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Abstract

We observe that many important computational problems in NC1 share a simple self-reducibility
property. We then show that, for any problemA having this self-reducibility property,A has poly-
nomial size TC0 circuits if and only if it has TC0 circuits of sizen1+ε for everyε > 0 (counting
the number of wires in a circuit as the size of the circuit). As an example of what this observation
yields, consider the Boolean Formula Evaluation problem (BFE), which is complete for NC1 and
has the self-reducibility property. It follows from a lower bound of Impagliazzo, Paturi, and Saks,
that BFE requires depthd TC0 circuits of sizen1+εd . If one were able to improve this lower
bound to show that there is some constantε > 0 such that every TC0 circuit family recognizing
BFE has sizen1+ε, then it would follow that TC0 6= NC1. We show that proving lower bounds of
the formn1+ε is not ruled out by the Natural Proof framework of Razborov and Rudich and hence
there is currently no known barrier for separating classes such as ACC0, TC0 and NC1 via existing
“natural” approaches to proving circuit lower bounds.

We also show that problems with small uniform constant-depth circuits have algorithms that
simultaneously have small space and time bounds. We then make use of known time-space tradeoff
lower bounds to show that SAT requires uniform depthd TC0 and AC0[6] circuits of sizen1+c for
some constantc depending ond.

1 Introduction

There is a great deal of pessimism in the research community, regarding the likelihood of proving
superpolynomial lower bounds on the circuit size required for various computational problems. One
goal of this paper is to suggest that there might be some reason to be more optimistic about prospects
for circuit size lower bounds; we show that superpolynomial bounds would follow as a consequence
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of some very modest-sounding lower bound results (such as a lower bound of sizen1.0001). Of course,
a confirmed pessimist would say that this is merely evidence that even these modest-sounding lower
bounds are likely to remain beyond our reach. In Section 6 we discuss some possible interpretations
of our results; in particular, we discuss the extent to which it might be possible to hope that the
observations we present here point to a path around the obstacles to proving circuit lower bounds that
were presented by Razborov and Rudich in their work on Natural Proofs [26].

1.1 Circuit complexity classes

This paper focuses on NC1 and its subclasses. Let us remind the reader of the main definitions, and
present some notation. For more background on circuit complexity, the reader is referred to the text
by Vollmer [32].

• NC1 is the class of languages recognized by circuits of fan-in two AND and OR gates, and
unary NOT gates, having depthO(log n). Two standard complete problems for NC1 are (1) the
word problem for the permutation groupS5 on five elements [5], and (2) the Boolean Formula
Evaluation problem [9]. In order to make the statement of some of our results slightly more
crisp, we will be somewhat particular about the encoding of the Boolean Formula Evaluation
problem. Define BFE to be the set of allbalancedBoolean formulae (with constants 0 and
1, and no variables) that evaluate to 1, where the set of connectives is{AND, OR,⊕}. This
encoding of BFE remains complete for NC1. (See, for example, the proof of Lemma 7.2 in
[6].)

We also make use of an NC1-complete variant ofs-t-connectivity. We say that a directed
graphis of widthk if it is a layered graph where each layer is of size at mostk, the layers
are ordered and every edge goes from vertices of one layer to the vertices of the next layer.
W5-STCONN is the problem of deciding whether the first vertex of the first layer is connected
by a path to the last vertex in the last layer of a width5 directed graph. It follows from [5] that
W5-STCONN is complete for NC1. (The problem W5-STCONN remains complete for NC1

if directed edges are permittedin both directionsbetween adjacent layers, as well as in the
undirected case. These variants of W5-STCONN could also be used for our discussion here,
with minor technical modifications.)

• TC0 is the class of languages recognized by polynomial-size constant-depth circuits of (un-
bounded fan-in) MAJ gates and unary NOT gates. (A MAJ gate is a gate that evaluates to one
iff the majority of its inputs is set to one.)

• ACC0 is the union of all the classes AC0[q] (for q > 1); see below.

• CC0 is the union of all the classes CC0[q] (for q > 1); see below.

• AC0[q] is the class of languages recognized by polynomial-size constant-depth circuits of un-
bounded fan-in AND and OR gates and unary NOT gates, along with unbounded fan-in MOD-q
gates. (A MOD-q gate evaluates to one iff the number of ones that feed into it is divisible byq).

• CC0[q] is the class of languages recognized by polynomial-size constant-depth circuits having
only MOD-q gates.

• AC0 is the class of languages recognized by polynomial-size constant-depth circuits of un-
bounded fan-in AND and OR gates and unary NOT gates.

As presented, these classes arenonuniform(i.e., it is not required that there be an easy way to con-
struct the circuits for inputs of lengthn). We shall also need to consider logspace-uniform and
Dlogtime-uniform versions of these classes [6].

Lower bounds are known for AC0[q] whenq is prime [29], but it remains unknown even whether
NP = Dlogtime-uniform CC0[6].



1.2 What are the main contributions?

In Section 3 we show that many problems (such as BFE, W5-STCONN, the word problem overS5,
MAJ, AND, and iterated matrix product) have strong self-reducibility properties. Then, in Section
4, we show that, for any set possessing such self-reducibility properties, a lower bound of sizenc

implies a superpolynomial size lower bound. (The constant “c” depends on the details of the self-
reduction. For the word problem overS5 or any of the problems BFE, W5-STCONN, MAJ or AND,
any constantc > 1 suffices.)1

This seems to be a new observation. There are several examples of nonlinear lower bounds
for various models of computation. For example H˚astad presents a nearly-cubic lower bound on
the formula size for a certain function [16], lower bounds on branching program size have been
presented [1, 7], and the time-space tradeoff results that are surveyed by van Melkebeek [31] give
run-time lower bounds of the formnc for small-space computations. None of these lower bounds has
led to separations of complexity classes. More to the point, there has never been any expectation that
a lower bound of the formnc couldpossiblylead to a separation of complexity classes. In this paper,
we show that there are several settings where thiscanoccur. Moreover, in Section 6 we show that
the work of Razborov and Rudich on “Natural Proofs” [26] poses no barrier to proving weak lower
bounds of the formnc. This gives rise to some hope of separating circuit classes by proving circuit
lower bounds using “natural” proof techniques.

It is necessary to be precise about the meaning of the word “size”. There are two popular measures
of circuit size—the number of gates and the number of wires. (There are always at least as many wires
as there are gates. See e.g. [24] for treatment of the difference between these two measures of “size”.
For the results that have been mentioned in the paper thus far, the correct interpretation of “size” is
“number of wires”.) We will have occasion to refer to each of these two size measures, and in those
cases where it is important to know which size measure is meant, we will be specific.

