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Abstract. This contribution deals with systems of linear generalized linear differential
equations of the form

x(t) = x̃ +
∫ t

a

d[A(s)] x(s) + g(t)− g(a), t ∈ [a, b],

where −∞ < a < b < ∞, A is an n × n -complex matrix valued function, g is an
n -complex vector valued function, A and g have bounded variation on [a, b]. The
integrals are understood in the Kurzweil-Stieltjes sense.

Our aim is to present some new results on continuous dependence of solutions to
linear generalized differential equations on parameters and initial data. In particular, we
generalize in several aspects the known result by Ashordia. Our main goal consists in
a more general notion of a solution to the given system. In particular, neither g nor
x need not be of bounded variation on [a, b] and, in general, they can be regulated
functions.

The convergence effects studied in this contribution are, in some sense, very close to
those described by Kurzweil and called by him R-emphatic convergence.

AMS Subject Classification. 34A37, 45A05, 34A30.

1 . Introduction

Starting with Kurzweil [10], generalized differential equations have been
extensively studied by many authors, like e.g. Schwabik, Tvrdý and Ve-
jvoda [17]–[19], [21]–[23], Ashordia [2], [3], Fraňková [5], [6]. Closely related
and fundamental are also the contributions by Hildebrandt [8] and Hönig [9],
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In particular, see the monographs [19], [17], [22] and [9] and the references
therein. Moreover, during several recent decades, the interest in their special
cases like equations with impulses or discrete systems increased considerably,
cf. e.g. monographs [13], [25], [4], [16] or [1].

The importance of generalized linear differential equations with regulated
solutions consists in the fact that they enable us to treat in a unified way
both continuous and discrete systems and, in addition, also systems with fast
oscillating data.

In the paper we keep the following notation:

As usual, N is the set of natural numbers (N = {1, 2, . . . }) and C
stands for the set of complex numbers. Cm×n is the space of complex
matrices of the type m× n, Cn = Cn×1 and C1 = C. For a matrix

A = (ai,j)i=1,2,...,m
j=1,2,...,n

∈Cm×n,

its norm |A| is defined by

|A| = max
j=1,2,...,n

m∑
i=1

|ai,j|.

In particular, we have |x| = ∑n
i=1 |xi| for x ∈ Cn. The symbols I and 0

stand respectively for the identity and the zero matrix of the proper type.
For an n×n -matrix A , det [A] denotes its determinant.

If −∞ < a < b < ∞, then [a, b] and (a, b) denote the corresponding
closed and open intervals, respectively. Furthermore, [a, b) and (a, b] are
the corresponding half-open intervals. When the intervals [a, a) and (b, b]
occur, they are understood to be empty.

For an arbitrary function F : [a, b] → Cm×n we set

‖F‖∞ = sup{|F (t)| : t ∈ [a, b]}.
The set D = {α0, α1, . . . , αm} ⊂ [a, b], m ∈ N, is called a subdivision

of the interval [a, b], if

a = α0 <α1 < . . . < αm = b.

The set of all subdivisions of the interval [a, b] is denoted by D[a, b]. For
D = {α0, α1, . . . , αm}∈D[a, b], we denote

|D| = max
`=1,2,...,m

(α` − α`−1).
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If, for each t ∈ [a, b) and s ∈ (a, b], the function F : [a, b] → Cm×n

possesses the limits

F (t+) := lim
τ→t

F (τ), F (s−) := lim
τ→s

F (τ),

we say that the function F is regulated on the interval [a, b]. The set of all
m×n -matrix valued functions regulated on the interval [a, b] is denoted by
Gm×n[a, b]. Furthermore, we denote

∆+F (t) = F (t+)− F (t) for t ∈ [a, b), ∆+F (b) = 0,

∆−F (s) = F (s)− F (s−) for s ∈ (a, b], ∆−F (a) = 0

and

∆F (t) = F (t+)− F (t−) for t ∈ (a, b).

It is known that, for each F ∈Gm×n[a, b], the set of all points of its discon-
tinuity on the interval [a, b] is at most countable. Moreover, for each ε > 0
there are at most finitely many points t∈ [a, b) such that |∆+F (t)| ≥ ε and
at most finitely many points s∈ [a, b] such that |∆−F (s)| ≥ ε. Clearly, each
function regulated on [a, b] is bounded on [a, b], i.e. ‖F‖∞ <∞ for all
F ∈Gm×n[a, b].

For a function F : [a, b] → Cm×n we denote by varb
a F its variation over

[a, b]. We say that F has a bounded variation on [a, b] if varb
a F <∞.

The set of m×n - complex matrix valued functions of bounded variation
on [a, b] is denoted by BV m×n[a, b] and ‖F‖BV = |F (a)| + varb

a F. By
ACm×n[a, b] we denote the set of functions F : [a, b] → Cm×n such that
each component fij, i = 1, . . . ,m, j = 1, . . . , n, of F is absolutely con-
tinuous on the interval [a, b]. Similarly, Cm×n[a, b] stands for the set of
functions F : [a, b] → Cm×n that are continuous on [a, b]. Analogously
to the spaces of functions of bounded variation, ACn[a, b] = ACn×1[a, b],
Gn[a, b] = Gn×1[a, b] and Cn[a, b] = Cn×1[a, b]. Obviously,

ACm×n[a, b]⊂BV m×n[a, b] ⊂ Gm×n[a, b] and Cm×n[a, b] ⊂ Gm×n[a, b].

