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Preface 

The present book is devoted to certain problems which belong to the domain of 
integral equations and boundary value problems for differential equations. Its 
essential part is concerned with linear systems of integral and generalized differential 
equations having in general discontinuous solutions of bounded variation on an 
interval. For various types of boundary value problems we derive adjoint problems 
in order to provide solvability conditions based on the principles of functional 
analysis. 

Our exposition starts with an introductory chapter on linear algebra, functional 
analysis, Perron-Stieltjes integral and functions of bounded variation. In this chapter 
we collect some results needed in the other parts of the book. The second chapter 
contains results on integral operators in the Banach space of functions of bounded 
variation on an interval and basic results concerning linear Fredholm-Stieltjes 
and Volterra-Stieltjes integral equations in this space. Generalized linear differential 
equations are studied in the third chapter. Chapters IV and V deal with linear 
boundary value problems for ordinary differential and integro-differential operators 
while the last chapter is devoted to the perturbation theory for nonlinear ordinary 
differential equations with nonlinear side conditions. 

Our conventions on cross references are as follows: For example, III.2.1 refers 
to paragraph 1 in section 2 of the third chapter while 2.1 refers to paragraph 1 in 
section 2 of the current chapter. The same applies to formulas whose numbers are 
given in parentheses, i.e. (111.2,1) is the first formula in section 2 of the third chapter 
while (2,1) stands for the first formula in section 2 of the current chapter. Biblio
graphical references include the name of the author followed by a number in square 
brackets which refers to the list of the bibliography given at the end of the book. 

We wish express our gratitude to Professor Jaroslav Kurzweil for his continuous 
support dating back to the beginning of our work in this field. His results on gener
alized differential equations, Perron-Stieltjes integral as well as his ideas concerning 
general boundary value problems underlie the results contained in this book. 

A special acknowledgement is due to Dr. Ivo Vrkoc who read and critically 
examined all the manuscript and in many cases improved considerably our original 
version. 

The authors 
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I. Introduction 

This chapter provides some auxiliary results and notations needed in the subsequent 
chapters. As most of them can be easily found in the plentiful literature on linear 
algebra, real functions, functional analysis etc. we give only the necessary references 
without including their proofs. More attention is paid only to the Perron-Stieltjes 
integral in sections 4, 5 and 6. 

1. Preliminaries 

1.1. Basic notations. By R we denote the set of all real numbers. For a < b we denote 
by [a, b] and (a, b) respectively the closed and the open interval with the endpoints 
a, b. Similarly [a, b), (a, b] means the corresponding halfopen intervals. 

A matrix with m rows and n columns is called an m x n-matrix, n x 1-matrices 
are called column n-vectors and 1 x m-matrices are called row m-vectors. 

Matrices which in general do not reduce to vectors are denoted by capitals while 
vectors are denoted by lower-case letters. Given an m x n-matrix A, its element in 
the j-th row and k-th column is usually denoted by aM (A = (aM), j = 1,...,m, 
k = \,...,n). Furthermore, A* denotes the transpose of-A (A* = (akj), k = \,...,n, 
j = l,...,m), 

\A\ = max £ \ahk\, 
1=1,...,m k = 1 

rank (A) is the rank of .4 and det (A) denotes the value of the determinant of .A. 
If m = n and det (A) #= 0, then A1 denotes the inverse of A. \m is the identity 
m x m-matrix and 0mn is the zero m x m-matrix (/m = (djk) j,k = \,...,m, where 
5jk = 1 if j = k, Sjk = 0 if j + k and 0mn = (njk) j=l,...,m, k=l,...,n, 
where njk = 0 for all j = l,...,m and k = \,...,n). Usually, if no confusion may 
arise, the indices are omitted. The addition and multiplication on the space of 
matrices are defined in the obvious way and the usual notation 

A + B, AB, kA (XeR) 



1.1 

is used. Let the matrices A, B, C be of the types m x n, m x p and q x n, respectively. 
Then D = [A,B] is the m x (n + p)-matrix with djJk = aM for j = l,...,m, 
k=\,...,n and rfM = bM_/l for j = l,...,m, fc = n + 1, n + 2, ..., n + p. Analo
gously 

- Й 
is the (m + q) x n-matrix with hM = aM if j < m and feM = Cj-mtk if ; > m. 

JR„ is the space of all real column H-vectors and R* is the space of all real row 
n-vectors, Rx = R* = R. For xeR„ x* e JR* we write 

and 
x = max X; 

1 j=l,...,n •" 

И-IW 
j = í 

Given an m x n-matrix A, x e Rn and y e Rm, then \Ax\ < \A\ |X| and |y*-4| < 
< |y*| \A\. The Euclidean norm in Rn is denoted by |.|e 

.1/2 

x G K n - | x | e = (x*x)^ = (^X^2 

It is easy to see that any xeRn satisfies |x|e = |x*|e and |x| < |x|e < |x*| < n\x\. 
The space of all real m x n-matrices is denoted by L(Rn, Rm) (L(Rn, Rn) = L(.Rn)j. 
If M, N are sets and f is a mapping defined on M with values in N then we write 

f: M -> N or x e M - » f(x) e N. For example, if f is a real function defined on an 
interval [a, b], we write simply f: [a, b] -> R. 

The words "measure", "measurable" without specification stand always for 
Lebesgue measure in Rn and measurability with respect to Lebesgue measure. 

1.2. Linear spaces. A nonempty set X is called a (real) linear space if for every 
x,yeX and AeR the sum x + yeX and the product AxeX are defined and the 
operations satisfy the usual axioms of a linear space. The zero element in X is 
denoted by 0. 

A subset L cz X is a linear subspace of K if L is a linear space with respect to the 
sum and product with a real number given in X. 

The elements x l5..., xn of X are called linearly independent if a -^ + ... + anx„ = 0, 
ateR, i = 1,...,n implies oc1 = a2 = ... = a„ = 0. Otherwise the elements x l 5 . . . ,xn 

are linearly dependent. 
If X is a linear space and a norm x e K -• ||x|| e R is defined, X is called a normed 

linear space. If K is a normed linear space which is complete with respect to the 
metric induced by the norm, then X is called a Banach space. 

10 



1.1 

A real linear space X is called an inner product space (or pre-Hilbert space) if 
on X x X a real function (xux2)x is defined ((xux2)eX x X -> (xux2)xeR) 
such that for all x ,x I ,x 2 ,x 36 .Y 

(x1 + x2, x3)x = (xux3)x + (x2 ,x3 )x , 

(X1>X2LY — ( X 2 > X l ) x > 

laxl9x2)x = a(x1 ,x2)x , 

(x,x)x > 0 and (x,x)x 4= 0 for x + 0. 

