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Introduction

F (u) = 0 (1), F : H → H, ∃y : F (y) = 0

sup
u∈B(u0,R)

‖F (j)(u)‖ ≤ Mj(R), j = 0, 1, 2.

B(u0,R) := {u : ‖u − u0‖ ≤ R}

Well-posed (WP): sup
w∈B(u0,R)

‖[F ′(u)]−1‖ ≤ m(R)

Ill-posed (IP): not well-posed.
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DSM:

{
u̇ = Φ(t, u)

u(0) = u0

(∗) ∃!u(t) on [0,∞); ∃u(∞); F (u(∞)) = 0

For what classes of equation (1) can one find Φ such that (∗)
holds?
How does one choose Φ?
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Theorem 1. For any WP eq. (1) one can find Φ such that (∗)
holds and

‖u(t)− u(∞)‖ ≤ re−c1t ;

‖F (u(t))‖ ≤ ‖F (u0)‖e−c1t . (∗∗)

Here c1, r > 0 are constants.
E.g.,

a) Φ = −[F ′(u)]−1F (u),

b) Φ = −[F ′(u0)]
−1F (u),

c) Φ = −T−1A∗F , A := F ′(u), T := A∗A,

d) F = −A∗F .
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Theorem 2. For any linear IP eq. (1):

F (u) = Au − f = 0,

where A is a linear, closed, densely defined operator, and equation
(1) is solvable, one can find Φ such that (∗) holds, convergence

u(t) −→
t→∞

y

is uniform with respect to u0, and y is a unique minimal-norm
element of the set

N := {u : Au − f = 0}.
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E.g., one can take

Φ = −u + T−1
ε(t)A

∗f , T = A∗A, Tε = T + εI ,

0 < ε(t) ↘ 0,

∫ ∞
ε(s)ds = ∞.

For unbounded A the element f may not belong to D(A∗). In this
case, the element T−1

ε(t)A
∗f , with ε(t) > 0, can be defined by

considering the closure of the operator T−1
ε(t)A

∗ with the domain

D(A∗). This operator is closable, its closure is a bounded, defined
on all of H operator, and

||T−1
ε(t)A

∗|| ≤ 1

2
√
ε(t)

, ε(t) > 0.
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It is possible to replace element T−1
ε(t)A

∗f by the originally well

defined element A∗Q−1
ε(t)f , with

Q := AA∗.

The operator A∗Q−1
ε(t) is a bounded linear operator defined on all of

H, and

||A∗Q−1
ε(t)|| ≤

1

2
√
ε(t)

, ε(t) > 0.

These assumptions allow one, among other things, to handle
differential operators on unbounded domains in the cases when the
spectrum of such operators is continuous and contains the point
λ = 0.
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Theorem 3. For any eq. (1) with F ′ ≥ 0, one can find Φ such
that the conclusion of Theorem 2 holds.

E.g., Φ = −A−1
ε(t)[F (u) + ε(t)u], 0 < ε↘ 0,

|ε̇|
ε
≤ 1

2
.
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Theorem 4. In Theorems 2 and 3 the DSM yields a stable
approximation to y in the following sense: if

‖fδ − f ‖ ≤ δ,

and the data are {δ, fδ}, then there exists a tδ such that
lim
δ→0

‖uδ − y‖ = 0, where

uδ := uδ(tδ),

and uδ(t) solves eq. (2) with f replaced by fδ.

E.g.,

{
u̇δ = −uδ + T−1

ε(t)A
∗fδ

uδ(0) = u0,
where T := A∗A, Tε = T + εI .
A priori and a posteriori stopping rules for finding tδ are found.
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Arbitrary F with Ã := F ′(y) 6= 0

Theorem 5. If Ã 6= 0, then there exists Φ such that (∗) holds for
a solution y of eq. (1) .
E.g., Φ = −T−1

ε(t)[A
∗F (u) + ε(t)(u − ũ0)],

where ũ0 is properly chosen, T := A∗A, Tε = T + εI , and

0 < ε(t) ↘ 0,
|ε̇|
ε
≤ 1

2
.
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Spectral assumption

F (u) + εu = 0 (1), F : X → X , X is a Banach space.