Finally, a function f : [a, b] → C is called a finite step function on [a, b] if
there is a subdivision {α0, α1, . . . , αm}∈D[a, b] of [a, b] such that f is
constant on every open interval (αj−1, αj), j = 1, 2, . . . , m. The set of all
finite step functions on [a, b] is denoted by S[a, b], Sm×n[a, b] is the set of
all m×n -matrix valued functions whose arguments are finite step functions
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and Sn×1[a, b] = Sn[a, b]. It is known that the set Sm×n[a, b] is dense in
Gm×n[a, b] with respect to the supremum norm, i.e.

{
for each ε > 0 and each F ∈ Gm×n[a, b]

there is an F̃ ∈ S m×n[a, b] such that ‖F − F̃‖∞ < ε.
(1.1)

The integrals which occur in this paper are the Perron-Stieltjes ones.
For the original definition, see A.J. Ward [24] or S. Saks [15]. We use the
equivalent summation definition due to J. Kurzweil [10] (cf. also e.g. [12] or
[19]). We call this integral the Kurzweil-Stieltjes integral, in short the KS-
integral. For the reader’s convenience, let us recall the definition of the
KS-integral.

Let −∞<a < b<∞. For a given m∈N, a division D of the integral
[a, b], D = {α0, α1, . . . , αm}∈D[a, b] and ξ = (ξ1, ξ2, . . . , ξm)∈ [a, b]m, the
couple P = (D, ξ) is called a partition of [a, b] if

αj−1 ≤ ξj ≤ αj for j = 1, 2, . . . , m.

The set of all partitions of the interval [a, b] is denoted by P[a, b].

An arbitrary positive valued function δ : [a, b] → (0,∞) is called a gauge
on [a, b]. Given a gauge δ on [a, b], the partition

P = (D, ξ) =
({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)

) ∈ P[a, b]

is said to be δ -fine, if

[αj−1, αj] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , m.

The set of all δ -fine partitions of [a, b] is denoted by A (δ; [a, b]).

For functions f, g : [a, b] → C and a partition P ∈ P[a, b],

P = ({α0, α1, . . . , αm}, (ξ1, ξ2, . . . , ξm)) ,

we define

Σ(f ∆g; P ) =
m∑

i=1

f(ξi) [g(αi)− g(αi−1)].

We say that I ∈ C is the KS-integral of f with respect to g from a to b
if 




for each ε > 0 there is a gauge δ on [a, b] such that

|I − Σ(f ∆g; P )| < ε for all P ∈ A (δ; [a, b]).
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In such a case we write

I =

∫ b

a

f d[g] or I =

∫ b

a

f(t) d[g(t)].

It is well known that the KS-integral
∫ b

a
f d[g] exists provided f ∈ G[a, b]

and g ∈ BV [a, b]. Taking into account [22, Theorem 2.3.8], we can formulate
the following fundamental assertion.

1.1. Theorem. If f, g ∈ G[a, b] and at least one of the functions f, g has

a bounded variation on [a, b], then the integral
∫ b

a
f d[g] exists. Further-

more,

∣∣∣
∫ b

a

f d[g]
∣∣∣≤ 2

(|f(a)|+ varb
a f

) ‖g‖∞ if f ∈BV [a, b] and g ∈G[a, b],

(1.2)

and∣∣∣
∫ b

a

f d[g]
∣∣∣ ≤ ‖f‖∞ varb

ag if f ∈G[a, b] and g ∈BV [a, b].

(1.3)

Furthermore, if f ∈ BV [a, b] and g, gk ∈ G[a, b] for k ∈ N, then

lim
k→∞

‖gk − g‖∞ = 0 implies lim
k→∞

∥∥∥∥
∫ t

a

f d[gk − g]

∥∥∥∥
∞

= 0.

Further basic properties of the Perron-Stieltjes integral with respect to scalar
regulated functions were described in [20] (see also [22]).

Given an m×q -matrix valued function F and an q×n -matrix valued
function G defined on [a, b] and such that all the integrals

∫ b

a

fi,k(t) d[gk,j(t)] (i = 1, 2, . . . , m ; k = 1, 2, . . . , q; j = 1, 2, . . . , n)

exist (i.e. they have finite values), the symbol
∫ b

a

F (t) d[G(t)] (or more simply

∫ b

a

F d[G])

stands for the p× n -matrix with the entries

q∑

k=1

∫ b

a

fi,k d[gk,j], i = 1, 2, . . . , m , j = 1, 2, . . . , n.
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The extension of the results obtained in [20] or [22] for scalar real valued
functions to complex vector valued or matrix valued functions is obvious
and hence for the basic facts concerning integrals with respect to regulated
functions we will refer to the corresponding assertions from [20] or [22].

Next assertion seems not to be available in the literature.

1.2 . Lemma. Let g, gk ∈ Gn[a, b], A, Ak ∈ BV n×n[a, b] for k ∈ N.
Furthermore, let

lim
k→∞

‖gk − g‖∞ = 0, (1.4)

α∗ := sup {varb
a Ak : k ∈ N} < ∞, (1.5)

and

lim
k→∞

‖Ak − A‖∞ = 0. (1.6)

Then

lim
k→∞

∥∥∥∥
∫ t

a

d[Ak] gk −
∫ t

a

d[A] g

∥∥∥∥
∞

= 0.

Proof. Let ε > 0 be given. By (1.1) and (1.4), we can find u ∈ S n[a, b]
and k0 ∈ N such that

‖x− u‖∞ < ε, ‖xk − u‖∞ < ε and ‖Ak − A‖∞ < ε for k ≥ k0.

