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Abstract

We observe that many important computational problems ih§t@re a simple self-reducibility
property. We then show that, for any probletrhaving this self-reducibility propertyd has poly-
nomial size TC circuits if and only if it has T€ circuits of sizen' ™ for everye > 0 (counting
the number of wires in a circuit as the size of the circuit). As an example of what this observation
yields, consider the Boolean Formula Evaluation problem (BFE), which is complete foahd
has the self-reducibility property. It follows from a lower bound of Impagliazzo, Paturi, and Saks,
that BFE requires deptd TC® circuits of sizen!*<¢. If one were able to improve this lower
bound to show that there is some constant 0 such that every T€circuit family recognizing
BFE has size»' ™, then it would follow that T€ # NC!. We show that proving lower bounds of
the formn'*< is not ruled out by the Natural Proof framework of Razborov and Rudich and hence
there is currently no known barrier for separating classes such a8, AT and NC via existing
“natural” approaches to proving circuit lower bounds.

We also show that problems with small uniform constant-depth circuits have algorithms that
simultaneously have small space and time bounds. We then make use of known time-space tradeoff
lower bounds to show that SAT requires uniform depfhC® and AC’[6] circuits of sizen'* for
some constant depending onl.

1 Introduction

There is a great deal of pessimism in the research community, regarding the likelihood of proving
superpolynomial lower bounds on the circuit size required for various computational problems. One
goal of this paper is to suggest that there might be some reason to be more optimistic about prospects
for circuit size lower bounds; we show that superpolynomial bounds would follow as a consequence

*A preliminary version of this paper appeared in the Proceedings of the 23rd IEEE Conference on Computational Com-
plexity, 2008.
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of some very modest-sounding lower bound results (such as a lower bound:o¥f-8t2&). Of course,

a confirmed pessimist would say that this is merely evidence that even these modest-sounding lower
bounds are likely to remain beyond our reach. In Section 6 we discuss some possible interpretations
of our results; in particular, we discuss the extent to which it might be possible to hope that the
observations we present here point to a path around the obstacles to proving circuit lower bounds that
were presented by Razborov and Rudich in their work on Natural Proofs [26].

1.1 Circuit complexity classes

This paper focuses on NGind its subclasses. Let us remind the reader of the main definitions, and
present some notation. For more background on circuit complexity, the reader is referred to the text
by Vollmer [32].

e NC! is the class of languages recognized by circuits of fan-in twm A&nd Or gates, and
unary NoT gates, having deptf(log n). Two standard complete problems for Nére (1) the
word problem for the permutation groufy on five elements [5], and (2) the Boolean Formula
Evaluation problem [9]. In order to make the statement of some of our results slightly more
crisp, we will be somewhat particular about the encoding of the Boolean Formula Evaluation
problem. Define BFE to be the set of &klancedBoolean formulae (with constants 0 and
1, and no variables) that evaluate to 1, where the set of connectiyés\is, OrR, ®}. This
encoding of BFE remains complete for NC(See, for example, the proof of Lemma 7.2 in
[61.)
We also make use of an N@&omplete variant ok-t-connectivity. We say that a directed
graphis of widthk if it is a layered graph where each layer is of size at migghe layers
are ordered and every edge goes from vertices of one layer to the vertices of the next layer.
W5-STCONN is the problem of deciding whether the first vertex of the first layer is connected
by a path to the last vertex in the last layer of a wigltthirected graph. It follows from [5] that
W5-STCONN is complete for NE (The problem W5-STCONN remains complete for NC
if directed edges are permittead both directionshetween adjacent layers, as well as in the
undirected case. These variants of W5-STCONN could also be used for our discussion here,
with minor technical modifications.)

e TCY is the class of languages recognized by polynomial-size constant-depth circuits of (un-
bounded fan-in) MJ gates and unary & gates. (A MAJ gate is a gate that evaluates to one
iff the majority of its inputs is set to one.)

e ACCY is the union of all the classes A(g] (for ¢ > 1); see below.
e CCl is the union of all the classes €[g] (for ¢ > 1); see below.

e ACY[¢] is the class of languages recognized by polynomial-size constant-depth circuits of un-
bounded fan-in AD and Qr gates and unary &It gates, along with unbounded fan-indg-q
gates. (A MoD-q gate evaluates to one iff the number of ones that feed into it is divisibié. by

e CC[q] is the class of languages recognized by polynomial-size constant-depth circuits having
only MoD-q gates.

e ACC is the class of languages recognized by polynomial-size constant-depth circuits of un-
bounded fan-in AD and Cr gates and unary dIr gates.

As presented, these classes mpauniform(i.e., it is not required that there be an easy way to con-
struct the circuits for inputs of length). We shall also need to consider logspace-uniform and
Dlogtime-uniform versions of these classes [6].

Lower bounds are known for Aq] whenq is prime [29], but it remains unknown even whether
NP = Dlogtime-uniform CC[6].



1.2 What are the main contributions?

In Section 3 we show that many problems (such as BFE, W5-STCONN, the word problesiover
MAJ, AND, and iterated matrix product) have strong self-reducibility properties. Then, in Section
4, we show that, for any set possessing such self-reducibility properties, a lower bound of size
implies a superpolynomial size lower bound. (The constahti&épends on the details of the self-
reduction. For the word problem ov8g or any of the problems BEEV5-STCONN MAJ or AND,

any constant > 1 suffices.}

This seems to be a new observation. There are several examples of nonlinear lower bounds
for various models of computation. For exampladtid presents a nearly-cubic lower bound on
the formula size for a certain function [16], lower bounds on branching program size have been
presented [1, 7], and the time-space tradeoff results that are surveyed by van Melkebeek [31] give
run-time lower bounds of the form¢ for small-space computations. None of these lower bounds has
led to separations of complexity classes. More to the point, there has never been any expectation that
a lower bound of the form* couldpossiblylead to a separation of complexity classes. In this paper,
we show that there are several settings wheredaisoccur. Moreover, in Section 6 we show that
the work of Razborov and Rudich on “Natural Proofs” [26] poses no barrier to proving weak lower
bounds of the forrm®. This gives rise to some hope of separating circuit classes by proving circuit
lower bounds using “natural” proof techniques.

Itis necessary to be precise about the meaning of the word “size”. There are two popular measures
of circuit size—the number of gates and the number of wires. (There are always at least as many wires
as there are gates. See e.g. [24] for treatment of the difference between these two measures of “size”.
For the results that have been mentioned in the paper thus far, the correct interpretation of “size” is
“number of wires”.) We will have occasion to refer to each of these two size measures, and in those
cases where it is important to know which size measure is meant, we will be specific.

As mentioned above, in order to show that’TZ NC!, it suffices to show that BFE requires TC
circuits of sizen!*< for some constant > 0. In fact, some non-linear lower bounds for BleEe
known; Impagliazzo, Paturi, and Saks showed that any déf@® circuit for PARITY must have
ni+U/ (25" wires [20]. Since there is a trivial reduction from PARITY to BFE, the same size lower
bound holds for BFE. Clearly, no proof of PG4 NC! can follow from a PARITY lower bound, and
equally clearly, this argument does not yield a lower bound on the size BféACircuits computing
BFE. In fact, there seem to be no known lower bounds for BFE of#Qircuits for any composite
q.

Fortnow showed that SAT does not have logspace-uniform biuits of sizen'*°() [13].