The real function (., .)x is called an inner product on K. 
If K is an inner product space then the relation 

(*) xeX-+\\x\\x = (x,x)l
x'

2eR 

defines a norm on X. 
A real inner product space X which is complete with respect to the norm defined 

by (*) is called a real Hilbert space. Consequently a Hilbert space is a Banach space 
whose norm is induced by an inner product on X. 

1.3. Function spaces. We shall deal with some usual spaces of real functions on an 
interval [a,b], — oo < a < b < +oo. The sum of two functions and the product 
of a scalar and a function is defined in the usual way. For more detailed information 
see e.g. Dunford, Schwartz [1]. 

(i) We denote by Cn[a, b] the space of all continuous column n-vector functions 
f: [a, b] -> Rn and define 

f e Cn[a, b] -> \\f\\cn[a,b] = sup \f(t)\. 
te[a,b) 

||. \\Cn[a,b) -s a norm on C„[a, b]; C„[a, b] with respect to this norm forms a Banach 
space. The zero element in C„[a, b] is the function vanishing identically on [a, b]. 

(ii) If 1 < p < oo we denote by Lp
n\a, b] the space of all measurable functions 

f: [a, b] -* jRn such that 

rb 
\f(t)\p dt<oo. f 

We set 

feL^,b]-If||L>,M = (JWd í)1 / P-

The elements of LPn\a, b] are classes of functions which are equal to one another 
almost everywhere (a. e.)*) on [a, b]. For the purposes of this text it is not restrictive 

*) If a statement is true except possibly on a set of measure zero then we say that the statement is 
true almost everywhere (a.e.). 

11 



1.1 

if we consider functions instead of classes of functions which are equal a.e. on [a, b]. 
LPna,b] with respect to the norm l|.||/P[fl,bl is a Banach space. By L%\a,b] we 

denote the space of all measurable essentially bounded functions f: [a, b] -> Rn 

with the norm defined by 

f e L™\a, b] -> ||f \\LnaM = sup ess \f(t)\. 
te[a,b) 

Ln\a, b] is a Banach space with respect to the norm || .||L«,[fltfc]. The zero element 
in LPn\a, b] (1 < p < oo) is the class of functions which vanish a.e. on \a,b]. 

(iii) We denote by BVn\a, b] the space of all functions f: [a, b] -> Rn of bounded 
variation varb

(l f < oo where 

var*f = supt | f ( . 1 . ) - f ( t i - i ) | 
i = l 

and the supremum is taken over all finite subdivisions of [a, b] of the form a = 
= t0 < tx < ... < tk = b. Let ce [a, b] then 

varjjf = var£ f + var^f. 
If we define 

feBVn\a,b\ -> I f l^ j . .* , = |f(-)| + varjf 

then ||. HjEtKja.i,] 1s a norm on BVn\a, b] and -BV [̂a, b] is a Banach space with respect 
to this norm. 

By NBVn\a,b] the subspace of BVn\a,b] is denoted such that fENBVn\a,b] 
if f is continuous from the right at every point of (a, b) and f(a) = 0. The norm in 
NBVn\a,b\ is defined by 

fENBVn\a,b] - ||f||/v^[a.M = var^f. 

A function f: [a, b] -> _Rn is called absolutely continuous if for every e > 0 
there exists d > 0 such that 

i = l 

where (at,bt), i = 1,..,,k are arbitrary pairwise disjoint subintervals in \a,b] such 

that X |bi - fli| < <*• 
i= 1 

Let _4Cn[a, b] be the space of all absolutely continuous functions f: [a, b] -> _Rn. 
It is ACn\a, b] cz _9V„[a, b] and -4C„[a, b] is a Banach space with respect to the 
norm of BVn\a, b], i.e. 

fEACn\a,b] - ||f |Ucnla.« = |f(*)| + var^ f. 

The zero element in ACn\a, b] and BVn\a, b] is the function vanishing identically 
on \a,b]. 

12 



1.1 

Given an interval [a, b], we write simply Cn, L
p, Ln, BVn, NBVn, ACn instead of 

Cn[a, b], Lp[a, b], L™[a, b], BVn[a, b], NBVn[a, b], ACn[a, b] if no misunderstanding 
may arise. If n = 1 then the index n is omitted, e.g. Cx[a,b] = C[a, b], Lp

x[a, b] = 
= LP[a, b] etc. The index n is also sometimes omitted in symbols for the norms, 
i.e. instead of ||.||Cri, \\-\\Bvn> ll-IIL* w e w r i t e II-Ho Il-II_?V> II-II LP> respectively. 

A matrix valued function F: [a, b] -• L(Rn, Rm) is said to be measurable or con
tinuous or of bounded variation or absolutely continuous or essentially bounded 
on [a, b] if any of the functions 

te[a,b]-+fiJ{t)eR (i = 1,2, ...,m, j=l,2,...,n) 

is measurable or continuous or of bounded variation or absolutely continuous or 
essentially bounded on [a, b], respectively. 

Let us mention that 

v a r j F = s u p t | F ( . i ) - F ( t i _ 1 ) | 

where the supremum is taken over all finite subdivisions of [a, b] of the form 

a = t0 < tx < ... < tk = b 
and 

m n 

max (var> fj < var* F < £ £ var* fhl. 

We denote ||F||L00 = supess |F(t)| and ||F||LP= (JJ \F(t)\pdt)1/p for 1 <p < oo. 
fe[a,_»] 

If F: [a,b] -+ L(Rn,Rm) is measurable and ||F||LP < oo (1 < p < oo), then the 
matrix valued function F: [a, b] -> L(Rn,Rm) is said to be LMntegrable on [a,b]. 
(Instead of LMntegrable we write simply L-integrable.) 
1.4. Properties of functions of bounded variation. If feBV[a, b] then the limits 
lim f(t) = /(r0-h), t0e[a,b), lim f(t) = f(t0~), t0e(a,b] exist and the set of 

t->t0+ r -* t 0 -

discontinuity points of/ in [a, b] is at most countable. 
U feBV[a,b] then f(t) = p(t) - n(t), te[a,b] where p,n: [a,b]-+R are 

nondecreasing functions on [a,b]. Let a sequence tvt2,... of points in [a,b], 
tt =t= tp i =)= j and two sequences of real numbers cl9c2,...,dud2,... be given such 
that tn = a implies cn = 0 and tn = b implies dn = 0. Assume that the series 
Xc«> YAn converge absolutely. Define on [a, b] a function s: [a, b] -> _R by the 
n n 

relation , v v v 

^ = L cn + L dn • 
In < < (n < ' 

Every function of this type is called a break function on [a, b]. Clearly s(t„ +) — s(t„) = 
= d„ and s(rn) - s(t„-) = cn, n = l , 2 , . . . and s(t + ) = s(t) = s(f-) if t e [a ,6] , 
t * t„, n = 1,2,.... Further seBV[a,fc] and var*s = Jj(|c,| + |_*-|). 

