Derandomization and Distinguishing Complexity

Eric Allender Michal Koucky* Detlef Ronneburgér
Rutgers University Rutgers University Rutgers University
allender@cs.rutgers.edu mkoucky@paul.rutgers.edu detlef@paul.rutgers.edu
Sambuddha Rdy

Rutgers University
samroy@paul.rutgers.edu

Abstract 1 Introduction

We continue an investigation of resource-bounded Kol- This paper continues a line of research begun in [2, 3],
mogorov complexity and derandomization techniques begurin which recent progress in derandomization techniques is
in[2, 3]. employed to provide new insights about resource-bounded
Kolmogorov complexity. One topic that waet discussed

in the earlier papers is derandomization techniquesdor
deterministiccircuits, as provided by [22] and [26]. We will
turn our attention to that task in Section 2, after first laying
some groundwork by presenting our basic definitions.

We introduce nondeterministic time-bounded Kolmogorov
complexity measuresKNt and KNT) and examine the
properties of these measures using constructions of hitting
set generators for nondeterministic circuits [22, 26].

We observe thakNt bears many similarities to the non- ] ]
deterministic distinguishing complexi/N D of [8]. This !N the earlier papers [2, 3] we focused on notions of
motivates the definition of a new notion of time-bounded r€Seurce-bounded Kolmogorov complexity, including Kt
distinguishing complexitikDt, as an intermediate notion ~&nd KT. The first of these was originally defined and stud-
with connections to the cladgewEXP The set ofKDt- ied by Levin [19]. In this paper we will be introducing sev-

random strings is complete fa&XP under P/poly reduc- eral more notions of resource-bounded Kolmogorov com-
tions. plexity. In order to have a uniform framework for these new

definitions, we need to modify the definitions of Kt and KT
Most of the notions of resource-bounded Kolmogorov com-in minor ways that affect none of the theorems proved in the
plexity discussed here and in the earlier papers [2, 3] have earlier work.
close connections to circuit size (on different types of cir-
cuits). We extend this framework to define notions of Kol-
mogorov complexitiKB andKF that are related to branch-
ing program size and formula size, respectively. The sets of Kty(z) = min{|d|+logt : Vb e {0,1,%}
KB- andKF-random strings lie ircoNP, we show that ora-
cle access to these sets enables one to factor Blum integers.

Definition 1 LetU be a deterministic Turing machine.

Vi<n+1U(d,i,b) runsin

We obtain related intractability results for approximating timet and accepts iff; = b}
minimum formula size, branching program size, and circuit KTy(z) = min{|d|+¢t: Vbe {0,1,%}
size. Vi <n+1U(d,i,b) runsin
The NEXP C NC' and NEXP C L/poly questions are timet and accepts ifk; = b}
shown to be equivalent to conditions about Kieand KB _

complexity of sets iR. Here, we say that; = «if i > |z|.

As usual, we will choose a fixed “optimal” Turing ma-

chineU and use the notation Kt and KT to refer toKt

and KTy. However, the definition of “optimal” Turing ma-
*Partially supported by NSF grant CCR-0104823. chine depends on the measure which is under considera-




tion. For instancel/ is Kt-optimalif for any Turing ma- istic circuits of subexponential size, then there is a hitting-

chineU' there exists a constant> 0 such that for alle, set generator computable in NP for co-nondeterministic cir-

Kty (z) < Kty (z) + clog|z|. Notice that there is an ad- cuits. Shaltiel and Umans [26] subsequently presented a
ditive logarithmic term instead of the “usual” additive con- better construction of a hitting-set generator that hits co-

stant. This comes from the slight slow-down that is incurred nondeterministic as well as nondeterministic circuits.

in the simulation ofU’ by U. Similarly, U is KT-optimal
if for any Turing machind/' there exists a constant> 0
such that for alle, KTy (z) < KTy (2) log KTy (). The L
existence of optimal machines for Kt and KT complexity DPefinition4 A SNP-procedure (Strong NP procedure)
follows via standard arguments. Definitions of Kt and KT computing a functiory is a polynomial time nondetermin-

can be relativized to yield measures’kand KT by pro- istic procedure, so that every computation path on input
viding U with access to oracle either produced (z) or rejects. Furthermore, at least one

computation path must produgéz).
There is not space here to survey all of the earlier work

on resource-bounded Kolmogorov complexity. Briefly, the \we will also refer to functions computable in SNP/log. For
considerations that cause us to focus on these particular defihjs, we assume that there is an advice functién) pro-
Initions are viding a string of lengthO(logn), and a nondeterministic
machine as above that produgés) on every non-rejecting
o The KT"-complexity of a string of lengtd” (the truth  computation path on inputs, 4(]z|)). We place no restric-
table of a Boolean functioff) is closely related to the  tions on the behavior of the nondeterministic machine on

We recall some standard definitions:

size of A-oracle circuits computing. inputs(z, z) wherez # h(|z|).
e Levin’s Kt complexity is essentially the same thing as e . o
KT# for any set4 complete for E. Definition 5 A nondeterministic Boolean circuit’ con-

tains, in addition toAND, OR, and NOT gates, choice
e These definitions facilitate the presentation of results gates of fan-in0. The circuit evaluates ta on an input
relating new techniques in derandomization to tradi- z, and we say thaC(x) = 1, if there is some assignment
tional notions of Kolmogorov complexity. of truth values to the choice-gates that makes the circuit
evaluate tol. A co-nondeterministic circui€ is defined
In [3] the sets of strings with “high” complexity under these  similarly: the circuit evaluates ta on an inputz, and we
measures were shown to be complete for various complex-say thatC(z) = 1, if every assignment of truth values to

ity classes. Although these completeness results hold for &he choice-gates makes the circuit evaluaté.t®therwise
wide range of possible choices of “high”, for convenience C(z) =0.

we settle on the following definition. o o )
Similarly, a strong nondeterministic circuif computing a

Definition 2 For any Kolmogorov complexity measute:, functi_onf has, in addition to its L_Jsual output, an exf[ra out-

defineRx,, to be the sefz : Ku(z) > |z|/2}. put bit, _caIIed the flag. For any input, ar_ld any setting of
the choice-gates, if the flag is on, the circuit should output

A useful measure of the complexity of a langudgéstud- the correct value off(x). Furthermc_)re, for anyr, there

ied in [1, 2]) is the measure of the simplest string&in should be some setting of the choice-gates that turns the

flag on. It is easy to see that a Boolean functjphas a
_— i strong nondeterministic circuit of siz@(s(n)) if and only
Definition 3 Let L be a language and leKy be a Kol if f has a nondeterministic circuit of sizé(s(n)) and a

mogorov complexity measure. We define the Kolmogorov_ * T :
complexity of. for lengthn as co-nondeterministic circuit of siz@(s(n)).

