringx of length 5m, KNt(x) � m im-
plies 9d; jdj � m;8i U(d; i; b) has an accepting path iff
xi = b, whereU is a universal nondeterministic Turing



machine running for2m steps. In order to enumerate all
x’s of length 5m that have KNt(x) � m, we will ex-
clude from consideration thosed’s that are not valid de-
scriptions of strings. We define� to be the number ofd’s
that are indeed valid descriptions of strings of length5m,
(i.e., there exists anx for which8i U(d; i; b) has an accept-
ing path iff xi = b), and we define� to be the number
of “recognizably bad” descriptions, that is, those for which
8i � 5m+19b 2 f0; 1; �g; U accepts(d; i; b) and for some
i and someb0 6= b 2 f0; 1; �g; U accepts both(d; i; b) and
(d; i; b0). Our SNP machine takes in� and� as advice (each
of lengthO(m)). First it guesses� “recognizably bad” de-
scriptions and verifies that they are indeed bad by guess-
ing accepting paths for both(d; i; b) and(d; i; b0). Then it
guesses� other strings (corresponding to candidate “good”
d’s), and guesses accepting paths for all of them and prints
out the corresponding strings. All of this takes time expo-
nential inm. Now we can acceptx if and only if it is not in
the list that has been generated.

Now we need to show thatA requires large strong non-
deterministic circuits. Assume otherwise, so that for ev-
ery c there is somen such that there is a strong nonde-
terministic circuit of size2n=c decidingA for inputs of
lengthn. Then we can construct a dense languageB 2
NP/poly\ coNP/poly of the formB = fy : jyj = n and
the prefix ofy of length cn � logn is in Ag wherecn is
chosen (nonuniformly) to be as large as possible, so that
the membership test forA can be implemented in sizen
via a strong nondeterministic circuit. By assumption, the
sequence of numbers(cn) is unbounded. It follows that
KNtB(n) 6= O(logn). 2

Most work on derandomizing nondeterministic circuits has
been done with the aim of providing weak hypotheses that
imply AM = NP. The conditions of the preceding theo-
rem are not known yield this conclusion (although it is ob-
vious that they imply AM� NP/log); in order to imply
AM = NP it is sufficient for the languageA in item 3 to
be in NE\ co-NE instead of NE/lin\ co-NE/lin [22]. It is
worth mentioning that we also obtain another partial deran-
domization.

Theorem 9 If there existsA 2NE/lin \ co-NE/lin, such
thatA requires strong nondeterministic circuits of size2an,

for somea > 0, thenAM 2 PNP[logn].

Proof. As in [22], to determine ifx is in a setB 2 AM,
we model the Arthur-Merlin game using a nondeterministic
circuit with inputx and some probabilistic inputsy. LetCx

be the result of hardwiring the bits ofx into this circuit; then
x 2 B ) Cx accepts everyy, andx 62 B ) Cx rejects
at least half of the stringsy. Thus it suffices to use our NP

oracle to determine if there is a stringy that is rejected by
Cx. By parts 7 and 4 of the preceding theorem, if such a
string y exists, then there is such a string with KNt(y) =
O(logn).

Thus it suffices to design a PNP[logn] procedure to deter-
mine if there is a stringy with KNt(y) � c logn such that
the nondeterministic circuitCx rejectsy.

As in the proof of (6) 2) of the previous theorem, let� be
the number of good descriptions of length at mostc logn
and let� be the number of “recognizably bad” descriptions
d of length at mostc logn. The numbers� and� can be
computed inO(logn) queries to an NP oracle of the form
“do there exist� j strings(d1; d2; � � � ; dj) of length at most
c logn such that for allm and alli � jyj+ 1 there is ab 2
f0; 1; �g such thatU(dm; i; b) has an accepting path?” and
“do there exist� j strings(d1; d2; � � � ; dj) of length at most
c logn such that for allm; i there is ab such thatU(dm; i; b)
accepts and there is somei � jyj + 1 for which there are
b 6= b0 2 f0; 1; �g such thatU(dm; i; b) andU(dm; i; b0)
each have an accepting path?” Having computed� and�
we can ask one more query to an NP oracle to determine if
there are� bad descriptions and� good descriptions such
thatCx accepts all of the stringsy described by the� good
descriptions. 2

2.1 Nondeterministic Derandomization

It is frequently the case that hardness assumptions are in
fact equivalentto the existence of derandomization con-
structions; for a survey, see [11]. To the best of our knowl-
edge, it has not been stated explicitly that the hitting set
constructions of [22, 26] are in fact equivalent to the hard-
ness assumptions they use, although it follows easily from
well-known techniques [16].

Theorem 10 The following are equivalent:

1. 9A 2 NE\ co-NE, 9a > 0 such thatA requires
strong nondeterministic circuits of size2an.

2. 9A 2 NE \ co-NE, 9a > 0 such thatA requires non-
deterministic circuits of size2an.

3. There is aSNP-computable hitting set generator for
linear-size nondeterministic circuits and threshold1

2 .

4. There is a SNP-computable hitting set genera-
tor for linear-size co-nondeterministic circuits and
threshold12 .

5. There is aSNP-computable hitting set generator for
linear-size strong nondeterministic circuits and thresh-
old 1

2 .



