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Introduction

F(uy=0 (1), F:H—H, 3y:F(y)=0

sup  [[FO(u)]| < Mj(R), j=0,1,2.
uEB(u07R)

B(up,R) :={u: ||lu— w| <R}
Well-posed (WP):  sup  ||[F'(u)] || < m(R)

weB(up,R

[ll-posed (IP): not well-posed.
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DSM: {” = ot )
u(0) = up

(%) Alu(t) on [0,00); FJu(oo); F(u(oo)) =0
For what classes of equation (1) can one find ® such that (x)

holds?
How does one choose ®7?
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Theorem 1. For any WP eq. (1) one can find ® such that (x)
holds and

lu(t) = u(oo)|| < re”%;
IF(u(E)I < [IF(uwo)lle™ . ()

Here c1, r > 0 are constants.

Eg.,
a) &= —[F'(u)]F(u),
b) & = —[F'(uo)] "1 F(u),
c) =T IAF, A:=F(u), T:=A%A
d) F=—-A"F
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Theorem 2. For any linear IP eq. (1):
F(u)=Au—f =0,

where A is a linear, closed, densely defined operator, and equation
(1) is solvable, one can find ® such that (x) holds, convergence

u(t) —

t—00

is uniform with respect to ug, and y is a unique minimal-norm
element of the set

N :={u:Au—f =0}
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E.g., one can take

®=—ut T AAF, T=AA T.=T+el,

0 <e(t) \\0, /Oo g(s)ds = oo.

For unbounded A the element f may not belong to D(A*). In this
case, the element Ts_(:)A*f, with e(t) > 0, can be defined by
considering the closure of the operator TE_(tl)A* with the domain
D(A*). This operator is closable, its closure is a bounded, defined
on all of H operator, and

T 5A" <
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It is possible to replace element Tg(tl)A*f by the originally well

defined element A*Q (t)f with

Q = AA*.

The operator A*Q 1 (1) is a bounded linear operator defined on all of
H, and .

A Qi £ ———,
These assumptions allow one, among other things, to handle
differential operators on unbounded domains in the cases when the
spectrum of such operators is continuous and contains the point
A=0.

g(t) > 0.
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Theorem 3. For any eq. (1) with F’ > 0, one can find ® such
that the conclusion of Theorem 2 holds. : ‘

Eg, o=— t)[F( u) +e(t)u], 0 < e\, 0, ?

N \
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Theorem 4. In Theorems 2 and 3 the DSM yields a stable
approximation to y in the following sense: if

15 — fll <6,

and the data are {4, f5}, then there exists a t5 such that

li —y|| =0, where

lim s — y| = 0, wher
us := us(ts),

and us(t) solves eq. (2) with f replaced by f5.
. —1 A%
Eg. us = —us + Ts(t)A fs
us(0) = wo,
where T := A*A, T. =T +el.

A priori and a posteriori stopping rules for finding ts are found.
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Arbitrary F with A := F'(y) #0

Theorem 5. If A 0, then there exists ® such that (*) holds for
a solution y of eq. (1) .

Eg, ®=— TE_(tl)[A*F(u) +e(t)(u — )],

where Tg is properly chosen, T := A*A, T. =T + €/, and

el 1
0<e(t 0, —<-.
e(t) \, P
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Spectral assumption

F(u)+eu=0 : X — X, X is a Banach space.

(1
(S) Assume:||AZ|| <
A:= F'(u), A:

¢ = const > 0,

): F
<
6_7

= A+tel.
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Theorem 6. If (S) holds, then eq. F(u) 4+ cu = 0 can be solved
by a DSM.
Eg &= —AYF(u) +eu).
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Theorem 7. If (S) holds and 3y : F(y) = 0, then one can choose
w such that equation

F(us) +e(ue —w)=0

is solvable for every € € (0,¢9), and
lim uz — y]| =0,
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Unbounded F

If F(u) = Lu+ g(u), Lis linear, closed, densely
defined operator, and ||[L71|| < m,
then equation F(u) = 0 is equivalent to

u+ L rg(u) =0. (1)
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Theorem 8. Assume that

sup [/ + L7 ' (u)] Y| < mu(R),
uEB(uO,R)

and
lluo + L™ g(uo)|Im1(R) < R.