Kpr(n) = min{Ku(z) : || =nandz € L} Definition 6 A hitting set generatofor a class of circuits

N ) ) C and thresholdx is a procedureG that maps strings of
If LN E" = 0 thenKp, (n) is undefined. lengthn to a setH,, of polynomial size with the property
that, for every circuit inC onn inputs that accepts at least

2 Nondeterministic Kolmogorov a2™ strings inX", C' accepts an element éf,,.

Complexity In order to see what the techniques of [22, 26] tell us about
Kolmogorov complexity, it is necessary to present nonde-
Miltersen and Vinodchandran [22] proved that if there is a terministic analogs of Kt and KT. We call the new notions
setin NEN coNE that does not have “strong” nondetermin- KNt and KNT.



Definition 7 LetU be a fixed nondeterministic Turing ma-
chine.

KNty (z) = min{|d| +1logt : Vb e {0,1,x}
Vi <n+1U(d,i,b) runsin
timet and accepts ift; = b}

KNTy(z) = min{|d|+¢: Vbe {0,1,%}

Vi <n+1U(d,i,b) runsin
timet and accepts ift; = b}

As in the definition for Kt and KT, we have to be care-
ful of the properties we require of the optimal Turing ma-
chine. We define KNt as KNt where the optimal machine
U has the property that for all’, we have KN (z) <
KNty (z) + ¢ We define KNT as KNT;, such that for all
U’, we have KN/ (z) < ¢-KNTyr (z) for some constant

Remark: In precisely the same way that Ki) is polyno-
mially related to the size of (deterministic) circuits comput-
ing the function whose truth table is given by it is easy

to see that KNT is polynomially related sérong nondeter-
ministiccircuit size.

Theorem 8 The following are equivalent:

1. 3¢ > 0Vndz € " KNT(z) + log|z| > 9eKNt(z)_
(That is, KNT and KNt are nearly as far apart as
possible.)

. 3A eNE/lin n co-NE/lin, da such thatA requires
strong nondeterministic circuits of si2&™.

. 3A eNE/lin n co-NE/lin, da such thatA requires
nondeterministic circuits of sizz#".

. For all densé A in coNP/poly KNt 4(n) = O(logn).

5. For all densed in NP/poly, KNt 4(n) = O(log n).

6. For all dense A
KNt (n) = O(logn).

. There exisSNP/logcomputable hitting set generators
for nondeterministic linear-size circuits and threshold
% (and similar conditions for co-nondeterministic and
strong circuits).

in  NP/polyn coNP/poly

Remark: We wish to call attention to the equivalence of
conditions 4 and 5. For some notions of complexity such

as KT, there are dense sets in coNP with essentially maxi-

mal KT complexity (such a&k ), whereas there are good

reasons to believe that every dense language in NP/poly ha$6 = 2). DefineA = {x :

low KT-complexity. (Rudich gives evidence for this con-
jecture in [25].)

1A language islensef it contains at least a polynomially-large fraction
of the strings of each length.

Proof. (1 < 2) This equivalence is proved similarly to
related statements in [2]. Given any sequence of strings
x1,T2,... With |z,,| = n = 2™, where KNTz,,) is large

and KNt(z,,) is small (and must in fact be logarithmic,
since KNT is always linear at most) by concatenation one
can construct the characteristic sequence of a langdage
NE/lin N co-NE/lin that requires large strong nondetermin-
istic circuits. For the converse, given any such language
the prefices of its characteristic sequence have logarithmic
KNt complexity and large KNT complexity.

(2 = 3) We prove the contrapositive,3 = —2. Thus ev-
ery A € NE/lin N co-NE/lin has “small” nondeterminis-
tic circuits (that is, of size less thaf™ for anya > 0).
Thus A € NE/lin N co-NE/lin, and hence by hypothe-
sis has “small” nondeterministic circuits. This yields co-
nondeterministic circuits ford; we can combine the two
circuits to get strong nondeterministic circuits faér This
proves—2. (Similar observations are made by Shaltiel and
Umans [26].)

(3 = 2) This is trivial; a strong nondeterministic circuit
yields a nondeterministic circuit of roughly the same size.

(2 = 4,5, 6, and 7) In Corollaries 10 and 12 of [26],
Shaltiel and Umans show that there is a constaathd a
function G(z,n) computable in deterministic polynomial
time with the property that it is a string of lengtm¢ such
that KNT(z) > |z|/2 (i.e., if z is the truth table of a func-
tion requiring large size on strong nondeterministic circuits)
thenG(z,n) produces a sefll, ,, that is a hitting set for
both nondeterministic and co-nondeterministic linear-size
circuits with threshold;.

It is now straightforward to obtain a hitting set generator in
SNP/log; with logarithmic advice we can nondeterministi-
cally guess and verify a string that is a truth table for a
particular language in NE/lim co-NE/lin, and then run the
generators.

It is easy to see that any string in the hitting set output by
a SNP/log computable hitting set generator has low KNt
complexity; this shows that any set of density one-half

or greater accepted by linear-size nondeterministic or co-
nondeterministic circuits contains some strings of low KNt

complexity. The more general statements now follow by an
easy padding argument.

The implications (7= 6) (4 = 6), and (5= 6) are either
trivial or follow via the argument above. Thus it suffices to
prove (6= 2).

|z| = 5m and KNt(z) > m}.
We claim thatA4 is in NE/lin N co-NE/lin. To see this, re-
call that for a stringz of length 5m, KNt(z) < m im-
plies3d, |d| < m,Vi U(d,i,b) has an accepting path iff
x; = b, whereU is a universal nondeterministic Turing



machine running foR™ steps. In order to enumerate all
z's of length 5m that have KNfz) < m, we will ex-
clude from consideration thosés that are not valid de-
scriptions of strings. We define to be the number of’s
that are indeed valid descriptions of strings of lengjth,
(i.e., there exists am for whichVi U(d, i, b) has an accept-
ing path iff x; = b), and we define3 to be the number
of “recognizably bad” descriptions, that is, those for which
Vi < 5m+13b € {0,1,«},U acceptgd, i, b) and for some

i and somé' # b € {0,1,x},U accepts botld, ,b) and
(d,i,b"). Our SNP machine takesinandg as advice (each
of lengthO(m)). First it guesseg “recognizably bad” de-

oracle to determine if there is a strigghat is rejected by
C.. By parts 7 and 4 of the preceding theorem, if such a
string y exists, then there is such a string with Kt =
O(logn).

Thus it suffices to design a¥*1°5" procedure to deter-
mine if there is a string with KNt(y) < clogn such that
the nondeterministic circul’,, rejectsy.