3 Distinguishing Complexity

One of the first types of resource-bounded Kolmogorov
complexity to be studied was “distinguishing” complexity.
For more on the history of this notion, see [8], where the fol-
lowing notion of nondeterministic distinguishing complex-
ity was introduced.

Definition 11 Let p be a polynomial, and letU be a uni-
versal nondeterministic Turing machine.CNDp(x) is de-
fined to be the minimumjdj such thatU(d; y) accepts in
timep(jxj) if and only ify = x.

KNt andCND complexity are closely related, in that they
agree on strings of logarithmic complexity, in the following
sense.

Proposition 12 Let c be given.

� There is a polynomialp and a d 2 IN such that if
KNt(x) < c log jxj thenCNDp(x) < d log jxj.

� For all polynomialsp there is ad 2 IN such that if
CNDp(x) < c log jxj thenKNt(x) < d log jxj.

(One consequence of this proposition is that the proof of
Theorem 9 could have been presented in terms ofCND
complexity, instead of KNt complexity.) This motivates the
definition of notions of distinguishing complexity, having
the flavor of KNt and Kt.

Definition 13 Let U1 be a fixed nondeterministic Turing
machine, and letU2 be a fixed deterministic Turing ma-
chine.

KNDtU1(x) = minfjdj+ log t : 8y 2 �jxj U1(d; y)

runs in timet and accepts iffx = yg

KDtU2(x) = minfjdj+ log t : 8y 2 �jxj U2(d; y)

runs in timet and accepts iffx = yg

Again, we have to be careful about the properties we re-
quire of the optimal Turing machine. We define KNDt
as KNDtU where the optimal machineU has the property
that for all U 0, we have KNDtU (x) � KNDtU 0(x) + c
We define KDt as KDtU , such that for allU 0, we have
KDtU (x) � KDtU 0(x) + c log jxj for some constantc.

We observe that KNDt is essentially the same thing as
KNt, up to logarithmic terms. Showing that KNDt(x) �
KNt(x) + O(log jxj) is an easy exercise. Conversely, if
KNDt(x) is small (using descriptiond), then a nondeter-
ministic machine, given(d0; i; b) whered0 = (d; jxj), can

guessx 2 �jxj and ifU(d; x) accepts, then accept iff the
ith bit of x is b. Analysis of the run times easily yields that
KNDt(x) � KNt(x) + O(log jxj). Since KNDt is indistin-
guishable from KNt from our standpoint, we will not refer
to KNDt any further.

Theorem 14 KNDt(x) = KNt(x) + �(log jxj)

This leads us to ask if KDt is similarly related to Kt. At
first, it might seem that theyareclosely related.

Proposition 15 RKt andRKDt are both complete forEXP
underP/polyreductions.

Proof. For RKt this is proved in [3], and in fact hard-
ness holds for any dense set containing no strings of low
Kt-complexity. Since Kt(x) > KDt(x) � O(log jxj) it fol-
lows thatRKDt is also hard for EXP. Membership in EXP
is easy to show. 2

Nonetheless, if Kt and KDt are polynomially related, it im-
plies that FewEXP is equal to EXP. In order to state the
connection more precisely, we need the following defini-
tion.

Definition 16 We say thatFewEXP search instances are
EXP-solvableif, for every NEXPmachineN and everyk
there is anEXPmachineM with the property that ifN has
fewer than2jxj

k

accepting paths on inputx, thenM(x) pro-
duces one of these accepting paths as output if there is one.
We say thatFewEXP decision instances are EXP-solvable
if, for every NEXPmachineN and everyk there is anEXP
machineM with the property that ifN has fewer than2jxj

k

accepting paths on inputx, thenM(x) accepts if and only
if N(x) accepts.

Remark: Note that we do not require thatN is a FewEXP
machine; it need not have a small number of accepting paths
oneveryinput.

Theorem 17 The following statements are equivalent.

1. 8x;Kt(x) = KDt(x)O(1)

2. FewEXPsearch instances areEXP-solvable.

3. FewEXPdecision instances areEXP/poly-solvable.

4. 8 L 2 P, KtL(n) = (log jL=nj+ logn)O(1)

5. 8x; 8y, KDt(x) = (KDt(xy) + log jxyj)O(1)



Remark: This theorem has a similar flavor to a theorem
of [12] concerningCp andCDp complexity. However, al-
though we make use of the techniques of [12] we do not see
a way to formulate an equivalent condition using theCp and
CDp measures.

Remark: The fifth condition of the preceding theorem
deserves some comment. For all of the other resource-
bounded Kolmogorov complexity measuresK� studied in
this paper (other than KDt) it is easy to see that the follow-
ing three conditions are equivalent:

� For allA 2 NPK�A(n) = logO(1) n.

� For allA 2 PK�A(n) = logO(1) n.

� For allA 2 DLOGTIME-uniform AC0

K�A(n) = logO(1) n.

(For example, see Theorem 3 in [2].) The simple observa-
tion that forms the main part of the proof of this equivalence
is the fact that for allx andy, K�(x) can be bounded by
K�(xy) + log jxyj.

Proof of Theorem 17.It is immediate that 2) 3 and 1)
5 . We will now prove 3) 1, 1) 4, 4) 2, and 5) 1.

