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§ O. Introduction

In [4] J. MYCIELSKI introduced a very general notion of multidimensional local
interpretability of first ordet theories. If we definethe relation ~ between theories
T, S by T~ S iff Tis multidimensionaly locally interpretable in S, then ~is a. pre-
ordering. The induced partia.l ordering is a la.ttice ordering, it is called tke lattice of
local interpretability iypes.

We consider theories formalized in the first order logic without equality; equality
is considered as a congruence and hence need not be interpreted absolutely. The lan-
guages of the theories are considered without function symbols, i.e. an n-ary function
has to be included as a.n (n + l)-ary rela.tión. We regard two theories as equal iff they
have the same theorems.

A theoryT is locally interpretable in a theory S, in symbols T ~ S, iff each theorem
of Tis interpretable in S. Equivalently: T ~ S uf each finite part of Tis interpret-
able in S. Theinterpretation may have parameters, variables may be translated as
k-tuples of va.riables (then we speak about k-dimensional interpretations).

By d~finition different theorems of T may have different interpretations of atomic
relations in S. li thereis an interpretation of atomic relations common to all theorems
of 'J', we speak a bout global interpretation of T fu S; insymbols T ~ 8 S. li each theor~m
of T is interpre~a.ble k-dimensionally in S, we write T ~"S.

The class Qf all theories T such that T ~ S and S ~ T forms the local interpretability
type o/ S, denoted by ISI. 80 T E ISI iff T ~ S a.nd S ~ T.

li we repla.ce in the previous paragraph ~ by ~8 (resp. by ~,,), we obta.in the defini-
tion of global (resp. k-dimensional) interpretability type o/ S.

The relation ~ determines a partial ordering of the local interpretability types
which is a distributive and complete lattice. The largest type is the type of the in-
consistent theories, the lowest type is the type of the theories whose each theorem has
a 1-point model. Among the types which do not contain incl;'nsistent theory, there is
the largest type which is the type of theory Th(w, +, .) (as it is well known that for
every consistent sentence we can define a model in arithmetic). There also exists the
lowest type among the types which are not the lowest in the whole lattice. It is llie
type of tneories having locally (i.e., each theorem has) finite models but which do not
h~ve 1-point models. Hence it is, for example, the type of the theory based on the
axiom (3x,y) (P(x) & -,P(y)).

The sublattice of the lattice of the types which we obtain by tearing off the largest
and the lowe;st types is therefore also a distributive and complete lattice. Let us (ac-
cording to [1]) denote it by .,/t. More details can be found in [4], [o] and in the joint
manuscript [1] (a revlsed version of it is being prepared for publication), where one
can find also a number of first results and problems about the lattice .,/t. For com-
pleteness of the text some of these results are recapitulated in § 1.
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In [1] J. MYCIELSKI conjectured that alt Illathelllatically interesting theories are
prillle, i.e., their types are joint-irreducible, and he proved that the theory of linear
order witho~t Illaxilllal elelllen,t is prillle. In [5] P. PUDLÁK essentially confirllled
MYCIELSKI's conjecture by proving that each sequential theory (see [5]) is prillle; in
particular PA, ZF, GB, Th(w, +, .) are prillle. In the sallle paper he stated the prob-
lelll whether Th(w, <) is prillle. § 5 of the present paper is Illotivated by this problelll;
we study there Illutual interpretability of various theories of order.

1n'[I] A. EHRENÉ'EUCHT studies thedual notion ofcoprillle theory, i.e. a th~ory with
a •neet-irreducible type, and he proves that Illany "strong" (i.e. high in the lattice ..If)
theories are not coprillle. Nalllely he proves this theorelll: Each consistent recursively
enulllerable extension of PA is not coprillle. In the sallle paper the problelll is posed
whether solllething sinùlar holdsfor "weak" theories. In § 2 we will prove the .follow-
ing characterization: A theory T is coprillle iff T has the sallle type as sollle colllplete
theory. It follows that there existlllany "strong" and Illany "weak" theories which
are coprillle.

In [4] J. MYCIELSKI asked whether in each type there is a theory with a fiuite lan-
guage. We solve this problelll affirlllatively in § 3. This result and the above Illentioned
characterization of coprillle theories were independently proved by A. STERN in his
thesis (Berkeley, 1984). In § 4 we prove a few technicallellllllas which are needed for
§ 5. In § 6 we state a nulllber of open 'problellls.

This is also a suitable place to thank P. PUDLÁK without whose help this paper
would never have collle into existence. Especially in § 3 P. PUDLÁK suggested to us
how to extend our earlier result to the final theorelll. We thank also J. MYCIELSKI
for his relllarkswhich we usedin the final preparation of the paper. In his new terllli~
nology a local interpretability type should be called a chapter.