(S) Assume:‖A−1
ε ‖ ≤ c

ε
, c = const > 0,

A := F ′(u), Aε := A + εI .
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Theorem 6. If (S) holds, then eq. F (u) + εu = 0 can be solved
by a DSM.
E.g, Φ = −A−1

ε (F (u) + εu).
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Theorem 7. If (S) holds and ∃y : F (y) = 0, then one can choose
w such that equation

F (uε) + ε(uε − w) = 0

is solvable for every ε ∈ (0, ε0), and
lim
ε→0

‖uε − y‖ = 0.
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Unbounded F

If F (u) = Lu + g(u), L is linear, closed, densely
defined operator, and ‖L−1‖ ≤ m,
then equation F (u) = 0 is equivalent to

u + L−1g(u) = 0. (1′)
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Theorem 8. Assume that

sup
u∈B(u0,R)

‖[I + L−1g ′(u)]−1‖ ≤ m1(R),

and
‖u0 + L−1g(u0)‖m1(R) ≤ R.

Then (∗) holds for the problem:{
u̇ = −[I + L−1g ′(u)]−1[u + L−1g(u)],

u(0) = u0.
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Nonsmooth F

Theorem 9. If F is monotone, i.e.,

(F (u)− F (v), u − v) ≥ 0,

hemicontinuous, D(F ) = H, and ∃y : F (y) = 0, then DSM holds
for the problem: {

u̇ = −F (u)− ε(t)u,

u(0) = u0,

where 0 < ε(t) ↘ 0, ε(t) =
c1

(c0 + t)b
,

0 < b < 1, c0, c1 = const > 0.
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Criteria for surjectivity and homeomorphism

Theorem 10. If

sup
R>0

R

m(R)
= ∞,

then eq. F (u) = f is solvable for any f ∈ H.

Alexander G. Ramm Dynamical systems method (DSM) for solving operator equations



Theorem 11. If
‖[F ′(u)]−1‖ ≤ ψ(‖u‖),

where ψ is a continuous positive function, and

∫ ∞

0

ds

ψ(s)
= ∞,

then F is a global homeomorphism of H onto H.
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Construction of convergent iterative processes.

un+1 = un + hnΦ(tn, un), tn+1 = tn + hn.

Theorem 12. Any WP eq. F (u) = 0 can be solved by a
convegent iterative process with
hn = h = const and Φ = Φ(u). The process converges at an
exponential rate.
Other iterative schemes can be constructed, e.g., Runge-Kutta’s
type, et al.
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Getting rid of the inversion of the derivative [F ′(u)]−1.

WP:
F (u) = 0.

A = F ′(u), T = A∗A, Tε = T + εI .

(2′)


u̇ = −QF (u),

Q̇ = −TQ + A∗,

u(0) = u0, Q(0) = Q0,

Theorem 13. For problem (2’) conclusion (∗) holds.
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IP:

(2′′)


u̇ = −Q[A∗F (u) + ε(t)(u − ũ0)],

Q̇ = −Tε(t)Q + I ,

u(0) = u0, Q(0) = Q0.

Assume: 0 < ε(t) ↘ 0, 0 <
|ε̇|
ε
≤ c , T (y) 6= 0.

Theorem 14. For problem (2′′) conditions (∗) hold.
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Auxiliary results: Basic Inequalities

Theorem 15. If g(t), γ(t), α(t) and β(t) are nonnegative
continuous functions, g ∈ C 1[0,∞),

ġ ≤ −γ(t)g + α(t)g2 + β(t), t ≥ 0,

and there exists a µ(t) > 0, lim
t→∞

µ(t) = ∞,

µ ∈ C 1[0,∞) such that

1) α ≤ µ
2

(
γ − µ̇

µ

)
,

2) β ≤ 1

2µ

(
γ − µ̇

µ

)
, 3) g(0)µ(0) < 1,

then ∃g(t) on [0,∞) and 0 ≤ g(t) <
1

µ(t)
.
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Theorem 16. If Q(t), G (t) and T (t) are linear operator-functions
from [0,∞) → H, where H is a Hilbert space, and{

Q̇ = −T (t)Q + G (t),

Q(0) = Q0,

where (Th, h) ≥ ε(t)‖h‖2, ε(t) ≥ 0, then, with

a(t) := e
∫ t
0 ε(s)ds , one has:

‖Q(t)‖ ≤ a−1(t) ‖Q0‖+ a−1(t)

∫ t

0
a(s)‖G (s)‖ds.
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Proofs.