(3 ) 1) Consider a NEXP machineM that on input
(d; 1t; i; b; n) guesses a stringy 2 f0; 1gn, runsU(d; y)
for 2t steps and then accepts iffyi = b andU(d; y) accepts.
If d is a distinguishing description for a stringx 2 f0; 1gn

andt is sufficiently large, then there is exactly one accept-
ing path ofM on input(d; 1t; i; xi; jxj); there is no accept-
ing path ofM on (d; 1t; i; xi; jxj), for all 1 � i � jxj.
By our assumption, there is a deterministic machineN run-
ning in exponential time, that on input(d; 1t; i; b; jxj), given
some polynomial adviceh, can decide whetherM accepts
(d; 1t; i; b; jxj) or not.2 Thus, givend, t, jxj and the ad-
vice h, we can generatex bit by bit in time exponential
in (jdj + t + log jxj + jhj)O(1). Since KDt(x) � log jxj,
Kt(x) � KDt(x)O(1).

(1) 4) Using hashing the authors of [8] show that for any
setL there is a polynomial time algorithm with oracle ac-
cess toL, such that for everyx 2 L there is a description
dx of length2 log

�
�L=jxj

�
� + O(log jxj), such that the algo-

rithm accepts(z; dx) if and only if z = x. ConsiderL 2 P.
Then the oracle access toL is not necessary and for every
x 2 L we know KDt(x) = 2 log

�
�L=jxj

�
�+ O(log jxj). As-

suming that KDt and Kt are polynomially related we obtain
Kt(x) � (log

�
�L=jxj

�
�+ log jxj)O(1).

2Note that it would have been sufficient to use a formally weaker as-
sumption, dealing only with the case where there is a single accepting path.

(4 ) 2) Let L be decidable by a nondeterministic ma-
chineN running in time2n

k

, for k � 1. Define the set

C = fw10x : wherew 2 f0; 1g2
jxjk

is a witness that
N(x) acceptsg. (Here, we identifyx with the integer hav-
ing binary representation1x.) Clearly C 2 P . Let x
be a string, such thatN(x) has few accepting paths, i.e.,

jC=nx j � 2jxj
O(1)

, wherenx = 2jxj
k

+ x + 1. By assump-
tion, there is a witnessw with Kt(w10x) � jxjO(1). So in
order to find a witness forx 2 L we just need to search
through all stringsy with Kt(y) � jxjO(1). That can be
done in exponential time.

(5) 1) Assume that there is a constantc, such that for ev-
ery stringx and every prefixy of x, KDt(y) � (KDt(x) +
log jxj)c. Letx be a string of lengthn. If KDt (x) � (n=2)c

then the claim is true forx. Assume that KDt(x) < (n=2)c.
Let a = maxfKDt(y); y is a prefix of xg. Clearly,
a � (KDt(x) + log jxj)c < n. We construct a sequence
Sa; : : : ; Sn of sets withjSij � 2a, such that for eachi, if
z 2 f0; 1gi andz and every prefixy of z has KDt(y) � a,
thenz 2 Si. We initially start withSa = f0; 1ga and then
proceed iteratively as follows.

Si+1 :=
�
s 2 Si Æ f0; 1g : 9ds 2 f0; 1g

a

U(ds; s) accepts , and ifs0 2 Si Æ f0; 1g

ands 6= s0 thenU(ds; s
0) rejects

	

It is fairly straightforward to verify that these sets have the
property mentioned above, namely that they are not too big
and that they contain all the simple strings having simple
prefixes. Thusx 2 Sn. Thus there is a machineM that
in time n2O(a) on input (n; a; i) generatesx, wherei is
the index ofx in the setSn. Hence, Kt(x) = j(n; a; i)j +
logn2O(a) +O(logn) = O(a+ logn) = KDt(x)O(1). 2

Since it seems unlikely that KDt is polynomially-related to
Kt, one might ask if KDt is polynomially-related to KNt.
Here again, we can use the techniques of [8] to show:

Corollary 18 The following are equivalent:

1. Kt(x) = KNt(x)O(1)

2. KDt(x) = KNt(x)O(1)

Proof. (1) 2) This is trivial.

(2 ) 1) If KDt(x) is always polynomially bounded by
KNt(x), then we know that for everyx and y we have
KDt(x) � KDt(xy) + log(jxyj)O(1). Hence Theorem 17
yields Kt(x) = KDt(x)O(1), and we obtain the desired con-
clusion. 2



Remark: The conditions of this theorem clearly imply
the conditions of Theorem 17. They also imply that
EXP/poly= NEXP/poly\ coNEXP/poly. (To see this, ob-
serve thatA 2 NEXP/poly\ coNEXP/poly if and only if
�A = n has polylogarithmic KNt complexity, andA 2
EXP/poly if and only if�A has polylogarithmic Kt com-
plexity.) We do not know of an easy-to-state condition in-
volving complexity classes that is equivalent to these state-
ments.

4 Branching Program and Formula Size

The definition of KT complexity is motivated in large part
by the fact that KT(x) is a good estimate of the circuit size
required to compute the functionf that hasx as its truth ta-
ble. But circuit size is only one of many possible interesting
measures of the “complexity” off . There is also great inter-
est in knowing the size of the smallest branching programs
computingf , as well as the size of the smallest Boolean for-
mula representingf . Do these notions of complexity also
give rise to a natural notion of Kolmogorov complexity?

In this section we answer this question by presenting two
more notions of resource-boundedKolmogorov complexity.

Definition 19 Let U1 be a deterministic Turing machine,
and letU2 be an alternating Turing machine.