Then (x) holds for the problem:

{u = —[I + L7 g (u)] Hu + L 2g(w)],
u(0) = wp.
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Theorem 9. If F is monotone, i.e.,
(F(u) = F(v),u—v) >0,

hemicontinuous, D(F) = H, and 3y : F(y) = 0, then DSM holds
for the problem:

{u = —F(u) — e(t)u,

u(0) = wo,
where 0 < e(t) \, 0, e(t) = (Ccflt)b?
0

0< b<1, ¢y cy =const>0.

Alexander G. Ramm Dynamical systems method (DSM) for solving operator equat



Criteria for surjectivity and homeomorphism

Theorem 10. If R
sup —— = 00,
R>0 m(R)

then eq. F(u) = f is solvable for any f € H.
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Theorem 11. If
IF ()] < w(lul),
* ds

where ¢ is a continuous positive function, and / — = 00,
o ¥(s)

then F is a global homeomorphism of H onto H.
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Construction of convergent iterative processes.

Upt1 = Up + hp®(tn, up), the1 = tnh + hp.

Theorem 12. Any WP eq. F(u) = 0 can be solved by a
convegent iterative process with

hn = h = const and ® = ®(u). The process converges at an
exponential rate.

Other iterative schemes can be constructed, e.g., Runge-Kutta's
type, et al.
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Getting rid of the inversion of the derivative [F'(u)]™!.

WP:
F(u)=0.

A=F'(u), T=AA T.=T+el.

u = —QF(uv),
(2) Q =-TQ+A,
U(O) = up, Q(O) = QO)

Theorem 13. For problem (2') conclusion (x) holds.
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IP:

i = —Q[A*F(u) + e(t)(u — wo)],
(2") QR =-Tp»h@+/,

u(0) =uwo, Q(0)= Qo.
Assume: 0 < ¢(t) \,0, 0 < ‘? <c¢, T(y)#0.
Theorem 14. For problem (2”) conditions (x) hold.
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Auxiliary results: Basic Inequalities

Theorem 15. If g(t), v(t), a(t) and 3(t) are nonnegative
continuous functions, g € C*[0, c0),

g <—y(t)g +a(t)g® +4(t), t>0,

and there exists a u(t) > 0, tlim p(t) = oo,
p € CHO, 00) such that
1)a§%(’y—ﬁ>,
1 f
2 ﬂ<<7—>, 3) g(0)u(0) <1,
)6<5- (1) 3 e0u0)

then 3g(t) on [0,00) and 0 < g(t) < M(lt)
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Theorem 16. If Q(t), G(t) and T(t) are linear operator-functions
from [0,00) — H, where H is a Hilbert space, and

Q =-T{HQ+G(b),
Q(O) = QO?

where (Th, h) > e(t)||h||?, e(t) >0, then, with
a(t) := o 59)% one has:

t

IQ(E)II < a~*(1) | Qoll Jréfl(t‘)/0 a(s)[[G(s)l|ds.
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] = O(t, u),

u(0) = up. @)

Flu)=0 (1),

Theorem 17. If

1) (F'®,F) < —ca||F||?, Yu € H, ¢ = const >0
2) [[@] < c2llF.

3) r < R, where r ;= %HFOH, Fo = F(uo),

then (%) and (xx) hold, where

() u(t) — u(c0)|| < re=t,  ||F(u(t))|| < ||Folle™ .
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Proof. Let g(t) := ||F(u(t))|.
Then

gg = (F'®,F) < —c1g2.
Thus

g(t) < g(0)e " = [Folle™=t, [all < O] < o[ Follee"
So
Ju(t) — u(o0)|] < re=,

[u(t) = u(0)]] < R.
Theorem 17 is proved. o

Alexander G. Ramm Dynamical systems method (DSM) for solving operator equat



a) b= —[F(W]*F=ca=1 co=m|m|R| <R
b) ® = —[F'(u0)] 'F = co = m,—(F'(uo) — F'(up) +
F(uo)[F'(u)]7'F, F) < —[IF||* + mMR| F||?,

1
MoR= = ci== R=——— |Fl2m< ——
Mt =75 =a=3 o, IFol2m = o

4m* Ma||Fol < 1.