As mentioned above, in order to show that TC0 6= NC1, it suffices to show that BFE requires TC0

circuits of sizen1+ε for some constantε > 0. In fact, some non-linear lower bounds for BFEare
known; Impagliazzo, Paturi, and Saks showed that any depthd TC0 circuit for PARITY must have
n1+Ω(1/(2.5)d) wires [20]. Since there is a trivial reduction from PARITY to BFE, the same size lower
bound holds for BFE. Clearly, no proof of TC0 6= NC1 can follow from a PARITY lower bound, and
equally clearly, this argument does not yield a lower bound on the size of AC0[6] circuits computing
BFE. In fact, there seem to be no known lower bounds for BFE on AC0[q] circuits for any composite
q.

Fortnow showed that SAT does not have logspace-uniform NC1 circuits of sizen1+o(1) [13].
Since we are able to show that modest lower bounds for BFE would yield superpolynomial lower
bounds, it is natural to wonder if the same situation holds for SAT. That is, if one could build on the
Fortnow lower bound, and show that SAT requires AC0[6] circuits of sizen1.01, would it follow that
NP 6= AC0[6]? We know of no such implication – and in Section 5 we show that the approach that
works for BFE cannot transfer directly to SAT. More specifically, in Section 5 we show that any set
possessing the self-reducibility properties that we utilize in Section 4 must lie in (uniform) NC. Thus,
in order to demonstrate that SAT has the sort of self-reducibility properties that would enable us to
amplify modest lower bounds to superpolynomial lower bounds, one would have to first prove that
P=NP. (It is still conceivable that one could proceed by arguing thatif NP = AC0[6], thenSAT has
the desired type of self-reduction, but we have not been able to construct such an argument.) It is
interesting to note that Srinivasan has shown [30] that anΩ(n1+ε) lower bound on the running time
of algorithms that compute weak approximations to MAX-CLIQUE would imply P6= NP. Using
his techniques, we show in Section 7 that if NP= AC0[6], then there are AC0[6] circuits of size
n1+o(1) that computen1−o(1)-approximations to MAX-CLIQUE. This also yields lower bounds on
the difficulty of reducing MAX-CLIQUE to approximations of MAX-CLIQUE.

1A special case of this general observation (relating only to regular sets) also appears in a survey article by the second
author [23]; the present article expands significantly on the related results of [23].



Even though we do not know how to separate NP from AC0[6] by presenting a lower bound of
the formnc for the size of AC0[6] circuits for SAT, we would nonetheless like to be able to present
such a lower bound (as an illustration that current techniques can provide the sort of modest lower
bounds that would separate NC1 from AC0[6] if such bounds could be proved for BFE). Although
we can not provide such a lower bound, in Section 8 we do provide a lower bound analogous to the
Impagliazzo, Paturi, and Saks bound mentioned above; we show that there is a constantcd such that
depthd AC0[6] circuits for SAT require sizen1+cd .

2 Preliminaries

We have presented definitions for several constant-depth circuit complexity classes in Section 1.1. For
any of these classesC, we can also defineC-reducibility. We say thatA≤C

TB if there is a constant-
depth family of circuits of polynomial size recognizingA, where the circuits haveoracle gatesfor
the languageB in addition to the collection of gates that is provided in the definition of the circuit
classC.

A C self-reduction forA is a family of oracle circuits witnessing thatA≤C
TA, where on inputx,

the oracle circuit does not feed inputx into any of its oracle gates.
A pure self-reduction forA is a self-reduction forA, where theonlygates are oracle gates, as well

as bounded fan-in AND and OR gates and unary NOT gates.2

Self-reductions can be either uniform or non-uniform. The reader can verify that all of the exam-
ples of self-reductions that we present in this paper are Dlogtime-uniform.

In addition to languages over the binary alphabet, we also consider languages over an arbitrary
alphabetΣ. In such cases we assume that there is some fixed encoding of symbols fromΣ into fixed-
length binary strings; circuits for languages inΣ∗ operate on these Boolean encodings. Similarly, a
circuit for a function with non-Boolean output produces a binary encoding of the output symbol.

3 Downward self-reducibility

Definition 1 Let f : {0, 1}∗ → {0, 1}∗ be a function. Lets(n), m(n) : IN → IN be functions such
that for all n, m(n) < n and letd ≥ 1 be an integer. We say thatfn is downward self-reducible
to fm(n) by a pure reduction of depthd and sizes(n) if for every n there exists a depthd pure
self-reduction withs(n) gates computingfn, using oracle gates only forfm(n).

Similarly, we can write offn being downward self-reducible tofm(n) by aC reduction of depth
d and sizes(n) for various circuit classesC. This notion of downward self-reducibility is essentially
identical to what Goldwasseret al. call “strong downward self-reducibility” [15]. For our purposes,
it is important to pay close attention to the size and depth of the reduction.

The following example may seem trivial, but it is nonetheless useful.

Proposition 2 For any0 < ε < 1, ANDn is downward self-reducible toANDnε by a pure reduction
of depthO(1/ε) and sizeO(n1−ε). Similarly forORn.

Proof. Form a tree of depth1/ε from gates computing ANDnε and assign each input bit to one of the
leaves. Clearly, the circuit will compute ANDn and it consists ofO(n1−ε) gates. 2

The case of AND and OR can be further generalized as follows. LetM be a finite monoid (a
finite set with an associative binary operation and identity element.) We denote the operation ofM
multiplicatively. The word problem overM is the functionWM : {0, 1}∗ → {0, 1}|M| that takes
binary encodings of several elements fromM and outputs the binary encoding of their product. (The

2One could perhaps call pure self-reductions “NC0 self-reductions”, but since the oracle gates have unbounded fan-in, this
seems to be quite different than NC0 computation.



particular way of encoding elements fromM into binary representation is of no interest to us. We
may assume that it is the unary encoding:1i0|M|−i denoting thei-th element ofM .)

Proposition 3 For any monoidM and any0 < ε < 1, (WM )n is downward self-reducible to
(WM )nε by a pure reduction of depthO(1/ε) and sizeO(n1−ε).

The proof is essentially the same as for AND and OR. If for an integerq > 1 we consider the
monoid({0, 1, . . . , q − 1}, +(mod q)) then we obtain the next corollary.

Corollary 4 For any0 < ε < 1, (MOD−q)n is downward self-reducible to(MOD−q)nε by a pure
reduction of depthO(1/ε) and sizeO(n1−ε).

A similar proof also yields:

Proposition 5 For any0 < ε < 1, W5-STCONNn is downward self-reducible toW5-STCONNnε

by a pure reduction of depthO(1/ε) and sizeO(n1−ε).

We can prove a similar claim also for MAJ. This time the proof is a little bit more involved and
uses the following lemma.

Lemma 6 For any m, ` ≥ 1 there is a constant depth circuit withO(m log m) oracle gates for
MAJ2m in addition to bounded fan-inAND andOR gates and unaryNOT gates, taking as its input
m × ` bits representingm `-bit integers, and producing as output a sequence of` integers (each of
` + log m bits) that has the same sum as the input integers.