H 
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1.2 

If feBV[a,b] then there exist uniquely determined functions fceBV[a, b], 
fh e BV[a, b] such that / is a continuous function on [a, b], fb is a break function 
on [a, b] and f — fc+ fh (the Jordan decomposition of feBV[a,b]). 

If fe BV[a, b] then the derivative / ' of / exists a.e. on [a, b]. 
If fe BV[a, b] then / is expressible in the form 

f = fac+fs+fb 

where faceAC[a, b], fb is a break function on [a, b] and / ; [a, b] -* R is con
tinuous on [a, b] with the derivative / ' = 0 a.e. on [a, b] (the Lebesgue decom
position of fe BV[a, b]). 

If feAC[a,b] then the derivative / ' exists a.e. on [a,b] and f el}[a,b], i.e. 
f5 | / ' ( t ) |d t<ooandvarS/=JS | / ' ( t ) |d f . 

The following statement is important: 

Helly's Choice Theorem. Let an infinite family F of real functions on [a, b] be given. 
If there is K > 0 such that 

\f(t)\ < K for te[a,b] and v a r ^ / < K for every feF 

then the family F contains a sequence {/}^°=i such that \imfn(t) = cp(t) for every 
te[a, b] and cpeBV[a,b], i.e. the sequence fn(t) converges pointwise to a function 
<p: [a, b] -* R which is also of bounded variation. 

On functions of bounded variation see e.g. Natanson [ l ] , Aumann [1]. 

2. Linear algebraical equations and generalized inverse matrices 

Let us consider linear algebraical equations for xeRn and y* e R* 

(2.1) Ax = b, 

(2.2) Ax = 0 

and 

(2.3) y*_4 = 0 , 

where A is an m x n-matrix (A e L(Rn, Rm)) and b e Rm. 
By N(A) we denote the set of all solutions to (2,2). Obviously, N(A) is a linear 

subspace in Rn, i.e. if x1,x2eIV(i4) and a1?a2e.R, then xtax + x2<x2eN(A). It is 
well-known that 

(2.4) dim N(A) = n - rank (A), 

i.e. either (2,2) possesses only the trivial solution x = 0 (if rank (A) = n) or N(A) 
contains a subset of fc = n — rank (A) elements x l 5x2 , . . . , xk which are linearly 
independent, while any subset of k + 1 its elements is linearly dependent. (We say 

14 



1.2 

also that the homogeneous equation (2,2) has exactly k = n — rank (A) linearly 
independent solutions.) The set [xv x2,..., xfc} forms a basis of N(A) and any 
x e N(A) can be expressed as their linear combination 

k 

x = YJ xjaj > where a, eR (j = 1,2,..., k). 
1=i 

As (2,3) is equivalent to A*y = 0, N(A*) denotes the linear subspace in R* of all 
solutions to (2,3) and 

(2.5) dim N(A*) = m- rank (A*) = m- rank (A). 

Furthermore, the equation (2,1) possesses a solution if and only if (2,3) implies 
Y*b = 0. In particular, (2,1) possesses a solution for any beRm if and only if (2,3) 
implies y* = 0 (dim N(A*) = 0). 

The equation (2,4) is said to be an adjoint equation to (2,1). 
The concept of a generalized inverse matrix introduced by R. Penrose (Penrose 

[1] and [2]) enables us to express the solutions to (2,1) if they exist. 
The following assertion is helpful. 

2.1. Lemma. BAA*= CAA* implies BA = CA and BA*A=CA*A implies BA*=CA*. 
Proof. If BAA* = CAA*, then 0 = (BAA* - CAA*)(B - C)* = (BA - CA)(A*B* 
— A*C*), whence BA = CA immediately follows. (Given a matrix D, DD* = 0 
if and only if D = 0.) As (A*)* = A, the latter implication is a consequence of the 
former one. 

2.2. Theorem. Given A e L(Rn, Rm), there exists a unique matrix X e L(Rm, Rn) such 
that 

(2.6) AX A =A, 

(2.7) X.4X = X , 

(2.8) X*A* = AX, 

(2.9) A*X* = XA. 

Proof, (a) Putting (2,8) into (2,7) we obtain 

(2.10) XX*A* = X. 

On the other hand, if (2,10) holds, then AX = AXX*A*. Since (AXX*A*)* = AXX*A*, 
this means that (AX)* = AX and (2,8) holds. Moreover, (2,8) and (2,10) yields 
X = XX*A* = XAX, i.e. the couple of equations (2,7), (2,8) is equivalent to (2,10). 

(b) Analogously, the system (2,6), (2,9) is equivalent to 

(2.11) XAA* = A* . 

15 



1.2 

(c) Furthermore, to find a solution X to the system (2,10), (2,11) it is sufficient 
to find a solution B to the equation 

(2,12) BA*AA* = A* . 

In fact, (2,12) implies immediately that X = BA* satisfies (2,11) and consequently 
also (2,9). Hence 

A*X*A* =XAA* = A* and XX * A* = BA*X*A* = BA* = X. 

(d) Now, let us consider the set of n x n-matrices (A*Ay (j = 1,2,...). Since 
the dimension of the space of all real n x n-matrices is finite (n2), there exist a natural 
number k and real numbers Xl9X2,...9Xk such that |A-] + |A2| + ... + |Ak| > 0 and 

(2.13) X,A*A + X2(A*Af + ... + Xk(A*Af = 0. 

Let r be the smallest natural number such that Xr + 0. If we put 

(2.14) B = -Xr~
l{Xr+1l + Xr+2A*A + ... + A ^ A ) * - ' - 1 } , 

then according to (2,13) 
B(A*A)r+1 =(A*A)r. 

Hence if r > 2, B(A*A)r A*A = (A*A)r~l A*A and according to 2.1 

B(A*A)r = (A*A)r~1. 

In this way we can successively obtain 

B(A*Af = (A*Ay- * for j = 2, 3,..., r. 

