LOCAL INTERPOLATION BY ISOPARAMETRIC QUADRATIC LAGRANGE FINITE ELEMENTS

by Josef Dalík Brno University of Technology, Czech republic

PANM 13, Prague, 2006

1 Dimension one

A reference quadratic Lagrange finite element $\hat{\mathcal{K}}$ consists of

- a) the interval $\hat{K} = [-1, 1],$
- b) the *local space* $\hat{\mathcal{L}}$ of polynomials of degree two or less on \hat{K} ,
- c) the set of *parameters* relating the values $\hat{p}(-1), \hat{p}(0), \hat{p}(1)$ to each $\hat{p} \in \hat{\mathcal{L}}$.

For arbitrary a < b < c, we define a discretisation step $h = \max(b-a, c-b)$, a centre $\tilde{b} = (a+c)/2$ and a (unique) function F_h from $\hat{\mathcal{L}}$ with parameters a, b, c. If F_h is an injection, i.e.

$$\frac{3a+c}{4} \le b \le \frac{a+3c}{4},\tag{1}$$

then we call F_h a *transform* and we denote by G_h the transform inverse to F_h .

An isoparametric quadratic Lagrange finite element \mathcal{K}_h in 1D is determined by a transform F_h with parameters a < b < c. It consists of

a) the interval $K_h = [a, c],$

b) the *local space* \mathcal{L}_h of functions

$$p_h(x) = \hat{p}(G_h(x)) \quad \forall \, \hat{p} \in \hat{\mathcal{L}}.$$
 (2)

c) the set of *parameters* relating the values $p_h(a), p_h(b), p_h(c)$ to each $p_h \in \mathcal{L}_h$.

For $\nu \in (0, 1)$ fixed, we call a transform F_h regular whenever

$$\frac{d}{d\xi}F_h(\xi) \ge \nu h \quad \text{in} \quad [-1,1].$$

Theorem 1. Let $p \ge 1$ be arbitrary. For every constant $C_1 > 0$ there exists a constant $C_2 > 0$ such that for every regular transform F_h satisfying

$$|b - \tilde{b}| \le C_1 h^p$$

we have

$$v - \prod_{h} v|_{m,K_h} \le C_2 h^{1-m} \left(h^2 |v|_{3,K_h} + h^p |v|_{2,K_h} \right)$$

for m = 0, 1, 2 and for all $v \in H^3(K_h)$.

2 Dimension two

A reference quadratic Lagrange finite element $\hat{\mathcal{K}}$ consists of

- (a) the unit triangle \hat{K} ,
- (b) the *local space* $\hat{\mathcal{L}}$ of quadratic polynomials on \hat{K} ,
- (c) the set of parameters $\hat{p}(\hat{a}^1), \ldots, \hat{p}(\hat{a}^6)$ for every $\hat{p} \in \hat{\mathcal{L}}$.

We put $h = \max(|a^1a^3|, |a^3a^5|, |a^5a^1|)$ and define a map $\mathcal{F}_h = (F_h, G_h) \in \hat{\mathcal{L}} \times \hat{\mathcal{L}}$ by $\mathcal{F}_h(\hat{a}^i) = a^i$ for $i = 1, \dots, 6$.

Agreement. We consider such points a^1, \ldots, a^6 only for which the curve $\mathcal{F}_h(\partial \hat{K})$ is simple and its orientation determined by increasing indices of a^1, \ldots, a^6 is positive.

If \mathcal{F}_h is an injection then we call \mathcal{F}_h a *transform* and we denote by \mathcal{G}_h the *transform* inverse to \mathcal{F}_h .

An isoparametric quadratic Lagrange finite element \mathcal{K}_h in 2D is determined by a transform \mathcal{F}_h . It consists of

- (a) the "triangle" $K_h = \mathcal{F}_h(\hat{K}),$
- (b) the *local space* \mathcal{L}_h of functions

$$p_h(x,y) = \hat{p}(\mathcal{G}_h(x,y)) \quad \forall \hat{p} \in \hat{\mathcal{L}},$$

(c) the set of *parameters* relating the values $p_h(a^1), \ldots, p_h(a^6)$ to any $p_h \in \mathcal{L}_h$.

Let $\nu \in (0,1)$ be fixed. A transform \mathcal{F}_h is said to be *regular* whenever $J(\xi,\eta) \geq \nu h^2$ for all $(\xi,\eta) \in \hat{K}$.