Since we are able to show that modest lower bounds for BFE would yield superpolynomial lower
bounds, it is natural to wonder if the same situation holds for SAT. That is, if one could build on the
Fortnow lower bound, and show that SAT requires’Ccircuits of sizen!°*, would it follow that

NP # AC[6]? We know of no such implication — and in Section 5 we show that the approach that
works for BFE cannot transfer directly to SAT. More specifically, in Section 5 we show that any set
possessing the self-reducibility properties that we utilize in Section 4 must lie in (uniform) NC. Thus,
in order to demonstrate that SAT has the sort of self-reducibility properties that would enable us to
amplify modest lower bounds to superpolynomial lower bounds, one would have to first prove that
P=NP. (It is still conceivable that one could proceed by arguingitidP = AC°[6], thenSAT has

the desired type of self-reduction, but we have not been able to construct such an argument.) It is
interesting to note that Srinivasan has shown [30] tha@an*<) lower bound on the running time

of algorithms that compute weak approximations to MAX-CLIQUE would implyRNP. Using

his techniques, we show in Section 7 that if NP AC°[6], then there are AG6] circuits of size
nito() that compute:! —°()-approximations to MAX-CLIQUE. This also yields lower bounds on
the difficulty of reducing MAX-CLIQUE to approximations of MAX-CLIQUE.

1A special case of this general observation (relating only to regular sets) also appears in a survey article by the second
author [23]; the present article expands significantly on the related results of [23].



Even though we do not know how to separate NP fron? §Cby presenting a lower bound of
the formne for the size of AC[6] circuits for SAT, we would nonetheless like to be able to present
such a lower bound (as an illustration that current techniques can provide the sort of modest lower
bounds that would separate N@om AC°[6] if such bounds could be proved for BFE). Although
we can not provide such a lower bound, in Section 8 we do provide a lower bound analogous to the
Impagliazzo, Paturi, and Saks bound mentioned above; we show that there is a egratahtthat
depthd ACP[6] circuits for SAT require size! <.

2 Preliminaries

We have presented definitions for several constant-depth circuit complexity classes in Section 1.1. For
any of these classe we can also definé-reducibility. We say thatl<%. B if there is a constant-
depth family of circuits of polynomial size recogniziay where the circuits haveracle gatedor
the languagés in addition to the collection of gates that is provided in the definition of the circuit
classC.

A C self-reduction forA is a family of oracle circuits witnessing that<%. A, where on inputr,
the oracle circuit does not feed inpuinto any of its oracle gates.

A pure self-reduction fod is a self-reduction forl, where theonly gates are oracle gates, as well
as bounded fan-in AD and QR gates and unary &It gates?

Self-reductions can be either uniform or non-uniform. The reader can verify that all of the exam-
ples of self-reductions that we present in this paper are Dlogtime-uniform.

In addition to languages over the binary alphabet, we also consider languages over an arbitrary
alphabet:. In such cases we assume that there is some fixed encoding of symbols fnborfixed-
length binary strings; circuits for languagesin operate on these Boolean encodings. Similarly, a
circuit for a function with non-Boolean output produces a binary encoding of the output symbol.

3 Downward self-reducibility

Definition 1 Let f : {0,1}* — {0,1}* be a function. Let(n), m(n) : IN — IN be functions such
that for all n, m(n) < n and letd > 1 be an integer. We say thdt, is downward self-reducible
to f..(n) by @ pure reduction of deptth and sizes(n) if for everyn there exists a depth pure
self-reduction withs(n) gates computing;,, using oracle gates only fof,, ,,).

Similarly, we can write off,, being downward self-reducible t,,,,) by aC reduction of depth
d and sizes(n) for various circuit classeS. This notion of downward self-reducibility is essentially
identical to what Goldwasset al. call “strong downward self-reducibility” [15]. For our purposes,
it is important to pay close attention to the size and depth of the reduction.

The following example may seem trivial, but it is nonetheless useful.

Proposition 2 For any0 < ¢ < 1, AND,, is downward self-reducible tAND,,- by a pure reduction
of depthO(1/¢) and sizeO(n'~¢€). Similarly for OR,,.

Proof. Form a tree of depti/e from gates computing RD,,. and assign each input bit to one of the
leaves. Clearly, the circuit will computen®,, and it consists o (n!~¢) gates. O

The case of AD and Qr can be further generalized as follows. Lt be a finite monoid (a
finite set with an associative binary operation and identity element.) We denote the operation of
multiplicatively. The word problem ovel/ is the functionWy; : {0,1}* — {0, 1}/*! that takes
binary encodings of several elements frafand outputs the binary encoding of their product. (The

20ne could perhaps call pure self-reductions “N&2lf-reductions”, but since the oracle gates have unbounded fan-in, this
seems to be quite different than N€omputation.



particular way of encoding elements frakd into binary representation is of no interest to us. We
may assume that it is the unary encodint!*/!—? denoting the-th element ofA1.)

Proposition 3 For any monoidM and any0 < ¢ < 1, (Wy), is downward self-reducible to
(War)ne by a pure reduction of deptf(1/¢) and sizeO(n! ).

The proof is essentially the same as fon\and Qr. If for an integerg > 1 we consider the
monoid({0,1,...,¢ — 1}, +(mod ¢q)) then we obtain the next corollary.

Corollary 4 For any0 < ¢ < 1, (Mob—q),, is downward self-reducible ttM oD—q),,- by a pure
reduction of deptl(1/¢) and sizeO(n'~¢).

A similar proof also yields:

Proposition 5 For any0 < € < 1, W5-STCONN, is downward self-reducible t&/5-STCONN,-
by a pure reduction of dept(1/¢) and sizeO(n'~).

We can prove a similar claim also for M. This time the proof is a little bit more involved and
uses the following lemma.

Lemma 6 For anym, ¢ > 1 there is a constant depth circuit with(m logm) oracle gates for
MAJs,, in addition to bounded fan-idND and OR gates and unarNOT gates, taking as its input
m X £ bits representingn ¢-bit integers, and producing as output a sequencéiofegers (each of
¢ 4 log m bits) that has the same sum as the input integers.

Proof. First, observe that we can computeid,,, and (r,,, using a gate for MJ,,,, and constants
0 andl.

Usingm gates for MhJs,,, (together with some AD,,, and Cr,,, gates that can be computed with
MAJs,,), we can compute the unary representation of the sum dfts (i.e., 1°0™~¢ wherei of
the input bits are 1). This unary representation can be further transformed into binary representation
by a constant depth circuit usin@(m logm) AND,,,, OR,, and NOT gates. Thus we can sum the
input bits at each of thébinary positions in then input numbers, to obtaifi/ 4+ log m-bit integers
representing the sum of the input. (Note each of theséegers will havel of its bits always set to
zero.) O

Proposition 7 For any0 < € < 1, MAJ,, is downward self-reducible thAJ,,. by a pure reduction
of depthO(1/€) and sizeO(n logn).

Proof. We prove the claim fore = 1/2. For smallere the proof follows using the same technique
of building a tree as in the previous propositions. We can view the input Bbit integers. To
determine the output of k,, we will compute the binary representation of the sum of these integers.
We proceed in summing them as follows. We split the input ihgé: blocks of /n/2 input bits,

each representingn/2 1-bit integers. By the preceding lemma we can obtain the sum of each block
usingO(y/nlogn) MAJ /; gates, i.e.0(nlogn) MAJ ;, gates in total.