KBU1(x) = minfjdj+ 2s : 8b 2 f0; 1; �g

8i � n+ 1 U1(d; i; b) runs in

spaces and accepts iffxi = bg

KFU2(x) = minfjdj+ 2t : 8b 2 f0; 1; �g

8i � n+ 1 U2(d; i; b) runs in

timet and accepts iffxi = bg

As usual, we will choose a fixed “optimal” Turing ma-
chinesU1 andU2 and use the notation KB and KF to re-
fer to KBU1 and KFU2 . A deterministic Turing machine
U1 is KB-optimal if for any deterministic Turing machine
U 0
1 there exists a constantc � 0 such that for allx,

KBU1(x) � (KBU 0
1
(x))c. Similarly, an alternating Tur-

ing machineU2 is KF-optimal if for any alternating Tur-
ing machineU 0

2 there exists a constantc > 0 such that for
all x, KFU2(x) � (KFU 0

2
(x))c. The existence of optimal

machines for KB and KF complexity follows via standard
arguments. We get the following simple proposition.

Proposition 20 For any stringx of length2n represent-
ing the truth table of a functionf , let BPSIZE(x) denote
the size of the smallest branching program computingf ,
and letFSIZE(x) denote the size of the smallest Boolean

formula representingf . Then(KB(x) + log jxj)O(1) =
(BPSIZE(x) + log jxj)O(1), and(KF(x) + log jxj)O(1) =
(FSIZE(x) + log jxj)O(1).

For each of these two new measures, the sets of random
stringsRKB andRKF lie in coNP. Can we prove better
upper bounds on their complexity? Can we prove any in-
tractability results?

In [3] these questions were posed for the setRKT, and Ka-
banets and Cai and posed similar questions earlier for the
related Minimum Circuit Size Problem (MCSP) [17]. Al-
though we are not able to reduce the factorization problem
toRKB andRKF (as was accomplished forRKT in [3]), we
can come close.

In this section we prove that factoring Blum Integers can be
done in ZPPRKF and ZPPRKB . (For an oracleA, a func-
tion f is in ZPPA if there exists a procedure computed by
a probabilistic oracle machine with oracle A that on input
x, on every halting path, producesf(x), and the expected
running time is polynomial.) We use results of [23] and [7]
in order to accomplish this. We define the following com-
putational problem.

Blum Integer Factorization: Given a Blum IntegerN 2 IN,
find the primesP andQ such that1 < P � Q andN =
PQ. (A 2n-bit integerN is called aBlum Integerif N =
PQ, whereP andQ are two primes such thatP � Q �
3mod4.)

Theorem 21 Blum Integer Factorization is inZPPRKF \
ZPPRKB , i.e., there areZPPRKF and ZPPRKB procedures
that on inputN that is a Blum Integer produce factorsP
andQ ofN .

Proof. In [23], they construct a pseudo-random function
ensembleffN;r(x) : f0; 1gn ! f0; 1ggN;r with the fol-
lowing two properties (Construction 5.2 and Corollary 5.6
of [23]):

1. There is a TC0 circuit computingfN;r(x), given2n-
bit integerN , 4n2 + 2n-bit string r andn-bit string
x.

2. For every probabilistic oracle Turing machineM, that
on its 2n-bit input asks queries of length onlyn, and
any constant� > 0, there is a probabilistic Turing
machineA, such that for any2n-bit Blum Integer
N = PQ, if

jPr[MfN;r(N) = 1]� Pr[MRn(N) = 1]j > 1=n�

whereRn = fg : f0; 1gn ! f0; 1ggn is a uniformly
distributed random function ensemble and the proba-
bility is taken over the random stringr and the random
bits ofM, thenPr[A(N) 2 fP;Qg] > 1=n.



Their factoring construction relativizes, i.e., the properties
of ffN;r(x)gN;r hold even ifM andA have an access to
the same auxiliary oracle.

Let fN;r(x) be computable by a TC0 circuit of sizenc
0

, and
hence, by an NC1 circuit of sizenc

00

, for some constants
c0; c00 > 1. Let x1; x2; : : : ; x2n denote strings inf0; 1gn

under lexicographical ordering. Clearly, there is a constant
c > 1, such that for all large enoughn, all 2n-bit integers
N and all 4n2 + 2n-bit stringsr, the string obtained by
concatenatingfN;r(x1); fN;r(x2); : : : ; fN;r(xnc) has KF-
complexity less thannc=2. Fix such ac and consider the
following oracle Turing machineM with oraclesRKF and
a functiong:

� On 2n-bit input N , M asks oracleg queries
x1; x2; : : : ; xnc to get answersy1; y2; : : : ; ync . Then,
M accepts ify1y2 � � � ync 2 RKF and rejects other-
wise.

It is easy to see that ifg 2 ffN;r(x)gN;r then M al-
ways rejects, forn large enough. On the other hand, ifg
is taken uniformly at random fromRn, theny1y2 � � � ync
is a random string and the probability thatM accepts is
at least1 � 2�n=2. Hence,jPr[MfN;r(x)(N) = 1] �
Pr[MRn(N) = 1]j > 1=2, for n large enough. By the
properties offN;r(x) we can conclude that there is a prob-
abilistic Turing machineA with oracleRKF that factorsN
with non-negligible probability. We can reduce the error to
zero by verifying the output ofA.