Theorem 2. Let $p \ge 1$ be arbitrary. For every constant $C_1 > 0$ there exists a constant $C_2 > 0$ such that for every regular transform \mathcal{F}_h such that $|\tilde{a}^2 a^2| + |\tilde{a}^4 a^4| + |\tilde{a}^6 a^6| \le Ch^p$, we have

$$|v - \Pi_h v|_{m,K_h} \le C_2 h^{1-m} \left(h^2 |v|_{3,K_h} + h^p |v|_{2,K_h} \right)$$

for m = 0, 1, 2 for all $v \in H^3(K_h)$.

We put
$$D(abc) = \frac{1}{2} \begin{vmatrix} a_1 - c_1 & a_2 - c_2 \\ b_1 - c_1 & b_2 - c_2 \end{vmatrix} \quad \forall a, b, c \in \Re^2.$$

Theorem 3. The Jacobian J of a map \mathcal{F}_h related to the points a^1, \ldots, a^6 is of the form

$$J(\xi,\eta) = A + B\xi + C\eta + D\xi^2 + E\xi\eta + F\eta^2 \text{ where}$$

$$\begin{split} A &= 2[16D_{234} - 4(D_{134} + D_{235}) + D_{135}], \\ B &= 8[-12D_{234} + 5D_{235} + 4D_{346} + 2D_{134} - D_{356} - D_{345} - D_{135}], \\ C &= 8[-12D_{234} + 5D_{134} + 4D_{236} + 2D_{235} - D_{136} - D_{123} - D_{135}], \\ D &= 32[2(D_{234} - D_{346}) + D_{356} + D_{345} - D_{235}], \\ E &= 32[4D_{234} - 2(D_{235} + D_{134}) + D_{135}], \\ F &= 32[2(D_{234} - D_{236}) + D_{136} + D_{123} - D_{134}]. \end{split}$$

If we approximate the solution of the problem

$$-\Delta u = f$$
 in $\Omega \subseteq \Re^2$, $u = 0$ on $\partial \Omega$

with piecewise smooth boundary $\partial\Omega$ by linear triangular finite elements on a polyhedral approximation Ω_h of the domain Ω , optimal rate of convergence in H^1 norm is O(h). The use of quadratic finite elements on the same triangles leads to $O(h^{\frac{3}{2}})$ in H^1 norm. To

obtain $O(h^2)$, $\partial\Omega$ has to be approximated more exactly. The isoparametric quadratic Lagrange finite element is a standard tool for this purpose; it gives us an approximate solution with an error $O(h^2)$ in the H^1 norm.

In this case, we have

$$a^{2} = \frac{1}{2}(a^{1} + a^{3}), \quad a^{4} = \frac{1}{2}(a^{3} + a^{5})$$

and the Jacobian attains the form

$$J(\xi,\eta) = 8D_{234} + 16\xi(D_{346} - D_{234}) + 16\eta(D_{236} - D_{234}).$$

J is positive on \hat{K} if and only if

$$2D_{346} > D_{234}, \quad 2D_{236} > D_{234}.$$
 (3)

Jordan W.B., 1970.

For any given points a^1, \ldots, a^5 , we define the *admissible set*

$$\mathcal{A}d = \mathcal{A}d(a^1, \dots, a^5)$$

= { a^6 ; \mathcal{F}_h related to a^1, \dots, a^6 is a transform}.

For any a^1, \ldots, a^5 such that $a^2 \in \overline{a^1 a^3}$ and $a^4 \in \overline{a^3 a^5}$, we put

$$u = \frac{|a^2 a^3|}{|a^1 a^3|}, \quad v = \frac{|a^3 a^4|}{|a^3 a^5|}, \quad U = \frac{D_{634}}{D_{134}} \text{ and } V = \frac{D_{236}}{D_{235}}.$$

Theorem 4. Assume that the points a^1, \ldots, a^5 satisfy $a^2 \in \overline{a^1 a^3}$, $a^4 \in \overline{a^3 a^5}$ and $\frac{1}{4} < u < \frac{3}{4}$, $\frac{1}{4} < v < \frac{3}{4}$. If $u + v \leq 1$ then

$$\mathcal{A}d = \left\{ a^6 \, ; \, \frac{1}{4} < U, \, \, \frac{1}{4} < V \right\}$$

If u + v > 1 then the admissible set is a convex set bounded by the lines $p \equiv U = 1/4$, $q \equiv V = 1/4$ and by the ellipse with centre S = (2u - 1/2, 2v - 1/2) touching the line p, q in the point

$$T_p = \left(\frac{1}{4}, \frac{12u + 8v - 9}{4(4u - 1)}\right), \ T_q = \left(\frac{8u + 12v - 9}{4(4v - 1)}, \frac{1}{4}\right),$$

respectively. See Fig. 6.