In particular, B(A*Af = A*A and by 2.1 BA*AA* = A*. The matrix B defined 
in (2,14) satisfies (2,12) and hence X = BA* verifies the system (2,6)-(2,9). 

(e) It remains to show that this X is unique. Let us notice that by (2,9) and (2,7) 

A*X*X = XAX = X 

and by (2,8) and (2,6) 

A* AX = A*X*A* = (AXA)* = A* 

Now, let us assume that Y e L(Rm, Rn) is such that 

(2.15) A*Y*Y = Y, A*A Y = A* . 

Then, according to (2,10) and (2,11) 

X = XX*A* = XX*A*AY = XAY = XAA*Y*Y = A*Y*Y = Y. 

2.3. Definition. The unique solution X of the system (2,6)—(2,9) will be called 
the generalized inverse matrix to A and written X = A*. 

16 



1.2 

2.4. Remark. By the definition and by the proof of 2.2 A* fulfils the relations 

(2.16) AA*A = A, A*AA* = A* , (A*)* A* = AA* , A*(A*)* = A*A 

and 

(2.17) A# (A# )* A* = A* , A#AA* = A* , A*(A#)* A* = A* , A*AA# = A* 

(cf.(2,6)-(2,ll) and (2,15)). 

2.5. Remark. If m = n and A possesses an inverse matrix A 1 , then evidently A - 1 

is a generalized inverse matrix to A. 

2.6. Proposition. Let A e L(R„ Rm), B e L(Rp, Rm). Then the equation for X e L(Rp, Rn) 

(2.18) AX=B 

possesses a solution if and only if 

(2.19) (lm-AA*)B = 0. 

If this is true, any solution X of (2,18) is of the form 

(2.20) X = X0 + A # B , 

where X0 is an arbitrary solution of the matrix equation 

AXo = 0mp. 

Proof. Let AX = B, then by (2,6) (/ - AA*)B = (A - AA*A)X = 0. If (2,19) 
holds, then B = AA*B and (2,18) is equivalent to A(X - A*B) = 0, i.e. to X = 
= X0 + A*B, where AX0 = 0. 

2.7. Proposition. Let A e L(Rn, Rm). Then AX0 = 0m p i/ and on/y i/ there exists 
Ce L(/?p, R„) such that X0 = (l„ - A*A) C. 

Proof. A(/„ - A*A) C = (A - AA*A) C = 0 for any Ce L(i?p, R„). If AX0 = 0, 
then X0 = X0 - A*AX0 = (I - A*A) X0. 

Some further properties of generalized inverse matrices are listed in the following 
lemma. 

2.8. Lemma. Given AeL(Rn,Rm), 

(2.21) A** =(A*)* =A, 

(2.22) ( A * ) * = ( A * ) * , 

(2.23) (XA)* = X~lA* for any XeR, X*0 and 0*„ = 0„,m, 

(2.24) (A*A)* = A*(A*)*, (AA*)* = (A*)* A* . 
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(The relations (2,21)-(2,24) may be easily verified by substituting their right-hand 
sides in the defining relations for the required generalized inverse.) 

2.9. Lemma. Let AeL(R„Rm) and let UeL(Rm,Rn) and VeL(R„Rm) be such that 

A*AU = A* and AA*V = A. 
Then 

V*AU = A* . 

Proof. Let A*AU = A* and AA*V = A. Then by 2.6 

U = U0 + (A*A)* A* and V = V0 + (AA*)* A, 

where A*AU0 = 0 and AA*V0 = 0. It follows from 2.1 that A*AU0 = 0 (i.e. 
U*A*A = 0A*A) and AA*V0 = 0 (i.e. V*AA* = OAA*) implies AU0 = 0 and 
V*A = 0, respectively. Furthermore, by (2,22) and (2,24) 

((AA*)*)* = (AA*)* = (A*)* A* and (A*A)* = A*(A*)* . 

Hence by the definition of A* (cf. 2.4) 

V*AU = [A*(A*)*] [A*AA*] [(A*)* A*] = A*AA*AA* = A* . 

2.10. Lemma. Given AeL(Rn,Rm\ there exist UeL(Rm,Rn) and VeL(Rn,Rm) such 
that 

(2,25) A*AU = A*, AA*V = A. 

Proof. By (2,24) and (2,17) 

(A*A)* A* = A*(A*)* A* = A* 

and by (2,16) and (2,22) AA* = (A*)* A* = (A*)* A*. Thus 

[/ - (A*A) (A*A)*] A* = A* - A*AA* = A* - A*(A*)* A* = 0. 

Since (A*)* = A, this implies also 

[/ ~(AA*)(AA*)*]A = 0. 

The proof follows now from 2.6. 

2.11. Remark. Let us notice that from the relations (2,16) defining the generalized 
inverse of A, only AA*A = A was utilized in the proofs of 2.6 and 2.7. Some authors 
(see e.g. Reid [1]) define any matrix X fulfilling AX A = A to be a generalized in
verse of A. 

Let A e L(Rn, Rm) and h = rank (A). If h = n, then Ax = 0 if and only if x = 0. 
Let us assume h < n. By (2,4) there exist an n x (n — h)-matrix X0 such that its 
columns form a basis in N(A), i.e. Ax = 0 if and only if there exists ceRn_h such 
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that x = X0c. Consequently XeL(Rp,Rn) fulfils AX = 0mp if and only if there 
exists C G L(KP, Rn-h) such that X = X0C. In particular, there exists C0 _ L(Kn, #„_,.) 
such that 

(2.26) ln-A*A~X0C0. 

Furthermore, let h = rank (A) < m. Then by (2,5) there exists Y0e L(Rm,Rm_h) 
such that its rows form a basis in N(A*). Consequently y e L(Rm, R ) fulfils YA = 0 n 

if and only if there exists DeL(Rm_h,Rp) such that Y = Dyo. In particular, there 
exists D0eL(Rm-h,Rm) such that 

(2.27) / m - A A # = D o y o . 

(If h = m, then y*A = 0 if and only if y* = 0.) 

2.12. Proposition. Let AeL(R„Rm) and X = L(Rm,Rn). Then AXA = A if and 
only if there exist H and D e L(Rm, Rn) such that 

X = A* + (/„ - A*A) H + D(/m - AA*) 

or equivalently if and only if 

X = A* +X 0 K + Ly0, 

where X0eL(Rn-h,Rn) and Y0eL(Rm,Rm_h) (h = rank(A)) were defined above, 
KeL(Rm9Rn_h) and Le L(Rm_h,Rn) are arbitrary, the term X0K vanishes if h = n 
and the term LY0 vanishes if h = m. 