§1. Preliminaries

In this part we repeat a few results from [1], [4]. The proofs can be found in those
papers. , .

1.1. Let <x!, <xJ be twb interpretations of a sentence ix fu the language of a theory S
and let S fo <xl v <xJ hold. Then <X ~ S.

1.2. For a model M 1= S we denote by Th(M) the theory of Min the language of S (i.e.
without the absolute equaltty of M). ThenT ~ k S iff T ~k Th(M) for each model M 1= S.

1.3. The type ITf /\ ISl is the type of the theory {<Xv tJ IIX e T, tJ ES}.1.4. .A is a complete distributive lattice. I

1.5. The compact types are exactly the types of ffuitely axiomatizable' theories.
1.6. In each typethere is a countable theory., \

'1.7. The lattice .,I( is algebraic of countable character, i.e., every type is a jofu of

countably many-compact types.

§ 2.. Coprime theories

2.1. A theory T is coprime iff its type is meet-irreducible. 80 T is coprime iff
(Va, b E..,It) (a, b ~ ITl & a /\ b = ITl ~ a = ITl vb = ITl), or equivalently (because
..,It is a distributive lattice) (Va, b E..,It) (a /\ b ~ ITl ~ a ~ ITl v b ~ ITl).

2.2. Theorem. A type t E..,It is meet-irreducible iff it contains a complete theory
(i.e. a theory T is coprime iff it hasthe same type as some complete theory).
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Proof. (a) Let SEt and S be complete. Let further be t ~ ISll" IS21. By 1.3,
ISll A IS21 = IS31, where S3 = {IX V PI IX E Sl' P E SJ. If ISll ~ t, then there exists
IXO such that Sl I- IXo and IXo ~ S. Then, for each interpretation I of IXO in the lan-
guage of S, S l- IX~. By completeness of S it is surely S I- I (IX~). Since by assumption
IS31 ~ ISI, in particular, S2 I- P implies IXo V P ~ S for each p. Therefore for S2 I- P
there exists an interpretation Ip of the language of S3 in the language of S such that
S I- (IXo VP)III and so also S I- IX~ V pIli. But we know that S I- I (IX~II), hence S I- pIli
must hold. Therefore IS21 ~ ISI.

(b) Suppose that the type t E ..I( is meet-irreducible. Let us take a countable theory
SEt (by 1.6) and let 0'0,0'1' . . . be a list of all sentences in the language of S. We
will construct theories Tt, i = O, 1,..., such that ITtl = ISI. Define To = S (so
ITal = ISI). Suppose ITtl = ISI and construct TI+l as follows:

{ TI + 0'1 if TI + 0'1 ~ TI,
TI+l = .

TI + 10'1 rl Tt + 10'1 ~ TI.

li both cases are 'possible, choose arbitrarily one. Always at least one is possible srnce

ITl + 0'11 A ITl + 100tl = I {IX VO'l I IX E TJ v {P v 10'11 P E TJ V
v{IXVPIIX,PETJv{O'lv IO'JI = ITtl.

By induetion hypothesis [Tli = ISI (= t), h~nce IT II is meet-irreducible. TherP,iore
TI + '11 ~ TI or Tt + 10'1 ~ TI holds. Take T = UTI. Then ITl = ISI and T is complete.

I
2.3. Remark. li in the preceeding proof the theory S is finitely axiomatizable,

then we can search for an interpretation of TI + 0'1 (resp. TI + 10'1) in some sys-
tematic way. Rence' the resulting theory T will be decidable.

By an analogical construction for S such that ISI ~ t and t is meet-irreducible, we
can obtain a complete extension T of S such that ITl ~ t. li S is finitely axiomatiz-
able and in the type t there is some recursiveJy axiomatizable theory, then we can
construct such an extension in decidable way.

2.4. Corollary. .JI S is a linitely axiomatizable and essentially undecidable theory
and R is its recursiv'ely axiomatizable extension, then R is not coprime.

2.5. Remark. The th~orem of A. EHRENFEUCHT in [1] (see § O) follows from 2.4.

Proof. By [6] the theory Q, ROB:INSON'S arithmetic, is essentially undecidable and
also Q ~ PA.

2.6. Theorem. Let S be a countable theory and IX a sentence (not necessarily in the
lang~ge 01 S). Let alBa IX i S. Then there exists a complete extension T 01 S such that
IX ~ T stin halds.

