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Motivation: Paper making industry

Figure: Paper making machine

Goal of mathematical modelling:

derive sufficiently accurate model

increase quality and production rate
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Wet section of paper making machine

1 Mixture of water and wood fibres enters the dividing header
2 Limited amount of mixture is suck off through recirculation
3 The rest flows out through pipes into equalizing chamber
4 In slice channel the speed is increased
5 Mixture is put on a wire
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Dividing header

Flow in the header has great impact on

basis weight of produced paper

fibre orientation

Optimization goal

to control the outlet velocity in pipes:

min

∫
Γout

|vν − vopt |

control variable: shape of back wall
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Previous results

Hämäläinen, Mäkinen, Tarvainen [1993, 1999] - model and
numerical solution

S., H., M. [2005] - existence result for velocity-based
formulation
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I. Analysis of the continuous problem
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Description of geometry

Figure: Geometry of Ω(α)

Admissible domains

Ω(α) :=
{
x ∈ R2; 0 < x1 < L, 0 < x2 < α(x1)

}
,

where α is an element of

Uad :=
{
α ∈ C 0,1([0, L]); α|[0,L1] = H1, α|[L1+L2,L] = H2,

αmin ≤ α ≤ αmax , |α′| ≤ γ
}
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Equations of motion

Fluid flow characteristics

continuum

stationary model for averaged velocity and pressure

simple turbulence model

Flow equations

− div T + ρ div(v ⊗ v) = 0
div v = 0

Stress tensor T = −pI + µD (v)
Viscosity µ(x , |D (v) |2) = µ0 + ρl2m,α(x)|D (v) |

Choice of lm,α:

lm,α = 0: Navier-Stokes

lm,α = const. > 0: non-Newtonian fluid

our model: generalization - geometry dependent function
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Turbulence model

Mixing length lm,α represents an algebraic turbulence model:

lm,α(x) =
1

2
α(x1)

[
0.14− 0.08

(
1− 2dα(x)

α(x1)

)2

− 0.06

(
1− 2dα(x)

α(x1)

)4
]
,

dα(x) = min {x2, α(x1)− x2} , x ∈ Ω(α).

Properties:

lm,α ∈ C (Ω(α));

lm,α ≥ 0 in Ω(α), lm,α > 0 in Ω(α);

lm,α ≈ dist∂Ω(α)\ΓD
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Boundary conditions

Figure: Boundary segments of ∂Ω(α)

v = vD on ΓD ,

v = 0 on ∂Ω(α) \ (ΓD ∪ Γout),

On Γout we use a nonlinear outflow b.c. which replaces the system
of pipes:

v1 = 0,

T22 = −σ|v2|v2, σ > 0.
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Weak formulation

We construct v0 ∈ W 1,3(Ω̂) which extends
the Dirichlet b.c. and is independent of α.

Weak formulation (P(α))

Find (v, p) ∈ W (α)× L(α) such that v − v0 ∈ W0(α),

2µ0

∫
Ω(α)

D (v) : D (ϕ) + 2ρ

∫
Ω(α)

l2m,α|D (v) |D (v) : D (ϕ)

+ ρ

∫
Ω(α)

vj
∂vi

∂xj
ϕi + σ

∫
Γout

|v2|v2ϕ2 −
∫

Ω(α)
p divϕ = 0,

∫
Ω(α)

ψ div v = 0

for all ϕ ∈ W0(α), ψ ∈ L(α).
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Choice of function spaces

W (α) := V(α)
‖·‖α

W0(α) := V0(α)
‖·‖α

L(α) := L
3
2 (Ω(α))

Norm:

‖w‖α := ‖w‖1,2,Ω(α) + ‖l2/3
m,αD (w) ‖3,Ω(α) + ‖ div w‖3,Ω(α)

V(α) :=
(
C∞(Ω(α))

)2

V0(α) :=

{
w ∈ V(α); suppw =

}

Jan Stebel Shape optimization governed by generalized NS equations



Choice of function spaces

W (α) := V(α)
‖·‖α

W0(α) := V0(α)
‖·‖α

L(α) := L
3
2 (Ω(α))

Norm:

‖w‖α := ‖w‖1,2,Ω(α) + ‖l2/3
m,αD (w) ‖3,Ω(α) + ‖ div w‖3,Ω(α)

V(α) :=
(
C∞(Ω(α))

)2

V0(α) :=

{
w ∈ V(α); suppw =

}

Jan Stebel Shape optimization governed by generalized NS equations



Choice of function spaces - cont.

Alternative definition:

Ŵ (α) :=
{
w ∈

(
W 1,2(Ω(α))

)2
; ‖w‖α <∞

}
,

Ŵ0(α) :=
{
w ∈ Ŵ (α); Tr w|∂Ω(α)\Γout

= 0, Tr w1|Γout = 0
}
.

