
Substitutions into propositional tautologies

Jan Kraj́ıček∗†‡

Isaac Newton Institute, Cambridge
krajicek@maths.ox.ac.uk

Abstract

We prove that there is a polynomial time substitution (y1, . . . , yn) :=
g(x1, . . . , xk) with k << n such that whenever the substitution in-
stance A(g(x1, . . . , xk)) of a 3DNF formula A(y1, . . . , yn) has a short
resolution proof it follows that A(y1, . . . , yn) is a tautology. The qual-
ification “short” depends on the parameters k and n.

Let A(y) be a 3DNF propositional formula in n variables y = (y1, . . . , yn)
and assume that we want to prove that A(y) is a tautology. By substituting
y := g(x) with x = (x1, . . . , xk) we get formula A(g(x)) which is, as long as
g is computable in (non-uniform) time nO(1), expressible as 3DNF of size
nO(1). The formula uses nO(1) auxiliary variables z besides variables x but
only x are essential: We know apriori (and can witness by a polynomial
time constructible resolution proof) that any truth assignment satisfying
¬A(g(x1, . . . , xk)) would be determined already by its values at x1, . . . , xk.

If A(y) is a tautology, so is A(g(x)). In this paper we note that the
emerging theory of proof complexity generators (Section 1) provides a func-
tion g with k << n for which a form of inverse also holds (the precise
statement is in Section 2):

For the following choices of parameters:

• k = nδ and s = 2nε
, for any δ > 0 there is ε = ε(δ) > 0, or

∗Keywords: computational complexity, proof complexity, automated theorem proving.
†On leave from Mathematical Institute, Academy of Sciences and Faculty of Mathe-

matics and Physics, Charles University, Prague.
‡The paper was written while at the Isaac Newton Institute in Cambridge (Logic and

Algorithms program), supported by EPSRC grant N09176. Also supported in part by
grants A1019401, AV0Z10190503, MSM0021620839, 201/05/0124, and LC505.

1

• k = log(n)c and s = nlog(n)µ
, for c > 1, µ > 0 specific constants,

it holds:
There is a function g computable in time nO(1) extending k bits to n bits

such that whenever A(g(x)) is a tautology and provable by a resolution proof
of size at most s then A(y) is a tautology too.

Unless you are an ardent optimist you cannot hope to improve the bound
to s so that it would allow an exhaustive search over {0, 1}k. In fact, it
follows that unless P = NP no automated provers (or SAT solvers) that are
based on DPLL procedure [4, 5], even augmented by clause learning [16] or

restarts of the procedure [6] can run in time subexponential (2ko(1)
) in the

number of essential variables, as their computations yield resolution proofs
of size polynomial in the time [2], cf. Section 3. However, for the particular
function g we use, the exhaustive search yields something (assuming the
existence of strong one-way functions): If A(g(x)) is a tautology then there
are at most 2n/nω(1) falsifying truth assignments to A(y) (Section 3). This
is a consequence of results of Razborov and Rudich [15].

Notation: x, y, z, . . . and a, b, . . . are tuples of variables and of bits respec-
tively, the individual variables or bits being denoted xi, yj , . . . and ai, bj , . . .,
respectively. [n] is {1, . . . , n}.

1 Proof complexity generators

A proof complexity generator is any function g : {0, 1}∗ → {0, 1}∗ given
by a family of circuits1 {Ck}k, each Ck computing function gk : {0, 1}k →
{0, 1}n(k) for some injective function n(k) > k. (We want injectivity of n(k)
so that any string is in the range of at most one gk.) We assume that circuits
Ck have size n(k)O(1). Functions g of interest are those for which it is hard
to prove that any particular string from {0, 1}n(k) is outside of the range of
gk. This can be formalized as follows.

Assume m(k) is the size of Ck. The set of τ -formulas corresponding to
Ck is parameterized by b ∈ {0, 1}n(k) \ Rng(gk). Given such a b, construct
propositional formula τ(Ck)b (denoted simply τ(g)b when Cks are canonical)
as follows: The atoms of τ(Ck)b are x1, . . . , xk for bits of an input x ∈
{0, 1}k and auxiliary atoms z1, . . . , zm(k) for bit values of subcircuits of Ck

determined by the computation of Ck on x. The formula expresses in a

1In general we could allow functions computable in NTime(n(k)O(1))/poly ∩

coNTime(n(k)O(1))/poly.