F (u) = 0 (1),

{
u̇ = Φ(t, u),

u(0) = u0.
(2)

Theorem 17. If
1) (F ′Φ,F ) ≤ −c1‖F‖2, ∀u ∈ H, c1 = const > 0
2) ‖Φ‖ ≤ c2‖F‖,
3) r ≤ R, where r :=

c2

c1
‖F0‖, F0 = F (u0),

then (∗) and (∗∗) hold, where

(∗∗) ‖u(t)− u(∞)‖ ≤ re−c1t , ‖F (u(t))‖ ≤ ‖F0‖e−c1t .
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Proof. Let g(t) := ‖F (u(t))‖.
Then
gġ = (F ′Φ,F ) ≤ −c1g

2.
Thus

g(t) ≤ g(0)e−c1t = ‖F0‖e−c1t , ‖u̇‖ ≤ ‖Φ‖ ≤ c2‖F0‖e−c1t .

So
‖u(t)− u(∞)‖ ≤ re−c1t ,

‖u(t)− u(0)‖ ≤ R.
Theorem 17 is proved. 2
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Ex. WP

a) Φ = −[F ′(u)]−1F ⇒ c1 = 1, c2 = m, m‖F0‖ ≤ R.

b) Φ = −[F ′(u0)]
−1F ⇒ c2 = m,−(F ′(u0)− F ′(u0) +

F (u0)[F
′(u)]−1F ,F ) ≤ −‖F‖2 + mMR‖F‖2,

mM2R =
1

2
⇒ c1 =

1

2
, R =

1

2mM2
‖F0‖2m ≤ 1

2mM2
,

4m2M2‖F0‖ ≤ 1.

c) Φ = −[T ]−1A∗F ⇒ c1 = 1, c2 = m2M1, m2M1‖F0‖ ≤ R.
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Linear IP.

{
u̇ = −u + T−1

ε(t)A
∗f , T = A∗A.

u(0) = u0

0 < ε(t) ↘ 0,

∫ ∞
εds = ∞.

u = u0e
−t +

∫ t

0
e−(t−s)T−1

ε(s)Ty ds

Lemma 1. lim
t→∞

∫ t

0
e−(t−s)h(s)ds = h(∞) (if ∃h(∞).)

Lemma 2. lim
ε→∞

T−1
ε Ty = y if y ⊥ N(T ) = N(A). Otherwise the

limit is y − PN(T )y .
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Stopping rules 1.

Assume ‖fδ − f ‖ ≤ δ. Then
‖uδ(tδ)− y‖ ≤ ‖uδ(tδ)− u(tδ)‖+ ‖u(tδ)− y‖.
lim

tδ→∞
‖u(tδ)− y‖ = 0

‖uδ(tδ)− u(tδ)‖ ≤ ‖
∫ tδ

0
e−(tδ−s)T−1

ε(s)A
∗(fδ − f )‖

≤ δ

2
√

ε(tδ)

If lim
δ→0

δ√
ε(tδ)

= 0 and lim
δ→0

tδ = ∞,

then lim
δ→0

‖uδ(tδ)− y‖ = 0.
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Stopping rules 2.

Theorem. (New discrepancy principle) Assume that A is a
bounded linear operator in a Hilbert space H, equation Au = f is
solvable, y is
its minimal-norm solution, ||fδ − f || ≤ δ, and ||fδ|| > Cδ, where
C > 1 is a constant. Then equation ||Auδ,ε − fδ|| = Cδ (∗) is
solvable for ε for any fixed δ > 0, where uδ,ε is any element
satisfying inequality F (uδ,ε) ≤ m + (C 2 − 1− b)δ2,
F (u) := ||A(u)− fδ||2 + ε||u||2, m = m(δ, ε) := infuF (u),
b = const > 0, and C 2 > 1 + b.
If ε = ε(δ) solves (∗), and uδ := uδ,ε(δ), then limδ→0 ‖uδ − y‖ = 0.

Alexander G. Ramm Dynamical systems method (DSM) for solving operator equations



Nonlinear operator equations without monotonicity
assumptions.

Theorem. If Ã := F ′(y) 6= 0, then for the problem{
u̇ = −T−1

ε(t)(A
∗F + ε(u − ũ0)),

u(0) = u0,

conclusions (∗) hold, where ũ0 is suitably chosen.
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Proof.

u − y = w , ‖w‖ = g , F (u)− F (y) = Aw + K ,

‖K‖ ≤ M2

2
g2, u − ũ0 = u − y + y − ũ0

ẇ = −T−1
ε (A∗Aw + εw + A∗K + ε(y − ũ0))

= −w − T−1
ε A∗K − εT−1

ε (y − ũ0)

ẇ = −w − T−1
ε A∗K − εT−1

ε T̃ v , ‖v‖ � 1;

T̃ v = y − ũ0 if T̃ 6= 0.

gġ ≤ −g2 +
c0g

3√
ε(t)

+ ε(T−1
ε − T̃−1

ε + T̃−1
ε )T̃ v .