Proof. It is enough to construct extensions TI, i = O, 1, . . ., of S such that IX ~ T t
and UT t is a consistent and complete theory. This can be done a,halogically as in the
proofof 2.2. .,

2.7. Corollary. Let t, s E..I( be types such that s ~ t. Then there exists a meet-irreduc-
ible type • ~ t such that stin s ~ • holds.

Proof. Let T be a countable theory such that ITl = t. Srnce s ~ t, there exists
a sentence y of some theory S, ISI = s, such that y ~ T. By 2.6 then there exists a
complete extension T' of T such that stilI y ~ T'. So • = IT'! is the required type.
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2.8. Corollary. Above each type t < ITh((JJ,. +, .)1 (= 1.«) there exists a meet-irreduc-
ible type • such that still • < I Th((JJ, +, .)1.

2.9. Remark. It followsfrom 2.7 that there exist many "weak" theories and also
(explicitly from 2.8) many "strong" theories which are coprime.
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§ 3. Tbeories witb finite languages are in eacb type

In [4] J. MYCIELSKI posed tbe problem (sec [4], problem 5) whether in each type
there exists a theory with a finite language. According to [4] it is only known (by
results of R. L. V AUGHT) that each recursively enumerable theory is globally inter-
pretable in finitely axiomatizable one. In this part we will solve this problem affirm-

atively.
For any sentence Ip we define the sentence Ip- by

Ip- :; Ip & "axioms of equality with a new binary predicate symbol with
respect to the predicates of Ip".

3.1. Lemma. !Ip! = lip-I.

Proof. Define the relation of indiscernibility.

3.2. Let ..Ci" = {D, T, L, R} a finite language, where D, T are unary and L, R are

binary predicates. . .
3.3. Lemma. For each sentence tp there exists a sentence tpl in the language ..Ci" 01 the

same type.

Proof. By 3.1 we can suppose that tp is a sentence with equality. Let R~
(k ~ kn, n ~ no) be all predicates in tp of arity n, where no is the greatest arity. Define
an interpretation I of the predicates Rk in the language ..Ci" in the following way:

(i) choose parameters c~ (k ~ kn, n ~ no);

(ti) R~(Xl'...' xnY :; (3Yl' . . ., Yn) (L(Xl' Yl) & R(X2' Yl)

& L(Yl, Y2) & R(X3' Y2) &. . .

& L(Yn-2, Yn-l) & R(xn, Yn-l)

& L(Yn-l' Yn) & R(c~, Yn) & T(Yn));

(iii) relativize the quantifiers of tp to the domain D.

Let tpl be the formula obtained' from tp in this way. 80 obviously tp ~ tpT and it re-
mains to show that tpl ~ tp holds too. For tfiis purpose we will define an interpreta-
tion J. We will need enough mutually different parameters. But using multidimen-
sional interpretation we can guarantec this even for sentences with a two-point model.
Thus from now till the end of the proof we will assume that this is already done.
(Because our aim is to prove that in the type of tp there is a sentence with a finite
language and this is known for sentences with the lowest type in .A, we can alter-
natively assume that all models of tp are infinite.) Let us define an (no + 2)-dimen-
sional an interpretation J of the language ..Ci" in the language of tp as follows:

(i) choose mutua.lly different(!) parameters b1,..., bno+l' c~ (k ~ kn, n ~ no);
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(ii) for an (no + 2)-dimensional V'ector x of V'ariables "x(i) = a" stands for "a is the
ith coordinate of x"; define:

D(x) = x(no + 2) = bl,
L(x, y) = V [x(no + 2) = bt & y(no + 2) = bt+l & 1\ x(j) = y(j)],

l~i~no j~i
R(x, y) = V ~ [x(no + 2) = bi & y(no + 2) = bt & x(l) = y(i)],

2~i~no+ I
T(y) = V [y(nO + 2) = bn+l &y(n + 1) = c~ &R~(y(I), , y(n))].

k~k.
n~no

Now, since we choose alt parameters mutually different (and, srnce the aboV'e assump-
tion that VJ has only infinite models, it is proV'able from VJ that there exist sufficiently
many different elements), for alt k ~ kn, n ~ no, and for alt V'ectors from domain D
the following holds: ,

R~(xI (1), . . ., xn(I)) = [[R~Y]J (Xl' . . ., xn, ci, . . ., c~:o, bl, . . ., bno~l)'

Hence '!/lI ~ VJ, a:nd we are done.