) d=—[T] A F=c =1, o = m*My, | m* M || Rl < R.
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i = —ud T A, T =AA
u(0) = u

0 <e(t) \,0, /Ooeds:oo.

£(s)
t
Lemma 1. lim / e (=) p(s)ds = h(oc) (if Fh(c0).)
— 00 0
Lemma 2. lim T, 1Ty =y if y L N(T) = N(A). Otherwise the

E—0OQ

limit is y — Py(1)y-

t
u=uge * +/ e (=)7L 7y ds
0
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Stopping rules 1.

Assume ||f5 — f|| < 0. Then
lus(ts) = y I < [us(ts) — u(ts)l| + [[u(ts) — yI-
Jim_Jlu(t5) ~ y]| =0

kus—um|<H/‘ T A — )|

6(1-‘5)

If lim
3=0 \/e(ts)

th li ts) — = 0.
en 5'_'110”“5( 5) — Yl

=0 and lim ts = o0
6—0
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Stopping rules 2.

Theorem. (New discrepancy principle) Assume that A is a
bounded linear operator in a Hilbert space H, equation Au = f is
solvable, y is

its minimal-norm solution, [|fs — f|[ < d, and ||fs|| > Cd, where
C > 1is a constant. Then equation ||Aus. — f5|| = C6 (%) is
solvable for € for any fixed § > 0, where us. is any element
satisfying inequality F(use) < m+ (C? —1 — b)§2,

F(u) := ||A(u) — f5]|? + €||ul|?, m = m(6, €) = inf,F(u),

b = const >0, and C? > 1+ b.

If € = €(0) solves (), and us := us(s), then lims_o [Jus — y|| = 0.
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Nonlinear operator equations without monotonicity

assumptions.

Theorem. If A:= F'(y) # 0, then for the problem

{u = —T_ ) (AF +e(u— o)),
u(0) = uo,

conclusions (x) hold, where g is suitably chosen.

Alexander G. Ramm Dynamical systems method (DSM) for solving operator equat



Proof.
M - -
Kl < 725,’2, u—To=u—y+y— o
W= T A*Aw +ew + A*K + e(y — Tp))
= —w— T IAK — Ty — o)
w=-—w— T.'A*K — €T€717'v, v < 1;
Tv=y—Toif T #0.
3 - I
gg< g2+ 8 L (T T T YT
£(t)
el T T vl < ellvll,
e| T-HATA= ASA)TNT v,

1
< 2MoMiglvil; 2M MoV = .
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1 cog? A g 1)é 1
<-‘g+ +e|lv = , t=io<
E< 28 5 vl T o 2:°3
[@)) A 1
1 <——-; A=38
) g(t) — 2/ 4 “
) (vl < LD L s Ve <1
e@livl= = v vVe(t) <
A
3 0 <1
) &0
If £(0) > 8g(0)cp, then condition 3) holds.
1
If v < WG then 2) holds.
Theorem is proved. |
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Getting rid of the inversion of the derivative operator.

Fuy=0 (1) [IF (] <m, F(y)=0.
Theorem.

Q =-TQ+A, u0)=u, QO)=Q.
If up and Qo are properly chosen then (x) holds.
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Proof. T > ¢ >0, e = const. Thus

t
1Q()] < [|Qollet + e~ /0 & My ds

Ml
< || Qoll + — = co.

U—yzwaWH* g(t); F(u) = F(y) = Aw + K,

~ M

A=F(y), Kl < 2g2

W:—W+W—Q(F(U)—F(y)):—W+AW—QK,
AN=1-QA.

g < g2+ (Aw,w) +cag®>, o= o
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Lemma.

[(Aw, w)| < gllwl?, 0<q<1.

g<—g+ag’ 0<y=1-g<Ll

_ 0 .
Thus g(t) < e ™, = — 8 L.
us g(t) < e, o = g(0)’ cg(0) <

Theorem is proved. O
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Proof of the Lemma.