Properties:(
W 1,3(Ω(α))

)2
↪→ W (α) ↪→ Ŵ (α) ↪→

(
W 1,2(Ω(α))

)2

W (α), Ŵ (α) are separable and reflexive

W (α) = Ŵ (α)

W0(α)
?
= Ŵ0(α)

For the weak formulation we need density of V0(α) ⇒ use W0(α).
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Existence of solutions to (P(α))

1 Aproximate model (Pε(α))

− div T + ρ div(vε ⊗ vε) = −ρ
2(div vε)(vε − v0)

div vε = −ε|pε|−
1
2 pε

2 Apriori estimate for (Pε(α))
Inserting ϕ := vε − v0, ψ := pε we obtain for σ > ρ

2 :

‖D (vε) ‖22 + ‖l2/3
m,αD (vε) ‖33 + ‖v ε

2‖33,Γout
+ ε‖pε‖

3
2
3
2

≤ CE ,

where CE is independent of α. Restriction is due to
convective term and nonlinear b.c.

3 Existence of solution to (Pε(α)) - Galerkin method
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4 Uniform estimate of pressure (with resp. to ε)
It holds: For every f ∈ L3(Ω(α)) there exists w ∈ W0(α):

div w = f v Ω(α)

‖w‖α ≤ C‖f ‖3

where C > 0 is independent of α.

⇒ inf
q∈L(α)

sup
w∈W (α)

∫
Ω(α) q div w

‖q‖ 3
2
‖w‖α

≥ C

⇒ ‖pε‖ 3
2
≤ C
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5 Limit passage ε→ 0+: Using that

vε ⇀ v in W 1,2(Ω(α)),

pε ⇀ p in L3/2(Ω(α)),

we can proceed:∫
Ω(α)

D (vε) : D (ϕ) →
∫

Ω(α)
D (v) : D (ϕ) ,∫

Ω(α)
v ε
j

∂v ε
i

∂xj
ϕi →

∫
Ω(α)

vj
∂vi

∂xj
ϕi ,∫

Γout

|v ε
2 |v ε

2ϕ2 →
∫

Γout

|v2|v2ϕ2,∫
Ω(α)

pε divϕ→
∫

Ω(α)
p divϕ.

The difficult weighted term is handled using monotonicity and
Minty’s trick:∫

Ω(α)
l2m,α|D (vε) |D (vε) : D (ϕ) →

∫
Ω(α)

l2m,α|D (v) |D (v) : D (ϕ)
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Existence of solution to (P(α)) - summary

Theorem

Let σ > ρ
2 . Then for every α ∈ Uad :

there exists a solution (v, p),

for every solution (v, p) the following estimate holds:

‖D (v) ‖22 + ‖l2/3
m,αD (v) ‖33 + ‖v2‖33,Γout

+ ‖p‖
3
2
3
2

≤ CE ,

pressure p is determined uniquely by velocity v,

for ‖∇v0‖3 < C there is exactly one solution.
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Shape optimization problem

G := {(α, v, p); α ∈ Uad , (v, p) is a solution of (P(α))}

Formulation

Let vopt ∈ L2(Γout). Define the cost function J : G → R:

J(α, v, p) :=

∫
Γout

|v2 − vopt |2.

Find (α∗, v∗, p∗) such that

J(α∗, v∗, p∗) ≤ J(α, v, p) ∀(α, v, p) ∈ G. (P)
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Existence of optimal shape

Idea of the proof

Bolzanova-Weierstrass theorem: Continuous function attains its
minimum on a compact set.

Questions

1 Is Uad compact metric space?

2 Is α 7→ (v(α), p(α)) continuous mapping?

Ad 1.: System Uad equipped with uniform convergence is compact
(Arzelà-Ascoli)
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Ad 2.:

Theorem

Let {(αn, v(αn), p(αn))} and αn ⇒ α. Then there is a

subsequence {(v(αn), p(αn))} and limits v(α) ∈ v0 + Ŵ0(α),
p(α) ∈ L3/2(Ω(α)):

ṽ(αn) ⇀ ṽ(α) in W 1,2(Ω̂)

l
2/3
m,αnD (ṽ(αn)) ⇀ l

2/3
m,αD (ṽ(α)) in L3(Ω̂)

p̃(αn) ⇀ p̃(α) in L3/2(Ω̂).

If v(α) ∈ v0 + W0(α), then (v(α), p(α)) is a solution of (P(α)).