Since any function that is computable by NC1 circuits is
computable by polynomial size branching programs, by
considering branching programs instead of NC1 circuits we
get that Blum Integer Factorization is in ZPPRKB . 2

4.1 Hardness of Approximation

Many computational problems that complexity theory stud-
ies are decision problems for which an answer is always
either “yes” or “no”. Other problems that are of interest in
computational complexity are optimization problems. Ex-
amples of optimization problems are the Maximum Clique
— what is the size of the largest clique inG — and the
Minimum Circuit Size Problem — what is the size of the
smallest circuit computing a Boolean functionf given by
its truth table?

For some of these optimization problems efficient (polyno-
mial time) algorithms are known. For others, no efficient
algorithm is known. Moreover, it is known that these op-
timization problems are hard for NP. Given that the exact
solution of such an optimization problem may be hard to
find one can try to find at least an approximation to the so-
lution. Many optimization problems are known for which

even finding an approximation cannot be done efficiently,
unless something unlikely is true, such asP = NP. For
example, [13] shows that the Maximum Clique cannot be
approximated up to factorn1�� in polynomial time, unless
P = NP.

In this section we study the following optimization prob-
lems — given a truth table of a functionf , what is the
smallest size of a circuit, a branching program or a formula,
respectively, that computesf . We show that under certain
plausible complexity assumptions these optimization prob-
lems are hard to approximate.

A related problem was already studied by [10]. In his
Master’s Thesis he gives for some� > 0 an n� non-
approximability result for a variant of the Minimum DNF
Formula problem, under the assumption thatP 6= NP.
His result builds upon probabilistically checkable proofs.
We obtain our results using completely different technique.
Tools for our non-approximability results are related to
hardness results for the setsRKT, RKB andRKF.

For a minimization problemf : �� ! IN we say thatg :
�� ! IN approximatesf up to factorr : IN ! IN if for all
x 2 ��, 1 � g(x)=f(x) � r(jxj). For a complexity classC
we say thatf cannot be approximated up to factorr in C if
nog 2 C approximatesf up to factorr.

We recall definitions of two more problems that are believed
to be computationally difficult.

Integer Factorization: Given a composite integerN 2 IN,
find two integersP andQ such that1 < P � Q andN =
PQ.

Discrete Logarithm: Given three integersx; z;N , 1 �
x; z < N , find ani such thatx = zimodN if suchi exists.

The following result is implicit in [3]:

Theorem 22 Let 0 < 
 < 1 be a constant andB be a
set of at least polynomial density such that for anyx 2 B,
SIZE(x) > jxj
 . Then Integer Factorization and Discrete
Logarithm are inBPPB .

This theorem implies the non-approximability of circuit
size.

Theorem 23 For any0 < � < 1, SIZE(x) cannot be ap-
proximated up to factorn1�� in BPP, unless Integer Fac-
torization and Discrete Logarithm is inBPP.

Proof. Assume that for some0 < � < 1, there is a function
g 2 BPP that approximates SIZE(x) up to factorn1��. We
will show that this implies that Integer Factorization and
Discrete Logarithm are in BPP.



Consider the setB = fx 2 f0; 1g�; g(x) > jxj1��=2g.
Clearly, B 2 BPP. Since for allx 2 f0; 1g�, 1 �
g(x)=SIZE(x) � n1��, we have that for allx 2 B,
SIZE(x) > jxj�=2 and also for allx 2 f0; 1g�, if
SIZE(x) � jxj1��=2 then x 2 B. By [20], almost all
truth tablesx 2 f0; 1g� require circuits of size at least
O(n= logn). Hence,B is of at least polynomial density. By
Theorem 22, Integer Factorization and Discrete Logarithm

are in BPPBPP� BPP. (In the case of Integer Factorization
we can actually verify correctness of the result to get ZPP
computation instead of BPP.) 2

Similar non-approximability results can be obtained for for-
mula and branching program sizes. A proof similar to the
proof of Theorem 21 yields the following claim.

Theorem 24 Let 0 < 
 < 1 be a constant andB be a
set of at least polynomial density such that for anyx 2 B,
BPSIZE(x) > jxj
 or for anyx 2 B, FSIZE(x) > jxj
 .
Then there is aZPPB procedure that on inputN that is a
Blum Integer produces factorsP andQ ofN .

As a corollary to this theorem we obtain:

Theorem 25 For any 0 < � < 1, BPSIZE(x) and
FSIZE(x) cannot be approximated up to factorn1�� in
BPP, unless Blum Integer Factorization is inZPP.

In Theorems 23 and 25, a functionf is computable in
BPP if there is a polynomial time probabilistic machine
M such that for anyx, Pr[M(x) = f(x)] � 2=3. How-
ever, the results hold for an even stronger notion of non-
approximability: For any0 < � < 1, if there is a poly-
nomial time probabilistic machineM such that for allx,
Pr[1 � M(x)=BPSIZE(x) � n1��] � 2=3 or Pr[1 �
M(x)=FSIZE(x) � n1��] � 2=3 then Blum Integer Fac-
torization is in ZPP. Similarly, if there is a polynomial
time probabilistic machineM such that for allx, Pr[1 �
M(x)=SIZE(x) � n1��] � 2=3 then Integer Factorization
and Discrete Logarithm are in BPP. These results follow by
exactly the same proofs as the weaker one where one has
to observe that the derandomization results that we use hold
not only relative to oracles that distinguish between random
and pseudorandom strings but also relative to probabilistic
procedures that distinguish between random and pseudoran-
dom strings with non-negligible probability.