3.4. Theorem. In each type there is a theory in the language .Cf'.

Proof. For the type t E.,({ choose any countable theory SEt. Let ?JO,?JI, . . . be
the axioms of S. Define O't = ?Jo & . . . &?Jt and VJt = (O't)= (see lemma 3.1). For the
equality in the VJt'swe takethe same symbolforeach i'EW. The theory T = {VJ~ I i E w}

is in thelanguage.Cf' and eV'idently S ~ T. On the other band, c.1early VJ:+I -+ VJ: holds
for alt i E w. Hence for alt r E W, {VJ~, . . ., VJ~} ~ {VJ~}' But also 1j/, ~ VJr ~ O'r ~ S and
so T ~ S holds, and we are done.

3.5. Remark. Using an easy coding we can replace the language oP by a language
with exactly one binary predicate.

§ 4. Some technicallemmas
In this pa,rt we w~ll introduce some notions a,nd we will prove some lemma,s about

them which will turn out to be useful in § 5.

4.1. Let S, T be theories, S with equalit.Y, and let I be a global interpretation of S
in T. Let n be the dimension of I, b1 the domain of rand let MF T be any modelof T..
Consider I with fixed para,meters from M. We shall denote by M~ the structure with
universe (M"í\b1)/=I' where =1 translates the equality. The relations of M~ are the
translations of the predica,tes from S. So M~ F S holds.

4.2. Let S, T, M, I denote the same as in 4.1 and let Autl(M) be the group of all
automorphisms of the model M which preserve the parameters of I. For I e Aut1 (M)
define f: .M~ -+ M~ as follows:

f«Xl'...'X,,») = </(Xl),...,/(x,,».
Srnce I preserves the parameters of I, f preserves all the I -relations (in particula,r
the domain b1) and hence it is an automorphism of structure M~.

4.3. Lemma,. Let (N, <) bea model 01 linear order and x e N. Then for I e Aut(N),
I(x) =1= x implies l(kJ =1= x for each k > O.

Proof. Obvious.
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4.4. Corollary. Let M be any model and lan interpretation of linear order in M.
Let f E Aut1(M), x E "1 be such that for some k ~ 1, x = f(k)(X). Then x = 1 f(x) lwlds.

Proof. Immediate from 4.3.,
4.5. For a theoryT and M a model of'T, let us denote by D"(M) the system of alt

subsets of MR definable with parameters (from MR). DR(M) ,with ordering by inclusion
is a lattice. Letagain S be a theory and I its giobal n-dimensional interpretation in T
with absolute equality (if equality is in S).

4.6. Observation. The lattice D(M~) is embeddable into the lattice DR(M).

Pl:oof. Obvious.
4.1. Corollary. If S is finitely axiomatizable and S ~ Th(w, <), then there exists

a countable model M 1= S such that the lattice D(M) is embeddable into the lattice V(w),
for suitable n.

Proof. Srnce S is finitely axiomatizable, it is also globally interpretable in Th(w, <).
Srnce wR is lexicographically well-ordered, the equality may be translated absolutely.
By 4.6, w~ is the required model.

4.8. Let us consider a structure M and let 2<'" be the set of all finite words on the
alphabet {O, I}. For ~, '/] E 2<'" we define:

~ ~ '/] iff (3e) ~ne ='/]' (n denotes concatenation).

A set A E DR(M) i,s called brealcable iff there exists a function f: 2<'" - DR(M) such
that for every ~, e,:

(i) f(A) = A (A denotes the empty word), (ii) f(~) is infinite,

(iii) f(~nO)f"\f(~nl)=f}, (iv) f(~ne)~f(~).
I

4.9. ObservatiQn. II S, T, M, I are as in 4.5 and D(M~) contains a brealcable set,
then DR(M) too.
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§ 5. Mutual inte~retability of theories 01 order

This part deals with mutual interpretability of .some theories of partial and linear
order. AII theories from 5..1 are in the language {=, <} (" =" the equality).

5.1. In the following theories we assume implicitly the axioms of equality and
"x ~.y" stands for "x = yvx< y".

PO = {(Vx),x < x, (Vx, y, z) (x < y & y < z ~ x < z), (Vx) (3y) x < y};
POS = PO + {(3!x) (Vy) x ~ y,

(Vx) (Vy> x) (3z > x) (Vt > x) (y ~ z & (y ~ t ~ t ~ z)), .

, (Vx)'(Vy < x) (3z < x) (Vt < x) (y ~ z & (y ~ t ~ t ~ z)};

POD = PO + {(Vx) (3y) x> y, (Vx) (Vy> x) (3t) (x < t & t < y)};
, LO = PO + {(Vx,y) (x ~ y v y ~ x};

tos = LO + POS; LOD = LO + POD,
It is well known (see [2], for example) that LOS = Th(w, <) and LOD = Th(Q, <),
where Q are the rational numbers. I
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5.2. The main program of the remaining paragraphs is to prove the validity of the
following diagram (T ~ S denotes T < S, T- - S denotes the incomparability
of T and S, and T S denotes that we do not know the relation):

LOS LOO-.I~~ '
-. '.