Proof. First, observe that we can compute ANDm and ORm, using a gate for MAJ2m and constants
0 and1.

Usingm gates for MAJ2m (together with some ANDm and ORm gates that can be computed with
MAJ2m), we can compute the unary representation of the sum ofm bits (i.e.,1i0m−i wherei of
the input bits are 1). This unary representation can be further transformed into binary representation
by a constant depth circuit usingO(m log m) ANDm, ORm and NOT gates. Thus we can sum the
input bits at each of thèbinary positions in them input numbers, to obtaiǹ` + log m-bit integers
representing the sum of the input. (Note each of these` integers will havè of its bits always set to
zero.) 2

Proposition 7 For any0 < ε < 1, MAJn is downward self-reducible toMAJnε by a pure reduction
of depthO(1/ε) and sizeO(n log n).

Proof. We prove the claim forε = 1/2. For smallerε the proof follows using the same technique
of building a tree as in the previous propositions. We can view the input asn 1-bit integers. To
determine the output of MAJn we will compute the binary representation of the sum of these integers.
We proceed in summing them as follows. We split the input into2

√
n blocks of

√
n/2 input bits,

each representing
√

n/2 1-bit integers. By the preceding lemma we can obtain the sum of each block
usingO(

√
n log n) MAJ√n gates, i.e.,O(n log n) MAJ√n gates in total.

Hence we have reduced the problem of summing the input bits to the problem of summing2
√

n
O(log n)-bit integers. Splitting the integers into four equal size groups and applying the lemma on
each of the groups givesO(log n) O(log n)-bit integers whose sum is equal to the input sum.

We divide each of these integers into blocks oflog log n consecutive bits and we sum the corre-
sponding blocks from theO(log n) integers using the lemma. For each block this yieldsO(log log n)
integers, each havingO(log log n) bits, which sum to the sum of the block. Furthermore, by a DNF
formula of size2O(log log n)2 ≤ no(1) built from ANDO((log log n)2) and ORno(1) gates we can obtain
for each block itsO(log log n)-bit sum. From theseO(log n/ log log n) O(log log n)-bit sums we can



form O(1) O(log n)-bit integers that represent the sum of the input bits. SummingO(1) O(log n)-bit
integers can be done usingO(log3 n) ANDO(log n) and ORO(log n) gates; this concludes the proof.2

We have seen that AND, OR, MOD-q, and MAJ are all downward self-reducible. We saw also
that downward self-reducibility holds for the word problem over any finite monoid, which yields
self-reductions for some of the standard complete problems for NC1: W5-STCONN and the word
problem overS5. We thank Mario Szegedy for pointing out that BFE (another standard complete
problem for NC1) is also downward self-reducible:

Proposition 8 For any0 < ε < 1, BFEn is downward self-reducible toBFEnε by a pure reduction
of depthO(1/ε) and sizeO(n).

Proof. Since the input is a balanced formula of sizen, the depth of the formula islog n. We can
cut this formula into1/ε layers, each of depthε logn. We will evaluate the formula, starting with the
subformulae whose roots are on the top of the bottom layer (whose inputs are the leaves of the original
formula). Each of these formulae has sizenε. We feed the values for each of those subformulae into
the formulae that form the next layer, and so on. 2

Indeed, we point out that any problem complete for a complexity class that has a downward
self-reducible complete problem must be downward self-reducible. See Proposition 19 in the next
section.

Another problem for which we can prove downward self-reducibility isIterated Matrix Multipli-
cation. Let IMMn,d,` : {0, 1}nd2` → {0, 1}d2n(`+log d) be the problem of computing the product of
n d × d matrices, with each entry being a non-negative`-bit integer. Define themodularversion of
the Iterated Matrix Product to be the function mIMMn,d,q : {0, 1}nd2 log q → {0, 1}d2 log q computing
the Iterated Matrix Product modulo some integerq ≥ 2. Finally, we will also need to consider the
BooleanIterated Matrix Product problem BIMMn,d : {0, 1}nd2 → {0, 1}d2

which is the Iterated
Matrix Problem over the ring({0, 1}, OR, AND).

The following proposition is immediate:

Proposition 9 For any0 < ε < 1 and anyn, d, q ≥ 1, mIMMn,d,q is downward self-reducible to
mIMMnε,d,q by a pure reduction of depthO(1/ε) and sizeO(n1−ε). BIMM n,d is similarly reducible
to BIMM nε,d with the same parameters.

The following more interesting lemma will be useful in the next section.

Lemma 10 There is a universal constantcCRR such that for any0 < ε < 1 and anyd ≤ n (where
d = d(n) may be a function ofn), IMM n,d,n is downward self-reducible toIMM nε,d,nε by aTC0-
reduction of depthO(1/ε), with O(d2 · n3+2cCRR) wires andO(n3−ε) oracle gates.

Here,cCRR is a specific constant that can be determined from a paper of Hesse et al. [19].
Proof. Hesse et al. [19] give uniform TC0 circuits withO(ncCRR) wires that do the following tasks:

• take as input twon-bit integersa andb, and outputa mod b.

• take as input ann-bit integera, and output itsChinese Remainder Representation, i.e., a se-
quence ofO(n) pairs (ai, bi) of O(log n)-bit numbers whereai = a mod bi and all bi are
distinct primes.

• take as inputn pairs(ai, bi) of O(log n)-bit numbers and output anO(n log n)-bit numbera
satisfyingai = a mod bi and0 ≤ a <

∏
i bi, if the bi are distinct primes.

Using these circuits we can reduce IMMn,d,n to the problem of computingO(n2) instances of
mIMMn,d,qi in parallel forO(n2) distinct primeO(log n)-bit numbersqi. Namely to compute the
iterated product, we first compute the representation of each input matrix mod each of the primesqi



(thereby converting the input from binary representation to Chinese Remainder Representation); this
gives usO(n2) instances of mIMMn,d,qi to solve. Next, we compute the iterated product mod each
of the qi (thereby obtaining the output in Chinese Remainder Representation). Finally, we convert
the answer to binary representation.

By the previous proposition, for eachi we can downward reduce the computation of mIMMn,d,qi

to mIMMnε,d,qi . However, since our goal is to produce a self-reduction for IMM, we must show how
to simulate each call to mIMM using an oracle for IMM. But this is easy: if inputs to mIMM are fed
instead into a IMM gate, then by taking the output from the IMM gate and taking each entry modqi,
we obtain the output that would have been given by the mIMM gate. That is, we use TC0 circuitry to
prepare the inputs that would (ideally) be presented to the mIMMnε,d,qi oracle gates, and instead we
use IMMnε,d,nε gates (which provide the correct answer modqi.) We then again use TC0 circuitry to
take each matrix entry modqi, thereby simulating one oracle gate in a mIMM self-reduction.