Hence we have reduced the problem of summing the input bits to the problem of sufyning
O(logn)-bit integers. Splitting the integers into four equal size groups and applying the lemma on
each of the groups give3(log n) O(log n)-bit integers whose sum is equal to the input sum.

We divide each of these integers into blockd@flogn consecutive bits and we sum the corre-
sponding blocks from th€@(log n) integers using the lemma. For each block this yi€kikg log n)
integers, each havin@(log log n) bits, which sum to the sum of the block. Furthermore, by a DNF
formula of size20(leglogn)* < y0(1) pyilt from AND ((1og log n)2) @Nd CR,,.1) gates we can obtain
for each block it$) (log log n)-bit sum. From thes®(log n/ loglog n) O(log log n)-bit sums we can



form O(1) O(log n)-bit integers that represent the sum of the input bits. Sumidifig O (log n)-bit
integers can be done usi(ilg[log3 n) ANDO (10 n) @Nd QRo (104 1) 9ates; this concludes the prodfl

We have seen thatMp, OrR, MoD-¢, and MaJ are all downward self-reducible. We saw also
that downward self-reducibility holds for the word problem over any finite monoid, which yields
self-reductions for some of the standard complete problems fdr N¢5-STCONN and the word
problem overSs. We thank Mario Szegedy for pointing out that BFE (another standard complete
problem for NC) is also downward self-reducible:

Proposition 8 For any0 < ¢ < 1, BFE, is downward self-reducible tBFE,. by a pure reduction
of depthO(1/€) and sizeD(n).

Proof. Since the input is a balanced formula of sizethe depth of the formula ibgn. We can

cut this formula intol /e layers, each of depthlog n. We will evaluate the formula, starting with the
subformulae whose roots are on the top of the bottom layer (whose inputs are the leaves of the original
formula). Each of these formulae has siZe We feed the values for each of those subformulae into

the formulae that form the next layer, and so on. O

Indeed, we point out that any problem complete for a complexity class that has a downward
self-reducible complete problem must be downward self-reducible. See Proposition 19 in the next
section.

Another problem for which we can prove downward self-reducibilityésated Matrix Multipli-
cation Let IMM,, 4 : {0,1}"4°¢ — {0, 1}¥"n(¢+losd) he the problem of computing the product of
n d x d matrices, with each entry being a non-negatit integer. Define thenodularversion of
the Iterated Matrix Product to be the function mIMM,, : {0, 1}"4* 154 —, {0, 1}4"los4 computing
the Iterated Matrix Product modulo some integer 2. Finally, we will also need to consider the
Booleanlterated Matrix Product problem BIMM, : {0,1}"4" — {0,1}%* which is the Iterated
Matrix Problem over the ring{0, 1}, OR, AND).

The following proposition is immediate:

Proposition 9 For any0 < € < 1 and anyn,d,q > 1, mIMM,, 4, is downward self-reducible to
MIMM ..« 4, by @ pure reduction of dept(1/¢) and sizeO(n'~¢). BIMM,, 4 is similarly reducible
to BIMM ,,« 4 with the same parameters.

The following more interesting lemma will be useful in the next section.

Lemma 10 There is a universal constantgrgr such that for any) < ¢ < 1 and anyd < n (where
d = d(n) may be a function of), IMM,, 4 ,, is downward self-reducible tMM ¢ 4., by a TC’-
reduction of deptiD(1/¢), with O(d? - n3+2¢crr) wires andO(n3~<) oracle gates.

Here,ccrr is a specific constant that can be determined from a paper of Hesse et al. [19].
Proof. Hesse et al. [19] give uniform Tircuits with O(n°crr) wires that do the following tasks:

e take as input twae-bit integersa andb, and output: mod b.

e take as input am-bit integera, and output itsChinese Remainder Representatioa., a se-
quence ofO(n) pairs (a;, b;) of O(logn)-bit numbers where,; = amodb; and allb; are
distinct primes.

e take as input: pairs(a;, b;) of O(logn)-bit numbers and output af(n log n)-bit numbera
satisfyinga; = amod b; and0 < a < [, b;, if the b; are distinct primes.

Using these circuits we can reduce IMM.,, to the problem of computing(n?) instances of
mIMM,, 4 .. in parallel forO(n?) distinct primeO(log n)-bit numbersg;. Namely to compute the
iterated product, we first compute the representation of each input matrix mod each of thegprimes



(thereby converting the input from binary representation to Chinese Remainder Representation); this
gives usO(n?) instances of mIMM 4 ,, to solve. Next, we compute the iterated product mod each
of the ¢; (thereby obtaining the output in Chinese Remainder Representation). Finally, we convert
the answer to binary representation.

By the previous proposition, for ea¢hive can downward reduce the computation of miyIM,,
to mIMM,,« 4 ,,. However, since our goal is to produce a self-reduction for IMM, we must show how
to simulate each call to mIMM using an oracle for IMM. But this is easy: if inputs to mIMM are fed
instead into a IMM gate, then by taking the output from the IMM gate and taking each entry;mod
we obtain the output that would have been given by the mIMM gate. That is, we UseirEGitry to
prepare the inputs that would (ideally) be presented to the m|MM, oracle gates, and instead we
use IMM,,c 4. gates (which provide the correct answer ngodl We then again use TQircuitry to
take each matrix entry mag, thereby simulating one oracle gate in a mIMM self-reduction.

The size of the resulting circuit is going to be

e d%n-O(n?ccrr) to convert the input into Chinese Remainder Representation relativetd
moduli and then convert back from Chinese Remainder Representation into binary, plus

e O(n?-n'=c.d? . n2ccrr) for taking remainders to process the output of €he? - n'=¢)
oracle gates.

Hence we get a TCcircuit reducing IMM, 4., t0 IMM ,,c 4., Of SizeO(d? - n3+2¢crr), O

4  Amplifying lower bounds

In the previous section we have established several downward self-reducibility results. In this section
we show that any problem that is downward self-reducible in this way has circuits of polynomial size
if and only if it has very small circuits. Thus, if a small circuit size lower bound can be proved for
any such problem, it can be “amplified” into a superpolynomial size lower bound.

The general form of our claims is:

If a function f is computable by polynomial size circuits of ty@ehen for anye > 0, f
is computable by circuits of typ@ usingO(n'*<) gates and wires.

The circuit types we will consider are ACACC®, CC, TC? and NC circuits. The functiong’ we

will consider will typically (but not always) be complete for some complexity class. For example
MAJ is complete for T€ (underg‘%CO reductions), and the word problem f6g is complete for

NC!, and so on. The consequence of our claim is that establishing a lower bogir{é'of<) for

somee > 0 on the number of wires or gates necessary to compw@uld separate some of the
circuit classes. The following proposition summarizes known relationships between these circuit
classes.

Proposition 11
AC’ C ACC? C TC" C NC!

CC’ C ACC?, CC° ¢ AC?

Except for the proper inclusion ACC ACCY [14, 33, 18] which also implies CCZ AC° the
precise relationship among AGOCC?, TC® and NC is not known, and any separation or collapse
would constitute major progress in theoretical computer science. Separation of, 8dypMANC!
would typically entail showing that no polynomial size T€rcuit can compute some chosen function
from NC!. We show that a weaker lower bound than super-polynomial can already yield the same
conclusion.