Furthermore, since varb
a u < ∞, using (1.2) we can see that for t ∈ [a, b]

and k ≥ k0 the relations
∣∣∣∣
∫ t

a

d[Ak] xk−
∫ t

a

d[A] x

∣∣∣∣=
∣∣∣∣
∫ t

a

d[Ak] (xk−u)+

∫ t

a

d[Ak−A] u+

∫ t

a

d[A] (u−x)

∣∣∣∣

≤ α∗ ε + 2 (varb
a u) ε + α∗ ε = 2 (α∗ + varb

a u) ε

hold, wherefrom our assertion immediately follows.

2 . Generalized differential equations

Let A ∈ BV n×n[a, b], g ∈ BV n[a, b] and x̃ ∈ Cn. Consider an integral
equation

x(t) = x̃ +

∫ t

a

d[A(s)] x(s) + g(t)− g(a). (2.1)
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We say that a function x : [a, b] → Cn is a solution of (2.1) on the interval
[a, b] if the integral ∫ b

a

d[A(s)] x(s)

has sense and equality (2.1) is satisfied for all t ∈ [a, b]. The equation (2.1)
is usually called a generalized linear differential equation. Such equations
with solutions having values in the space Rn of real n -vectors have been
thoroughly investigated e.g. in the monographs [17] or [19]. The extension of
the results presented therein to the complex case is mostly straightforward.
In this section we will describe the basics needed later. Special attention is
paid to the features whose extension to the complex case seems not to be so
straightforward.

For our purposes the following property is crucial:

det
[
I −∆−A(t)

] 6= 0 hold for each t ∈ [a, b]. (2.2)

(Recall that we put ∆−A(b) = 0.) Its importance is well illustrated by the
next assertion which is a fundamental existence result for the equation (2.1).

2.1 . Theorem. Let A ∈ BV n,n[a, b] satisfy (2.2). Then, for each x̃ ∈ Cn

and each g ∈ Gn[a, b], equation (2.1) has a unique solution x on [a, b]
and x ∈ Gn[a, b]. Moreover, x− g ∈ BV n[a, b].

Proof follows from [21, Proposition 2.5].

Furthermore, analogously to [19, Theorem III.1.7] where g ∈ BV n[a, b],
we have

2.2 . Theorem. Let A ∈ BV n,n[a, b] satisfy (2.2). Then

cA := sup{
∣∣[I −∆−A(t)]−1

∣∣ : t ∈ [a, b]} < ∞ (2.3)

and

|x(t)| ≤ cA (|x̃|+ 2 ‖g‖∞) exp(cA vart
a A) for t ∈ [a, b], (2.4)

holds for each x̃ ∈ Cn, g ∈ Gn[a, b] and each solution x of (2.1) on
[a, b].

Proof. First, notice that for t ∈ [a, b] such that |∆−A(t)| < 1
2

we have

∣∣[I −∆−A(t)]−1
∣∣ =

∣∣∣∣∣
∞∑

k=1

(∆−A(t))k

∣∣∣∣∣ ≤
∞∑

k=1

|∆−A(t)|k =
1

1− |∆−A(t)| < 2.
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Therefore, (2.3) follows from the fact that the set {t∈ [a, b] : |∆−A(t)| ≥ 1
2
}

has at most finitely many elements.

Now, let x be a solution of (2.1). Put B(a) = A(a) and B(t) = A(t−)
for t∈ (a, b]. Then, as in the proof of [19, Theorem III.1.7], we get

A−B ∈BV n×n[a, b], varb
a B≤ varb

a A

and

A(t)−B(t) = ∆−A(t),

∫ t

a

d[A−B] x = ∆−A(t) x(t) for t∈ [a, b].

Consequently

x(t) = [I −∆−A(t)]−1

(
x̃ + g(t)− g(a) +

∫ t

a

d[B] x

)

and

|x(t)| ≤ K1 + K2

∫ t

a

d[h] |x| for t ∈ [a, b],

where

K1 = cA (|x̃|+ 2 ‖g‖∞) , K2 = cA and h(t) = vart
a B for t ∈ [a, b].

The function h is nondecreasing and, since B is left-continuous on (a, b],
h is also left-continuous on (a, b]. Therefore we can use the generalized
Gronwall inequality (see e.g. [19, Lemma I.4.30] or [17, Corollary 1.43]) to
get the estimate (2.4).

2.3. Corollary. Let A∈BV n×n[a, b] satisfy (2.2). Then for each x̃∈Cn,
g ∈Gn[a, b] and each solution x of (2.1) on [a, b], the estimate

varb
a(x− g) ≤ cA (varb

a A) (|x̃|+ 2 ‖g‖∞) exp(cA varb
a A).

is true, where cA is defined by (2.3).

Proof. By (2.4), we have

‖x‖∞ ≤ cA (|x̃|+ 2 ‖g‖∞) exp(cA varb
a A).

Therefore

varb
a(x− g) ≤ (

varb
a A

) ‖x‖∞
≤ cA

(
varb

a A
)
(|x̃|+ 2 ‖g‖∞) exp(cA varb

a A).
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2.4 . Lemma. Let A∈BV n×n[a, b] satisfy (2.2) and let cA be defined by
(2.3). Then

cA =
(
inf

{∣∣[I −∆−A(t)
]

x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

})−1
. (2.5)

Proof. We have

cA = sup
{|[I −∆−A(t)]−1| : t ∈ [a, b]

}

= sup

{ |[I −∆−A(t)]−1| |[I −∆−A(t)] x|
|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

}

≥ sup

{ |x|
|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

}

= sup

{
1

|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

}

=
(
inf

{|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1
})−1

.