As in the proof of (6= 2) of the previous theorem, latbe
the number of good descriptions of length at mektgn
and letg be the number of “recognizably bad” descriptions
d of length at mostlogn. The numbergx and g can be

scriptions and verifies that they are indeed bad by guesstomputed inO(logn) queries to an NP oracle of the form

ing accepting paths for botf, i, b) and(d,i,b"). Then it
guesses other strings (corresponding to candidate “good”

“do there exist> j strings(di, d», - - -, d;) of length at most
clogn such that for alln and alli < |y| + 1 thereis & €

d’s), and guesses accepting paths for all of them and printS{o, 1, %} such that/(d,,, i,b) has an accepting path?” and

out the corresponding strings. All of this takes time expo-
nential inm. Now we can accept if and only if itis not in
the list that has been generated.

Now we need to show thatl requires large strong non-
deterministic circuits. Assume otherwise, so that for ev-
ery c there is someu such that there is a strong nonde-
terministic circuit of size2"/¢ deciding A for inputs of
lengthn. Then we can construct a dense languahes
NP/polyn coNP/poly of the formB = {y : |y| = n and
the prefix ofy of lengthe,, - logn is in A} wherec,, is

chosen (nonuniformly) to be as large as possible, so that

the membership test fad can be implemented in size
via a strong nondeterministic circuit. By assumption, the
sequence of numberg,) is unbounded. It follows that
KNtg(n) # O(logn). O

“do there exist> j strings(di, d», - - -, d;) of length at most
clogn such that for alin, i there is & such thal/ (d,,, 7, b)
accepts and there is some< |y| + 1 for which there are

b #b € {0,1,«} such thatU (d,,,i,b) andU (dy, i,b")
each have an accepting path?” Having computexhd 3

we can ask one more query to an NP oracle to determine if
there are3 bad descriptions and good descriptions such
thatC, accepts all of the stringg described by the: good
descriptions. |

2.1 Nondeterministic Derandomization

It is frequently the case that hardness assumptions are in
fact equivalentto the existence of derandomization con-
structions; for a survey, see [11]. To the best of our knowl-

Most work on derandomizing nondeterministic circuits has edge, it has not been stated explicitly that the hitting set
been done with the aim of providing weak hypotheses that constructions of [22, 26] are in fact equivalent to the hard-
imply AM = NP. The conditions of the preceding theo- ness assumptions they use, although it follows easily from

rem are not known vyield this conclusion (although it is ob-
vious that they imply AM C NP/log); in order to imply
AM = NP it is sufficient for the languagé in item 3 to

be in NEN co-NE instead of NE/lim co-NE/lin [22]. Itis
worth mentioning that we also obtain another partial deran-
domization.

Theorem 9 If there existsA €NE/lin N co-NE/lin, such
that A requires strong nondeterministic circuits of siz€,

for somea > 0, thenAM ¢ PNPllog 7],

Proof. As in [22], to determine ifz is in a setB € AM,

we model the Arthur-Merlin game using a nondeterministic
circuit with inputz and some probabilistic inpugs Let C,

be the result of hardwiring the bits ofinto this circuit; then

x € B = (, accepts every, andz ¢ B = C, rejects

at least half of the stringg. Thus it suffices to use our NP

well-known techniques [16].

Theorem 10 The following are equivalent:

1. 3A € NEnco-NE Ja > 0 such thatA requires
strong nondeterministic circuits of si2&™.

. 3A € NEnN co-NE Ja > 0 such thatA4 requires non-
deterministic circuits of sizg*”,

. There is aSNP-computable hitting set generator for
linear-size nondeterministic circuits and thresh?f)ld

. There is a SNRcomputable hitting set genera-
tor for linear-size co-nondeterministic circuits and
threshold;.

. There is aSNRcomputable hitting set generator for
linear-size strong nondeterministic circuits and thresh-
old L.

2



3 Distinguishing Complexity

One of the first types of resource-bounded Kolmogorov
complexity to be studied was “distinguishing” complexity.
For more on the history of this notion, see [8], where the fol-
lowing notion of nondeterministic distinguishing complex-
ity was introduced.

Definition 11 Let p be a polynomial, and leV be a uni-
versal nondeterministic Turing machin€'.N D?(z) is de-
fined to be the minimur| such thatU(d,y) accepts in
timep(|z|) if and only ify = z.

KNt andC' N D complexity are closely related, in that they
agree on strings of logarithmic complexity, in the following
sense.

Proposition 12 Letc be given.

e There is a polynomiap and ad € IN such that if
KNt(z) < clog |z| thenCNDP(x) < dlog|x|.

e For all polynomialsp there is ad € IN such that if
CND?(z) < clog|z| thenKNt(z) < dlog|z|.

(One consequence of this proposition is that the proof of
Theorem 9 could have been presented in termé& &fD
complexity, instead of KNt complexity.) This motivates the
definition of notions of distinguishing complexity, having
the flavor of KNt and K.

Definition 13 Let U; be a fixed nondeterministic Turing
machine, and lel/, be a fixed deterministic Turing ma-
chine.

KNDty, (z) = min{|d| +logt : Vy € £I°1 Uy (d, y)
runs in timet and accepts ift = y}
KDty,(z) = min{|d| +logt : Vy € 1*1 Uy(d,y)

runs in timet and accepts ift = y}

Again, we have to be careful about the properties we re-
quire of the optimal Turing machine. We define KNDt
as KNDt; where the optimal maching has the property
that for all U', we have KNDg(z) < KNDty:(z) + ¢

We define KDt as KDt, such that for allU’, we have
KDty (z) < KDty () + clog|z| for some constant

We observe that KNDt is essentially the same thing as
KNt, up to logarithmic terms. Showing that KNR1t) <
KNt(z) + O(log|z|) is an easy exercise. Conversely, if
KNDt(z) is small (using descriptiod), then a nondeter-
ministic machine, givertd',i,b) whered’ = (d,|z|), can

guesse € XI*l and if U(d, z) accepts, then accept iff the
ith bit of z is b. Analysis of the run times easily yields that
KNDt(z) < KNt(z) + O(log |z|). Since KNDt is indistin-
guishable from KNt from our standpoint, we will not refer
to KNDt any further.

Theorem 14 KNDt(z) = KNt(z) + O(log |z]|)

This leads us to ask if KDt is similarly related to Kt. At
first, it might seem that thegre closely related.

Proposition 15 Ry and Rkpy, are both complete foEXP
underP/polyreductions.