Theorem 12 If, for everye > 0, f, is downward self-reducible t@,. by a pure reduction of depth
O(1/€) and sizes(n), and f € C, then for every’ > 0, f has circuits of type with O(s(n)n*")
wires.

Proof. Assume thaff,, has circuits of typ&€ with n* wires. The reduction of,, to f,- has at most
s(n) oracle gates, each of fan-itf, and at mosk(n) other gates of bounded fan-in. Thus the total
number of wires in the reduction @(s(n)n¢). If we replace each oracle gate ffyf by the circuit

of type C of sizen*, we obtain a circuit of typ€ for f,, with O(s(n)n°n*) = O(s(n)n*++1))
wires. The claim follows, becaugeis fixed and the hypothesis holds for every 0. O

In the previous theorem, note thatlfis a class obounded depthircuits, thenf has circuits of
typeC having depthO(1/¢') andO(s(n)n<") wires. For most of our argumentgn) = O(nlogn).
This yields the following corollary.

Corollary 13 1. If for somee > 0, W5-STCONNrequiresCC circuits with at least2(n'*¢)
wires, thenCC’ # NC!. The same is true foACC" and TC? in place ofCC’, and forBFE
andWsg, in place ofW5-STCONN

2. If for somee > 0, MAJ requiresCC° circuits with at least)(n!*€) wires (gates) thel€C’ #
TC°. The same is true foACC" in place ofCC°.

3. If for somee > 0, AND requiresCC’ circuits with at least2(n!*<) wires (gates) thel€C’ #
ACC?.

Contrast this with the situation for SAT; if SAT is in PCwe have no way to bound the number
k such that T€ sizen” is sufficient to compute SAT. (Although, as we mentioned in Section 1.2,
Srinivasan has shown that if 2 NP then there are algorithms running in tim&te that compute
weak approximationto MAX-CLIQUE [30]. See also our Section 7.)

Although stated as a sequence of implications, the preceding corollary is really a sequence of
equivalencessince W5-STCONN is complete for NCMAJ is complete for T€, and AND is
complete for ACE under <" reductions. Thus, for example, W5-STCONN is in ACGf
NC! = ACC.

We remark that, since our self-reductions are Dlogtime-uniform, one can compute a cdfistant
such that, for example, if BFE is in Dlogtime-uniform TQhen it has T€ circuits with O(n!*€)
wires where the uniformity machine runs in tim€log n. (We have not computed the value &f
— and indeed this value may depend on minor details of the particular formulation that is used in
defining Dlogtime-uniformity — but we anticipate that = 4 is sufficient; the self-reductions have
averyregular structure, and th@(log n) running time of the “original” T€ circuit family ends up
being simulated only to determine the structure of circuits for inputs ofrsiZer small values ot.)

Sometimes concrete lower bounds are easier to prove for specially-constructed sets, rather than
for the standard complete sets for a complexity class. The following corollary shows that we can also
“amplify” lower bounds for such specially-constructed sets, since if one can show that a specially-
constructed set lies in NCthen typically one can determine some upper bound on the dép}tof
the NC' circuits computingf.

Corollary 14 Let f be computable bMC! circuits of depthi(n). If f does not hav&C? circuits of
sizeO(3%™)) thenTC? # NC'. Similarly for ACC® andCC" in place of TC°.

Proof. If f has NC circuits of depthd(n), then it has a balanced formula of si2€™), and thus
there is a reduction of to instances of BFE of size#(™). If TC® = NC' then evaluating Boolean
formulae of lengtlY can be done by TCcircuits of sizeO (¢! <) for any choser > 0. The claim
follows. O

The technique is applicable also to other circuit classes, so if we pick a furfcfiom e.g. TC
and we know that it is computable by Tircuits of sizeO(n*), then if TC’ = ACC? then for every



e > 0, f is computable by ACEcircuits usingD(n*1+9)) wires (gates). So proving dn(n*(1+))
lower bound on the size of ACircuits for f separates ACCfrom TC.

This technique is applicable, to a certain extent, also to classes larger thanmit6t, let us
consider NL. Boolean iterated matrix product BIMM is complete for NL. We do not know how
to work directly with BIMM,, ,,, and thus we work with slightly smaller matrices instead.

Theorem 15 If NL C NC' thenBIMM , , iz is computable bNC! circuits witho(n?) wires. The
same is true fo€C", ACC?, andTC? in place ofNC!.

(The contrapositive may be more informative; if one can show that B]MMs= requires NC
circuits of sizeQ2(n?) then one has shown that NC# NL. Unlike the earlier theorems in this
section, we obtain only an implication, and not an equivalence — since BIMMg is not known
(or believed) to be complete for NL. Note that this result is for'N@cuit size; it does not seem to
translate into a useful statement abfurtnulasize.)

Proof. Since BIMM,,,, is in NL, our assumption implies that BIMM, is computable by NE
circuits of sizeO(n*) for somek > 0. Choose: = 1/k. Then BIMM,,c ,,- is computable by NE
circuits of sizeO(n*) = O(n) and hence BIMN|. , = is computable by NE circuits of size
O(n). By Proposition 9, BIMV, ,.rz= is downward self-reducible to BIM\ , = by a pure

reduction of sizex' ~¢. The number of wires in this reductionigd =< . nc22vicsn — p22vicgn Gince
BIMM,,. v has NC circuits of sizeD(n), we can replace each oracle gate by a circuit With)

wires, yielding an N€ circuit with O(n22v1een 4+ pl=cn) = o(n?) wires. O

We now turn to the complexity class #L (the class of functions that count the number of accepting
paths of NL machines). This is the largest complexity class that we know how to address using
these techniques. lterated Matrix Multiplication IMM ,, is a problem complete for #L (see [4]).

IMM,, , % ,, IS @ subproblem not known (or expected) to be complete for #L, but also not known
to lie in any smaller complexity class.

Theorem 16 If #L C TC thenIMM  , iz ,, is computable byfC® circuits with O(n?“crnt4)
wires. Similarly it € NC' thenIMM ,, , sz , is computable bC' circuits of sizeD (n4crrt8)
wires.

Thus to separate #L from Tt suffices to show a lower bound af(n2¢crr+4) on the size of
TC? circuits computing IMM, , ez ,,. Similarly for NC'.
Proof. Since IMM, ,, ,, is in #L, by our assumption, IMM,, ,, is computable by T circuits of
sizeO(n*) for somek > 0. Chooses = 1/k. Then IMM,. ,,c .« is computable by TE€circuits of
sizeO(n*) = O(n) and hence IMN|. , 5= .- is computable by TCcircuits of sizeO(n).

By Lemma 10, IMM, , 1w ,, is downward self-reducible to IMM , 1z, by TC circuits

of size0(20(VIog™) . p2corrt3) — O(p2ccrr+4) There are)(n®~¢) oracle gates in this reduction,
and each gate for IMM , % ,,. can be replaced by circuits with(n) wires, yielding TC circuits
of sizeO(n2ccrrtt 4 pt) = O(n2ccrrt4) This yields the bound for TCcircuits in the statement
of the lemma.
To prove the second claim in the theorem, regarding Bi@&uits, it suffices to remark that each
MAJ,, gate can be replaced by NGircuitry, at most squaring the size. (Tighter analysis is possible.)
O

The preceding two theorems do not make use of problems that are knowncttptetefor
well-known complexity classes, and thus we obtain amlglicationsregarding NL and #L, instead
of equivalentstatements concerning whether these classes collapse withH@vever, it is worth-
while noting that IMM, 3 ,, is complete for GapNE[10] (the class of functions over the integers,
computable by polynomial-size arithmetic formulae). All functions in'Ne@e in GapNC, and it



has been conjectured that GapNe&incides with NC [2]. GapNC is the only well-studied com-
plexity class not known to be contained in NGor which we can present a complete problem that
is strongly downward self-reducible. The proof of the preceding theorem yields the following pair of
equivalences.