4.2 KF Complexity and theNEXP� NC1 Question

Derandomization techniques were used in[15] to show that
NEXP � P/poly if and only if NEXP= MA; it was ob-
served in [2] that this is also equivalent to conditions con-
cerning the Kt-complexity of sets in P. In this section we

conduct a similar investigation of the question of whether
or not NEXP is contained in non-uniform NC1.

Before we state the main result of this section, it will be
helpful to present a technical definition. We begin by re-
calling the definition ofIP[P/poly].

Definition 26 [5] IP[P/poly] is the class of languages hav-
ing an interactive proof system where the strategy of the
prover can be computed by a polynomial sized circuit (also
see [4] where the multiple prover classMIP[P/poly] is ob-
served to be the same asIP[P/poly]).

Clearly IP[P/poly] � MA \ P/poly (because Merlin can
guess the circuit that implements the Prover’s strategy and
send send it to Arthur); it appears to be a proper subclass
of MA (since otherwise NP� P/poly). If NEXP� P/poly,
the proof of [15] actually shows that NEXP= IP[P/poly].
We now define an analogous subclass of MA\ non-uniform
NC1.

Definition 27 MIPNC1 refers to the class of languages for
which there is a 2-prover one-round interactive proof proto-
col where the strategy of each prover can be implemented by
a (non-uniform)NC1 circuit family and the computation of
the verifier is computable by a uniform (probabilistic)NC1

circuit family. (Although it is important that the verifier’s
circuits be uniform, our results do not depend crucially on
the exact notion of uniformity. They hold forP-uniformity
and forDLOGTIME-uniformity.)

We could likewise defineIPNC1 as the class of languages
similar to the above for a single-prover constant-round in-
teractive proof protocol, but we can easily see thatMIPNC1

andIPNC1 coincide.

Theorem 28 The following are equivalent:

1. For all A 2 NP, KFA(n) = logO(1) n.

2. For all A 2 DLOGTIME-uniformAC0,
KFA(n) = logO(1) n.

3. All NEXPsearch problems are solvable inNC1.

4. NEXP� non-uniformNC1.

5. NEXP= MIPNC1.

Proof. Items (1) and (2) are easily seen to be equivalent, as
in the remark at the end of Section 3. That is, (1) trivially
implies (2), and if the set of (string,witness) pairs in AC0

for an NP languageA has low KF-complexity, then so does



the set of strings inA. Obviously both of these conditions
are equivalent to the corresponding condition for languages
in P.

The proof that (2) 3) is immediate, once the following
two assertions are established:

� (2)) EXP� NC1.

� (2)) NEXP search problems are solvable in EXP.

(Assume both of these assertions hold. Then for a given
NEXP search problem solved in exponential time by ma-
chineM , the languagef(x; i; b) : the ith bit output byM
on inputx is bg is in NC1: The existence of such circuit fam-
ilies for NEXP search problems is precisely what is meant
by condition (3).) Let us examine each assertion in turn.

Let A 2 EXP. LetB = fx : x is a prefix of�Ag. B is
clearly in P and (since we have already observed that (2)
1)) our assumption tells us that KFBn = logO(1)(n). Now
Proposition 20 allows us to conclude thatA 2 NC1.

For the second assertion, letM be any NEXP machine, and

consider the languageC = fy10m : wherey 2 f0; 1g2
jmjk

is a witness thatM acceptsmg. C is in DLOGTIME-
uniform AC0 and by (2) if there is any string inC=n then
there is a string inC=n with small KF complexity. The
exponential-time algorithm solving this search problem in-
volves taking inputm and searching through all short de-
scriptions and seeing if any of the strings thus described
encodes an accepting computation path ofM on inputm.

The implication (3 ) 4) requires proof. Certainly (3) im-
plies that NP search problems are solvable in NC1. Let
A 2 NP be accepted by NP-machineM , and letC be a cir-
cuit solving the search problem defined byM . Thusx 2 A
if and only if C(x; 1)C(x; 2) � � �C(x; nk) encodes an ac-
cepting computation ofM . This latter condition can also be
checked in NC1, which implies NP� (non-uniform) NC1.
NP being contained in NC1 easily implies that�p

2 is con-
tained in NC1. On the other hand, by [15], if NEXP search
problems are solvable in P/poly, then NEXP is in�p

2.

To prove that (4 ) 5), observe that by [15] if NEXP�
P/poly then NEXP= MA = PSPACE. By [9], we know
thatPSPACE has2-prover,1-round interactive proof sys-
tems, where the honest provers are inPSPACE. Also we
note that the verifier’s protocol is very easy to compute; it
sends random sequences to each prover and receives from
the provers sequences of polynomials on which it performs
(in parallel) some consistency checks. The consistency
checks involve field operations, which are computable by
DLOGTIME-uniform TC0 circuits [14]. All the queries
to the provers are made in one round (and hence are non-
adaptive). Since by assumption,PSPACE � NC1, we have
that every language in NEXP is also inMIPNC1.