>< ..
-- .._LOPO ~ "'..' """

S , _--=-:,-POO

' ~r
PQ

5.3. Lemma. Let M = (Q, <) be a countable model of LOD (i.e. up to an isomor-
phism the rationals). Then for arbitrary natural numbers n, k and for arbitrary
al' . . ., a" E Q the structure (M; al, . . ., a,,) realizes only finitely many n-types of the
language { =, <} V {CI' . . ., Clo} (the Ci'S are new constants).

Proof. For X, 'li E Qn we denote by Xi (resp. y,) the ith coordinate of X (resp~ 'li) and

define
x II fI iff (i) M 1= Xt'~ xJ = Yt ~ YJ (i, i ~ n) and

(ii) M 1= Xt ~ aj = Yt ~ aj (i ~ n, i ~ k).
Now let X, fI be such that ti II fI. Clearly there exists an automorphism I of the structure
(M; a1' . . ., ak) such that l(xJ = Yt for all i ~ n. lt follows immediately that ti, fI
realize the same u-type in (M; a1, . . ., ak)' Now it is sufficient to notice that the
relation II is an equivalence with finitely many blocks.

5.4. Theorem. POS ;i LOD.
Proof. Suppose there is an n-dimensional interpretation of POS in the model

(Q, <) 1= LOD with parameters a1, .'.., ak. Take some 6 E Q" from the domain of
this interpretation. For an. arbitrary Xo from any model M 1= POS it is possible to
construct arbitrarily many different 1-types which are realizable in the structure
(M; xo)' For example we can defme (for r E w):

'Ip,(y, xo) = "y > Xo and there are exactly r element s between Xo and y".

Each such formula 'Ip, is in (M; xo) realized by an other element. So in the structure
(Q; a1' . . ., ak, b1, . . ., bIl) arbitrarily many (n + k)-types should be realizable. This
is a contradiction with 5.3.

5.5. Lemma. Let M be any model 01 POD. Then D(M) contains a breakable se~.

Proof. Each set of the form {x I a < x < b} E D(M), for a < b, i~ infinite. There-
fore it is sufficient to "halve" the interval (a, b).

5.6. Lem.ma. Let (w, <) be the standard model 01 LOS and 'lp1, . . ., 'Ip, be lormulae
with n free variables Xl' . . ., Xn. Then there exists m E w such that the lollowing holds:

wl=(\fx1,...,x,,~m)A'lpt(x1""'x,,) ='lpt(X1 + 1,...,x,,+ 1),
i~,

where x + 1 denotes the successor 01 x.
Proof. Take a model M 1= LOS, M ~ aJ + (w* + w), where w* denotes the inverse

ordering of w (i.e., M is composed from. the natural numbers which are succeded by
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the integers). Let us denote by fthe automorphism of M which preserves the sta,ndard
elements of M (it must) and shifts nonstandard ones to their successors. Let Xl' . . ., Xn
be nonstandard elements of M. The automorphism f maps (Xl'.." Xn) on
(Xl + 1, . . ., Xn + 1) and so these n-tuples realize the same n-type in M. Choose
m EM nonstandard, so if X ~ m, then x is nonstandard. But from this, in particular,
for the formula,e "Pl' . . ., "Pr it follows

M 1= (\lxl' . . ., Xn ~ m) /\ "Pt(Xl' . . ., xn) == "Pt(Xl + 1, . . ., Xli + 1).
j~r

Hence alBa M 1= (3m) (\lx¾,..., xn ~ m) /\ "Pt(Xl'...' xn) == "PJXl + 1,..., xn + 1).
Srnce M == W we are done. j~r

5.7. Corollary. Let for a formula "P(x) with one free variable x, W 1= (\Ix) (3y > X) tj!(Y).

Then alBa W 1= (3y) (\Ix ~ y) "P(x).
5.8. Corolla,ry. POD ;$1 LOS.
Proof. Not only in this proof but m the whole part we use the fact 1.2, i.e. for

proving T ;$" S it is enough to fmd a model M 1= S suc~ that T ;$" Th(M). It follows
from 5.7 immediately that m W there are not two defmable disjoint mfinite sets (in
definitions in W we need not consider parameters because each element of W is in W
definable without parameters). In particular D(w) does not contam a breakable set.
By 5.5 and 4.9 we are done. .