Theorem 17 e GapNC C NC! iff IMM,, 5., hasNC! circuits of sizen3+2¢crr,

e GapNC C TCiff IMM,, 3., hasTC? circuits of sizen3+2ccrr,

5 Limits on downward self-reducibility

In the previous section we have seen that downward self-reducibility provides us with an interesting
tool for the study of circuit classes. We have shown that in order to separate circuit classes such as
ACCY and NC, quadratic lower bounds for the circuit complexity of certain'N@mplete problems
would suffice. What about separating ACftom, say NP? That should in principle be a much easier
task. Can we use the technique of downward self-reducibility to establish an analog of Corollary 13
for ACC' versus NP?

The following theorem shows that there are significant obstacles to overcome before such an
approach can work. Namely, in order to establish that a problem is downward self-reducible in the
way that we study in Section 3, one must already have an efficient algorithm for the problem.

Theorem 18 Let f : {0,1}* — {0,1}* be a function, andn(n) : IN — IN be such thatn(n) < n¢
for somed < e < 1andalln > 2.

1. If f, is downward self-reducible td,,(,, by TC’-reductions, thenf € NC and hasTC’
circuits of size2"’ for everys > 0.

2. If f,, is downward self-reducible t,,,,) via polynomial time Turing reductions thefis in P.

Proof. 1) In order to build a circuit forf,,, start with the T€ circuit of depthd and sizen” that
reducesf, to f,,(»). If we replace each oracle gate in this circuit with the circuit that redices

t0 fo(m(n)), the depth of the new circuit i€ and the size is at most® + n* - n°*. We repeat the
process until the oracle gates are of gi¥& ), at which point we replace the oracle gates by circuitry
of sizeO(1) computingf on small inputs. The number of stagesiélog log n); thus the depth is
dOUeglogn) — 1060 1, The size of the circuit is bounded by - nk - n<k ... < pk/0=9 |t

is easy to verify that the resulting circuit is logspace-uniform if the self-reduction circuits are. This
establishes that € NC. In order to see that has TC circuits of size2”5, merely follow the same
iteration process as above, but continue for afifyl) stages instead aP(loglogn) stages. This
results in a T€ oracle circuit with oracle gates fdf,, with m < n°. Now replace each oracle gate
with a DNF expression foff,,. (Clearly, if the self-reduction is an ACcircuit instead of a T€
circuit, thenf has AC circuits of size2”’ )

2) Again we use the obvious recursive algorithm. We run the Turing reduction and whenever it
asks an oracle query about a smaller instancéwé recursively invoke the reduction on the smaller
instance. If the reduction runs in tin@(n*) then the total running time of the algorithm will be
bounded by:* - nk - n’k ... < nk/(1=9) Sincee is constant, the time is polynomial. O

Speculation: Although Theorem 18 suggests that we abandon any attempt to show that SAT
has the downward self-reducibility property, it does not exclude the following approach for trying
to prove an analog of Corollary 13 for NP. Rather than trying to present a self-reduction for SAT
unconditionally perhaps one can start with tassumptiorthat NPC TC? and construct a downward
self-reduction of SAT (or some other specially-constructed set in NP) and conclude that under this
assumption SAT has almost linear size®Tercuits.



This is the appropriate time to observe that if NPTC?, then it certainly does have the strong
downward self-reducibility property; this follows from Proposition 19 below. However, since one
can say nothing about the size of this self-reduction (other than that it is computed by airét
of polynomial size), this does not seem to allow us to conclude that SAT ha<ifelits of, say,
quadratic size.

Proposition 19 If A is equivalent taBFE under uniform (non-uniform, respectivelisg)‘}CU reduc-
tions, then for every > 0, A,, is downward self-reducible via a uniform (non-uniform, respectively)
AC® reduction of deptlO(1) and sizen®(") that asks queries of length at mest Moreover, the
size of the self-reduction of,, can be determined from the sizes of reductions betwieand BFE.

Proof. By hypothesisAgéCoBFE via a reduction that, on instances of lengthasks queries of
sizen®™). Since queries to BFE can be padded easily to equivalent queries of longer length, we
may assume that all queries have lengfth Similarly, we are given that BI{E‘}CDA via a reduction
that, on inputs of lengtln, asks queries of size at mast®. Composing these reductions with the
self-reduction that reduces BEEto BFE, s (for § < ¢/kc) yields the desired self-reduction far.

O

The next section addresses the question of whether superpolynomial lower bounds obtained by
“amplifying” a “natural” proof of a lower bound of size'°°°! would constitute an ¢n-natural
proof’.

6 The Natural Proofs barrier

Razborov and Rudich [26] identified a significant obstacle to further progress in proving lower bounds
on circuit size, by observing that existing lower bound arguments rely on the existence of an easy-to-
recognize combinatorial property of a functignhat (a) is shared by a large fraction of all functions,
and (b) is shared by no function that has small circuits of a given type. Razborov and Rudich showed
that any “Natural Proof” that follows this paradigm and shows that a function cannot be computed
by circuits of a clas€ constitutes a proof th&@ cannot compute pseudorandom function generators.
It is not clear how significant an obstacle this is, for proving lower bounds against A@i€e there
is not much evidence that ACCircuit families can compute pseudorandom function generators.
However, for TC this is a serious impediment, since Naor and Reingold have presented a good
candidate pseudorandom function generator that is computable’ifebC

It is premature to argue very strongly that we have identified a path around this obstacle. After
all, the only new lower bound that this paper offers is to be found in Section 8, and that bound follows
from known time-space tradeoff results. (These time-space tradeoffs, in turn, rely on diagonalization,
which lies outside the natural proofs framework, but only gives lower boundmftormcircuit fam-
ilies. The natural proofs framework addresses the problem of finding lower boundgrfoniform
circuit complexity.)

However, we contend that it is at least plausible that a natural proof could form the basis for a
proof that NC # TC, even assuming that the Naor-Reingold generator is cryptographically secure.

How?

There seems to be no reason why a natural proof cannot yield a lower bound of the*féom
some fixedk. The parity lower bound of Impagliazzo, Paturi, and Saks gives a lower bound of this
form for BFE on TC circuits of depthd [20]. Hastad gives a nearly cubic lower bound on formula
size [16]. These are natural proofs.

The self-reducibility property that allows a modest lower bound to be amplified to a superpolynomial-
size lower bound, on the other hand, is a combinatorial property that is shared bywamlishingly
small fractionof all Boolean functions om variables. Thus, this part of a lower bound argument
would not fit into the Natural Proofs framework. (Strictly speaking, the downward self-reducibility



property is not a combinatorial property in the sense of the Natural Proofs framework, as it is a re-
lationship between function values on different input sizes. However, all downward self-reducible
functions must have truth-tables of small Kolmogorov complexity (since the truth-table of’size
is determined completely by a truth-table of siﬁé‘), and thus they constitute a tiny fraction of all
functions.)