Thus, it remains to prove that the inequality

cA ≤
(
inf

{∣∣[I −∆−A(t)
]

x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

})−1
(2.6)

is true, as well. To this aim, first let us notice that for each t ∈ [a, b] there
is a z ∈ Cn such that |z| = 1 and

∣∣[I −∆−A(t)]−1
∣∣ =

∣∣[I −∆−A(t)]−1 z
∣∣ . (2.7)

Indeed, let t∈ [a, b] and let B = [I −∆−A(t)]−1. Let i0 ∈{1, 2, . . . , n} be
such that |B| =

∑n
j=1 |bi0,j| and let z ∈ Cn be such that zi = sgn(bi0,2)

for i = 1, 2, . . . , n. Then |z| = 1. Furthermore,

|B z| = max
i=1,2,...,n

n∑
j=1

|bi,j zj| = max
i=1,2,...,n

n∑
j=1

|bi,j sgn(bi0,j)|

≤ max
i=1,2,...,n

n∑
j=1

|bi,j| = |B|.

On the other hand, we have

|B| =
n∑

j=1

|bi0,j| =
∣∣∣∣∣

n∑
j=1

sgn(bi0,j) bi0,j

∣∣∣∣∣ ≤ |B z|.
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Therefore, we can conclude that (2.7) is true.
Now, due to (2.2), there is w ∈ Cn such that z = [I − ∆−A(t)] w.

Inserting this instead of z into (2.7), we get

∣∣[I −∆−A(t)]−1
∥∥ =

|[I −∆−A(t)]−1 [I −∆−A(t)] w|
|[I −∆−A(t)] w|

=
|w|

|[I −∆−A(t)] w| =
1∣∣∣[I −∆−A(t)]

(
w
|w|

)∣∣∣

≤ sup

{
1

|[I −∆−A(t)] x| : x ∈ Cn, |x| = 1

}
.

It follows that

cA ≤ sup

{
1

|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

}

=
(
inf{|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

)−1
,

i.e. (2.6) is true. This completes the proof

The next fundamental result on the continuous dependence of solutions of
generalized linear differential equations on a parameter generalizes the result
due to M. Ashordia [2, Theorem 1]. Unlike [2] and [3], we do not utilize
the variation-of-constants formula and therefore we need not assume that, in
addition to (2.2), also the condition

det[I + ∆+A(t)] 6= 0 for all t ∈ [a, b]

is satisfied. Furthermore, both the nonhomogeneous part of the equation and
the solutions may be only regulated functions (not necessarily of bounded
variation).

2.5. Theorem. Let A, Ak ∈BV n×n[a, b], g, gk ∈Gn[a, b], x̃, x̃k ∈Cn for
k ∈N. Assume (1.5), (1.6), (2.2),

lim
k→∞

‖gk − g‖∞ = 0 (2.8)

and

lim
k→∞

x̃k = x̃. (2.9)
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Then equation (2.1) has a unique solution x on [a, b]. Furthermore, for
each k ∈N sufficiently large there exists a unique solution xk on [a, b] to
the equation

x(t) = x̃k +

∫ t

a

d[Ak(s)] x(s) + gk(t)− gk(a) (2.10)

and
lim ‖xk − x‖∞ = 0. (2.11)

Proof. Step 1. As in the first part of the proof of [2, Theorem 1], we can
show that there is a k1 ∈ N such that

det[I −∆−Ak(t)] 6= 0 on [a, b]

holds for all k≥ k1. In particular, (2.10) has a unique solution xk for
k≥ k1.

Step 2. For k ≥ k1, put

cAk
:= sup{

∣∣[I −∆−Ak(t)]
−1

∣∣ : t ∈ (a, b]}.

Then, by Lemma 2.4, we have

(cAk
)−1 = inf

{∣∣[I −∆−Ak(t)
]

x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

}

≥ inf
{∣∣[I −∆−A(t)

]
x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

}

− sup
{∣∣[∆−(Ak(t)− A(t))

]
x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

}
.

Since, due to the assumption (1.6),

lim
k→∞

‖∆−Ak −∆−A‖∞ = 0,

we conclude that there is a k0 ≥ k1 such that

(cAk
)−1 ≥ (cA)−1 − (2 cA)−1 = (2 cA)−1 for k ≥ k0.

To summarize,
cAk

≤ 2 cA < ∞ for k ≥ k0. (2.12)
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Step 3. Set wk = (xk − gk)− (x− g). Then, for k ≥ k0,

wk(t) = w̃k +

∫ t

a

d[Ak] wk + hk(t)− hk(a) for t ∈ [a, b],

where

hk(t) =

∫ t

a

d[Ak − A] (x− g) +

(∫ t

a

d[Ak] gk −
∫ t

a

d[A] g

)
for t ∈ [a, b]

and

w̃k = (x̃k − gk(a))− (x̃− g(a)) .

By (2.8) and (2.9) we can see that

lim
k→∞

w̃k = 0. (2.13)

Furthermore, since x − g ∈ BV n[a, b] and limk→∞ ‖Ak − A‖∞ = 0, by
Theorem 1.1 we have

lim
k→∞

∥∥∥∥
∫ t

a

d[Ak − A] (x− g)

∥∥∥∥
∞

= 0

and, by Lemma 1.2,

lim
k→∞

∫ t

a

d[Ak] gk =

∫ t

a

d[A] g.