ε‖T̃−1
ε T̃ v‖ ≤ ε‖v‖,

ε‖T−1
ε (A∗A− Ã∗A)T̃−1

ε T̃‖ ‖v‖,

≤ 2M2M1g‖v‖; 2M1M2‖v‖ =
1

2
.
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Thus

ġ ≤ −1

2
g +

c0g
2√

ε(t)
+ ε‖v‖; µ =

λ√
ε(t)

,
µ̇

µ
=

1

2

|ε̇|
ε
≤ 1

4.

1)
c0√
ε(t)

≤ λ

2
√
ε

1

4
; λ = 8c0.

2) ε(t)‖v‖ ≤
√
ε(t)

2λ

1

4
; 8λ‖v‖

√
ε(t) ≤ 1

3) g(0)
λ√
ε(0)

< 1

If ε(0) > 8g(0)c0, then condition 3) holds.
If ‖v‖ < 1

8λ
√

ε(0)
, then 2) holds.

Theorem is proved. 2
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Getting rid of the inversion of the derivative operator.

F (u) = 0 (1) ‖[F ′(u)]−1‖ ≤ m, F (y) = 0.
Theorem.{

u̇ = −QF , (2)

Q̇ = −TQ + A∗, u(0) = u0, Q(0) = Q0.

If u0 and Q0 are properly chosen then (∗) holds.
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Proof. T ≥ ε > 0, ε = const. Thus

‖Q(t)‖ ≤ ‖Q0‖eεt + e−εt

∫ t

0
eεsM1ds

≤ ‖Q0‖+
M1

ε
:= c0.

u − y = w , ‖w‖ = g(t); F (u)− F (y) = Ãw + K ,

Ã = F ′(y), ‖K‖ ≤ M2

2
g2,

ẇ = −w + w − Q(F (u)− F (y)) = −w + Λw − QK ,

Λ = I − QÃ.

gġ ≤ −g2 + (Λw ,w) + c1g
3, c1 =

c0M2

2
,
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Lemma.

|(Λw ,w)| ≤ q‖w‖2, 0 < q < 1.

ġ ≤ −γg + c1g
2, 0 < γ := 1− q < 1.

Thus g(t) ≤ c2e
−γt , c2 =

g(0)

1− c1g(0)
, if c1g(0) < 1.

Theorem is proved. 2
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Proof of the Lemma.

Λ̇ = −Q̇Ã = TQÃ− A∗Ã = −TΛ + A∗(AÃ).

‖Λ‖ ≤ ‖Λ0‖e−εt + e−εt

∫ t

0
e−εtM1M2c2e

−γsds

≤ ‖Λ0‖+ c3‖u0 − y‖ < q < 1.

The Lemma is proved. 2

Alexander G. Ramm Dynamical systems method (DSM) for solving operator equations



(1), F (u) = 0

(2), un+1 = un + hΦ(un)

there exists y such that F (y) = 0, and

‖Φ(u)− Φ(v)‖ ≤ L2‖u − v‖
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Theorem. If

a) (F ′Φ,F ) ≤ −c1‖F‖2,

b) ‖Φ‖ ≤ c2‖F‖, and

c) r ≤ R,

where r =
c2

c1
‖F0‖ and F0 = F (u0), then

‖un − y‖ ≤ re−chn, ‖F (un)‖ ≤ ‖F0‖e−chn,
where 0 < c < c1.
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Proof.

Let

{
ẇn+1(t) = Φ(wn+1)

wn+1(tn) = un, tn = hn.