To be concrete, let us exhibit an example of a prop&rthat isnatural, andusefulin the sense
of Razborov and Rudich. We will recall the definitions of Razborov and Rudich [26]:

Let F,, denote the class of all Boolean functiofis : {0,1}" — {0,1}. A property{T,, C
F, }rew is QuasiP-naturalif there is a sub-propertyT;* C T, } ,ew such that for some, ¢ > 0

1. |T}| > |Fn|/2¢", and

2. there is a deterministic algorithm that given a truth-table of a fungtion{0,1}™ — {0, 1}
decides whethef,, € T)* in time 2"°.

Furthermore, a properyl,, C F, },en is usefulagainst a circuit clasa if no sequence of functions
{fn € Th}nen is computable by circuits from.
Our propertyT is defined as follows:

Ty = {fn:{0,1}" — {0,1}; £, does not have circuits of deple* n and sizen?
consisting of MaJ and NoT gateg.

It is a trivial exercise to verify thal is natural and useful against T@ircuits of sizeO(n!-5).

Of course, we are not able to establish that BFE has profériy it does, then by Corollary 13
NC' # TCP. Clearly, this argument makes use of no special properties §f ©6e can easily
come up with aQuasiP-natural property that will be useful against any class of circuits of a fixed
polynomial size.

However, the existence of properfy does not seem to imply anything very interesting about
the nonexistence of pseudorandom function generators (and consequently does not yield interesting
upper bounds on the complexity of factoring Blum integers, which would follow if the Naor-Reingold
generator is insecure [25]).

The arguments of Razborov and Rudich transform any natural lower bound proof into a lower
bound on the complexity of computing a pseudorandom function generator. However, lower bounds
for circuits of sizen” for small fixedk translate into lower bounds for pseudorandom function gen-
erators that are so weak as to be uninformative.

So are there reasons to be more optimistic about prospects for lower bounds? We are not sure.
The truth is that we do not understand computation. All the known lower bounds essentially rest
on information theoretic arguments and none of them really takes into accomputation For
example we are unable to handéeursionso our bounds typically deteriorate with depth. Hence,
the underlying message of Razborov and Rudich — namely, that we need to go beyond combinatorial
arguments — is still a worthwhile message. We identify two still unresolved challenges that we believe
would advance our understanding of computation:

e Prove(2(n?) lower bounds on the length of width 5 branching programs computing an explicit
function.

. ProveQ(n“l/ﬁ) lower bounds on the size of depfltircuits computing an explicit function.

Are there perhaps fundamental barriers that remain in our path, as we attempt to prove circuit
lower bounds?

One way to explore this question is to follow the lead of Razborov [28], who showed that (under
cryptographic assumptions) the bounded arithmetic proof systeoannot prove that SAT requires
circuits of superpolynomial size. (In earlier work, Razborov had argued that most existing lower
bound arguments can be carried out in even weaker systems [27].)

Perhaps techniques similar to those of [28], combined with our observations can enable one to
prove thatS7 (or a similar system) cannot prove that BFE require§ Titcuits of sizen!*e.



7 Inapproximability of MAX-CLIQUE

In this section we use the technique of Srinivasan [30] to show that separating small depth circuits
from NP would follow from certain inapproximability results for circuits of nearly-linear size.

For functionsf : {0,1}* — INanda : IN — IN, a functiong : {0,1}* — IN «a-approximates
fif g(x) < f(z) and f(z) < a(|z|)g(z) for all z € {0,1}*. MAX-CLIQUE is the following
computational problem: given an undirected gr&pldetermine the size of the largest cliqueGn
For simplicity we assume thdt is given by its adjacency matrix and by the sizef G we will
understand the number of verticesGh It is known [17] (see also [21, 22]) that if there ig:&¢-
approximation to MAX-CLIQUE computable in ZPP then NPZPP. Here ZPP stands for the class
of problems solvable on probabilistic machines with zero error in expected polynomial time.

We use the technique of Srinivasan to show the following statement:

Theorem20 Let k¥ > 1 and lete = ¢(n) be such thatl > e(n) = w(loglogn/logn). If
MAX-CLIQUE is computable byACC circuits of sizeO(n*) then an'~<(™)-approximation to
MAX-CLIQUE is computable byACC? circuits of sizeO(n!'*(k=1D<())  Similarly for TC® and
NC! in place ofACCO.

It is interesting to note that the depth of thgn' +(*—1<(n)_sjze circuits does not increase while
decreasing(n). As stated, the theorem holds only for non-uniform circuits, but a uniform version
holds for any functior(n) that is sufficiently easy to compute.

Proof. Letus assume thatwe have an AGgrcuit family of sizeO(n*) that computes MAX-CLIQUE.
We will build an ACC’ circuit family of size O(n'*(*~1)¢) computing an'~—<-approximation of
MAX-CLIQUE. (For simplicity we assume that'—¢ as well asn© are both integral.) The compu-
tation of the approximation proceeds as follows: we partition the vertices of the Gramio n' ¢
partsVi,...,V,1-. of size betweem® — 1 andn¢. Fori = 1,...,n'~¢ we compute in parallel
MAX-CLIQUE of G restricted toV;. Then we output the largest of these partial results. The correct-
ness of the algorithm follows from the simple observation that i€ontains a clique of siz¢(G)

then for some, V; contains at leasf(G)/n'~¢ vertices of that clique and hence MAX-CLIQUE of

G restricted toV; is at leastf (G)/n'~¢.

The size of a circuit carrying out the computation can be bounded as follows. We'use
circuits of sizeO(n*) to compute the value of the' ~¢ MAX-CLIQUE subproblems. This already
accounts for siz&(n'*(*~1)¢) and dominates the size of the rest of the construction detailed below.
In addition, we need some circuitry to find the largest value among'thepartial results with values
from {1,...,n°}. This can be done usin@(nlogn) wires as follows. For each € {1,...,n}
decide whether the valyeappears among the results. This requires,! —¢ comparisons of numbers
havinge log n bits, and thus can be done usifign log n) wires. Hence we obtain an indicator vector
showing which values frorf1,...,n°} appear among the partial results. To obtain the resulting
value in unary we can use the circuit of Chandra, Fortune, Lipton [11] for computing sufix-O
of the indicator vector usin@(n¢) wires (if implemented by either ACC TC® or NC! circuits.)
Converting this unary value to binary costs at mOs$t.© log n) additional wires. Hence the size of
the circuits is bounded b@(n!* (1)), O

The technique from the previous proof can be also used to establish the following claim.

Theorem 21 Let0 < € < 1 andk < 1/e be constants. If there is a polynomial time algorithm
that solvesMAX-CLIQUE,, using an oracle forn!~¢-approximation ofMAX-CLIQUE,,,, where
m < n*, thenMAX-CLIQUE , is downward self-reducible tAX-CLIQUE ...

Proof.  In the proof of Theorem 20 we have seen how to compute'ac-approximation of
MAX-CLIQUE,, by asking queries to MAX-CLIQUE.. If there is a polynomial time algorithm
that solves MAX-CLIQUE, using an oracle forn!~¢-approximation of MAX-CLIQUE, where
m < n*, then we can combine it with the above reduction to obtain the desired self-reductian.