Proof. For Rk this is proved in [3], and in fact hard-
ness holds for any dense set containing no strings of low
Kt-complexity. Since Ktz) > KDt(z) — O(log |z]) it fol-
lows thatRkpy is also hard for EXP. Membership in EXP
is easy to show. |

Nonetheless, if Kt and KDt are polynomially related, it im-

plies that FewEXP is equal to EXP. In order to state the
connection more precisely, we need the following defini-
tion.

Definition 16 We say thatFewEXP search instances are
EXP-solvablef, for every NEXPmachineN and everyk
there is anEXP machine)M with the property that ifV has
fewer thar2lz!* accepting paths on input, thenM (z) pro-
duces one of these accepting paths as output if there is one.
We say thaFewEXP decision instances are EXP-solvable
if, for every NEXPmachinelV and evenyk there is anEXP
machinelM with the property that itV has fewer thar2!*!"
accepting paths on input, thenM (z) accepts if and only

if N(x) accepts.

Remark: Note that we do not require thaf is a FewEXP
machine; it need not have a small number of accepting paths
oneveryinput.

Theorem 17 The following statements are equivalent.
1. Vz,Kt(z) = KDt ()M
2. FewEXPsearch instances afeXP-solvable.
3. FewEXPdecision instances afeXP/poly-solvable.
4.V L € P,Ktr(n) = (log |L="| 4 logn)°M)

5. Vz, Vy, KDt(x) = (KDt(zy) + log|zy|)°™)



Remark: This theorem has a similar flavor to a theorem (4 = 2) Let L be decidable by a nondeterministic ma-
of [12] concerningC? andC' DP complexity. However, al-  chine N running in time2"", for k > 1. Define the set
though we make use of the techniques of [12] we do not seeq
away to formulate an equivalent condition usingtfeand
C D? measures.

= {wl0® : wherew € {O,I}Q'E'k is a witness that
N(z) accepts}t. (Here, we identify: with the integer hav-
ing binary representatiohz.) ClearlyC € P. Letz
be a string, such thaV (z) has few accepting paths, i.e.,
Remark: The fifth condition of the preceding theorem |c=n.| < 2121°" wheren, = 21*/" 4 2 + 1. By assump-
deserves some comment. For all of the other resource+
bounded Kolmogorov complexity measuigg studied in
this paper (other than KDt) it is easy to see that the follow-

ion, there is a witness with Kt(w10%) < |;r|O(1). Soin

order to find a witness for € L we just need to search
o(1)

ing three conditions are equivalent: ghorr?lngi;: ee;:I;:)(S)tr:Ienrgt%I Etl:lrlrt]r; Kt(y) < [« That can be
e ForallA € NPKu,(n) = log®W n. 5= 1_) Assume that thereT is a constansuch that for ev-
ery stringz and every prefiy of z, KDt(y) < (KDt(z) +

o ForallA € PKy,(n) = log®" n. log |z])°. LeFm pe a string of length. If KDt (z) > (n/2)¢
then the claim is true far. Assume that KDtx) < (n/2)°.

e Forall A € DLOGTIME-uniform AC® Let a« = max{KDt(y); y is a prefix ofz}. Clearly,

a < (KDt(z) + log|z|)® < n. We construct a sequence
Sa, ..., Sy of sets with|S;| < 2%, such that for eachy, if

. . z € {0,1}* andz and every prefiy of z has KD{(y) < a,
(For ﬁxa;nple, shee Theorem 3f 'hn [21) ?": rs;l_mple _oblserva-thenz € S;. We initially start withS, = {0,1}* and then
tion that forms the main part of the proof of this equivalence proceed iteratively as follows.

is the fact that for all: andy, Ku(z) can be bounded by
Ku(zy) + log |zy|.

Ku,(n) =log®M n.

Sit1 = {s€8;0{0,1} : 3d, € {0,1}"
U(ds, s) accepts, and i’ € S; 0 {0,1}

Proof of Theorem 17.1t is immediate that 25 3 and 1= ands # s' thenU/ (d;, ) rejects}

5. We will now prove 3= 1, 1= 4,4= 2, and 5= 1.

(3 = 1) Consider a NEXP machind/ that on input
(d,1%,4,b,n) guesses a string € {0,1}", runsU(d,y)

for 2t steps and then acceptsiff = b andU (d, y) accepts.

If d is a distinguishing description for a stringe {0, 1}™
andt is sufficiently large, then there is exactly one accept-
ing path of M on input(d, 1%, i, z;, |z|); there is no accept-
ing path of M on (d,1%,i,7;,|z|), forall 1 < i < |z|.

By our assumption, there is a deterministic machiheun-
ning in exponential time, that oninp(t, 1¢,4, b, |z|), given
some polynomial advicgé, can decide whethe¥/ accepts
(d,1t,i,b,|z|) or not? Thus, givend, t, |z| and the ad-
vice h, we can generate bit by bit in time exponential

in (|d| + t + log |z| + |h))°("). Since KD{z) > log|z|,
Kt(z) < KDt(z)°W), Corollary 18 The following are equivalent:

It is fairly straightforward to verify that these sets have the
property mentioned above, namely that they are not too big
and that they contain all the simple strings having simple
prefixes. Thuse € S,. Thus there is a machink/ that
in time n2°(%) on input (n,a,i) generates:, wherei is
the index ofz in the setS,,. Hence, Ktz) = |(n,a,i)| +
logn2°(® + O(logn) = O(a + logn) = KDt(z)°M). O

Since it seems unlikely that KDt is polynomially-related to
Kt, one might ask if KDt is polynomially-related to KNt.
Here again, we can use the techniques of [8] to show:

(1 = 4) Using hashing the authors of [8] show that for any

setl, there is a polynomial time algorithm with oracle ac- 1+ Kt(z) = KNt(z)°®)

cess toL, such that for every: € L there is a description _ o)

d, of length2log |L=12!| + O(log |2), such that the algo- 2. KDt(z) = KNt(z)

rithm acceptgz, d, ) if and only if z = z. ConsiderL € P.

Then the oracle access Iois not necessary and for every Proof. (1= 2) This s trivial.

x € L we know KDf(z) = 2log |L:|9”|'| + O(log|z|). As- . (2= 1) If KDt

suming that KDE|3|nd Kt are pco)l()g?omlally related we obtain KNt(z), then we know that for every andy we have

Kt(z) < (log |L~I*] + log ). KDt(z) < KDt(zy) + log(|zy|)°"). Hence Theorem 17
2Note that it would have been sufficient to use a formally weaker as- Yields Ki(z) = KDt(z)?M), and we obtain the desired con-

sumption, dealing only with the case where there is a single accepting path.clusion. O

(z) is always polynomially bounded by




Remark: The conditions of this theorem clearly imply formula representingf. Then (KB(z) + log |z|)®™)
the conditions of Theorem 17. They also imply that (BPSIZEz) + log|z|)°("), and (KF(z) + log |z|)®™)

EXP/poly= NEXP/polyn coNEXP/poly. (To see this, ob-
serve thatd € NEXP/polyn coNEXP/poly if and only if
x4 = n has polylogarithmic KNt complexity, and €
EXP/poly if and only if y 4 has polylogarithmic Kt com-
plexity.) We do not know of an easy-to-state condition in-

volving complexity classes that is equivalent to these state-

ments.