5.9. Becausee w have already used brief "arithmetical" nota,tion (a,s X + 1 for the
successor of x) we continue with this m the following selfexplanatory definition:
For vectors X,ffEWs we write x-ff iff "Xt-Yt=const for i=I,...,s"
(i.e., x - x + 1, (2,3) - (4,5) blit not (2,3) - (4,6), . . .). This is no defmition m-
side ws. We will use this notion m the proof of lemma 5.11.

D f . t f '" ~ s ~ < ~ .ff " < f . 1 "
emeye or"',YEW:X=YI Xt=Yt or~= ,...,s.

Lemma. (a) Let the set A ~ {a} x wn be definable in wn+l for a E w. (b) Let the set
B = {ff E Wn+l I 6 ~ ff & 6 - ff} be definable in wn+l for tj E wn+l. Then both sets A, B
are definable isomorphic in W to definable sets A', B' ~ wn, namely

A' = {xEwnl (a,x)EA}, B' = {xEwnl (3y) (y,x)EB}.

Proof. Obvious.
5.10. Remark. Itfollows from 5.7 and 5.9 that it is not possible m w x n (with the

ustlal ordering) to derme n + 1. disjomt infinite setBo If we derme LOSn = Th(w x n, <),
it follows that LOSn < 1 LOSn+l . But in the lattice ..II evidently all these theories are
in the type ILOSI (actually LOSn ~ 2 LOS1).

5.11. Lem ma. For any n, Dn(w) does not contain a breakable set.
Proof. We will prove this lemma by induction on n. For n = 1 we are (by the

proof of 5.8) done. Suppose that for n the lemma holds, and we prove it for n + 1:
1. Suppose the lemma does not hold for n + 1. Let A E Dn+l(w) be breakable and

f be the fuJiction 2<'" -+ Dn+l(w) from definition 4.8, i.e. f(A) = A, . . . and so on.
2. Let "Pe be the formula which defmes f(~). We defme mlo to be the minimal m from

lemma 5.6 for the formulae "P;, I~I ~ k (I~I denotes the length of ~).
3. We defme the sets K(m) and RJm), i ~ n + 1, by

K(m) = {(Xl'...' Xn+l) I Xj ~ m for all j ~ n + I},Rt(m) = {xEK(m) I Xt = m}. .

So K(m) is a quadrant a,nd URJm) is its border.
,
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4: For ~ E 2<W and i ~ n + I we define a function <~, i): 2<W x {I, . . ., n + I} -+

-. 2<w as follows:

(i) Consider the function g: 2<w -+ Dn(w) which satisfies the following definition:

(Yl'...' Yn) Eg(1]) iff (3x EWn+l) (x,..., (Yl"'..' Yl-l, mlel' Yl,.." Yn)

& X E RI(mle"1fI) & x E 1(~"1]».

Observe that, since the mk's are fixed, the right-hand formula is, in fact, a definition
inside w. So g(1]) E Dn(w).

(ii) By induction hypothesis no set from D~(w) is breakable, so g does not satisfy
the conditions from 4.8 for breaking g(A). But g evidently satisfies (iii), (iv) of 4.8
(because I satisfies them). Hence condition (ii) of 4.8 must necessarily fail, i.e., there
exÍsts 1] such that g(1]) is finite.

(iii) Define <~, i) = ~"1], where 1] is minimal with respect to the lexicographical
ordering of 2<w such that g(1]) is finite.

5.Wedefine~jbY~o=A, ~1+l=<~I,.i+I) (i~no).
By the definition of the function <~, i) we have I(~l) ~ I(~l+l)' and I(~J r'\ Rl(miell)

is finite.

6. By the conclusion of 5 the set B = I(~n+l) satisfies the condition:

(Vi) B r'\ RI(mle.+11) is finite.

7. By definition 2 of mk now the following must hold:

(VX1, . . ., Xn+l ~ ml;.+11) (Xl' . . ., Xn+l) E B = (Xl +.1, . . ., Xn+l + I) E B.
So the set B r'\ K(mle.+11) is the union of finitely many (see 6) seta of the form

(a) {ii E K(mle.+11) Iii"'" x}, for some X E URI(ml;.+11)'
i

8. The set B \ K(mle.+11) is a part of the union of finitely many seta of the form

(b) \ii EWn+ll Yl= r}, for some i ~ n + I and r < mle.+11.

9. By lemma 5.9 each definable set of the form (a) or (b) is definable isomorphic to
a definable subset of wn and hence it is not (by induction hypothesis) breakable.

10. It is not difficult to soo that a finite disjoint union of unbreakable seta is un-
breakable, and also neither of its parta is breakable.

II. From this it follows that B = I(~n+l) is unbreakable. This js a contradiction

with assumption J.
5.12. Theorem. POD ~ LOS.