The size of the resulting circuit is going to be

• d2n ·O(n2cCRR) to convert the input into Chinese Remainder Representation relative toO(n2)
moduli and then convert back from Chinese Remainder Representation into binary, plus

• O(n2 · n1−ε · d2 · n2εcCRR) for taking remainders to process the output of theO(n2 · n1−ε)
oracle gates.

Hence we get a TC0 circuit reducing IMMn,d,n to IMMnε,d,nε of sizeO(d2 · n3+2cCRR). 2

4 Amplifying lower bounds

In the previous section we have established several downward self-reducibility results. In this section
we show that any problem that is downward self-reducible in this way has circuits of polynomial size
if and only if it has very small circuits. Thus, if a small circuit size lower bound can be proved for
any such problem, it can be “amplified” into a superpolynomial size lower bound.

The general form of our claims is:

If a functionf is computable by polynomial size circuits of typeC then for anyε > 0, f
is computable by circuits of typeC usingO(n1+ε) gates and wires.

The circuit types we will consider are AC0, ACC0, CC0, TC0 and NC1 circuits. The functionsf we
will consider will typically (but not always) be complete for some complexity class. For example
MAJ is complete for TC0 (under≤AC0

T reductions), and the word problem forS5 is complete for
NC1, and so on. The consequence of our claim is that establishing a lower bound ofΩ(n1+ε) for
someε > 0 on the number of wires or gates necessary to computef would separate some of the
circuit classes. The following proposition summarizes known relationships between these circuit
classes.

Proposition 11
AC0 ( ACC0 ⊆ TC0 ⊆ NC1

CC0 ⊆ ACC0, CC0 6⊆ AC0

Except for the proper inclusion AC0 ( ACC0 [14, 33, 18] which also implies CC0 6⊆ AC0 the
precise relationship among ACC0, CC0, TC0 and NC1 is not known, and any separation or collapse
would constitute major progress in theoretical computer science. Separation of, say, TC0 from NC1

would typically entail showing that no polynomial size TC0 circuit can compute some chosen function
from NC1. We show that a weaker lower bound than super-polynomial can already yield the same
conclusion.



Theorem 12 If, for everyε > 0, fn is downward self-reducible tofnε by a pure reduction of depth
O(1/ε) and sizes(n), andf ∈ C, then for everyε′ > 0, f has circuits of typeC with O(s(n)nε′)
wires.

Proof. Assume thatfn has circuits of typeC with nk wires. The reduction offn to fnε has at most
s(n) oracle gates, each of fan-innε, and at mosts(n) other gates of bounded fan-in. Thus the total
number of wires in the reduction isO(s(n)nε). If we replace each oracle gate forfnε by the circuit
of typeC of sizenεk, we obtain a circuit of typeC for fn with O(s(n)nεnεk) = O(s(n)nε(k+1))
wires. The claim follows, becausek is fixed and the hypothesis holds for everyε > 0. 2

In the previous theorem, note that ifC is a class ofbounded depthcircuits, thenf has circuits of
typeC having depthO(1/ε′) andO(s(n)nε′) wires. For most of our arguments,s(n) = O(n log n).
This yields the following corollary.

Corollary 13 1. If for someε > 0, W5-STCONNrequiresCC0 circuits with at leastΩ(n1+ε)
wires, thenCC0 6= NC1. The same is true forACC0 andTC0 in place ofCC0, and forBFE
andWS5 in place ofW5-STCONN.

2. If for someε > 0, MAJ requiresCC0 circuits with at leastΩ(n1+ε) wires (gates) thenCC0 6=
TC0. The same is true forACC0 in place ofCC0.

3. If for someε > 0, AND requiresCC0 circuits with at leastΩ(n1+ε) wires (gates) thenCC0 6=
ACC0.

Contrast this with the situation for SAT; if SAT is in TC0, we have no way to bound the number
k such that TC0 sizenk is sufficient to compute SAT. (Although, as we mentioned in Section 1.2,
Srinivasan has shown that if P= NP then there are algorithms running in timen1+ε that compute
weak approximationsto MAX-CLIQUE [30]. See also our Section 7.)

Although stated as a sequence of implications, the preceding corollary is really a sequence of
equivalences, since W5-STCONN is complete for NC1, MAJ is complete for TC0, and AND is
complete for ACC0 under≤CC0

T reductions. Thus, for example, W5-STCONN is in ACC0 iff
NC1 = ACC0.

We remark that, since our self-reductions are Dlogtime-uniform, one can compute a constantK
such that, for example, if BFE is in Dlogtime-uniform TC0, then it has TC0 circuits with O(n1+ε)
wires where the uniformity machine runs in timeK log n. (We have not computed the value ofK
– and indeed this value may depend on minor details of the particular formulation that is used in
defining Dlogtime-uniformity – but we anticipate thatK = 4 is sufficient; the self-reductions have
a very regular structure, and theO(log n) running time of the “original” TC0 circuit family ends up
being simulated only to determine the structure of circuits for inputs of sizenε for small values ofε.)

Sometimes concrete lower bounds are easier to prove for specially-constructed sets, rather than
for the standard complete sets for a complexity class. The following corollary shows that we can also
“amplify” lower bounds for such specially-constructed sets, since if one can show that a specially-
constructed set lies in NC1, then typically one can determine some upper bound on the depthd(n) of
the NC1 circuits computingf .

Corollary 14 Letf be computable byNC1 circuits of depthd(n). If f does not haveTC0 circuits of
sizeO(3d(n)) thenTC0 6= NC1. Similarly forACC0 andCC0 in place ofTC0.

Proof. If f has NC1 circuits of depthd(n), then it has a balanced formula of size2d(n), and thus
there is a reduction off to instances of BFE of size2d(n). If TC0 = NC1 then evaluating Boolean
formulae of length̀ can be done by TC0 circuits of sizeO(`1+ε) for any chosenε > 0. The claim
follows. 2

The technique is applicable also to other circuit classes, so if we pick a functionf from e.g. TC0

and we know that it is computable by TC0 circuits of sizeO(nk), then if TC0 = ACC0 then for every



ε > 0, f is computable by ACC0 circuits usingO(nk(1+ε)) wires (gates). So proving anΩ(nk(1+ε))
lower bound on the size of ACC0 circuits forf separates ACC0 from TC0.

This technique is applicable, to a certain extent, also to classes larger than NC1. First, let us
consider NL. Boolean iterated matrix product BIMMn,n is complete for NL. We do not know how
to work directly with BIMMn,n, and thus we work with slightly smaller matrices instead.

Theorem 15 If NL ⊆ NC1 thenBIMM n,2
√

log n is computable byNC1 circuits witho(n2) wires. The
same is true forCC0, ACC0, andTC0 in place ofNC1.