4 Branching Program and Formula Size

The definition of KT complexity is motivated in large part
by the fact that KTz) is a good estimate of the circuit size
required to compute the functighthat hase as its truth ta-
ble. But circuit size is only one of many possible interesting
measures of the “complexity” gf. There is also great inter-

est in knowing the size of the smallest branching programs

computingf, as well as the size of the smallest Boolean for-
mula representing. Do these notions of complexity also
give rise to a natural notion of Kolmogorov complexity?

In this section we answer this question by presenting two
more notions of resource-bounded Kolmogorov complexity.

Definition 19 Let U; be a deterministic Turing machine,
and letU, be an alternating Turing machine.

KBy, (z) = min{|d|+2°: Vbe {0,1,x}
Vi <n+1U(d,i,b) runsin
spaces and accepts iff:; = b}
KFy,(z) = min{|d| +2" : Vb€ {0,1,%}

Vi <n+1Us(d,i,b) runsin
timet and accepts ift; = b}

As usual, we will choose a fixed “optimal” Turing ma-
chinesU; andU, and use the notation KB and KF to re-
fer to KBy, and KFy,. A deterministic Turing machine
U; is KB-optimalif for any deterministic Turing machine
U, there exists a constamt > 0 such that for allz,
KBy, (z) < (KByy(x)). Similarly, an alternating Tur-
ing machinelU, is KF-optimal if for any alternating Tur-
ing machinel;, there exists a constant> 0 such that for
all z, KFy, (z) < (KFg;(z))¢. The existence of optimal
machines for KB and KF complexity follows via standard
arguments. We get the following simple proposition.

Proposition 20 For any stringz of length2™ represent-
ing the truth table of a functiorf, let BPSIZHz) denote
the size of the smallest branching program computfing
and letFSIZEr) denote the size of the smallest Boolean

(FSIZE(z) + log |z|)°M).

For each of these two new measures, the sets of random
strings Rxp and Rkr lie in coNP. Can we prove better
upper bounds on their complexity? Can we prove any in-
tractability results?

In [3] these questions were posed for the Bgtr, and Ka-
banets and Cai and posed similar questions earlier for the
related Minimum Circuit Size Problem (MCSP) [17]. Al-
though we are not able to reduce the factorization problem
to Rxg andRkr (as was accomplished féiir in [3]), we

can come close.

In this section we prove that factoring Blum Integers can be
done in ZPPxr and ZPEx®, (For an oracle4, a func-
tion f is in ZPP! if there exists a procedure computed by
a probabilistic oracle machine with oracle A that on input
x, on every halting path, producg$z), and the expected
running time is polynomial.) We use results of [23] and [7]
in order to accomplish this. We define the following com-
putational problem.

Blum Integer FactorizationGiven a Blum IntegefV € IN,
find the primesP and@ such thatl < P < @Q andN =
PQ. (A 2n-bit integerN is called aBlum Integerf N =
PQ, whereP and(@ are two primes such thd@ = @ =
3mod4.)

Theorem 21 Blum Integer Factorization is iz PP N

ZPPxs  je., there areZPP?<r and ZPP*=® procedures
that on inputNV that is a Blum Integer produce factoi?

and@ of V.

Proof. In [23], they construct a pseudo-random function
ensemble{ fx (z) : {0,1}" — {0,1}}n,, With the fol-
lowing two properties (Construction 5.2 and Corollary 5.6
of [23]):

1. There is a T€ circuit computingfx..(z), given2n-
bit integer N, 4n? + 2n-bit string » and n-bit string
xX.

. For every probabilistic oracle Turing maching, that
on its 2n-bit input asks queries of length onty, and
any constanty > 0, there is a probabilistic Turing
machine A, such that for any2n-bit Blum Integer
N = PQ,if

| Pr[MI™r(N) = 1] = Pr[MB»(N) = 1]| > 1/n"

whereR, = {g : {0,1}" — {0,1}}, is a uniformly
distributed random function ensemble and the proba-

bility is taken over the random stringand the random
bits of M, thenPr[A(N) € {P,Q}] > 1/n.



Their factoring construction relativizes, i.e., the properties even finding an approximation cannot be done efficiently,
of {fnr(z)}n, hold even if M and.A have an access to unless something unlikely is true, suchlas= NP. For
the same auxiliary oracle. example, [13] shows that the Maximum Clique cannot be
approximated up to factor!' —¢ in polynomial time, unless

Let fx-(z) be computable by a Tircuit of sizen®’, and P — NP

hence, by an NEcircuit of sizen®”, for some constants
d,cd" > 1. Letzy,zs,...,z2» denote strings if0,1}" In this section we study the following optimization prob-
under lexicographical ordering. Clearly, there is a constantlems — given a truth table of a functiofi what is the

¢ > 1, such that for all large enough all 2n-bit integers smallest size of a circuit, a branching program or a formula,
N and all4n? + 2n-bit stringsr, the string obtained by  respectively, that computes We show that under certain
concatenating'n »(z1), fn,r(z2),. .., fnr(zne) has KF- plausible complexity assumptions these optimization prob-
complexity less tham¢/2. Fix such ac and consider the lems are hard to approximate.

following oracle Turing machinéA with oraclesRxr and

: A related problem was already studied by [10]. In his
a functiong:

Master’s Thesis he gives for some > 0 an n¢ non-
e On 2n-bit input N, M asks oracleg queries approximability result for a variant of the Minimum DNF

T1,T2,-..,Tpe tO get answergy, ys, ..., ync. Then, Formula problem, under the assumption tiat# NP.
M accepts ify1ys - -yne € Rgp and rejects other-  His result builds upon probabilistically checkable proofs.
wise. We obtain our results using completely different technique.

Tools for our non-approximability results are related to

It is easy to see that iff € then M al-
y b€ {fnr(@in hardness results for the sétgr, Rxp andRxr.

ways rejects, forn large enough. On the other hand gif

is taken uniformly at random fronf,,, theny,ys - - - yne For a minimization problenf : ©* — IN we say tha :
is a random string and the probability thaf accepts is  ©* — IN approximates up to factorr : IN — IN if for all
at leastl — 27"/2. Hence,|Pr[M/~-(®)(N) = 1] — 2 e 2%, 1< g(x)/f(z) < r(|z|). For a complexity clas§

Pr[MFf~(N) = 1]| > 1/2, for n large enough. By the  we say thatf cannot be approximated up to factoin C if
properties offy,.(z) we can conclude that there is a prob- no g e ¢ approximateg up to factorr.

abilistic Turing machined with oracle Rkr that factorsV
with non-negligible probability. We can reduce the error to
zero by verifying the output ofl.