Proof. Suppose that I is an interpretation of POD in LOS and so, in particular,

in w. Because w is well-ordered, it is sufficient to consider I with absolute equality.
Further, because POD is finite, I is global. By 5.5, D(w~OD) contains a breakable set

ánd hence, by 4.9, Dn(w) too. This is a contradiction to lemma 5.11.

5.13. Lemma. II Tis a theory, then LO ~ T implies LO ~l T.

Altough this lemma is not a consequence of a "similar" MYCIELSKI'S lemma (see
[1], 2. vi), but the idea of the proof is in fact identical. Therefore we omit the proof.~
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5.14. Theorem. LO i pos.
Proof. The proof of this theorem is rather long and therefore we will divide it into

claims :
1. Let N be a the structure (2<';'; ", ~, A, -), where the reduct (2<0); ", ~) is

isomorphic to the structure from 4.8, ; A 1} denotes the ~ -meet of ;, 1} and N 1= ; - 1}

iff 1;1 = 11}1. ,

2. We observe that N 1= (V;) (V1) ~ ~) (~e) (~ - e & ; A e = 1}).
3. We fix any proper elementary extension M of N, i.e. N -< M.
4. Let; E M be a nonstandard element of M. Then there exists an automorphism

{E Aut (M) such that (i) 1.(;) = ;"1, (ò) 1.(1}) == 1} for all1} such that ; A 1} E N.
Proof. (a) Suppose that ; is a sequence of l's (i.e. (V1) < ;) 1}"1 ~ ;). Each element

e EM can be written uniquely as (; A e)"e. Now we define the function 1.1 as follows
( e ' if ;AeEN,

1.1(e) = {; A e)"l"e otherwise.

Evidently 1.1 E Aut(M).
(b) Clearly, for; general, there exists an automorphism g E Au.t(M) such that

g(;"l) is a sequence of l's. Now, using 1.1 from (a) (constructed for g(;"l)), we define
I. = g-11.1g. Again I.EAut(M) and I. satisfiestherequired conditions. Hencewearedone.

5. Let 1 be a 1-dimensional interpretation of LO in POS and let us fix some para-
meters of 1 in N. Since N -< M, these parameters are also the parameters of 1 in M.
Let = 1 interpret =, bl be the domain and < [interpret <.

6. We take alt words .80". .,.82"-1 of length n, where n - 1 is the maximallength
of the parameters of 1. On at least one of the domains {; I ; 5?; .8J the preorder <I
is unbounded. So we can further suppose that bl ~ {; I ; 5?; .80} and no parameter

of1isinbl.
7. Evidently for ;,1} EN we have: if ;,1] 5?;.80 and ; - 1}, then there exists an

automorphism I. E Aut/(N) such that 1.(;) = 1} and 1.<2)(;) = ;.
8. By 4.4 for such an I. necessarily 1.(;) = I;' and from this (by 7) follows

N 1= (V;,1) 5?; .80) (; - 1] -+ (; E bl = 1) E bl & (;, 1) E bl -+ ; = ITJ)).
9. Since the domaiIÍ bl is necessarily infinite (and N -< M), for som.e nonstandard

; o EM, M 1= ;0 E b I' Further' let; o be such a fixed nonstandard element of M.
10. We consider the formula ",lJ(1}) defined by (3e E b/) (;0 A e = TJ & ;0 = 1 e).

So, in particular, M 1= ",lJ(1}) -+ 1} ~ ;0' Since in N each definable (and surely nondefin.
able too) subset has a ~-minimum so it does in M. Thus let 1]0 be a ~-minimum of
{1}I",lJ)1})}inM. '

11. We prove that 1}0 = .80' Otherwise, since clearly 1}0 5?; .80' there exists a ~.
predecessor bo of 1}0 such that bo 5?; .80. By 2, 8 and from N -< M there exists a eo E M
such that M 1= ;0 A eo = bo &;0 =1 eo, and hence M 1= ",lJ(bo), too. But this is a

contradiction with the choice of 1}0.
12. Now let éo be such thatM 1= ;0 A eo = .80 & ;0 = 1 eo. .

For b 5?; eo also ;0 A b = Po. By 4 then there exists an automorphism I. E Aut/(M:
such that 1.(;0) = ;0 and I.(b) = b"l. H~nce it holds

M 1= (Vb 5?; eo) (;0 =[ b = ;0 =1 b"l) & (b E bl = b"l E b/)),

and therefore M 1= (3;, e E b/) (Vb 5?; e) ((; =1 b ~ ; =1 b"l) & (b Ebl =, b"l E b/).
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13. Again from N -< M, the last for;mula from 12 holds in N. Because 8 it means
for N that there exists an n such that for all ;,1] EN: if 1;1, 11]1 ~ n, then
N to (;,1] E br ~ ; = r 1].).