This gives rise to what is perhaps the first example of a lower bound, showing that there is no
“quick” reduction between two natural NP-optimization problems. For many natural NP-complete
problemsA and B, very efficient reductions betweefr and B are known. (For example, for any
problemA € NTIME (n 10g0(1) n), there is a many-one reduction frafnto SAT that is computable
in time O(nlog®® n) [12].) Itis easy to show that i3 ¢ NTIME (n*), then any reduction from
B to SAT requires time:* — but this does not provide any useful lower bound on the complexity of
reducing natural problems to SAT, since no natural NP-complete problem is known to lie outside of
NTIME(n). There seems to be no pair of natural NP-complete problérasd B known, where a
reduction fromA to B is known to require more than linear time (even under the assumption that
P +# NP).

In contrast to this, consider the problem of computing &-approximation to MAX-CLIQUE.
Hastad presents a deterministic polynomial-time Turing reduction from MAX-CLIQUE to this ap-
proximation problem[17, Theorem 5.3]. (More preciselpstiid shows that SAT satisfies a condition
that implies that a reduction of Bellare, Goldreich, and Sudan correctly reduces SAT to this approx-
imation problem [8]. The polynomial-time Turing reduction from MAX-CLIQUE follows from the
trivial observation that MAX-CLIQUE is computable in"B.) How long must the queries in this
reduction be? Assuming that? NP, Theorems 21 and 18 tell us that the queries in this reduction
must ask about graphs with at least® vertices.

Corollary 22 e If P = NP, any deterministic polynomial-time Turing reduction fridAX-CLIQUE
to the problem of computing a'/3-approximation toMAX-CLIQUE must ask queries of
MAX-CLIQUE,,, for somem > n?, if § < 1.5.

e If P # NP, any deterministic polynomial-time Turing reduction fradAX-CLIQUE to the
problem of computing n-approximation tdtMAX-CLIQUE must ask queries MAX-CLIQUE,,
for somem > n?,if § < 2.

Proof. Ifthere is a reduction from MAX-CLIQUE to the problem of computing'd>-approximation
to MAX-CLIQUE that asks queries only to graphs of siZefor somes < 1.5, then by Theorem 21,
MAX-CLIQUE ,, is downward self-reducible to MAX-CLIQUE.2,s. By Theorem 18, this implies
that MAX-CLIQUE is computable in polynomial time, and hence NHAP.

Part two follows via an essentially identical argument: If there is a reduction from MAX-CLIQUE
to the problem of computing @n-approximation to MAX-CLIQUE that asks queries only to graphs
of sizen’® for somes < 2, then by Theorem 21, MAX-CLIQUE is downward self-reducible to
MAX-CLIQUE, s,-. By Theorem 18, this implies that MAX-CLIQUE is computable in polynomial
time, and hence NE P.

Clearly, analogous statements can be proved.feapproximation for any value af, the cases
e € {1/3,1/2} are likely to be of greatest interest. Note that, unlike the case fer1/3, there
is currently no known deterministic polynomnial-time reduction from MAX-CLIQUE to the prob-
lem of computing a/n-approximation to MAX-CLIQUE. Similar claims can be also proved for
probabilistic reductions instead of deterministic ones. O

It is worthwhile mentioning that, in some sense, decreasing the size of the query lengttaalid®
reduction [17] from MAX-CLIQUE to computing a'/3-approximation to MAX-CLIQUE is aini-
versalapproach to proving B NP. If any approach will work, then this approach will.

Corollary 23 P = NP if and only if there is & < 1.5 and a deterministic polynomial-time Turing
reduction fromMAX-CLIQUE to the problem of computingra/-approximation taVAX-CLIQUE
that asks queries of size no greater.

Proof. One direction follows from Corollary 22. The other direction follows from the observation
that if P= NP then there is a polynomial-time Turing reduction for this problem that asks queries of
sizeO(1) (or asks no queries at all). O



8 Circuit lower bounds

We begin this section by showing that problems with small constant-depth circuits have algorithms
that run quickly and have small space bounds. Let TISH(s(n)) denote the class of problems
that are computable by machines running in titfre) that use space at mastn). (This definition is
somewhat sensitive to the underlying model of computation. We shall always refer explicitly to either
the Turing machine model or the random access machine model, to clarify which class is meant.)

Theorem 24 If A has Dlogtime-unifornTCcircuits of depthd with O(n'*<) wires then for every
0<d<1+4eAeTISP((n'te +n%)1og?® n n*t<=916g%" 1) on random access machines
andA € TISP((ntte+9d1ogPM) p plte=31669M) p) on Turing machines. (The same claim holds
with “TC?” replaced by “ACC°” and “ CC°”, etc.)

Proof. A naive recursive way to evaluate the circuit in spétfgog n) would require time) (n4(1+¢) log n).
Since we can use more space we will use it to remember the computed values of gates that have fan-
in larger thann?. The faster algorithm then will also recursively evaluate the circuit but whenever

it computes the value of a gate with fan-in larger therit records the value so such a gate will be
evaluated at most once. On a random access machine we will store the values in a binary search tree,
on a Turing machine we will store them in a simple list. Since there are at@(@st™ /n?) gates

with fan-in larger tham? we will need space onlg)(n!*+<—? logo(l) n). Finding the value of a gate

and whether it has already been computed will té](h)go(l) n) time on a random access machine
andO(n!'*e=? log®™M) n) on a Turing machine. To bound the total time needed to evaluate the circuit
notice that we will have to recursively evaluate a tree of fan-in at mband depthi. To traverse the

tree we will need to make® visits to the nodes. Beside that we will have to evaluate the gates with
large fan-in. Since there are at ma@stn' <) wires leading into them these gates will additionally

cost at mosO(n!*<) node visits. This yields the claimed time bound. O

We need to make use of known time-space tradeoffs for SAT. The following theorem is a special
case of Theorem 1.3 in the excellent survey article by van Melkebeek [31]:

Theorem 25 For every realc such thatl < ¢ < 5/3, there exists a positive realsuch that SAT
cannot be solved by both

1. aIl; machine with random access that runs in tinfeand

2. a deterministic random-access machine that runs in tilmeand space:®.
Moreover, the constartapproaches 1 from below wherapproaches 1 from above.

Theorem 26 For everyd there is a constant > 0 such that SAT does not have Dlogtime-uniform
depthd TCP circuits with fewer tham!'*< wires.

Proof. Assume that the claim fails for some depttihus for every > 0, SAT has Dlogtime-uniform
depthd TCP circuits with fewer tham'*< wires.

By Theorem 24, this implies that for all smallinds, SAT is in TISP@' ¢ + nd nlte=9) In
particular, this is true if we pick = 2¢; hence we conclude that for all small enougty 0, SAT is
in TISP@'*+¢, n'—). Since this is true for alt, we have in particular that SAT is in DTIME() for
alle¢> 1.

Picke < 1. We thus have SAT is in TISR{-®, n' ).

By Theorem 25, if we let approach 1 from above, the valuecfin Theorem 25) approaches 1
from below. Thus there is some valueco® 1 for whiche > 1 — € (in the statement of Theorem 25).
Fix these values of ande. Summarizing, we now have that SAT is in TISP(, n¢).