We recall definitions of two more problems that are believed
to be computationally difficult.

Integer Factorization Given a composite integéy € IN,

Since any function that is computable by N@ircuits is
y P y find two integersP? and@ such thatl < P < Q andN =

computable by polynomial size branching programs, by

considering branching programs instead of'Ncuits we Q.

get that Blum Integer Factorization is in ZPP>. 0 Discrete Logarithm Given three integers:, z, N, 1 <
x,z < N, find ani such that: = z* mod N if suchi exists.

4.1 Hardness of Approximation The following result is implicit in [3]:

d- Theorem 22 Let(0 < vy < 1 be a constant and? be a
set of at least polynomial density such that for ang B,
SIZE(z) > |z|”. Then Integer Factorization and Discrete
Logarithm are inBPF”.

Many computational problems that complexity theory stu
ies are decision problems for which an answer is always
either “yes” or “no”. Other problems that are of interest in

computational complexity are optimization problems. Ex-

amples of optimization problems are the Maximum Clique
— what is the size of the largest clique ¢h — and the This theorem implies the non-approximability of circuit
Minimum Circuit Size Problem — what is the size of the size.

smallest circuit computing a Boolean functigngiven by

its truth table? Theorem 23 For any0 < ¢ < 1, SIZE(z) cannot be ap-

For some of these optimization problems efficient (polyno- Proximated up to facton!~< in BPP, unless Integer Fac-
mial time) algorithms are known. For others, no efficient torization and Discrete Logarithm is iBPP.

algorithm is known. Moreover, it is known that these op-

timization problems are hard for NP. Given that the exact Proof. Assume that for some < e < 1, there is a function
solution of such an optimization problem may be hard to g € BPP that approximates SIZE) up to factorn!—¢. We
find one can try to find at least an approximation to the so- will show that this implies that Integer Factorization and
lution. Many optimization problems are known for which Discrete Logarithm are in BPP.



Consider the seB = {z € {0,1}*; g(z) > |z|'~</?}. conduct a similar investigation of the question of whether
Clearly, B € BPP. Since for allz € {0,1}*, 1 < or not NEXP is contained in non-uniform NC
g(z)/SIZE(x) < n'~¢, we have that for allz € B,
SIZE(z) > |z|¢/? and also for allz € {0,1}*, if
SIZE(z) > |z|'*~“/? thenz € B. By [20], almost all
truth tablesz € {0,1}* require circuits of size at least
O(n/logn). Hence,B is of at least polynomial density. By
Theorem 22, Integer Factorization and Discrete Logarithm Definition 26 [5] TP[P/poly is the class of languages hav-
arein BPIBPPg BPP. (In the case of Integer Factorization ing an interactive proof system where the strategy of the

we can actually verify correctness of the result to get ZPp Prover can be computed by a polynomial sized circuit (also
computation instead of BPP.) O see [4] where the multiple prover clasélP[P/poly| is ob-

served to be the same H3[P/poly}).
Similar non-approximability results can be obtained for for-

mula and branching program sizes. A proof similar to the Clearly IP[P/poly] C MA n P/poly (because Merlin can

proof of Theorem 21 yields the following claim. guess the circuit that implements the Prover’s strategy and
send send it to Arthur); it appears to be a proper subclass

Theorem 24 Let 0 < 7 < 1 be a constant and3 be @ f MA (since otherwise NRC P/poly). If NEXP C P/poly,

set of at least polynomial density such that for ang B, the proof of [15] actually shows that NEX®2 IP[P/poly].

BPSIZHz) > |z|” or foranyx € B, FSIZE(z) > [z]”. e now define an analogous subclass oftMi#on-uniform
Then there is &PP” procedure that on inpulV that is a NCL.

Blum Integer produces facto® and @ of N.

Before we state the main result of this section, it will be
helpful to present a technical definition. We begin by re-
calling the definition of P[P/polyl.

Definition 27 MIPNC! refers to the class of languages for
which there is a 2-prover one-round interactive proof proto-
Theorem 25 For any 0 < ¢ < 1, BPSIZHz) and col where the strategy of each prover can be implemented by
FSIZE(z) cannot be approximated up to factet—¢ in a (non-uniformNC" circuit family and the computation of
BPP, unless Blum Integer Factorization is PP, the verifier is computable by a uniform (probabilisthL!
circuit family. (Although it is important that the verifier's
In Theorems 23 and 25, a functiof is computable in  Circuits be uniform, our results do not depend crucially on
BPP if there is a polynomial time probabilistic machine the exact notion of uniformity. They hold fBruniformity
M such that for anyz, Pr[M(z) = f(z)] > 2/3. How-  and forDLOGTIME-uniformity.)
ever, the results hold for an even stronger notion of non-
approximability: For any) < e < 1, if there is a poly-  We could likewise definéPNC! as the class of languages
nomial time probabilistic machiné/ such that for allz, similar to the above for a single-prover constant-round in-
Pr[l < M(z)/BPSIZEz) < n'~°] > 2/3 or Pr[l < teractive proof protocol, but we can easily see MEPNC!
M(z)/FSIZE(x) < n'=¢] > 2/3 then Blum Integer Fac-  andIPNC! coincide.
torization is in ZPP. Similarly, if there is a polynomial
time probabilistic machiné/ such that for allz, Pr[1 <
M(z)/SIZE(z) < n'~¢] > 2/3 then Integer Factorization
and Discrete Logarithm are in BPP. These results follow by o)
exactly the same proofs as the weaker one where one has 1+ Forall A € NP, KF 4(n) =log™""/ n.
to observe th_at the derandomiza_tiqn regults thatwe usehold 5 0.1 4 € DLOGTIME-uniformAC?,
not only relative to oracles that distinguish between random o,
and pseudorandom strings but also relative to probabilistic
procedures that distinguish between random and pseudoran- 3. All NEXP search problems are solvable NC'.
dom strings with non-negligible probability.