14. We are done, because this is a éontradiciion with the infiniteness of N[o, i.e.
br/ = r .

5.15. Theorem. The diagram 01 5.2 is correct.

The proof follows easily from 5.4, 5.12 and 5.14.

5.16. In addition to ~.15 a. little more holds for LO:
'Theorem. ILOI = 11.0SI A ILODI.

Proof. From 5.15 it is clear that ILOI ~ ILOSI A ILODI. Hence we must prove
the inverse relation. To prove this, by 1.2 and 1.3, it is sufficient to interpret in each
model M F LO either LOS or LOD. Let M to LO. Wé call a closed interval <u, v)
isolated iff each its interior points is isolated in <u, v) (in particular each interval
<a, a) is isolated). A closed isolated interval which is maxima.l (with respect to in-
clusion) with this property will be called an MOl-interval (maximal closed isolated
interval). There are two possibilities:

1. MF "each closed isolated interval is contained in an MOI-intervaJ".

The property of x, y: "<x, y) is an MOl-interval" can be easily expressed in the lan-
guage of linear order and clearly each MOl-interval can be represented by its left end-
point. Now we can define a 1-dimensional interpretation I of LOD in Th(M) by

br(x) == "x is the left endpoint of an MOl-interval ", x < r Y == x < Y.

It is easy to sec that the assumption of this paragraph implies M to LODr.

2. M to "there exists a closed isolated interval <a, b) which is not contained in any
MOl-interval ".

Let, for exa.mple, there do not exist the right endpoint for such an MOl-interval. Then
we define a 1-dimensional interpretation J of LOS in Th(M) as follows:

,
b,(x) == 'ob ~ x & the interval <b, x) is isolated ", x <, Y == X < y.

Again it is clear that M to LOSJ. Thus we are done.

5.17. In this last section of this paragraph we will prove a lemma which will allow
us to use the preceding theorem for a small contribution to the problem whether LOS

isprime.
Lemma. Let the types a, b E.-II be incomparable and the type c = a A b be join-irreduc-

ible. II t, s < a are types such tkal s v t = a, then (i) il s ~ c (resp. t ~ c), then s (r~sp. t)
is not meet-irreducible and (ii) s ~ c or t ~ c.

Proof. (i) Let s ~ c and s be meet-irreducible. Then s ~ a A band so s ~ a or
s ~ b. Because s < a we have s ~ b. But from this follows a > b, which is a contra-
diction to the incomparability of a, b. (ii) By s v t = a we ha.ve a A b = (s v t) A b =
= (s A b) v (t A b) = c. Since c is join-irreducible we have, for example, s A b = c. But
then immedia.tely s ~ c. We are done.

Now we can apply this lemma to a = ILOS!" b"= ILODI and c = ILOI (by [1] LOis prime, see alBa § O). '
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§ 6. Problems

In this last p~ragraph we want to call attention to a few problems.

6.1. Results 1.5 from [4] about compact types, 2.2 about coprime types and paper
[5] about prime types promise that more lattice-theoretically defined properties of
types have also their "logical" characterizations. In particul~r: which types are co-

compact1
6.2. Examples of compact prime types (ILO!, IIAol., IGBI) or cocompact coprime

types (if they exist?) prove that in .,I( there are intervals of length 1. But no explicit
example is known!

6.3. With regard to 6.2 we ask: are some of the intervals in the diagram 5.2 of
length I? How do the intervals of the types between ILOI and ILOSI, IPOI and
ILOI, . . .. look like?

6.4. To the "perfection" of the diagram 5.2 it remains to prove that POD < LOD
and that LO, POD are incomparable. Is it trne?

6.5. Diagram 5.2 suggests that the position of LOS and LOD in trus part of the
lattice .,I( should be in a sense "symmetrical ". So it is reasonable to ask: is LOD
prime? (In fact, if one considers only l-dimensional interpretations, then it is so. Soo

[5].)
6.6. Many questions about the structure of the lower part of .,I( "near" theories of

order are open. For example: how wide is the lattice .,I( bere? (In [4] J. MYCIELSKI
proved, using R. MONTAGUE'S work [3], that in.,l( there exists an antichain of length 2"0.
But it follows from [3] that this antichain is at least above the type of IAo.)

6.7. Which are the differences between .,I( and the lattice of l-dimensional inter-
pretation "ne~r" theories m order? Remark: 5.10 proves that tbere are some.
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