(The contrapositive may be more informative; if one can show that BIMMn,2
√

log n requires NC1

circuits of sizeΩ(n2) then one has shown that NC1 6= NL. Unlike the earlier theorems in this
section, we obtain only an implication, and not an equivalence – since BIMMn,2

√
log n is not known

(or believed) to be complete for NL. Note that this result is for NC1 circuit size; it does not seem to
translate into a useful statement aboutformulasize.)
Proof. Since BIMMn,n is in NL, our assumption implies that BIMMn,n is computable by NC1

circuits of sizeO(nk) for somek > 0. Chooseε = 1/k. Then BIMMnε,nε is computable by NC1

circuits of sizeO(nεk) = O(n) and hence BIMMnε,2
√

log n is computable by NC1 circuits of size
O(n). By Proposition 9, BIMMn,2

√
log n is downward self-reducible to BIMMnε,2

√
log n by a pure

reduction of sizen1−ε. The number of wires in this reduction isn1−ε ·nε22
√

log n = n22
√

log n. Since
BIMM nε,2

√
log n has NC1 circuits of sizeO(n), we can replace each oracle gate by a circuit withO(n)

wires, yielding an NC1 circuit with O(n22
√

log n + n1−εn) = o(n2) wires. 2

We now turn to the complexity class #L (the class of functions that count the number of accepting
paths of NL machines). This is the largest complexity class that we know how to address using
these techniques. Iterated Matrix Multiplication IMMn,n,n is a problem complete for #L (see [4]).
IMM n,2

√
log n,n is a subproblem not known (or expected) to be complete for #L, but also not known

to lie in any smaller complexity class.

Theorem 16 If #L ⊆ TC0 then IMM n,2
√

log n,n is computable byTC0 circuits with O(n2cCRR+4)
wires. Similarly if#L ⊆ NC1 thenIMM n,2

√
log n,n is computable byNC1 circuits of sizeO(n4cCRR+8)

wires.

Thus to separate #L from TC0 it suffices to show a lower bound ofω(n2cCRR+4) on the size of
TC0 circuits computing IMMn,2

√
log n,n. Similarly for NC1.

Proof. Since IMMn,n,n is in #L, by our assumption, IMMn,n,n is computable by TC0 circuits of
sizeO(nk) for somek > 0. Chooseε = 1/k. Then IMMnε,nε,nε is computable by TC0 circuits of
sizeO(nεk) = O(n) and hence IMMnε,2

√
log n,nε is computable by TC0 circuits of sizeO(n).

By Lemma 10, IMMn,2
√

log n,n is downward self-reducible to IMMnε,2
√

log n,nε by TC0 circuits

of sizeO(2O(
√

log n) · n2cCRR+3) = O(n2cCRR+4). There areO(n3−ε) oracle gates in this reduction,
and each gate for IMMnε,2

√
log n,nε can be replaced by circuits withO(n) wires, yielding TC0 circuits

of sizeO(n2cCRR+4 + n4) = O(n2cCRR+4). This yields the bound for TC0 circuits in the statement
of the lemma.

To prove the second claim in the theorem, regarding NC1 circuits, it suffices to remark that each
MAJn gate can be replaced by NC1 circuitry, at most squaring the size. (Tighter analysis is possible.)

2

The preceding two theorems do not make use of problems that are known to becompletefor
well-known complexity classes, and thus we obtain onlyimplicationsregarding NL and #L, instead
of equivalentstatements concerning whether these classes collapse with NC1. However, it is worth-
while noting that IMMn,3,n is complete for GapNC1 [10] (the class of functions over the integers,
computable by polynomial-size arithmetic formulae). All functions in NC1 are in GapNC1, and it



has been conjectured that GapNC1 coincides with NC1 [2]. GapNC1 is the only well-studied com-
plexity class not known to be contained in NC1, for which we can present a complete problem that
is strongly downward self-reducible. The proof of the preceding theorem yields the following pair of
equivalences.

Theorem 17 • GapNC1 ⊆ NC1 iff IMM n,3,n hasNC1 circuits of sizen3+2cCRR .

• GapNC1 ⊆ TC0 iff IMM n,3,n hasTC0 circuits of sizen3+2cCRR .

5 Limits on downward self-reducibility

In the previous section we have seen that downward self-reducibility provides us with an interesting
tool for the study of circuit classes. We have shown that in order to separate circuit classes such as
ACC0 and NC1, quadratic lower bounds for the circuit complexity of certain NC1-complete problems
would suffice. What about separating ACC0 from, say NP? That should in principle be a much easier
task. Can we use the technique of downward self-reducibility to establish an analog of Corollary 13
for ACC0 versus NP?

The following theorem shows that there are significant obstacles to overcome before such an
approach can work. Namely, in order to establish that a problem is downward self-reducible in the
way that we study in Section 3, one must already have an efficient algorithm for the problem.

Theorem 18 Let f : {0, 1}∗ → {0, 1}∗ be a function, andm(n) : IN → IN be such thatm(n) < nε

for some0 < ε < 1 and alln ≥ 2.

1. If fn is downward self-reducible tofm(n) by TC0-reductions, thenf ∈ NC and hasTC0

circuits of size2nδ

for everyδ > 0.

2. If fn is downward self-reducible tofm(n) via polynomial time Turing reductions thenf is in P.

Proof. 1) In order to build a circuit forfn, start with the TC0 circuit of depthd and sizenk that
reducesfn to fm(n). If we replace each oracle gate in this circuit with the circuit that reducesfm(n)

to fm(m(n)), the depth of the new circuit isd2 and the size is at mostnk + nk · nεk. We repeat the
process until the oracle gates are of sizeO(1), at which point we replace the oracle gates by circuitry
of sizeO(1) computingf on small inputs. The number of stages isO(log log n); thus the depth is
dO(log log n) = logO(1) n. The size of the circuit is bounded bynk · nεk · nε2k · · · ≤ nk/(1−ε). It
is easy to verify that the resulting circuit is logspace-uniform if the self-reduction circuits are. This
establishes thatf ∈ NC. In order to see thatf has TC0 circuits of size2nδ

, merely follow the same
iteration process as above, but continue for onlyO(1) stages instead ofO(log log n) stages. This
results in a TC0 oracle circuit with oracle gates forfm with m < nδ. Now replace each oracle gate
with a DNF expression forfm. (Clearly, if the self-reduction is an AC0 circuit instead of a TC0

circuit, thenf has AC0 circuits of size2nδ

.)
2) Again we use the obvious recursive algorithm. We run the Turing reduction and whenever it

asks an oracle query about a smaller instance off we recursively invoke the reduction on the smaller
instance. If the reduction runs in timeO(nk) then the total running time of the algorithm will be
bounded bynk · nεk · nε2k · · · ≤ nk/(1−ε). Sinceε is constant, the time is polynomial. 2

Speculation:Although Theorem 18 suggests that we abandon any attempt to show that SAT
has the downward self-reducibility property, it does not exclude the following approach for trying
to prove an analog of Corollary 13 for NP. Rather than trying to present a self-reduction for SAT
unconditionally, perhaps one can start with theassumptionthat NP⊆ TC0 and construct a downward
self-reduction of SAT (or some other specially-constructed set in NP) and conclude that under this
assumption SAT has almost linear size TC0 circuits.