As a corollary to this theorem we obtain:

Theorem 28 The following are equivalent:

KF4(n) =log

4. NEXP C non-uniformNC'.
4.2 KF Complexity and the NEXP C NC' Question 5. NEXP = MIPNC!.

Derandomization techniques were usedlli to showthat ~ Proof. Items (1) and (2) are easily seen to be equivalent, as
NEXP C P/poly if and only if NEXP = MA, it was ob- in the remark at the end of Section 3. That is, (1) trivially
served in [2] that this is also equivalent to conditions con- implies (2), and if the set of (string,witness) pairs in ‘AC
cerning the Kt-complexity of sets in P. In this section we for an NP languagé has low KF-complexity, then so does



the set of strings ird. Obviously both of these conditions

Now we prove the implication5 = 2). We largely fol-

are equivalent to the corresponding condition for languagedow [15], where it is shown that if NEXRZ P/poly, then

in P.

The proof that (2= 3) is immediate, once the following
two assertions are established:

e (2)= EXPC NC!.

e (2) = NEXP search problems are solvable in EXP.

NEXP-search can be performed by P/poly circuits. More
precisely, we will show that if there is a set in P with large
KF-complexity, then for every > 0, MIPNC! C io —
[NTime(2"")/n€]. As in [15] this latter condition implies
either thatMIPNC! is a proper subset of NEXP (which is
to say that condition (5) is false) or else EXP NEXP
(which also easily implies that condition (5) is false).

(Assume both of these assertions hold. Then for a givenLet 4 ¢ MIPNC!, where the verifier's strategy is com-

NEXP search problem solved in exponential time by ma-
chine M, the languagd (z,i,b) : theith bit output byM
oninputz isb}isin NC'. The existence of such circuit fam-

putable by a P-uniform family of probabilistic N@ircuits
{C,}. Letp be a polynomial, such thaf,, uses at most
p(n) probabilistic bits. Our strategy to determinerife A

ilies for NEXP search problems is precisely what is meant jg

by condition (3).) Let us examine each assertion in turn.

Let A € EXP. LetB = {z : z is a prefix ofy4}. Bis
clearly in P and (since we have already observed that (2
1)) our assumption tells us that kR = log®*)(n). Now
Proposition 20 allows us to conclude thae NC'.

For the second assertion, let be any NEXP machine, and
consider the languagg = {y10™ : wherey € {0, 1}2'm'k

is a witness that\/ acceptsm}. C is in DLOGTIME-
uniform AC® and by @) if there is any string irC’=" then
there is a string iIC'=" with small KF complexity. The
exponential-time algorithm solving this search problem in-
volves taking inputn and searching through all short de-

scriptions and seeing if any of the strings thus described

encodes an accepting computation patbbn inputm.

The implication § = 4) requires proof. Certainly (3) im-
plies that NP search problems are solvable in'NQ et

A € NP be accepted by NP-maching&, and letC' be a cir-
cuit solving the search problem defined b Thusz € A

if and only if C(x,1)C(z,2)---C(x,n*) encodes an ac-
cepting computation of/. This latter condition can also be
checked in N&, which implies NPC (non-uniform) NC.
NP being contained in NCeasily implies that? is con-
tained in NC. On the other hand, by [15], if NEXP search
problems are solvable in P/poly, then NEXP i)

To prove that 4 = 5), observe that by [15] if NEXPC
P/poly then NEXP= MA = PSPACE. By [9], we know
that PSPACE has2-prover,1-round interactive proof sys-
tems, where the honest provers ar@BPACE. Also we
note that the verifier’s protocol is very easy to compute; it

sends random sequences to each prover and receives fro
the provers sequences of polynomials on which it performs
The consistency
checks involve field operations, which are computable by

(in parallel) some consistency checks.

DLOGTIME-uniform TC circuits [14]. All the queries

m

1. Construct the circuit’ = C.

2. Nondeterministically guess NCcircuits D, D’ that
might implement the strategies of the provers in the

MIPNC! protocol forA.

. Construct a circuiBB that, given an inpuy of length
p(n)
(a) UsesC' to compute the query that gets posed to
each prover in th&IIPNC! protocol for A on
inputz and probabilistic sequenge

(b) UsesD andD'’ to answer the queries.
(c) UsesC to compute the actions of the verifier.

4. Estimate the probability tha® accepts a randomly-
chosen string.

By the definition of MIPNC!, if z € A then there are fan-

in two circuits D and D’ implementing the strategy of the
provers (where the depth &f andD’ is bounded byl log n

for some constant depending only omd) such that the
circuit B acceptsall of the inputsy, whereas ifz ¢ A,
thenno provers (and hence also no provers computed by
small circuitsD andD’) can causeB to accept more than
one-third of the inputg.

All of the steps in this algorithm are easily computable in
NP except for the final step 4. In order to complete the
argumentthablIPNC' C io—[NTime(2"")/n¢], it suffices

to show that for infinitely many input lengths, there is

an advice string of length¢ such that a nondeterministic
machine running in tim@"" can estimate the probability
that a circuit with fan-in two and depthiog p(n) accepts a
randomly-chosen input of lengih(n) (where the constant

b and the polynomigbh depend only on our languagg and

do not depend on).

As in [3], we will make use of the hardness-versus-

to the provers are made in one round (and hence are nonrandomness techniques of [24, 6]. In particular, some of the

adaptive). Since by assumpti@SPACE C NC', we have
that every language in NEXP is alsoNMiIPNC!.

results of [24, 6, 18] are summarized in [3] in the following
form.



Definition 29 For all large n, anye > 0 and any Boolean  Definition 31 MIPL corresponds to the class of languages
functionf : {0, 1}n5/3 — {0,1} there is a pseudorandom for which there is a2-prover one-round interactive proof

generatorGBFNW {0,1}"" +— {0,1}7(") with the prop-  protocol where the strategy of each prover can be imple-
erty that the funCtIOmBFNW is computable in spac@ (n°) mented in_/poly and the verifier is irL.

given access to the Boolean functibnand such that the

following theorem holds. Theorem 32 The following are equivalent :

Theorem 30 ([6, 18]) There is a constant’ depending on 1. NEXP C L/poly
e such that ifT" is a set such thatPr.cp,,,[r € T] -
Precp, [GReNY(x) € T]| > 1/3, then there exists an o

’ . 1
oracle circuitC' of sizen*" with oracleT that computes’ 3. Forall A € PKBy(n) =log”"n
and queried” non-adaptively. 4. NEXP = MIPL

2. All NEXP search problems are solvable lidpoly

Closer examination of the proof techniques that are used in .
[6, 18] shows that the circuf computing the reductioncan 9 Concluding Comments
actually be implemented ascanstant deptleircuit of MA-
JORITY gates and oracle gates. Thus it can be implemente
as a circuit of deptlk log n for some constari, consisting

of oracle gates (where there is no path in the circuit from
one oracle gate to another) and AND and OR gates of fan-
in two.