To summarize,
lim
k→∞

‖hk‖∞ = 0. (2.14)

On the other hand, applying Theorem 2.2 and taking into account the relation
(2.12), we get

‖wk‖∞ ≤ 2 cA (|w̃k|+ 2 ‖hk‖∞) exp(2 cA α∗) for k ≥ k0,

wherefrom, by virtue of (2.13) and (2.14), the relation

lim
k→∞

‖wk‖∞ = 0

follows. Finally, having in mind the assumptions (2.8) and (2.9), we conclude
that the relation

lim ‖xk − x‖∞ = 0

is true, as well. This completes the proof.
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2.6 .Notation. Let A∈BV n×n[a, b], g ∈Gn[a, b] and let

D = {α0, α1, . . . , αm}∈D[a, b]

be a subdivision of [a, b]. Then we define

AD(t) =





A(t) if t ∈ D,

A(αi−1) +
A(αi)− A(αi−1)

αi − αi−1

(t− αi−1) if t ∈ (αi−1, αi),
(2.15)

and

gD(t) =





g(t) if t ∈ D,

g(αi−1) +
g(αi)− g(αi−1)

αi − αi−1

(t− αi−1) if t ∈ (αi−1, αi).
(2.16)

We have

2.7. Lemma. Assume that A∈BV n×n[a, b], g ∈Gn[a, b]. Let D∈D[a, b],
D = {α0, α1, . . . , αm}, and let AD and gD be defined by (2.15) and (2.16),
respectively. Then AD ∈ACn×n[a, b], gD ∈ACn[a, b] and

varb
a AD ≤ varb

a A and ‖gD‖∞ ≤ ‖g‖∞.

Proof. Obviously, AD ∈ACn×n[a, b], gD ∈ACn[a, b].

Furthermore, for each ` = 1, 2, . . . , m and each t∈ [α`−1, α`] we have

varα`
α`−1

AD = |A(α`)− A(α`−1)| ≤ varα`
α`−1

A

and

|gD(t)| = |g(α`−1) +
g(α`)− g(α`−1)

α` − α`−1

(t− α`−1)|

= |g(α`−1)
α` − t

α` − α`−1

+ g(α`)
t− α`−1

α` − α`−1

| ≤ ‖g‖∞.

Therefore,

varb
a AD =

m∑

`=1

varα`
α`−1

AD≤
m∑

`=1

varα`
α`−1

A = varb
a A and ‖gD‖∞≤‖g‖∞.
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2.8 . Theorem. Assume that A∈BV n×n[a, b]∩Cn×n[a, b] and g∈Cn[a, b].
Let x̃ and x̃k ∈ Cn, k ∈ N, be such that (2.9) holds. Furthermore, let the
sequence {Dk} ⊂ D[a, b] of subdivisions of the interval [a, b] be such that

Dk+1 ⊃ Dk for k ∈ N and lim
k→∞

|Dk| = 0. (2.17)

Finally, let the sequences {Ak}⊂ACn×n[a, b], {gk}⊂ACn[a, b] be given
by

Ak = ADk
and gk = gDk

for k ∈ N, (2.18)

where ADk
and gDk

are defined as in (2.15) and ((2.16).
Then the equation (2.1) has a unique solution x on [a, b]. Furthermore,

for each k ∈ N, the equation (2.10) has a solution xk on [a, b] and (2.11)
holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have:



for each ε > 0 there is a δ > 0 such that

|A(t)− A(s)| < ε
2

holds for all t, s ∈ [a, b] such that |t− s| < δ .

(2.19)

Let |Dk0|< δ and let t be an arbitrary point of [a, b]. Furthermore, let

α`−1, α` ∈ Dk0 = {α0, α1, . . . , αpk0
} and t ∈ [α`−1, α`].

Then
|α` − α`−1| < δ

and, according to (2.15) and (2.17)–(2.19), we get for k ≥ k0

|Ak(t)−A(t)| ≤ |Ak(t)−Ak(α`−1)|+ |A(α`−1)−A(t)|

= |A(α`)−A(α`−1)|
[

t−α`−1

α`−α`−1

]
+ |A(α`−1)−A(t)|

≤ ε

2
+

ε

2
= ε.

As k0 was chosen independently of t, we can conclude that (1.6) is true.

Step 2. Analogously we can show that (2.8) is true, as well.

Step 3. By Lemma 2.7, (1.5) holds. Moreover, as A and Ak, k ∈ N, are
continuous, the equations (2.1) and (2.10) have unique solutions by Theorem
2.1 and we can complete the proof using of Theorem 2.5.
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3 . Approximated solutions

In this section we will continue the consideration of the topics mentioned
at the close of the previous section. Our aim is to disclose the relationship
between solutions of generalized linear differential equation and limits of solu-
tions of corresponding approximating sequences of linear ordinary differential
equations.

We start by introducing the following notations.

3.1 .Notation. For given g ∈ Gn[a, b] and k ∈ N, we denote

U+
k (g) = {t ∈ [a, b] : |∆+g(t)| ≥ 1

k
}, U−k (g) = {t ∈ [a, b] : |∆−g(t)| ≥ 1

k
},

Uk(g) = U+
k (g) ∪ U−k (g) and U (g) =

∞⋃

k=1

Uk(g).

Analogous symbols are used also for matrix valued function.
Of course, U (g) is the set of points of discontinuity of the function g

in [a, b].