This is the appropriate time to observe that if NP⊆ TC0, then it certainly does have the strong
downward self-reducibility property; this follows from Proposition 19 below. However, since one
can say nothing about the size of this self-reduction (other than that it is computed by an AC0 circuit
of polynomial size), this does not seem to allow us to conclude that SAT has TC0 circuits of, say,
quadratic size.

Proposition 19 If A is equivalent toBFE under uniform (non-uniform, respectively)≤AC0

T reduc-
tions, then for everyε > 0, An is downward self-reducible via a uniform (non-uniform, respectively)
AC0 reduction of depthO(1) and sizenO(1) that asks queries of length at mostnε. Moreover, the
size of the self-reduction ofAn can be determined from the sizes of reductions betweenA andBFE.

Proof. By hypothesis,A≤AC0

T BFE via a reduction that, on instances of lengthn, asks queries of
sizenO(1). Since queries to BFE can be padded easily to equivalent queries of longer length, we
may assume that all queries have lengthnk. Similarly, we are given that BFE≤AC0

T A via a reduction
that, on inputs of lengthm, asks queries of size at mostmc. Composing these reductions with the
self-reduction that reduces BFEnk to BFEnkδ (for δ < ε/kc) yields the desired self-reduction forA.

2

The next section addresses the question of whether superpolynomial lower bounds obtained by
“amplifying” a “natural” proof of a lower bound of sizen1.0001 would constitute an “un-natural
proof”.

6 The Natural Proofs barrier

Razborov and Rudich [26] identified a significant obstacle to further progress in proving lower bounds
on circuit size, by observing that existing lower bound arguments rely on the existence of an easy-to-
recognize combinatorial property of a functionf that (a) is shared by a large fraction of all functions,
and (b) is shared by no function that has small circuits of a given type. Razborov and Rudich showed
that any “Natural Proof” that follows this paradigm and shows that a function cannot be computed
by circuits of a classC constitutes a proof thatC cannot compute pseudorandom function generators.
It is not clear how significant an obstacle this is, for proving lower bounds against ACC0, since there
is not much evidence that ACC0 circuit families can compute pseudorandom function generators.
However, for TC0 this is a serious impediment, since Naor and Reingold have presented a good
candidate pseudorandom function generator that is computable in TC0 [25].

It is premature to argue very strongly that we have identified a path around this obstacle. After
all, the only new lower bound that this paper offers is to be found in Section 8, and that bound follows
from known time-space tradeoff results. (These time-space tradeoffs, in turn, rely on diagonalization,
which lies outside the natural proofs framework, but only gives lower bounds foruniformcircuit fam-
ilies. The natural proofs framework addresses the problem of finding lower bounds fornonuniform
circuit complexity.)

However, we contend that it is at least plausible that a natural proof could form the basis for a
proof that NC1 6= TC0, even assuming that the Naor-Reingold generator is cryptographically secure.

How?
There seems to be no reason why a natural proof cannot yield a lower bound of the formnk for

some fixedk. The parity lower bound of Impagliazzo, Paturi, and Saks gives a lower bound of this
form for BFE on TC0 circuits of depthd [20]. Håstad gives a nearly cubic lower bound on formula
size [16]. These are natural proofs.

The self-reducibility property that allows a modest lower bound to be amplified to a superpolynomial-
size lower bound, on the other hand, is a combinatorial property that is shared by only avanishingly
small fractionof all Boolean functions onn variables. Thus, this part of a lower bound argument
would not fit into the Natural Proofs framework. (Strictly speaking, the downward self-reducibility



property is not a combinatorial property in the sense of the Natural Proofs framework, as it is a re-
lationship between function values on different input sizes. However, all downward self-reducible
functions must have truth-tables of small Kolmogorov complexity (since the truth-table of size2n

is determined completely by a truth-table of size2nδ

), and thus they constitute a tiny fraction of all
functions.)

To be concrete, let us exhibit an example of a propertyT that isnatural, andusefulin the sense
of Razborov and Rudich. We will recall the definitions of Razborov and Rudich [26]:

Let Fn denote the class of all Boolean functionsfn : {0, 1}n → {0, 1}. A property{Tn ⊆
Fn}n∈IN is QuasiP -natural if there is a sub-property{T ∗

n ⊆ Tn}n∈IN such that for someε, c > 0

1. |T ∗
n | ≥ |Fn|/2εn, and

2. there is a deterministic algorithm that given a truth-table of a functionfn : {0, 1}n → {0, 1}
decides whetherfn ∈ T ∗

n in time2nc

.

Furthermore, a property{Tn ⊆ Fn}n∈IN is usefulagainst a circuit classΛ if no sequence of functions
{fn ∈ Tn}n∈IN is computable by circuits fromΛ.

Our propertyT is defined as follows:

Tn = {fn : {0, 1}n → {0, 1}; fn does not have circuits of depthlog∗ n and sizen2

consisting of MAJ and NOT gates}.
It is a trivial exercise to verify thatT is natural and useful against TC0 circuits of sizeO(n1.5).

Of course, we are not able to establish that BFE has propertyT ; if it does, then by Corollary 13
NC1 6= TC0. Clearly, this argument makes use of no special properties of TC0; one can easily
come up with aQuasiP -natural property that will be useful against any class of circuits of a fixed
polynomial size.

However, the existence of propertyT does not seem to imply anything very interesting about
the nonexistence of pseudorandom function generators (and consequently does not yield interesting
upper bounds on the complexity of factoring Blum integers, which would follow if the Naor-Reingold
generator is insecure [25]).

The arguments of Razborov and Rudich transform any natural lower bound proof into a lower
bound on the complexity of computing a pseudorandom function generator. However, lower bounds
for circuits of sizenk for small fixedk translate into lower bounds for pseudorandom function gen-
erators that are so weak as to be uninformative.

So are there reasons to be more optimistic about prospects for lower bounds? We are not sure.
The truth is that we do not understand computation. All the known lower bounds essentially rest
on information theoretic arguments and none of them really takes into accountcomputation. For
example we are unable to handlerecursionso our bounds typically deteriorate with depth. Hence,
the underlying message of Razborov and Rudich – namely, that we need to go beyond combinatorial
arguments – is still a worthwhile message. We identify two still unresolved challenges that we believe
would advance our understanding of computation:

• ProveΩ(n2) lower bounds on the length of width 5 branching programs computing an explicit
function.

• ProveΩ(n1+1/
√

d) lower bounds on the size of depthd circuits computing an explicit function.