A=—QA=TQA— A*A= —TA+ A*(AA).
t

IA< Aofle™t + et /0 et My Mycye—5ds

< Aol + a3lluo —y|| < g < 1.

The Lemma is proved. O
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(1), F(u) =0

(2), Unt1 = Up + hP(up)
there exists y such that F(y) =0, and

[®(u) = ®(V)|| < Lafju = v]]
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Theorem. If
a) (F'®,F) < —alFl?
b) [|®] < e|[F]], and
c) r<R,
where r = %HFOH and Fo = F(up), then

F(un)| < |[Folle™<™,

—chn ’

[un =yl < re
where 0 < ¢ < .
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Proof.

Let v'v,,+1(t) = ¢(Wn+1)
Wni1(tn) = up, t, = hn.

Then

C - —
Wi (£) = yII < Zl|Falle™
< re_Chn_Cl(t_t"), t> hn,
[unt1 =yl < [Juner — Wasa || + [[Wasr — v,

tath
HWH—MMns/ 19(un) — (wnsa(s))l|ds
t,

n

thp+h
gh/ tn — wiea (5)]|ds

tp

th+h
< Llh/ [ ®(wni1(s))lds
tn

t,,+l
ngq/' |F (was1(s)) | ds
J t,

< Liha||F(un))|| < Licoh?|| Folle™"

chn

2 -
= Licah’re
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Thus HU,H_l —y” S refCh”(e*CIh + L1C1h2) S refch(IH‘l)
provided that
c < ¢i and his such that e= " [ ¢ h? < e

[F(unt) | < I1F(unt1) = F(Was1(tata))|
+ [|F(Wat1)(tn+1) |l
IF (W1 (o))l < |F(un)lle™ " < || Rl P
IF (tn+1) — F(Wns1(tns1))l| < MiLycih®re= <"
= ||Folle” "My Lycoh?.

Thus " . 5
IF(un1)ll < [|Folle™"(e®" + MiL1coh”)
< HFOHG_Ch(n—i_l)-
Theorem is proved. O
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Proof of Theorem 15

Lemma. Let f(t,w), g(t,u) be continuous in the region
0,T)xD (DCR, T <oc0)and f(t,w) < g(t,u) ifw < u,
t€ (0, T), w,ue D. Assume that g(t, u) is such that the Cauchy
problem

u=g(t,u), u(0)=uw, u €D,

has a unique solution. If
w < f(t,w), w(0)=wy<uy, w€D,

then u(t) > w(t) for all t for which u(t) and w(t) are defined.
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Let g be the function from Theorem 15. Define the new function
w by the formula:

w(t) == g(t)effg V(s)ds,

Then
w(t) < a(t)w?(t) + b(t), w(to) = g(to),

where

a(t) = o(t)e o 1OE pie) = g(e)el e
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Consider the equation:

. f(t) , G(t)
t) = —= t) — ——. 1
o0) = g0~ 7 M)
One can check by a direct calculation that the the solution to this
equation is given by the following formula

oL atm)] - o

where C is a constant. If u(0) = ug, then C = W'

Define f and G as follows:

u(t) = —f((tt)) +

F(t) = pi(r)e 20 % Gty = b (2)e? fo 1O,

and consider the Cauchy problem for equation (1) with the initial
condition u(ty) = g(to).
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Then C in (2) can be calculated:

1
= we(t) —1
One gets _ _
f(t) G(1)
a(t) < G b(t) < o

Since fG = —1 one has:

[ cmpme = g3 [ (0-52)
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Thus .
ol 1(5)ds

11(t)

v~ (e * 3 tot ’y(s)—/;(s) &) . @)
(= 2, 00 13) )

u(t) = 1]

where

It follows from conditions of Theorem 15 that the solution to
problem (1) exists for all t € [0, 00) and the following inequality
holds with v(t) > 0:

1>1—v(t) = u(to)g(to)-
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From Lemma and from formula (3) one gets:

JE(s)ds | 1 _V(t) [ A(s)ds
t)e'to =w(t) <u(t)=——=¢€'b
L [fo(s)ds
e’to .
M(t)

Thus, Theorem 15 is proved. O
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