3.2.Definition. Let A∈BV n×n[a, b], g ∈Gn[a, b] and let Pk ∈ D[a, b] be
a sequence of subdivisions of [a, b] such that

|Pk| = (1/2)k for k ∈N. (3.1)

We say that the sequence {Ak, gk}⊂ACn×n[a, b]×ACn[a, b] is a piecewise
linear approximation (p ` -approximation) of (A, g) if there exists a se-
quence {Dk} ⊂ D[a, b] of subdivisions of the interval [a, b] such that

Dk ⊃ Pk ∪U k(A)∪U k(g) for k ∈ N (3.2)

and Ak, gk are for k ∈ N defined by (2.15), (2.16) and (2.18).

3.3. Remark. Let {Ak, gk} be a PL -approximation of (A, g). Then, by
Lemma 2.7,

varb
a Ak ≤ varb

a A and ‖g‖∞ ≤ ‖g‖∞.

Furthermore, as Ak are continuous, due to (2.3), we have cAk
= 1 for all

k ∈ N. Hence, Corollary 2.3 yields

varb
a(xk − gk) ≤ α∗ (|x̃|+ 2 ‖g‖∞) < ∞ for all k ∈ N
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and, by Helly’s Theorem, there is a subsequence {kn} of N and y ∈ Gn[a, b]
and such that

lim
n→∞

(xkn(t)− gkn(t)) = y(t) + g(t) for each t ∈ [a, b].

In particular,
lim

m→∞
xkm(t) = w(t) + g(t)

for all t ∈ [a, b] such that limn→∞ gkn(t) = g(t).
Notice that if the set U (g; [a, b]) has at most a finite number of elements,

then
lim
k→∞

gk(t) = g(t) for all t ∈ [a, b].

3.4 . Definition. Let A∈BV n×n[a, b], g ∈Gn[a, b] and x̃∈Cn. We say
that x∗ : [a, b] → Cn is an approximated solution to equation (2.1) on the
interval [a, b] if there is a PL -approximation {Ak, gk} of (A, g) such
that

lim
k→∞

xk(t) = x∗(t) for t ∈ [a, b] (3.3)

holds for solutions xk, k ∈ N, of the corresponding approximating initial
value problems

x′k = Ak(t) xk + g′k(t), xk(a) = x̃, k ∈ N. (3.4)

3.5. Remark. Notice that, using the language of Definitions 3.2 and 3.4, we
can translate Theorem 2.8 into the following form:

Assume that A∈BV n×n[a, b] ∩ Cn×n[a, b] and g ∈Cn[a, b]. Then, the
equation (2.1) has a unique approximated solution x∗ on [a, b] and x∗

coincides on [a, b] with the solution of (2.1).

In the rest of this paper we consider the case when the set U (A) ∪ U (g)
of discontinuities of the coefficients A, g is non empty. We will start with
the simplest case U (A) ∪ U (g) = {b}.

The next natural assertion will be useful for our purposes and, in our
opinion, it is not available in literature.
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3.6 . Lemma. Let A ∈ BV n×n[a, b]. Then




lim
s→t−

1

t− s

(∫ t

s

exp

(
[A(t)−A(s)]

t− r

t− s

)
dr

)

=

∫ 1

0

exp
(
∆−A(t) (1− σ)

)
dσ if t∈ (a, b]

(3.5)

and 



lim
s→t+

1

s− t

(∫ s

t

exp

(
[A(s)−A(t)]

s− r

s− t

)
dr

)

=

∫ 1

0

exp
(
∆+A(t) (1− σ)

)
dσ if t∈ (a, b]

(3.6)

Proof. (i) Let t ∈ (a, b], s ∈ [a, t) and let ε > 0 be given. Then there is
a δ > 0 such that

|A(t−)−A(s)| < η whenever t− s < δ.

Now, taking into account that

| exp(C)− exp(D)| ≤ |C −D| exp(|C|+ |D|) holds for all C,D ∈ Rn×n,

we get
∣∣∣∣

1

t− s

∫ t

s

[
exp

(
[A(t)−A(s)]

t− r

t− s

)
− exp

(
∆−A(t)

t− r

t− s

)]
dr

∣∣∣∣

≤ 1

t− s
|A(t−)− A(s)|

∫ t

s

exp
(|∆−A(t)|) dr

= ε |A(t−)− A(s)| exp
(|∆−A(t)|) ≤ ε exp

(|∆−A(t)|)

for t− s < δ. Therefore,

lim
s→t−

1

t− s

(∫ t

s

exp

(
[A(t)−A(s)]

t− r

t− s

)
dr

)

= lim
s→t−

1

t− s

(∫ t

s

exp

(
∆−A(t)

t− r

t− s

)
dr

)
if t∈ (a, b].

Now, it is easy to see that the substitution σ = 1 − t− r
t− s

in the second
integral yields (3.5).

(ii) Similarly we would justify the relation (3.6).
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3.7. Lemma. Let A∈BV n×n[a, b] and g ∈Gn[a, b] be continuous on [a, b).
Let x̃∈Cn and let x be a solution of (2.1) on [a, b).

Then equation (2.1) has a unique approximated solution x∗ on [a, b].
Moreover, x∗ is continuous on [a, b), x∗=x on [a, b) and x∗(b)=v(1),

where v is a solution on [0, 1] of the initial value problem

v′ = [∆−A(b)] v + [∆−g(b)], v(0) = x(b−). (3.7)

Proof. Step 1. Let {Ak, gk} be an arbitrary PL -approximation of {A, g}
and let {Dk} be the corresponding sequence of divisions of [a, b] fulfilling
(3.1) and (3.2). Notice that, under our assumptions, Dk = Pk for k ∈N.
For k ∈ N, put

τk = max{t ∈ Pk : t < b}.
By (2.17) we have b− b−a

2k ≤ τk < b for k ∈ N, and hence

lim
k→∞

τk = b. (3.8)

Now, for k ∈ N and t ∈ [a, b], let us define

Ãk(t) =





Ak(t) if t∈ [a, τk],

A(τk) +
A(b−)−A(τk)

b− τk

(t− τk) if t∈ (τk, b],

g̃k(t) =





gk(t) if t∈ [a, τk],

g(τk) +
g(b−)− g(τk)

b− τk

(t− τk) if t∈ (τk, b].