Now we prove the implication (5 ) 2). We largely fol-
low [15], where it is shown that if NEXP� P/poly, then
NEXP-search can be performed by P/poly circuits. More
precisely, we will show that if there is a set in P with large
KF-complexity, then for every� > 0, MIPNC1 � io �
[NTime(2n

�

)=n�]. As in [15] this latter condition implies
either thatMIPNC1 is a proper subset of NEXP (which is
to say that condition (5) is false) or else EXP6= NEXP
(which also easily implies that condition (5) is false).

Let A 2 MIPNC1, where the verifier’s strategy is com-
putable by a P-uniform family of probabilistic NC1 circuits
fCng. Let p be a polynomial, such thatCn uses at most
p(n) probabilistic bits. Our strategy to determine ifx 2 A
is

1. Construct the circuitC = Cjxj.

2. Nondeterministically guess NC1 circuits D;D0 that
might implement the strategies of the provers in the
MIPNC1 protocol forA.

3. Construct a circuitB that, given an inputy of length
p(n)

(a) UsesC to compute the query that gets posed to
each prover in theMIPNC1 protocol forA on
inputx and probabilistic sequencey.

(b) UsesD andD0 to answer the queries.

(c) UsesC to compute the actions of the verifier.

4. Estimate the probability thatB accepts a randomly-
chosen stringy.

By the definition ofMIPNC1, if x 2 A then there are fan-
in two circuitsD andD0 implementing the strategy of the
provers (where the depth ofD andD0 is bounded byd logn
for some constantd depending only onA) such that the
circuit B acceptsall of the inputsy, whereas ifx 62 A,
then no provers (and hence also no provers computed by
small circuitsD andD0) can causeB to accept more than
one-third of the inputsy.

All of the steps in this algorithm are easily computable in
NP except for the final step 4. In order to complete the
argument thatMIPNC1 � io�[NTime(2n

�

)=n�], it suffices
to show that for infinitely many input lengthsn, there is
an advice string of lengthn� such that a nondeterministic
machine running in time2n

�

can estimate the probability
that a circuit with fan-in two and depthb log p(n) accepts a
randomly-chosen input of lengthp(n) (where the constant
b and the polynomialp depend only on our languageA, and
do not depend on�).

As in [3], we will make use of the hardness-versus-
randomness techniques of [24, 6]. In particular, some of the
results of [24, 6, 18] are summarized in [3] in the following
form.



Definition 29 For all large n, any� > 0 and any Boolean
functionf : f0; 1gn

�=3

! f0; 1g there is a pseudorandom
generatorGBFNW

f;� : f0; 1gn
�

7! f0; 1gp(n) with the prop-
erty that the functionGBFNW

f;� is computable in spaceO(n�)
given access to the Boolean functionf , and such that the
following theorem holds.

Theorem 30 ([6, 18]) There is a constantk0 depending on
� such that ifT is a set such thatjPrr2Up(n) [r 2 T ] �

Prx2Un� [G
BFNW
f;� (x) 2 T ]j � 1=3, then there exists an

oracle circuitC of sizenk
0

with oracleT that computesf
and queriesT non-adaptively.

Closer examination of the proof techniques that are used in
[6, 18] shows that the circuitC computing the reduction can
actually be implemented as aconstant depthcircuit of MA-
JORITY gates and oracle gates. Thus it can be implemented
as a circuit of depthk logn for some constantk, consisting
of oracle gates (where there is no path in the circuit from
one oracle gate to another) and AND and OR gates of fan-
in two.

Now we can state ourio � [NTime(2n
�

)=n�] algorithm to
estimate the probability that an NC1 circuit accepts. Let
L be a language in DTime(nk) such that for everỳ there
exist infinitely manym such that KFL(m) > log`m. By
our assumption that condition (2) fails, such a setL exists.

On inputx of lengthn, our advice string will be a num-
berm with approximatelynÆ bits withÆ = �=3, such thatL
contains strings of lengthm, and all strings of lengthm in L
have high KF complexity. Our nondeterministic algorithm
will guess a stringz of lengthm and verify thatz 2 L. This
takes time2O(n

�). Let f be the Boolean function on inputs
of lengthdlogme (roughlyn�) whose truth table hasz as
a prefix (and is zero elsewhere). By our assumption onL
(combined with Proposition 20), there exist infinitely many
m such that functionf requires Boolean formulae of size
greater thanp(n)k+b. For any input lengthn for which a
correspondingm = 2O(n

�) exists, the probability that cir-
cuit B accepts can be estimated by counting the fraction
of stringsy of lengthn� such thatB acceptsGBFNW

f;� (y).
This fraction must be within one-third of the true proba-
bility (since otherwisef is computed by a formula of size
p(n)k+b, by Theorem 30).

SinceGBFNW
f;� (y) is computable in spacen�, the entire com-

putation to estimate the acceptance probability of the NC1

circuitB (and to recognize languageA) is 2O(n
�).

This completes the proof. 2

The following definition ofMIPL combined with an analo-
gous proof yields Theorem 32

Definition 31 MIPL corresponds to the class of languages
for which there is a2-prover one-round interactive proof
protocol where the strategy of each prover can be imple-
mented inL/poly and the verifier is inL.

Theorem 32 The following are equivalent :

1. NEXP� L/poly

2. All NEXPsearch problems are solvable inL/poly

3. For all A 2 P KBA(n) = logO(1) n.

4. NEXP= MIPL

5 Concluding Comments

One could consider placing more restrictions on the univer-
sal alternating machine in the definition for KB complexity,
for instance by restricting the number of alternations, or by
making it deterministic. At first glance, it seems that one
might obtain a measure that is related to depthk AC0 cir-
cuit size for fixedk – but it seems that such machines cannot
do much interesting computation on input(d; i; b) without
looking at all ofi, which means that their running time is
so high that the framework developed here does not yield
a very interesting measure. Is there a useful definition that
can be developed to capture this notion?