dOne could consider placing more restrictions on the univer-
sal alternating machine in the definition for KB complexity,
for instance by restricting the number of alternations, or by
making it deterministic. At first glance, it seems that one
might obtain a measure that is related to defpthC® cir-
Now we can state ouio — [NTime(2"") /n¢] algorithm to cuit size for fixedt — but it seems that such machines cannot
estimate the probability that an NQ@ircuit accepts. Let  do much interesting computation on ingdt, 7, b) without

L be a language in DTint@*) such that for every there looking at all ofi, which means that their running time is
exist infinitely manym such that K, (m) > log m. By so high that the framework developed here does not yield
our assumption that condition (2) fails, such akeixists. a very interesting measure. Is there a useful definition that

i ion?
On inputz of lengthn, our advice string will be a num- can be developed to capture this notion’

berm with approximately:?® bits with§ = ¢/3, such that_ For the more “limited” notions of Kolmogorov complexity
contains strings of length, and all strings of lengthu in L KB and KF, we are not able to prove as strong intractability
have high KF complexity. Our nondeterministic algorithm results as were proved for KT in [3]. However, it is not clear
will guess a string of lengthm and verify that: € L. This that this needs to be the case. For instance, althoughit is not
takes time29(°) . Let f be the Boolean function on inputs  known if the minimum circuit size problem is NP-complete,
of length [logm] (roughly n¢) whose truth table has as it is complete when restricted to DNF circuits [10, 21]. Is
a prefix (and is zero elsewhere). By our assumption.on there a natural, restricted notion of Kolmogorov complexity,
(combined with Proposition 20), there exist infinitely many for which the “random” strings do indeed provide a com-
m such that functiory requires Boolean formulae of size plete set for coNP?
greater tharp(n)**®. For any input lengtm for which a
correspondingn = 2°("°) exists, the probability that cir-

cuit B accepts can be estimated by counting the fraction References
of stringsy of lengthn® such thatB acceptsG W (y).
This fraction must be within one-third of the true proba- (1] E. Allender. Some consequences of the existence of pseu-
bility (since otherwisef is computed by a formula of size dorandom generatorgournal of Computer and System Sci-
p(n)k*?, by Theorem 30). ences39:101-124, 1989.
[2] E. Allender. When worlds collide: Derandomization,

; BENW (, \ i ; ;
Slncer7E (y) is computable in space, the entire com- lower bounds, and Kolmogorov complexity. Rroc. Conf.

putation to estimate the acceptance probability of thé NC on Found. of Software Technology and Theo. Comp. Sci.
circuit B (and to recognize languag8 is 20", (FST&TCS) volume 2245 ofLecture Notes in Computer
. Sciencepages 1-15, 2001.
This completes the proof. U [3] E. Allender, H. Buhrman, M. Kougk’D. van Melkebeek,
and D. Ronneburger. Power from random stringsPioc.
The following definition ofMIPL combined with an analo- IEEE Symp. on Found. of Comp. Sci. (FOO®)ges 669—

gous proof yields Theorem 32 678, 2002.



[4] V. Arvind and J. Kobler.

Graph isomorphism is low for
zPPYP and other lowness results. Technical Report TR99-
033, Electronic Colloquium on Computational Complexity,
1999.

[5] V. Arvind, J. Koebler, and R. Schuler. On helping and inter-

(6]

(7]

(8]

active proof systemsinternational Journal of Foundations
of Computer Science (IJFCS$)(2):137-153, 1995.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP
has subexponential time simulations unless EXPTIME has
publishable proofsComputational Complexityd:307—318,
1993.

E. Biham, D. Boneh, and O. Reingold. Breaking general-
ized Diffie-Hellmann modulo a composite is no easier than
factoring. Ininformation Processing Letters 70(2ages
83-87, 1999.

H. Buhrman, L. Fortnow, and S. Laplante. Resource-
bounded Kolmogorov complexity revisitedSIAM Journal

on Computing31(3):887-905, 2002.

[9] J. Cai, A. Condon, and R. J. Lipton. PSPACE is provable by

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]
(21]

(22]

two provers in one roundlournal of Computer and System
Sciences48:183-193, 1994.

S. Czort. The complexity of minimizing disjunctive normal
form fomulas. Master’s thesis, University of Aarhus, 1999.
L. Fortnow. Comparing notions of full derandomization. In
Proc. IEEE Conf. on Computational Complexity ,qiages
28-34, 2001.

L. Fortnow and M. Kummer. On resource-bounded instance
complexity. Theoretical Computer Scienc&61(1-2):123—
140, 1996.

J. Histad. Clique is hard to approximate withih—<. Acta
Mathematica182:105-142, 1999.

W. Hesse, E. Allender, and D. Barrington.  Uniform
constant-depth threshold circuits for division and iterated
multiplication. Journal of Computer and System Sciences
65:695-716, 2002.

R. Impagliazzo, V. Kabanets, and A. Wigderson. In search
of an easy witness: Exponential time vs. probabilistic poly-
nomial time. InProc. IEEE Conf. on Computational Com-
plexity, pages 2—12, 2001.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-
optimal conversion of hardness into pseudo-randomness. In
Proc. IEEE Symp. on Found. of Comp. Sci. (FOGf8)ges
181-190, 1999.

V. Kabanets and J.-Y. Cai. Circuit minimization problem. In
Proc. ACM Symp. on Theory of Computing (STQOg2lges
73-79, 2000.

A. Klivans and D. van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapsesSIAM Journal on Computing002. To
appear; a preliminary version appeared in STOC '99.

L. A. Levin. Randomness conservation inequalities; infor-
mation and independence in mathematical theoriae$or-
mation and Contrql61:15-37, 1984.

O. B. Lupanov. A method of circuit synthesidzvestiya
VUZ, Radiofizika1(1):120-140, 1959.

W. Masek. Some NP-complete set covering problems. Un-
published manuscript, 1979.

P. B. Miltersen and N. V. Vinodchandran. Derandomizing
Arthur-Merlin games using hitting sets. Rroc. IEEE Symp.

on Found. of Comp. Sci. (FOC$)ages 71-80, 1999.

(23]

[24]

[25]

[26]

M. Naor and O. Reingold. Number-theoretic constructions
of efficient pseudorandom functions. Rroc. IEEE Symp.
on Found. of Comp. Sci. (FOCS)ages 458-467, 1997.

N. Nisan and A. Wigderson. Hardness vs. randomniss-

nal of Computer and System Scienct&%149-167, 1994.

S. Rudich. Super-bits, demi-bits, andPigpoly-natural
proofs. InProceedings of RANDOMolume 1269 ol_ec-
ture Notes in Computer Scienck997.

R. Shaltiel and C. Umans. Simple extractors for all min-
entropies and a new pseudo-random generator.Prot.
IEEE Symp. on Found. of Comp. Sci. (FOC®ges 648—
657, 2001.