2

DNF that if zj’s are correctly computed as in Ck with input x then the
output Ck(x) differs from b. The size of τ(Ck)b is proportional to m(k).
The formula is a tautology as b /∈ Rng(g).

The τ -formulas have been defined in [8] and independently in [1], and
their theory is being developed2. We now recall only few facts we shall use
later.

The next definition formalizes the concept of “hard to prove” in two
ways; the first one follows [14], the second one is from [10]. We apply
these concepts only to resolution but they are well-defined for an arbitrary
propositional proof system in the sense of [3].

Definition 1.1 Let s(k) ≥ 1 be a function, and let g = {gk}k be a function
as above.

• Function g is s(k)-hard for resolution if any formula τ(Ck)b, b ∈
{0, 1}n(k) \ Rng(g), requires resolution proofs of size at least s(k).

• g is s(k)-iterable for resolution iff all disjunctions of the form

τ(Ck)B1(x
1) ∨ . . . ∨ τ(Ck)Bt(x

1, . . . , xt)

require resolution proofs of size at least s(k). Here t ≥ 1 is arbitrary,
and B1, . . . , Bt are circuits with n(k) output bits such that:

– xi are disjoint k-tuples of atoms, for i ≤ t.

– B1 has no inputs, and inputs to Bi are among x1, . . . , xi−1, for
i ≤ t.

– Circuits B1, . . . , Bt are just substitutions of variables and con-
stants for variables.

Note that the s(k)-iterability implies the s(k)-hardness, the latter being the
iterability condition with t = 1. (The proof of Theorem 2.1 uses only hard-
ness of the function but we need iterability to get a hard function computable
in uniform polynomial time in Corollary 1.5.)

The disjunction from the definition of the iterability can be informally
interpreted as follows. Assume that it is a tautology. Then it may be
that already the first disjunct τ(Ck)B1(x

1) is a tautology, meaning that the
string B1 is outside of the range of gk. If not, and a1 ∈ {0, 1}k is such that

2[9, 13, 10, 14, 11, 12]; the reader may want to read the introductions to [10] or [14],
to learn about the main ideas.

3

gk(a
1) = B1, then B2(a

1) is the next candidate for a string being outside
of the range of gk. If that fails (and a2 is a witness) then we move on to
B3(a

1, a2), etc.. The fact that the disjunction is a tautology means that in
this process we find a string outside of the range of gk in at most t rounds.

Exponentially hard functions for resolution do exists. A P/poly-function,
a linear map over F2 defined by a sparse matrix with a suitable “expan-
sion” property, 2kΩ(1)

-hard for resolution was constructed in [10, Thm.4.2].
Razborov [14, Thms.2.10,2.20] gave an independent construction and he no-
ticed that any proof of hardness utilising only the expansion property of a
matrix implies, in fact, 2kΩ(1)

-iterability as well. We use a weaker statement
than what is actually proved in [14].

Theorem 1.2 (Razborov[14]) There exists a function g = {gw}w, with

gw : {0, 1}w → {0, 1}w2
, computed by size O(w3) circuits, that is 2wΩ(1)

-
iterable for resolution.

However, what we want is a function computed by a uniform algorithm
(it is not known at present how to construct explicitly the matrices used in
[10, 14]) in order that our substitution is polynomial time computable too.
Fortunately, we can get a uniform function from Theorem 1.2, using a result
from [10].

Definition 1.3 Let m ≥ ` ≥ 1. The truth table function ttm,` takes as
input m2 bits describing3 a size ≤ m circuit C with ` inputs, and outputs 2`

bits: the truth table of the function computed by C.
ttm,` is, by definition, equal to zero at inputs that do not encode a size

≤ m circuit with ` inputs.

Theorem 1.4 (Kraj́ıček[10]) Assume that there exists a P/poly-function

g = {gw}w, with gw : {0, 1}w → {0, 1}w2
, that is 2wΩ(1)

-iterable for resolu-
tion.

Then:

1. For any 1 > δ > 0, the truth table function tt2δ`,` is 22Ω(δ`)
-iterable for

resolution.

2. There is a constant c ≥ 1 such that the truth table function tt`c,` is

2`1+Ω(1)
-iterable for resolution.

3O(m log(m)) bits would suffice but we want simple formulas.