Furthermore, let

Ã(t) =





A(t) if t∈ [a, b),

A(b−) if t = b,
g̃(t) =





g(t) if t∈ [a, b),

g(b−) if t = b.
(3.9)

We have Ãk ∈ ACn×n[a, b], g̃k ∈ ACn[a, b] for k ∈ N, Ã ∈ BV n×n[a, b] ∩
Cn×n[a, b] and g̃ ∈ Cn[a, b].

Consider problems (2.1), (3.4) and

y′k = Ã′
k(t) yk + g̃k

′(t), yk(a) = x̃, k ∈ N, (3.10)

and
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y(t) = x̃ +

∫ t

a

d[Ã] y + g̃(t)− g̃(a). (3.11)

Let {xk} and {yk} be the sequences of solutions on [a, b] of problems (3.4)
and (3.10), respectively. We can see that, for each k ∈ N, yk coincides
with xk on [a, τk]. Furthermore, by Theorem 2.1, equation (3.11) possesses
a unique solution y on [a, b], y is continuous on [a, b] and y = x on
[a, b). It’s easy to see that the relations

lim
k→∞

‖Ãk − Ã‖∞ = 0 and lim
k→∞

‖g̃k − g̃‖∞ = 0

are true. Moreover, by Lemma 2.7,

varb
a Ãk ≤ varb

a Ã ≤ varb
a A < ∞ for all k ∈N.

Therefore, by Theorem 2.5, we get

lim
k→∞

‖yk − y‖∞ = 0. (3.12)

Since xk = yk on [a, τk], and, due to (3.8), we have

lim
k→∞

xk(t) = lim
k→∞

yk(t) = y(t) = x(t) for t ∈ [a, b). (3.13)

Step 2. Next, we will prove that

lim
k→∞

xk(τk) = y(b). (3.14)

Indeed, let ε > 0 be given and let δ > 0 be such that

|y(t)− y(b)| < ε

2
for t ∈ [b− δ, b]

Further, by (3.12), there is a k0 ∈ N such that

τk ∈ [b− δ, b) and ‖yk − y‖∞ <
ε

2
whenever k ≥ k0.

Consequently,

|xk(τk)− y(b−)| ≤ |xk(τk)− y(τk)|+ |y(τk)− x(b−)|
= |yk(τk)− y(τk)|+ |y(τk)− x(b−)| < ε

2
+

ε

2
= ε.
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holds for k ≥ k0. This completes the proof of (3.14).

Step 3. On the intervals [τk, b], the equations from (3.4) reduce to the
equations with constant coefficients

x′k = Bk xk + ek, (3.15)

where

Bk =
A(b)−A(τk)

b− τk

and ek =
g(b)− g(τk)

b− τk

.

Their solutions xk are on [τk, b] given by

xk(t) = exp (Bk (t− τk)) xk(τk) +

(∫ t

τk

exp (Bk (t− r)) dr

)
ek.

In particular,

xk(b) = exp (A(b)−A(τk)) xk(τk)

+
1

b− τk

(∫ b

τk

exp

(
[A(b)−A(τk)]

b− r

b− τk

)
dr

)
[gk(b)− gk(τk)].

By Lemma 3.6, we have

lim
k→∞

1

b− τk

(∫ b

τk

exp

(
[A(b)−A(τk)]

b− r

b− τk

)
dr

)
[g(b)− g(τk)]

= lim
k→∞

1

b− τk

(∫ b

τk

exp

(
∆−A(b)

b− r

b− τk

)
dr

)
[g(b)− g(τk)]

=

(∫ 1

0

exp
(
∆−A(b) (1− s)

)
ds

)
∆−g(b).

To summarize,

lim
k→∞

xk(b) = exp
(
∆−A(b)

)
y(b)+

(∫ 1

0

exp
(
∆−A(b) (1− s)

)
ds

)
∆−g(b),

i.e.
lim
k→∞

xk(b) = v(1), (3.16)

where v is a solution to (3.7) on [0, 1].
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Step 4. Define

x∗(t) =





y(t) if t ∈ [a, b),

v(1) if t = b.

Then x∗(b−) = y(b) and x∗(t) = limk→∞ xk(t) for t ∈ [a, b] due to (3.14)
and (3.16). Therefore, x∗ is a PL -approximated solution of (2.1). Since it
does not depend upon the choice of the approximating sequence {Ak, gk},
we can see that x∗ is also the unique approximated solution of (2.1). This
completes the proof.

The following assertion concerns a situation symmetric to that treated
by Lemma 3.7. Similarly, to the proof of Lemma 3.7, we will deal with the
modified equation

y(t) = ỹ +

∫ t

a

d[Ã] y + g̃(t)− g̃(a), (3.17)

where ỹ ∈Cn and

Ã(t) =





A(a+) if t = a,

A(t) if t∈ (a, b]
and g̃(t) =





g(a+) if t = a,

g(t) if t∈ (a, b].
(3.18)

3.8. Lemma. Let A∈BV n×n[a, b] and g ∈Gn[a, b] be continuous on (a, b].
Then, for each x̃∈Cn, equation (2.1) has a unique approximated solution
x∗ on [a, b] and this approximated solution is continuous on (a, b].