Then
‖wn+1(t)− y‖ ≤ c2

c1
‖Fn‖e−c1(t−tn)

≤ re−chn−c1(t−tn), t > hn,

‖un+1 − y‖ ≤ ‖un+1 − wn+1‖+ ‖wn+1 − y‖,

‖un+1 − wn+1‖ ≤
∫ tn+h

tn

‖Φ(un)− Φ(wn+1(s))‖ds

≤ L1

∫ tn+h

tn

‖un − wn+1(s)‖ds

≤ L1h

∫ tn+h

tn

‖Φ(wn+1(s))‖ds

≤ L1hc2

∫ tn+1

tn

‖F (wn+1(s))‖ds

≤ L1hc2‖F (un))‖ ≤ L1c2h
2‖F0‖e−chn

= L1c1h
2re−chn.
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Thus ‖un+1 − y‖ ≤ re−chn(e−c1h + L1c1h
2) ≤ re−ch(n+1)

provided that
c < c1 and h is such that e−c1h + L1c1h

2 < ech.

‖F (un+1)‖ ≤ ‖F (un+1)− F (wn+1(tn+1))‖
+ ‖F (wn+1)(tn+1))‖

‖F (wn+1(tn+1))‖ ≤ ‖F (un)‖e−c1h ≤ ‖F0‖echn−c1h

‖F (un+1)− F (wn+1(tn+1))‖ ≤ M1L1c1h
2re−chn

= ‖F0‖e−chnM1L1c2h
2.

Thus
‖F (un+1)‖ ≤ ‖F0‖e−chn(ec1h + M1L1c2h

2)

≤ ‖F0‖e−ch(n+1).

Theorem is proved. 2
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Proof of Theorem 15

Lemma. Let f (t,w), g(t, u) be continuous in the region
[0,T )× D (D ⊂ R, T ≤ ∞) and f (t,w) ≤ g(t, u) if w ≤ u,
t ∈ (0,T ), w , u ∈ D. Assume that g(t, u) is such that the Cauchy
problem

u̇ = g(t, u), u(0) = u0, u0 ∈ D,

has a unique solution. If

ẇ ≤ f (t,w), w(0) = w0 ≤ u0, w0 ∈ D,

then u(t) ≥ w(t) for all t for which u(t) and w(t) are defined.
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Let g be the function from Theorem 15. Define the new function
w by the formula:

w(t) := g(t)e
∫ t
t0

γ(s)ds
.

Then
ẇ(t) ≤ a(t)w2(t) + b(t), w(t0) = g(t0),

where

a(t) = σ(t)e
−

∫ t
t0

γ(s)ds
, b(t) = β(t)e

∫ t
t0

γ(s)ds
.
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Consider the equation:

u̇(t) =
ḟ (t)

G (t)
u2(t)− Ġ (t)

f (t)
. (1)

One can check by a direct calculation that the the solution to this
equation is given by the following formula

u(t) = −G (t)

f (t)
+

[
f 2(t)

(
C −

∫ t

t0

ḟ (s)

G (s)f 2(s)
ds

)]−1

, (2)

where C is a constant. If u(0) = u0, then C = 1
u0f 2(0)+G(0)f (0)

.

Define f and G as follows:

f (t) := µ
1
2 (t)e

− 1
2

∫ t
t0

γ(s)ds
, G (t) := −µ−

1
2 (t)e

1
2

∫ t
t0

γ(s)ds
,

and consider the Cauchy problem for equation (1) with the initial
condition u(t0) = g(t0).
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Then C in (2) can be calculated:

C =
1

µ(t0)g(t0)− 1
.

One gets

a(t) ≤ ḟ (t)

G (t)
, b(t) ≤ − Ġ (t)

f (t)
.

Since fG = −1 one has:∫ t

t0

ḟ (s)

G (s)f 2(s)
ds = −

∫ t

t0

ḟ (s)

f (s)
ds =

1

2

∫ t

t0

(
γ(s)− µ̇(s)

µ(s)

)
ds.
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Thus

u(t) =
e

∫ t
t0

γ(s)ds

µ(t)
[1− ν]

where

ν =

(
1

1− µ(t0)g(t0)
+

1

2

∫ t

t0

(
γ(s)− µ̇(s)

µ(s)

)
ds

)−1

. (3)

It follows from conditions of Theorem 15 that the solution to
problem (1) exists for all t ∈ [0,∞) and the following inequality
holds with ν(t) > 0:

1 > 1− ν(t) ≥ µ(t0)g(t0).
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From Lemma and from formula (3) one gets:

g(t)e
∫ t
t0

γ(s)ds
:= w(t) ≤ u(t) =

1− ν(t)

µ(t)
e

∫ t
t0

γ(s)ds

<
1

µ(t)
e

∫ t
t0

γ(s)ds
.

Thus, Theorem 15 is proved. 2
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