Proof. Let us assume h < m and h < n. Let both AXXA = A and AX2A = A. 
Then A(XX - X2) A = 0MiB and hence (Xx - X2) A = (/„ - A*A)C with some 
C _ L(Rn). By 2.6 and 2.7 this is possible if and only if 

Xx - X2 = (/„ - A*A) CA* + D(/m - AA*) 

or by (2,26) and (2,27) if and only if 

X, - X2 = X0[C0CA*] + [DD0] Y0 . 

Putting CA# = H, C0CA* = K and DD0 = L we obtain the desired relations. 
The modification of the proof in the case that h = m and/or h = n is obvious. 

2.13. Lemma. Le£ A e L(R„ Rm). If rank (A) = m, then det (AA*) + 0. If rank (A) = n, 
then det (A*A) + 0. 

Proof. Let rank (A) = m. Then by (2,5) A*y = 0 if and only if y = 0. Now, since 
A* = A#AA* (cf. (2,17)), AA*y = 0 implies A*y = A*AA*y = 0 and hence y = 0. 
This implies that rank (AA*) = m (cf. (2,4)). 

If rank (A) = rank (A*) = n, then by the first assertion of the lemma rank (A*A) 
= rank (A*(A*)*) = n. 
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2.14. Remark. It is well known that rank (AX) = min(rank(A), rank(X)) when
ever the product AX of the matrices A, X is defined. Hence for a given A e L(Rn, Rm) 
there exists X e L(Rm, Rn) such that AX = lm only if rank (A) = m. Analogously, 
there exists X e L(Rm, Rn) such that XA = /„ only if rank (A) = n. 

2.15. Lemma. Let AeL(Rn,Rm). If rank (A) = m, then AA* = lm. If rank (A) = n, 
then A*A = ln. 

Proof, (a) Let rank (A) = m. Then by 2.13 (AA*) possesses an inverse (AA*)'1 

and according to the relation A*AA* = A* (cf. (2,17)) 

(2.28) A* =A*(AA*)~X 

and hence AA* = lm. 
(b) If rank (A) = n, then the relation A*AA* = A* from (2,17) and 2.13 imply 

(2.29) A* =(A*A)~' A 

and hence A*A = /„. 

2.16. Lemma. Let AeL(Rm), BeL(R„Rm) and CeL(Rn). If rank (A) = rank (B) 
= m, then (AB)* = B*A l. If rank(B) = rank(C) = n, then (BC)* = C 'B*. 

Proof. Let rank (A) = rank (B) = m. Then by 2.15 BB* = I. Consequently 
ABB*A * = /. Furthermore, (B*A~1)(AB) = B*B = B*(B*)* = B*A*(A~1)*(B*)* 
= (AB)*(B*A~1)*. This completes the proof of the former assertion. The latter 
one could be proved analogously. 

For some more details about generalized inverse matrices see e.g. Reid [1] 
(Appendix B), Moore [1], Nashed [1] and "Proceedings of Symposium on the Theory 
and Applications of Generalized Inverses of Matrices" held at the Texas Techno
logical College, Lubbock, Texas, March 1968, Texas Technological College Math. 
Series, No. 4. 

3. Functional analysis 

Here we review some concepts and results from linear functional analysis used in 
the subsequent chapters. For more information we mention e.g. Dunford, Schwartz 
[1], Heuser [1], Goldberg [1], Schechter [1]. 

Let X be a linear space over the real scalars R. If F, G are linear subspaces of K, 
then we set 

F + G = {zeX; z = x + y, xeF , yeG}. 

F + G is evidently a linear subspace of X. 
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F + G is called the direct sum of two linear subspaces F, G if F n G = {0}. Let 
the direct sum of F and G be denoted by F © G. 

If F ® G = X then G is called the complementary subspace to F in X. 
It can be shown (see e.g. Heuser [1], II.4) that 
(1) for any linear subspace F c l there exists at least one complementary sub-

space G cz X 
(2) for any two complementary subspaces Gl,G2 to a given subspace F a X 

we have dimGl = dimG2 where by dim the usual linear dimension of a linear 
set is denoted. 

This enables us to define the codimension of a linear subspace F cz X as follows. 
Let X = F ® G; then we set 

codim F = dim G. 

(If dim G = oo or X = F, we put codim F = oo or codim F = 0, respectively.) 
If F c= X is a linear subspace, then we set x ~ y for x, y e X if x — y e F. By ~ 

an equivalence relation on X is given. This equivalence relation decomposes X 
into disjoint classes of equivalent elements of X. If x e X belongs to a given equiva
lence class with respect to the equivalence relation ~ then all elements of this class 
belong to the set x + F. 

Let us denote by XjF the set of all equivalence classes with respect to the given 
equivalence relation. Let the equivalence class containing x e l b e denoted by [x], 
i.e. 

[x] = x + F. 
Then 

XjF = {[x] = x + F; xeX}. 

If we define [x] + [y] = [x + y], a[x] = [ax] where x e [x], y e [y], a e R 
then XjF becomes a linear space over R called the quotient space. It can be shown 
that if X = F ® G, then there is a one-to-one correspondence between XjF and G 
(see e.g. Heuser [1], 111.20). Hence 

codim F = dim G = dim (XjF). 

Let X and Y be linear spaces over JR. We consider linear operators A which assign 
a unique element Ax = y e Y to every element x e D(A) c: K. The set D(A) called 
the domain of A forms a linear subspace in X and the linearity relation 

A(ax + pz) = aAx + pAz 

holds for all x , z e l , a,j8eR. 
The set of all linear operators A with values in Y such that D(A) = K will be 

denoted by L(X, 7). If X = ^ then we write simply L(X) instead of L(K, K). The 
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identity operator xeX -+ xeX on X is usually denoted by /. For an operator 
A e L(X, Y) we use the following notations: 

R(A) = {yeY; y = Ax, xeX} 

denotes the range of A, the linear subspace of values of A e L(X, Y) in Y 

N(A) = {xeX ; Ax = 0eY} 

denotes the null-space of A e L(K, Y); N(A) cz X is a linear subspace in K. Further 
we denote 

a(A) = dim N(A) 
and 

j8(A) = codim R(A) = dim (YJR(A)). 

If a(A), [1(A) are not both infinite, then we define the index ind A of A e L(K, Y) 
by the relation 

indA = j3(A)-a(A). 