Furthermore, let w be a solution of the initial value problem

w′ = [∆+A(a)] w + [∆+g(a)], w(0) = x̃ (3.19)

and let y be a solution on [a, b] of the equation (3.17), where ỹ = w(1).
Then x∗ coincides with y on (a, b].

Proof. Step 1. Let {Ak, gk} be an arbitrary PL -approximation of {A, g}
and let {Dk} be the corresponding sequence of divisions of [a, b] fulfilling
(2.15) and (2.16). As in the previous proof, Dk = Pk for k ∈N. For k ∈ N,
put

τk = min{t ∈ Pk : t > a}.
By (2.17) we have a + b−a

2k ≥ τk > a for k ∈ N, and hence

lim
k→∞

τk = a.
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On the intervals [a, τk], the equations from (3.4) reduce to equations (3.15)
with the coefficients

Bk =
A(τk)−A(a)

τk− a
, ek =

g(τk)− g(a)

τk− a
.

Their solutions xk are on [a, τk] given by

xk(t) = exp(Bk (t− a)) x̃ +

(∫ t

a

exp (Bk (t− r)) dr

)
ek.

In particular,

xk(τk) = exp (A(τk)−A(a)) xk(τk)

+
1

τk− a

(∫ τk

a

exp

(
[A(τk)−A(a)]

τk− r

τk− a

)
dr

)
[g(τk)− g(τk)].

By Lemma 3.6, we have

lim
k→∞

1

τk− a

(∫ τk

a

exp

(
[A(τk)−A(a)]

τk− r

τk− a

)
dr

)
[g(τk)− g(a)]

=

(∫ 1

0

exp(∆+A(a) (1− s)) ds

)
∆+g(a).

Thus, limk→∞ xk(a) = w(1), where w is the solution of (3.19) on [0, 1].

Step 2. Let {Ak, gk} be an arbitrary PL -approximation of {A, g} and
let {Dk} be the corresponding sequence of divisions of [a, b] fulfilling (2.15)
and (2.16). Let {xk} be a sequence of solutions of the approximating initial
value problems (3.4) on [a, b]. Consider equation (3.17). By Theorem 2.1,
it has a unique solution y on [a, b], y is continuous on [a, b] and, by an
argument analogous to that used in Step 1 of the proof of Lemma 3.7, we
can show that the relation

lim
k→∞

xk(t) = y(t) for t ∈ (a, b] (3.20)

is true.

Step 3. Analogously to Step 4 of the proof of lemma 3.7, we can complete
the proof by showing that the function

x∗(t) =

{
x̃ if t = a,

y(t) if t ∈ (a, b],

is the unique approximated solution of (2.1).
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3.9 . Remark. Let us notice that if a < c < b and the functions x∗1 and
x∗2 are respectively p ` -approximated solutions to

x(t) = x̃1 +

∫ t

a

d[A] x + g(t)− g(a), t ∈ [a, c]

and

x(t) = x̃2 +

∫ t

c

d[A] x + g(t)− g(c), t ∈ [c, b],

where x̃2 = x∗1(c), then the function

x∗(t) =

{
x∗1(t) if t ∈ [a, c],

x∗2(t) if t ∈ (c, b]

is a p ` -approximated solution to (2.1).

3.10 . Theorem. Assume that A∈BV n×n[a, b], g ∈Gn[a, b] and

U (A)∪U (g) = {s1, s2, . . . , sm} ⊂ [a, b].

Then, for each x̃ ∈ Cn, there is exactly one approximated solution x∗ of
equation (2.1) on [a, b].

Moreover,

x∗(t) = w`(1) +

∫ t

s`

d[Ã`] x
∗ + g̃`(t)− g̃`(s`) for t∈ [s`, s`+1), `∈N∩ [0, m],

x∗(t) = v`(1) for t = s`, `∈N∩ [1,m + 1],

where s0 = a, sm+1 = b, w0(1) = x̃ and, for `∈N∩ [0,m],

Ã`(t) =

{
A(s`+) if t = s`,

A(t) if t ∈ (s`, s`+1],
g̃`(t) =

{
g(s`+) if t = s`,

g(t) if t ∈ (s`, s`+1]

and v` and w` respectively denote the solutions on [0, 1] of initial value
problems

v′` = [∆−A(s`)] v` + [∆−g(s`)], v`(0) = x∗(s`−)

and

w′
` = [∆+A(s`)] w` + [∆+g(s`)], w`(0) = x∗(s`).
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Proof. Having in mind Remark 3.9, we deduce the assertion of Theorem 3.10
by a successive use of Lemmas 3.7 and 3.8. To this aim it is sufficient to choose
a subdivision D = {α0, α1, . . . , αr} of [a, b] such that for each subinterval
[αk−1, αk], k = 1, 2, . . . , r, either the assumptions of Lemma 3.7 or the as-
sumptions of Lemma 3.8 are satisfied with αk−1 in place of a and αk in
place of b.

3.11 . Remark. The convergence effects appearing in Theorem 3.10 are re-
lated to the notion of R-emphatic convergence introduced by Kurzweil in
[11]. Further references to this notion are e.g. Fraňková [5], [6], Halas [7],
Schwabik [17], Tvrdý [22] and the unpublished thesis by Pelant [14].
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[17] Š. Schwabik. Generalized Ordinary Differential Equations. World Scientific, Singa-
pore, 1992.
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