4

The theorem (see [10, Thm.4.2]) is proved by iterating the circuit com-
puting gw along an w-ary tree of depth t, suitable t. The two statements
stated explicitly are just two extreme choices of parameters, but the proof
yields an explicit trade-off for a range of parameters. We state this without
repeating the construction from [10].

Let c ≥ 1 and ε > 0 be arbitrary constants. Assume that there is a
function g = {gw}w, with gw : {0, }w → {0, 1}w2

, computed by size wc

circuits and that is 2wε
-iterable for resolution.

Then the truth function ttm,` is s-iterable for the following choices of
parameters, with t ≥ 1 arbitrary:

1. m := wc · t,

2. ` := t · log(w),

3. s := 2wε−t log(w).

Corollary 1.5 1. For every c > 1 there are ε > 0 and a polynomial time
computable function g = {gk}k ,

gk : {0, 1}k → {0, 1}kc

,

that is 2kε
-hard for resolution.

2. There are ε > δ > 0 and a polynomial time computable function g =
{gk}k ,

gk : {0, 1}k → {0, 1}2kδ

,

that is 2kε
-hard for resolution.

2 The substitution

Theorem 2.1 1. For any δ > 0 there are µ > 0 and a polynomial time
computable function g = {gk}k , extending k = nδ bits to n = n(k)
bits such that for any 3DNF formula A(y), y = (y1, . . . , yn), it holds:

• If A(gk(x)) has a resolution proof of size at most 2nµ
then A(y)

is a tautology.

2. There are c > 1, µ > 0 and a polynomial time computable function
g = {gk}k , extending k = log(n)c bits to n = n(k) bits such that for
any 3DNF formula A(y), y = (y1, . . . , yn), it holds:

5

• If A(gk(x)) has a resolution proof of size at most nlog(n)µ
then

A(y) is a tautology.

Proof :
For Part 1. let δ > 0 be arbitrary. Put c := δ−1, and take ε > 0 and the

polynomial time function g = {gk}k guaranteed by Corollary 1.5 (Part 1).

Hence gk : {0, 1}nδ
→ {0, 1}n, for k = nδ.

Assume A(y) is not a tautology and let b ∈ {0, 1}n is a falsifying assign-
ment. Then τ(g)b can be proved in resolution by combining a size s proof of
A(g(x)) with a size nO(1) proof of ¬A(b). By the 2kε

-hardness of g it must
hold that

s + nO(1) ≥ 2nδε

.

Hence s must be at least 2nµ
, for suitable µ < δε.

Part 2 is proved analogously, using Corollary 1.5 (Part 2).

q.e.d.

Note that if g(x) is a hard proof complexity generator, so is function
(x, z) → (g(x), z). Hence we may apply the substitutions from the theorem
only to some variables yi.

3 Remarks

We conclude by some remarks. First we substantiate the comment about
automated theorem provers and SAT-solvers from the introduction.

Let B(x, z) be the formula A(g(x)) with the auxiliary variables z also
displayed. The k variables x are essential in B in the sense that there is a
O(|B|) size resolution proof of

B(x, z) ∨ B(x, w) ∨ zj ≡ wj

for all j. (In fact, such a proof is easily constructible once we have the
algorithm for g.) Assume that it would be always possible to find a resolu-
tion proof of a formula whose size would be subexponential in the minimal
number of essential variables and polynomial in the size of the formula; in
our case 2ko(1)

|A(g(x))|O(1).
Taking g from Theorem 2.1 (part 2) this would get a size |A(g)|O(1)

proof of A(g(x)), which is bellow the required upper bound nlog(n)µ
. Hence

we could interpret this as a new proof system Rg in the sense of Cook-
Reckhow [3]: A proof in Rg of A(y) is either a resolution proof or a size

6

|A(g(x))|c (specific c) proof of A(g(x)). This proof system would allow for
polynomial size proofs of all tautologies, hence NP = coNP.

The equality NP = coNP followed only from assuming the existence
of short resolution proofs. But automated provers (SAT-solvers) actually
construct the proofs, or a proof can be constructed by a polynomial time
algorithm from the description of any particular successful computation.
Hence the existence of automated provers (SAT-solvers) running in time
subexponential in the number of essential variables implies even P = NP
(or NP ⊆ BPP if the prover is randomised).

Our second remark concerns the exhaustive search; in other words, what
do we know about A(y) if we only know that A(g(x)) is a tautology but we
do not have a short proof of that fact.