At this point, by Theorem 25, we know that SAT is not in béth Time(z°) and TISP{!?, n®).
But we have already observed (three paragraphs ago) that SAT is in DRHYIE( thus it is in
ITI; Time(®). Thus we must conclude that SAT is not in TISP{, n¢). But this contradicts the
conclusion of the preceding paragraph. O



9 Conclusions and open problems

The most important and interesting question raised by this work, is the question of whether it can
ultimately lead to separations of complexity classes. (This topic is also discussed in a recent survey
[3].) However, a number of other questions naturally arise. We close by listing two such questions.

e Are there sets complete for every level of the NC hierarchy that are downward self-reducible
to instances of size? Or is there some fundamental reason why we were unable to find a
downward self-reduction of this sort for any problem that is complete for NL or L?

e If NP = TC?, does SAT have TCcircuits of quadratic size? If NEXE non-uniform CC[6],
does the standard complete set for NEXP havé[G]Circuits of quadratic size? (Even if
arguments based on downward self-reducibility fail for problems outside of NC, perhaps there
is another approach that leads to the same conclusion.)

Acknowledgments

We thank David Mix Barrington, Scott Diehl, Lance Fortnow, Stephan Holzer, Alexander Razborov,
Mike Saks, Mario Szegedy, Denis &tén, and Fengming Wang for helpful discussions. We thank
Ryan Williams for calling our attention to the work of Srinivasan [30]. We thank the program com-
mittee (and their referees) for helpful suggestions.

References

[1] AJTAal, M. A non-linear time lower bound for Boolean branching programsPioc. IEEE
Symposium on Foundations of Computer Science (FQIT29P), pp. 60-70.

[2] ALLENDER, E. Arithmetic circuits and counting complexity classesClamplexity of Compu-
tations and ProofsJ. Krajcek, Ed., vol. 13 ofQuaderni di MatematicaSeconda Universitdi
Napoli, 2004, pp. 33-72.

[3] ALLENDER, E. Cracks in the defenses: Scouting out approaaches on circuit lower bounds. In
Computer Science — Theory and Applications (CSR 2(IB)8), vol. 5010 of_ecture Notes in
Computer Sciengp. 3—-10.

[4] ALLENDER, E.,AND OGIHARA, M. Relationships among PL, #L, and the determinBAtIRO
- Theoretical Informatics and Applications 30(1996), 1-21.

[5] BARRINGTON, D. A. Bounded-width polynomial-size branching programs recognize exactly
those languages iNC'. Journal of Computer and System Sciencesl3&eb. 1989), 150-164.

[6] BARRINGTON, D. M., IMMERMAN, N., AND STRAUBING, H. On uniformity within NC"*.
Journal of Computer and System Sciences34(Dec. 1990), 274-306.

[7] BEAME, P., SAKS, M., SUN, X., AND VEE, E. Super-linear time-space tradeoff lower bounds
for randomized computatiodournal of the ACM 5@2003), 154-195.

[8] BELLARE, M., GOLDREICH, O., AND SUDAN, M. Free bits, pcps, and nonapproximability-
towards tight resultsSIAM J. Comput. 273 (1998), 804-915.

[9] Buss, S., GOK, S., QUPTA, A., AND RAMACHANDRAN, V. An optimal parallel algorithm
for formula evaluationSIAM Journal on Computing 21992), 755-780.

[10] CaussINUS, H., MCKENZIE, P., THERIEN, D., AND VOLLMER, H. Nondeterministic N€
computation.Journal of Computer and System Science$1®B8), 200-212.



[11] CHANDRA, A. K., FORTUNE, S.,AND LIPTON, R. J. Lower bounds for constant depth cir-
cuits for prefix problems. IfProc. of the 10th Intl. Colloquium on Automata, Languages and
Programming(1983), vol. 154 of_ecture Notes in Computer Scienpg. 109-117.

[12] Cook, S. A. Short propositional formulas represent nondeterministic computatioin§ro-
cess. Lett. 266 (1988), 269—-270.

[13] ForRTNOW, L. Time-space tradeoffs for satisfiabilityournal of Computer and System Sciences
60(2000), 336—353.

[14] FURST, M., SAXE, J. B.,AND SIPSER M. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory (I984), 13-27.

[15] GOLDWASSER S., QUTFREUND, D., HEALY, A., KAUFMAN, T., AND ROTHBLUM, G. N.
Verifying and decoding in constant depth.Rroc. ACM Symp. on Theory of Computing (STOC)
(2007), pp. 440-449.

[16] HASTAD, J. The shrinkage exponent of de Morgan formulas isS2AM J. Comput. 271
(1998), 48-64.

[17] HAsSTAD, J. Clique is hard to approximate withirt —¢. Acta Mathematica 1821999), 105—
142.

[18] HASTAD, J. Computational Limitations of Small Depth CircuitdlI T Press, Cambridge, 1988.

[19] HESSE W., ALLENDER, E.,AND BARRINGTON, D. A. M. Uniform constant-depth threshold
circuits for division and iterated multiplicationlournal of Computer and System Sciences 65
(2002), 695-716.

[20] IMPAGLIAZZO, R., IATURI, R.,AND SAKS, M. E. Size-depth tradeoffs for threshold circuits.
SIAM J. Comput. 2§1997), 693-707.

[21] KHoOT, S. Improved inaproximability results for maxclique, chromatic number and approximate
graph coloring. IfProc. IEEE Symposium on Foundations of Computer Science (FQG®)),
pp. 600-609.

[22] KHOT, S., AND PONNUSWAMI, A. K. Better inapproximability results for maxclique, chro-
matic number and min-3lin-deletion. Proc. of the 33rd Intl. Colloquium on Automata, Lan-
guages and Programmir{@006), vol. 4051 of ecture Notes in Computer Scienpe. 226—-237.

[23] Koucky, M. Circuit complexity of regular language$heory of Computing Systerf2008).
To appear.

[24] KouckY, M., PUDLAK, P., AND THERIEN, D. Bounded-depth circuits: Separating wires
from gates. IrProc. ACM Symp. on Theory of Computing (STQZDO5), pp. 257-265.

[25] NAOR, M., AND REINGOLD, O. Number-theoretic constructions of efficient pseudo-random
functions.J. ACM 51 2 (2004), 231-262.

[26] RAzBOROV, A., AND RuDICH, S. Natural proofsJ. Comput. Syst. Sci. §8997), 24-35.

[27] RAazBOROV, A. A. Bounded arithmetic and lower bounds . Heasible Mathematics IIP. Clote
and J. Remmel, Eds., vol. 13 Bfogress in Computer Science and Applied Logickhauser,
1995, pp. 344-386.

[28] RazBoRoOv, A. A. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetidzvestiya Math. 591995), 205-227.



[29] SMOLENSKY, R. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. InProc. ACM Symp. on Theory of Computing (STQ87), pp. 77-82.

[30] SRINIVASAN, A. On the approximability of clique and related maximization problein€om-
put. Syst. Sci. 638 (2003), 633—651.

[31] vaN MELKEBEEK, D. A survey of lower bounds for satisfiability and related probleRosin-
dations and Trends in Theoretical Computer Scien(20®7), 197-303.

[32] VOLLMER, H. Introduction to Circuit ComplexitySpringer, 1999.

[33] Yao, A. C. C. Separating the polynomial-time hierarchy by oracles.Pirceedings 26th
Foundations of Computer Scien¢¥985), IEEE Computer Society Press, pp. 1-10.