Idea of the proof:

1 Choose test functions ϕ ∈ W0(α), ψ ∈ L(α) with compact
support ⇒ ϕ ∈ W0(αn), ψ ∈ L(αn) for n large enough.
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2 Pass to the limit in (P(α)).
The difficult weighted term is handled using strong
monotonicity and Vitali’s theorem:∫

Ω(αn)
l2m,αn

|D (v(αn)) |D (v(αn)) : D (ϕ)

→
∫

Ω(α)
l2m,α|D (v) |D (v) : D (ϕ)

3 Thanks to the density in W0(α), (P(α)) holds for all
ϕ ∈ W0(α), ψ ∈ L(α).
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How to ensure that the limit v(α) is a solution?

Redefine the state problem allowing solutions from v0 + Ŵ0(α).

Augmented state problem (P̂(α))

Find (v, p) ∈ Ŵ (α)× L(α) such that v − v0 ∈ Ŵ0(α), and (v, p)
satisfy the same identity as in (P(α)).

Augmented shape optimization problem (P̂)

Define

Ĝ :=
{

(α, v, p); α ∈ Uad , (v, p) is a solution of (P̂(α))
}
.

Find (α∗, v∗, p∗) such that

J(α∗, v∗, p∗) ≤ J(α, v, p) ∀(α, v, p) ∈ Ĝ. (P̂)
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All results obtained for (P(α)) are valid for (P̂(α)) as well.

The control-to-state mapping is continuous using (P̂(α)).

Theorem

Problem (P̂) has a solution.
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II. Analysis of approximate shape optimization
problem
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Approximation of shape optimization problem

Approximation of the domain Ω(α):

α ∈ Uad 7→ sκ ∈ Uκ
ad 7→ rhsκ

Uκ
ad ...approximation of Uad using Bézier functions:

rh...projection of Uκ
ad onto piecewise linear functions.
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Discrete state problem

Approximation of function spaces: (W0h, Lh) - MINI element.

Discrete state problem (Ph(rhsκ)) - analogy of (P(α)) on the
spaces Wh, Lh.

Existence of discrete solution: Under the same assumptions as
in the continuous case.

Stability of (W0h, Lh):

∀ϕh ∈ W0h (ψh, div ϕh) = 0 ⇒ ψh ≡ 0.

- pressure is determined uniquely by velocity.

Boundedness of the pressure and convergence to a solution of
the continuous problem: Under the assumption that the
discrete inf-sup condition holds.
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Discrete shape optimization problem

Discrete problem (Pκh) - analogy of (P).

Existence of optimal discrete shape: Uniformly regular and
topologically equivalent triangulations are needed.

Convergence of solutions of (Pκh) to a solution of (P̂): Under
the assumption that solutions of the state problem are unique
and that inf-sup condition holds.
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III. Numerical realization
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Numerical realization

State problem

a := (a1, . . . , an): control points of sκ,

vector of DOFs:

vh := v0 +

m1∑
i=0

qiϕi , ph :=

m2∑
i=1

qm1+iψi , q = q(a) ∈ Rm1+m2

discrete state problem (Ph(rhsκ)) ⇔ R(a,q(a)) = 0

linearization: Newton-Raphson method:
Given qk , compute δqk :

∂R(qk)

∂q
δqk = R(qk)

and define qk+1 := qk − δqk

sparse direct solver of linear systems (SuperLU)
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Example computation of the state problem

Dimensions: length 9.5m, width 1m
Physical parameters: ρ = 103, µ0 = 10−3, σ = 103

Velocity, pressure, viscosity.Jan Stebel Shape optimization governed by generalized NS equations



Figure: Outlet velocity profile v2|Γout
depending on σ/ρ.
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Realization of shape optimization problem

gradient-based minimization

adjoint equation:

dJh(q(a))

dak
= −pT

(
∂R

∂ak
(a,q(a))

)
,

where p is a solution to(
∂R

∂q
(a,q(a))

)T

p =
∂Jh(

∂q
q(a))

derivatives ∂R
∂q , ∂R

∂a , ∂Jh
∂q are calculated using automatic

differentiation
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Example computation - constant target

Target velocity profile: vad = −0.45 m/s
Initial geometry: traditional linearly tapered header.

Figure: Initial and optimal shape Figure: Initial and optimal
velocity profile on Γout
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Example computation - nonconstant target

Target velocity profile: vad(x) = −0.65 sin π
L2(x − L1) m/s

Initial geometry: traditional linearly tapered header.

Figure: Initial and optimal shape Figure: Initial and optimal
velocity profile on Γout
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Figure: Geometry - initial, optimized for constant and for nonconstant
profile
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Summary

Obtained results

existence of solution to a mixed (velocity-pressure)
formulation

outflow boundary condition
uniqueness of pressure

existence of solutions to augmented shape optimization
problem

existence and convergence of discrete solutions

stability of MINI element

SW implementation

Thank you for attention.
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