Take for g the function from Theorem 2.1 (Part 1.), or any ttm(`),` with

m(`) = `ω(1). Let n := 2`, and interpret strings b ∈ {0, 1}n as truth tables
of boolean functions in ` variables. Hence b /∈ Rng(g) implies that b is not
computable by a circuit of size `O(1).

Assume A(g(x)) is a tautology while A(y) is not. Define set C ⊆ {0, 1}n

by:
C := {b ∈ {0, 1}n | ¬A(b)} .

Then it satisfies:

(1) C is in P/poly.

(2) b ∈ C implies that b is not computable by a size `O(1) circuit (i.e. b is
not in P/poly).

Razborov and Rudich [15] defined the concept of a P/poly-natural proof
against P/poly. It is a P/poly subset C of {0, 1}n satisfying condition (2)
above, and also condition

(3) The cardinality of C is at least 2n/nc, some c ≥ 1.

They proved a remarkable theorem (see [15]) that no such set exists, unless
strong pseudo-random number generators do not exists (or, equivalently,
strong one-way function do not exists).

In our situation this implies that (under the same assumption) there can
be at most 2n/nω(1) assignments falsifying A(y).

Let me conclude with an open problem: Can the substitution speed-up
proofs more than polynomially? That is, are there formulas A(y) having

7

long resolution proofs but A(g(x)) having short resolution proofs? In yet
another words, does R simulate the system Rg defined earlier?

Acknowledgements: I am indebted to Antonina Kolokolova (Simon Fraser
U.) for discussions on related topics. I thank Klas Markström (Umea) for ex-
plaining me a few facts about automated theorem provers and SAT-solvers,
and to Pavel Pudlák (Prague) for comments on the draft of the paper.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
Pseudorandom generators in propositional proof complexity, Electronic
Colloquium on Computational Complexity, Rep. No.23, (2000). Ext.
abstract in: Proc. of the 41st Annual Symp. on Foundation of Computer
Science, (2000), pp.43-53.

[2] P. Beame, H. Kautz, and A. Sabharwal, Towards Understanding and
Harnessing the Potential of Clause Learning, Journal of Artificial In-
telligence Research (JAIR), vol. 22, (2004), pp.319-351.

[3] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional
proof systems, J. Symbolic Logic,44(1), (1979), pp.36-50.

[4] M. Davis and H. Putnam, A Computing Procedure for Quantification
Theory, Journal of the ACM, 7(1), (1960), pp.201-215.

[5] M. Davis, G. Logemann, and D. Loveland, A Machine Program for
Theorem Proving, Communications of the ACM, 5(7), (1962), pp.394-
397.

[6] C. P.Gomes, B. Selman, and H. Kautz, Boosting combinatorial search
through randomization, In: 15th AAAI, (1998), pp.431-437.

[7] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity
theory, Encyclopedia of Mathematics and Its Applications, Vol. 60,
Cambridge University Press, (1995).

[8] J. Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathemat-
icae, Vol.170(1-3), (2001), pp.123-140.

[9] J. Kraj́ıček, Tautologies from pseudo-random generators, Bulletin of
Symbolic Logic, 7(2), (2001), pp.197-212.

8

[10] J. Kraj́ıček, Dual weak pigeonhole principle, pseudo-surjective func-
tions, and provability of circuit lower bounds, Journal of Symbolic Logic,
69(1), (2004), pp.265-286.

[11] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathe-
maticae, 182, (2004), pp.181-192.

[12] J. Kraj́ıček, Structured pigeonhole principle, search problems and hard
tautologies, J. of Symbolic Logic, 70(2), (2005), pp.619-630.

[13] A. A. Razborov, Resolution lower bounds for perfect matching prin-
ciples, in: Proc. of the 17th IEEE Conf. on Computational Complexity,
(2002), pp.29-38.

[14] A. A. Razborov, Pseudorandom generators hard for k-DNF resolu-
tion and polynomial calculus resolution, preprint, (May’03).

[15] A. A.Razborov and S. Rudich, Natural proofs, Journal of Computer
and System Sciences, 55, (1997), pp.24-35.

[16] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, Efficient
conflict driven learning in a boolean satisfiability solver, Proc. of the
2001 IEEE/ACM international conference on Computer-aided design,
(2001), pp.279-285.

9