The operator A e L(K, Y) is called one-to-one if for x l5 x2 e K, Xj =t= x2 we have 
Ax. 4= Ax2. Evidently AeL(X, Y) is one-to-one if and only if N(A) = {0} (or 
equivalently a(A) = 0). 

The inverse operator A'1 for Ae L(K, Y) can be defined only if A is one-to-one. 
By definition A'1 is a linear operator from Yto X mapping y = Axe Y to x e l . 
We have D(A"*) = R(A\ R(A~l) = .0(A) = X, A~ x(Ax) = x for x e X, A(A1y) = y 
for yeR(A). If R(A) = Y and N(A) = {0} (i.e. a(A) = j8(A) = 0) then we can 
assign to any yeY the element A_1y which is the unique solution of the linear 
equation 

(3,1) Ax = y. 

In this case we have A'1 eL(Y, X). The linear equation (3,1) can be solved in general 
only for y e R(A). 

The linear equation (3,1) for AeL(X,Y) is called uniquely solvable on R(A) 
if for any yeR(A) there is only one x e K such that Ax = y. The equation (3,1) 
is uniquely solvable on R(A) if and only if A is one-to-one (i.e. N(A) = {0}). 

Let now X, X+ be linear spaces. Assume that a bilinear form <x, x+ >: X x X+ ->R 
is defined on X x X+ (i.e. <ax + j8y, x+> = a<x,x+> + )3<y,x + >, <x, ax+ + j8y+> 
= a<x,x + > + )3<x,y+> for every x ,yeK , x + , y + e K + , a,j5e.R). 

3.1. Definition. If X, X+ are linear spaces, <x, x+> a bilinear form on X x X + 

we say that the spaces X, X+ form a dual pair (X, X+) (with respect to the bilinear 
form <., . » if 

<x,x + > = 0 for every xeX implies x+ = 0eX + 

and 
<x,x+> = 0 for every x + eX+ implies x = OeX . 
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In Heuser [1], VI.40 the following important statement is proved. 

3.2. Theorem. Let (X. X "*) he a dual pair of linear spaces with respect to the bilinear 
form <., .> defined on X x X +. Assume that AeL(X) is such an operator that there 
is an operator A+ eL(X + ) such that 

<Ax,x + > = <x,A + x + > 

for every xe X, x+ eX +. 
If indA = indA+ = 0 , then 

a(A) = a(A + ) = p(A) = p(A + ) < oo 
and moreover 

Ax = y has a solution if and only if <y, x + > = 0 for all x+ e N(A+\ 
A + x+ = y+ has a solution if and only if <x, y + > = 0 for all xeN(A). 
In the following we assume that X and Y are Banach spaces, i.e. normed linear 

spaces which are complete with respect to the norm given in K, Y respectively. 
The norm in a normed linear space X will be denoted by \\.\\x or simply ||.|| when 
no misunderstanding may occur. 

3.3. Definition. An operator A e L(X, Y) is bounded if there exists a constant 
M e R such that 

||Ax|| < M||x|| 
for all xeX. 

The set of all bounded operators A e L(K, Y) (A e L(X)) will be denoted by 
B(X, Y) (B(X)). 

It is well-known that A e B(X, Y) if and only if A is continuous, i.e. for every 
sequence {xn}n=l, lim xn = x we have lim Axn = Ax. 

n->ao n-> oo 

For A G B(X, Y) we define 

(3,2) ||AIUx,Y) = SUP ||Ax|| = SUP V l T -
X = J X : 0 ||X|| 

It can be proved that by the relation (3,2) a norm on B(X, Y) is given and that B(X, Y) 
with this norm is a Banach space (see e.g. Schechter [1], Chap. III.). 
3.4. Theorem (Bounded Inverse Theorem). If A e B(X, Y) is such that R(A) = Y 
and N(A) = {0}, then A"1 exists and A"1 eB(Y,X). 
(See Schechter [1], III. Theorem 4.1). 

3.5. Definition. We denote X* = B(X, R), where R is the Banach space of real 
numbers with the norm given by a e R - > |a|. The elements of K* are called linear 
bounded functionals on X and X* is the dual space to X. Given f e K*, its value 
at x e X is denoted also by 

f(x) = <x , f> x . 
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If f (x) = 0 for any xe X, f is said to be the zero functional on X and we write 
f = 0. 

3.6. Remark. K* equipped with the norm 

\\f\\x.= sup |f(x)| = s u p M for feX* 
11*11* • x ' 0IIXII* 

(cf. (3,2)) is a Banach space. Furthermore, 

xeK, f eK *^<x , f>* 

is evidently a bilinear form on K x K*. Clearly, <x,f >x = 0 for any x e K if and 
only if f is the zero functional on X (f = Oe X*). Moreover, it follows from the 
Hahn-Banach Theorem (see e.g. Schechter [1], H.3.2) that <x, f } x = 0 for any 
feX* if and only if x = 0. This means that the spaces X and its dual X* form 
a dual pair (K, K*) with respect to the bilinear form <., .}x. 

For some Banach spaces X there exist a Banach space Ex and a bilinear form 
[., ,~\x on X x Ex such that feX* if and only if there exists geEx such that 

<*> f>x = [x> * ] * for a n y x 6 x • 
If this correspondence between Kx and K* is an isometrical isomorphism*), 

we identify Ex with K* and put 

<x>g>* = [x>g]x-

3.7. Definition. Let K, Y be Banach spaces. By X x Y we denote the space of all 
couples (x, y), where xeX and y e Y Given (x, y), ( u , v ) e l x Y and XeK, we 
put (x, y) -F (u, v) = (x + u, y + v), A(x, y) = (Ax, Ay) and 

| |(x,y)||xxy=||x||x-f ||y||y. 

(Clearly, ||.||xxy 1s a norm on X x Y and X x Y equipped with this norm is 
a Banach space.) 

3.8. Lemma. If (X, X+) and (Y, Y+) are dual pairs with respect to the bilinear forms 
[., . ] x and [., . ] y , respectively, then (X x Y, X+ x Y+) is a dual pair with respect 
to the bilinear form 

(x,y)eK x Y, (x + ,y+ )eK+ x Y+ -> 

[(*> y). (x+^ y+)]xxy = [x, x + ] x + [y, y + ] y . 

*) A linear operator mapping a Banach space X into a Banach space Y is called an isomorphism if it 
is continuous and has a continuous inverse. An isomorphism &: X -> Y is isometrical if ||#x||y = ||x||x 

for any xe X. Banach spaces X, Y are isometrically isomorphic if there exists an isometrical isomorphism 
mapping X onto Y. 
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Proof. [., .]Xxy 1s clearly a bilinear form. Furthermore, let us assume that 

(3.3) [ (x ,yMx + ,y + ) ] X x y = 0 for all ( x + , y + ) e X + x Y+. 