Are there perhaps fundamental barriers that remain in our path, as we attempt to prove circuit
lower bounds?

One way to explore this question is to follow the lead of Razborov [28], who showed that (under
cryptographic assumptions) the bounded arithmetic proof systemS2

2 cannot prove that SAT requires
circuits of superpolynomial size. (In earlier work, Razborov had argued that most existing lower
bound arguments can be carried out in even weaker systems [27].)

Perhaps techniques similar to those of [28], combined with our observations can enable one to
prove thatS2

2 (or a similar system) cannot prove that BFE requires TC0 circuits of sizen1+ε.



7 Inapproximability of MAX-CLIQUE

In this section we use the technique of Srinivasan [30] to show that separating small depth circuits
from NP would follow from certain inapproximability results for circuits of nearly-linear size.

For functionsf : {0, 1}∗ → IN andα : IN → IN, a functiong : {0, 1}∗ → IN α-approximates
f if g(x) ≤ f(x) andf(x) ≤ α(|x|)g(x) for all x ∈ {0, 1}∗. MAX-CLIQUE is the following
computational problem: given an undirected graphG determine the size of the largest clique inG.
For simplicity we assume thatG is given by its adjacency matrix and by the sizen of G we will
understand the number of vertices inG. It is known [17] (see also [21, 22]) that if there is an1−ε-
approximation to MAX-CLIQUE computable in ZPP then NP= ZPP. Here ZPP stands for the class
of problems solvable on probabilistic machines with zero error in expected polynomial time.

We use the technique of Srinivasan to show the following statement:

Theorem 20 Let k > 1 and let ε = ε(n) be such that1 > ε(n) = ω(log log n/ logn). If
MAX-CLIQUE is computable byACC0 circuits of sizeO(nk) then an1−ε(n)-approximation to
MAX-CLIQUE is computable byACC0 circuits of sizeO(n1+(k−1)ε(n)). Similarly for TC0 and
NC1 in place ofACC0.

It is interesting to note that the depth of theO(n1+(k−1)ε(n))-size circuits does not increase while
decreasingε(n). As stated, the theorem holds only for non-uniform circuits, but a uniform version
holds for any functionε(n) that is sufficiently easy to compute.
Proof. Let us assume that we have an ACC0 circuit family of sizeO(nk) that computes MAX-CLIQUE.
We will build an ACC0 circuit family of sizeO(n1+(k−1)ε) computing an1−ε-approximation of
MAX-CLIQUE. (For simplicity we assume thatn1−ε as well asnε are both integral.) The compu-
tation of the approximation proceeds as follows: we partition the vertices of the graphG into n1−ε

partsV1, . . . , Vn1−ε of size betweennε − 1 andnε. For i = 1, . . . , n1−ε we compute in parallel
MAX-CLIQUE of G restricted toVi. Then we output the largest of these partial results. The correct-
ness of the algorithm follows from the simple observation that ifG contains a clique of sizef(G)
then for somei, Vi contains at leastf(G)/n1−ε vertices of that clique and hence MAX-CLIQUE of
G restricted toVi is at leastf(G)/n1−ε.

The size of a circuit carrying out the computation can be bounded as follows. We usen1−ε

circuits of sizeO(nεk) to compute the value of then1−ε MAX-CLIQUE subproblems. This already
accounts for sizeO(n1+(k−1)ε) and dominates the size of the rest of the construction detailed below.
In addition, we need some circuitry to find the largest value among then1−ε partial results with values
from {1, . . . , nε}. This can be done usingO(n log n) wires as follows. For eachj ∈ {1, . . . , nε}
decide whether the valuej appears among the results. This requiresnε ·n1−ε comparisons of numbers
havingε log n bits, and thus can be done usingO(n log n) wires. Hence we obtain an indicator vector
showing which values from{1, . . . , nε} appear among the partial results. To obtain the resulting
value in unary we can use the circuit of Chandra, Fortune, Lipton [11] for computing suffix-OR

of the indicator vector usingO(nε) wires (if implemented by either ACC0, TC0 or NC1 circuits.)
Converting this unary value to binary costs at mostO(nε log n) additional wires. Hence the size of
the circuits is bounded byO(n1+(k−1)ε). 2

The technique from the previous proof can be also used to establish the following claim.

Theorem 21 Let 0 < ε < 1 and k < 1/ε be constants. If there is a polynomial time algorithm
that solvesMAX-CLIQUEn using an oracle form1−ε-approximation ofMAX-CLIQUEm, where
m ≤ nk, thenMAX-CLIQUEn is downward self-reducible toMAX-CLIQUEnεk .

Proof. In the proof of Theorem 20 we have seen how to compute am1−ε-approximation of
MAX-CLIQUEm by asking queries to MAX-CLIQUEmε . If there is a polynomial time algorithm
that solves MAX-CLIQUEn using an oracle form1−ε-approximation of MAX-CLIQUEm where
m ≤ nk, then we can combine it with the above reduction to obtain the desired self-reduction.2



This gives rise to what is perhaps the first example of a lower bound, showing that there is no
“quick” reduction between two natural NP-optimization problems. For many natural NP-complete
problemsA andB, very efficient reductions betweenA andB are known. (For example, for any
problemA ∈ NTIME(n logO(1) n), there is a many-one reduction fromA to SAT that is computable
in time O(n logO(1) n) [12].) It is easy to show that ifB 6∈ NTIME(nk), then any reduction from
B to SAT requires timenk – but this does not provide any useful lower bound on the complexity of
reducing natural problems to SAT, since no natural NP-complete problem is known to lie outside of
NTIME(n). There seems to be no pair of natural NP-complete problemsA andB known, where a
reduction fromA to B is known to require more than linear time (even under the assumption that
P 6= NP).

In contrast to this, consider the problem of computing an1/3-approximation to MAX-CLIQUE.
Håstad presents a deterministic polynomial-time Turing reduction from MAX-CLIQUE to this ap-
proximation problem [17, Theorem 5.3]. (More precisely, H˚astad shows that SAT satisfies a condition
that implies that a reduction of Bellare, Goldreich, and Sudan correctly reduces SAT to this approx-
imation problem [8]. The polynomial-time Turing reduction from MAX-CLIQUE follows from the
trivial observation that MAX-CLIQUE is computable in PNP.) How long must the queries in this
reduction be? Assuming that P6= NP, Theorems 21 and 18 tell us that the queries in this reduction
must ask about graphs with at leastn1.5 vertices.

Corollary 22 • If P 6= NP, any deterministic polynomial-time Turing reduction fromMAX-CLIQUE
to the problem of computing an1/3-approximation toMAX-CLIQUE must ask queries of
MAX-CLIQUEm for somem > nδ, if δ < 1.5.

• If P 6= NP, any deterministic polynomial-time Turing reduction fromMAX-CLIQUE to the
problem of computing a

√
n-approximation toMAX-CLIQUE must ask queries ofMAX-CLIQUEm

for somem > nδ, if δ < 2.