For the more “limited” notions of Kolmogorov complexity
KB and KF, we are not able to prove as strong intractability
results as were proved for KT in [3]. However, it is not clear
that this needs to be the case. For instance, although it is not
known if the minimum circuit size problem is NP-complete,
it is complete when restricted to DNF circuits [10, 21]. Is
there a natural, restricted notion of Kolmogorov complexity,
for which the “random” strings do indeed provide a com-
plete set for coNP?

References

[1] E. Allender. Some consequences of the existence of pseu-
dorandom generators.Journal of Computer and System Sci-
ences, 39:101–124, 1989.

[2] E. Allender. When worlds collide: Derandomization,
lower bounds, and Kolmogorov complexity. InProc. Conf.
on Found. of Software Technology and Theo. Comp. Sci.
(FST&TCS), volume 2245 ofLecture Notes in Computer
Science, pages 1–15, 2001.

[3] E. Allender, H. Buhrman, M. Kouck´y, D. van Melkebeek,
and D. Ronneburger. Power from random strings. InProc.
IEEE Symp. on Found. of Comp. Sci. (FOCS), pages 669–
678, 2002.



[4] V. Arvind and J. Kobler. Graph isomorphism is low for

ZPPNP and other lowness results. Technical Report TR99-
033, Electronic Colloquium on Computational Complexity,
1999.

[5] V. Arvind, J. Koebler, and R. Schuler. On helping and inter-
active proof systems.International Journal of Foundations
of Computer Science (IJFCS), 6(2):137–153, 1995.

[6] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP
has subexponential time simulations unless EXPTIME has
publishable proofs.Computational Complexity, 3:307–318,
1993.

[7] E. Biham, D. Boneh, and O. Reingold. Breaking general-
ized Diffie-Hellmann modulo a composite is no easier than
factoring. In Information Processing Letters 70(2), pages
83–87, 1999.

[8] H. Buhrman, L. Fortnow, and S. Laplante. Resource-
bounded Kolmogorov complexity revisited.SIAM Journal
on Computing, 31(3):887–905, 2002.

[9] J. Cai, A. Condon, and R. J. Lipton. PSPACE is provable by
two provers in one round.Journal of Computer and System
Sciences, 48:183–193, 1994.

[10] S. Czort. The complexity of minimizing disjunctive normal
form fomulas. Master’s thesis, University of Aarhus, 1999.

[11] L. Fortnow. Comparing notions of full derandomization. In
Proc. IEEE Conf. on Computational Complexity ’01, pages
28–34, 2001.

[12] L. Fortnow and M. Kummer. On resource-bounded instance
complexity. Theoretical Computer Science, 161(1–2):123–
140, 1996.

[13] J. Håstad. Clique is hard to approximate withinn1��. Acta
Mathematica, 182:105–142, 1999.

[14] W. Hesse, E. Allender, and D. Barrington. Uniform
constant-depth threshold circuits for division and iterated
multiplication. Journal of Computer and System Sciences,
65:695–716, 2002.

[15] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search
of an easy witness: Exponential time vs. probabilistic poly-
nomial time. InProc. IEEE Conf. on Computational Com-
plexity, pages 2–12, 2001.

[16] R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-
optimal conversion of hardness into pseudo-randomness. In
Proc. IEEE Symp. on Found. of Comp. Sci. (FOCS), pages
181–190, 1999.

[17] V. Kabanets and J.-Y. Cai. Circuit minimization problem. In
Proc. ACM Symp. on Theory of Computing (STOC), pages
73–79, 2000.

[18] A. Klivans and D. van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapses.SIAM Journal on Computing, 2002. To
appear; a preliminary version appeared in STOC ’99.

[19] L. A. Levin. Randomness conservation inequalities; infor-
mation and independence in mathematical theories.Infor-
mation and Control, 61:15–37, 1984.

[20] O. B. Lupanov. A method of circuit synthesis.Izvestiya
VUZ, Radiofizika, 1(1):120–140, 1959.

[21] W. Masek. Some NP-complete set covering problems. Un-
published manuscript, 1979.

[22] P. B. Miltersen and N. V. Vinodchandran. Derandomizing
Arthur-Merlin games using hitting sets. InProc. IEEE Symp.
on Found. of Comp. Sci. (FOCS), pages 71–80, 1999.

[23] M. Naor and O. Reingold. Number-theoretic constructions
of efficient pseudorandom functions. InProc. IEEE Symp.
on Found. of Comp. Sci. (FOCS), pages 458–467, 1997.

[24] N. Nisan and A. Wigderson. Hardness vs. randomness.Jour-
nal of Computer and System Sciences, 49:149–167, 1994.

[25] S. Rudich. Super-bits, demi-bits, and N~P/qpoly-natural
proofs. InProceedings of RANDOM, volume 1269 ofLec-
ture Notes in Computer Science, 1997.

[26] R. Shaltiel and C. Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. InProc.
IEEE Symp. on Found. of Comp. Sci. (FOCS), pages 648–
657, 2001.