In particular, we have 

[(x,y),(x + , y + ) ] x x y = [ x , x ^ = 0 

for all (x+,y+)eX+ x Y+ with y+ = 0. Since (X,X+) is a dual pair this implies 
x = 0 and (3,3) reduces to [y ,y + ] y = 0 for all y+ e Y, i.e. y = 0. Analogously, 
we would show that [(x, y), (x+, y+)]x x y = 0 for all (x, y) e K x Y if and only if 
x + =0, y+ =0. 

3.9. Remark. In particular, (X x Y)* = K* x Y*, where 

<(x,y),(€^)>xxy-<x,«>x + <y,9>y 

for any x e l , ye Y, £eX* and t\e Y*. 

3.10. Examples, (i) It is well-known (cf. Dunford, Schwartz [1]) that A is a linear 
operator acting from Rn into Rm if and only if there exists a real m x n-matrix B 
such that _4: XGK„ -• BxeRm. Thus the space of all linear operators acting from 
Rn into Rm and the space of all real m x n-matrices may be identified. Clearly, 
B(Rn9 Rm) = L(R„ Rm). In particular, R* = B(Rn, R) = L(Rn, R) is the space of all 
real row n-vectors, while 

<x, y*}Rn — y*x for any y* e Rn and xeRn. 

(ii) Let — o o < a < b < + o o . The dual space to Cn[a,b] is isometrically iso
morphic with the space NBVn[a, b] of column w-vector valued functions of bounded 
variation on [a, b] which are right-continuous on (a, b) and vanishes at a. Given 
y* eNBVn[a9 b], the value of the corresponding functional on xeCn[a,b] is 

(3.4) <x,y*>c= fd[y*(t)]x(t) 
Ja 

and 
\\y*\\c = sup |<x,y*>c| = varjy* = ||y*||BF. 

| |x| |c=l 

(The integral in (3,4) is the usual Riemann-Stieltjes integral.) This result is called the 
Riesz Representation Theorem (see e.g. Dunford, Schwartz [1], IV.6.3). As a conse
quence K e B(Cn[ay b], Rm) if and only if there exists a function K: [a, b] -> L(Rn9 Rm) 
of bounded variation on [a, b] and such that 

K:xєCn[a,b]^ ГdГK(t)] x(ř) є R m . 
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Let us notice that the zero functional on Cn[a, b] corresponds to the function 
y* e NBVn[a, b] identically vanishing on [a, b]. 

(iii) Let — oo < a < b < oo, 1 < p < oo, q = p\{p — 1) if p > 1 and q = oc 
if p = 1. The dual space to LPn[a, b] is isometrically isomorphic with Lq

n[a, b] 
(whose elements are row ri-vector valued functions). Given y* e Lq[a, b], the value 
of the corresponding functional on x e LPn[a, b] is 

(3,5) <x,y*>L= I y*{t)x{t)dt 
Ja 

and 
||y*||L*= sup |<x,y*>L| = ||y*||L, 

H X | | L P = 1 

(see e.g. Dunford, Schwartz [1], IV.8.1). (The integral in (3,5) is the usual Lebesgue 
integral.) The zero functional on LPn[a, b] corresponds to any function y* e Lq[a, b] 
such that y*{t) = 0 a.e. on [a, b]. 

(iv) Any Hilbert space H is isometrically isomorphic with its dual space. If 
x, yeH -> (x, y)HeR is an inner product on H and xeH -> ||x||H = (x,x)1/2 

the corresponding norm on H, then given h e H, the value of the corresponding 
functional on xeH is given by 

<x, h>H = (x, h)H 

and 
||h||H*= sup |<x,h>H| = \\h\\H. 

I | X | | H = 1 

If X, Y are Banach spaces and A e B{X, Y), then for every g e Y* the mapping 
xeX -> {Ax,g}Y 1s a linear bounded functional on X. (Given xeX and ge Y*, 
|<Ax, g>y| < ||Ax||y ||g||y* < ||-A||B(X,y) ||g||Y* ||x||x-) Thus there is an element of X* 
denoted by A*g such that (Ax,g}Y = <x, A*g}x. This leads to the following 

3.11. Definition. Given Ae£(K, Y), the operator A*: Y* -> X* defined by 

(Ax,g}Y = <x, A*g}x 

for all x e X and geY* is called the adjoint operator to A. 
Let us notice that A*e£(Y*, X*) and ||A*|| = j|A|| for any Ae£(K, Y). (See 

Schechter [1], 111.2.) 

3.12. Definition. For a given subset M c l w e define 

M 1 = {feX*; <x,f>x = 0 for all XEM) 

and similarly for a subset N a X* we set 
1N = {x e K; <x, f}x = 0 for all feN}. 
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3.13. Definition. The operator A e B(X, Y) is called normally solvable if the equation 
Ax = y has a solution if and only if (y,f}Y = 0 f°r a ' l solutions f e Y* of the 
adjoint equation A*f = 0. 

(In other words, A e B(X, Y) is normally solvable if and only if the condition 
1N(A*) = R(A) is satisfied.) 

3.14. Theorem, if AeB(X, Y), then the following statements are equivalent 

(i) R(A) is closed in Y, 
(ii) R(A*) is closed in X*, 

(iii) A is normally solvable (R(A) =- LN(A*)), 
(iv) R(A*) = N(A)\ 

(See e.g. Goldberg [1], IV.1.2.) 

3.15. Theorem. Let AeB(X, Y) have a closed range R(A) in Y Then 

a(A*) = p(A) and a(A) = P(A*). 

If ind A is defined, then ind A* is also defined and 

ind A* = — ind A . 

(See e.g. Goldberg [1], IV.2.3 or Schechter [1], V.4.) 

3.16. Definition. If X, Y are Banach spaces then a linear operator K e L(X, Y) is 
called compact (or completely continuous) if for every sequence {xn}n=1, xneX 
such that \\xn\\x < C = const, the sequence {Kxn}n=zl in Y contains a subsequence 
which converges in Y 

Let the set of all compact operators in L(X, Y) (L(X)) be denoted by K(X, Y) 
(K(X)). 