Proof. If there is a reduction from MAX-CLIQUE to the problem of computing an1/3-approximation
to MAX-CLIQUE that asks queries only to graphs of sizenδ for someδ < 1.5, then by Theorem 21,
MAX-CLIQUEn is downward self-reducible to MAX-CLIQUEnδ·2/3 . By Theorem 18, this implies
that MAX-CLIQUE is computable in polynomial time, and hence NP= P.

Part two follows via an essentially identical argument: If there is a reduction from MAX-CLIQUE
to the problem of computing a

√
n-approximation to MAX-CLIQUE that asks queries only to graphs

of sizenδ for someδ < 2, then by Theorem 21, MAX-CLIQUEn is downward self-reducible to
MAX-CLIQUEnδ/2 . By Theorem 18, this implies that MAX-CLIQUE is computable in polynomial
time, and hence NP= P.

Clearly, analogous statements can be proved fornε-approximation for any value ofε; the cases
ε ∈ {1/3, 1/2} are likely to be of greatest interest. Note that, unlike the case forε = 1/3, there
is currently no known deterministic polynomnial-time reduction from MAX-CLIQUE to the prob-
lem of computing a

√
n-approximation to MAX-CLIQUE. Similar claims can be also proved for

probabilistic reductions instead of deterministic ones. 2

It is worthwhile mentioning that, in some sense, decreasing the size of the query length in H˚astad’s
reduction [17] from MAX-CLIQUE to computing an1/3-approximation to MAX-CLIQUE is auni-
versalapproach to proving P= NP. If any approach will work, then this approach will.

Corollary 23 P = NP if and only if there is aδ < 1.5 and a deterministic polynomial-time Turing
reduction fromMAX-CLIQUE to the problem of computing an1/3-approximation toMAX-CLIQUE
that asks queries of size no greaternδ.

Proof. One direction follows from Corollary 22. The other direction follows from the observation
that if P= NP then there is a polynomial-time Turing reduction for this problem that asks queries of
sizeO(1) (or asks no queries at all). 2



8 Circuit lower bounds

We begin this section by showing that problems with small constant-depth circuits have algorithms
that run quickly and have small space bounds. Let TISP(t(n), s(n)) denote the class of problems
that are computable by machines running in timet(n) that use space at mosts(n). (This definition is
somewhat sensitive to the underlying model of computation. We shall always refer explicitly to either
the Turing machine model or the random access machine model, to clarify which class is meant.)

Theorem 24 If A has Dlogtime-uniformTC0circuits of depthd with O(n1+ε) wires then for every
0 < δ < 1 + ε, A ∈ TISP ((n1+ε + nδd) logO(1) n, n1+ε−δ logO(1) n) on random access machines
andA ∈ TISP ((n1+ε+δd logO(1) n, n1+ε−δ logO(1) n) on Turing machines. (The same claim holds
with “ TC0” replaced by “ACC0” and “ CC0”, etc.)

Proof. A naı̈ve recursive way to evaluate the circuit in spaceO(log n) would require timeO(nd(1+ε) log n).
Since we can use more space we will use it to remember the computed values of gates that have fan-
in larger thannδ. The faster algorithm then will also recursively evaluate the circuit but whenever
it computes the value of a gate with fan-in larger thannδ it records the value so such a gate will be
evaluated at most once. On a random access machine we will store the values in a binary search tree,
on a Turing machine we will store them in a simple list. Since there are at mostO(n1+ε/nδ) gates
with fan-in larger thannδ we will need space onlyO(n1+ε−δ logO(1) n). Finding the value of a gate
and whether it has already been computed will takeO(logO(1) n) time on a random access machine
andO(n1+ε−δ logO(1) n) on a Turing machine. To bound the total time needed to evaluate the circuit
notice that we will have to recursively evaluate a tree of fan-in at mostnδ and depthd. To traverse the
tree we will need to makenδd visits to the nodes. Beside that we will have to evaluate the gates with
large fan-in. Since there are at mostO(n1+ε) wires leading into them these gates will additionally
cost at mostO(n1+ε) node visits. This yields the claimed time bound. 2

We need to make use of known time-space tradeoffs for SAT. The following theorem is a special
case of Theorem 1.3 in the excellent survey article by van Melkebeek [31]:

Theorem 25 For every realc such that1 < c < 5/3, there exists a positive reale such that SAT
cannot be solved by both

1. aΠ1 machine with random access that runs in timenc and

2. a deterministic random-access machine that runs in timen1.5 and spacene.

Moreover, the constante approaches 1 from below whenc approaches 1 from above.

Theorem 26 For everyd there is a constantε > 0 such that SAT does not have Dlogtime-uniform
depthd TC0 circuits with fewer thann1+ε wires.

Proof. Assume that the claim fails for some depthd; thus for everyε > 0, SAT has Dlogtime-uniform
depthd TC0 circuits with fewer thann1+ε wires.

By Theorem 24, this implies that for all smallε andδ, SAT is in TISP(n1+ε + ndδ, n1+ε−δ). In
particular, this is true if we pickδ = 2ε; hence we conclude that for all small enoughε > 0, SAT is
in TISP(n1+ε, n1−ε). Since this is true for allε, we have in particular that SAT is in DTIME(nc) for
all c > 1.

Pick ε < 1
2 . We thus have SAT is in TISP(n1.5, n1−ε).

By Theorem 25, if we letc approach 1 from above, the value ofe (in Theorem 25) approaches 1
from below. Thus there is some value ofc > 1 for whiche > 1− ε (in the statement of Theorem 25).
Fix these values ofc ande. Summarizing, we now have that SAT is in TISP(n1.5, ne).

At this point, by Theorem 25, we know that SAT is not in bothΠ1 Time(nc) and TISP(n1.5, ne).
But we have already observed (three paragraphs ago) that SAT is in DTIME(nc) and thus it is in
Π1 Time(nc). Thus we must conclude that SAT is not in TISP(n1.5, ne). But this contradicts the
conclusion of the preceding paragraph. 2



9 Conclusions and open problems

The most important and interesting question raised by this work, is the question of whether it can
ultimately lead to separations of complexity classes. (This topic is also discussed in a recent survey
[3].) However, a number of other questions naturally arise. We close by listing two such questions.

• Are there sets complete for every level of the NC hierarchy that are downward self-reducible
to instances of sizenε? Or is there some fundamental reason why we were unable to find a
downward self-reduction of this sort for any problem that is complete for NL or L?

• If NP = TC0, does SAT have TC0 circuits of quadratic size? If NEXP⊆ non-uniform CC0[6],
does the standard complete set for NEXP have CC0[6] circuits of quadratic size? (Even if
arguments based on downward self-reducibility fail for problems outside of NC, perhaps there
is another approach that leads to the same conclusion.)
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