The set K(K, Y) cz L(K, Y) is evidently linear. Moreover every compact operator 
is bounded, i.e. K(X,Y) cz B(X,Y). Indeed, if K e K(K, Y)\B(X, Y), then there 
exists a sequence {x„} cz X, \\xn\\x < C such that ||KxJ -> oo and the sequence 
{Kx„} cz Y cannot contain a subsequence which would be convergent in Y 

3.17. Theorem. Suppose that KeB(X,Y) and that there exists a sequence {Kn} 
cz K(X, Y) such that lim Kn = K in B(X, Y). Then KeK(X, Y), i.e. K(K, Y) is 

M-*00 

a closed linear subspace in B(X, Y). 
(See Schechter [ l ] , IV.3.) 

3.18. Proposition. / / X, Y, Z are Banach spaces, AeB(X, Y), KeK(Y,Z), then 
KAeK(X,Z). Similarly BLeK(X,Z) provided LeK(X,Y), BeB(Y,Z). 
(See Schechter [1], IV.3.) 
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For the adjoint of a compact operator we have 

3.19. Theorem. K e K(X, Y) if and only if K* e K(y*, X*). 

(See Goldberg [ l] , 111.1.11 or Schechter [1], IV.4 for the "only if" part.) 

3.20. Theorem. Let K e K(X) and let both the identity operator on X and the identity 
operator on X* be denoted by I. Then I + KeB(X), I -f K*eB(X*) and 
(i) R(l + K) is closed in X and R(l + K*) is closed in X*, 

(ii) a(/ + K) = fi(l + K) = a(/ + K*) = p(l + K*) < oo. 
(In particular, ind (I + K) = ind (/ + K*) = 0.) 
(See Schechter [1], IV.3.) 

3.21. Remark. It follows easily from the Bolzano-Weierstrass Theorem that any 
linear bounded operator with the range in a finite dimensional space is compact. 
(B(X, Rn) = K(X, Rn) for any Banach space X.) Analogously B(Rn, Y) = K(Rn, Y) 
for any Banach space Y 

3.22. Definition. Let Ex and £y be Banach spaces and let Jx e B(X*, Ex) and 
JY e B(Y*, £y) be isometrical isomorphisms of X* onto Ex and Y* onto £y, respec
tively. Let [., .]x be a bilinear form on X x Ex such that <x, f>x = [x, Jx£]x 

for any xeX and %eX* and let [., . ] y be a bilinear form on Yx EY such that 
<Y^>Y = [YJY*I]Y for any Y^Y and jyey*. If AeB(X, Y) and B e L(£y, £*) 
are such that 

[Ax,<p]y = [x,Bq>]x for every xeX and <peEY, 

then B is called a representation of the adjoint operator to A. 

3.23. Remark. If A e B(X9 Y) and B e L(EY, Ex) is a representation of the adjoint 
operator A*eB(Y*, X*) to A, then for any x e K and <peEY we have 

[Ax,<p]y = <AxJy » y = <x,.4*7y V>x = [xJxA*/y > ] * . 

Thus B = JxA*JY
 1 G B(Ky, £x). It follows easily that if we replace the dual spaces 

to X and Y respectively by the spaces Ex and EY isometrically isomorphic to them 
and the adjoint operators A* and K* to A and K e B(X, y), respectively, by its 
representations B and CeB(EY,Ex) defined in 3.22, then Theorems 3.14, 3.15, 
3.19 and 3.20 remain valid. This makes reasonable to use the notation .4* also 
for representations of the adjoint operator to A. 

In the rest of the section X stands for an inner product space endowed with the 
inner product (., .)x and the corresponding norm x e K -• ||x||x = (x, x)x'

2. 
Furthermore, Y is a Hilbert space, (., .)y is the inner product defined on Y and 
||y||y = (y>y)y/2 for any YeY 
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3.24. Definition. Given AeL(X, Y) and yeY, ueX is said to be a least square 
solution to (3,1) if 

| |Au-y| |y < | |Ax-y | | y for all x e K . 

3.25. Proposition. If Ae L(K, Y) and U0G X is such that 

(3.6) (Ax, Au0 - y)y = 0 for all x e X , 

then u0 is a least square solution to (3,1). Furthermore, xe X is a least square solution 
to (3,1) if and only if x — u0 e N(A). 

Proof. Given xeK , Ax — y = A(x — u0) + Au0 — y and in virtue of (3,6) 

||Ax - y\\2 = \\A(x - u0)\\
2 + 2(A(x - u0), Au0 - y)Y + \\Au0 - y\\2 = 

= ||A(x - u0)\\
2 + \\Au0 - y\\2 > \\Au0 - y\\2. 

Thus u0 is a least square solution to (3,1), while ||Ax — y||y = || Au0 — y||y if and 
only if A(x — u0) = 0. 

3.26. Remark. Let us notice that if R(A) is closed in Y, then the Classical Projection 
Theorem (cf. e.g. Luenberger [1], p. 51) implies that the equation (3,1) possesses 
for any y e Y a least square solution, while u0 e X is a least square solution to 
(3,1) if and only if (3,6) holds. 

3.27. Definition. Given A 6 L(X, Y) and y e Y, u0 e X is a best approximate solution 
to (3,1) if it is a least square solution to (3,1) of minimal norm (i.e. \\u0\\x < ||u||x 

for any least square solution u of (3,1)). 

3.28. Proposition. Let A e L(K, Y) and let u0eX fulfil (3,6). If besides it 

(3.7) (v,uo)* = 0 for all veN(A) 

holds, then u0 is a best approximate solution of (3,1). 

Proof. By 3.25 u0 is a least square solution to (3,1) and u — u0eN(A) for all least 
square solutions u of (3,1). Thus assuming (3,7) we have 

u , = u - U o||i + 2(° - "o. »o)x + KUŠ = II" - Holi + K U ! > ||uo||x 

for any least square solution u of (3,1). Let us notice that ||u0||x = |u0 | |x if and 
only if u = u0. 

3.29. Remark. Let A e L(X, Y). If k = dim N(A) < oo, then applying the Gramm-
Schmidt orthogonalization process we may find a orthonormal basis x l 9x2 , . . . ,x k 
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in N(A), i.e. (xp x ^ = 0 if i =+= j and (xf, xt)x = 1. Let us put 
k 

P: x e X - ^ X ( x ' 4 x i -
. = i 

Then PeB(X\ R(P) = M(A) and P2x = P(Px) = Px for every xeX. Moreover, 

(3.8) (x - p x , v)x = 0 for all x e X and v e N(A). 

If R(A) is closed in y, then there exists QeB(Y) such that R(Q) = R(A), Q2 = Q 
and 

(3.9) (Ax, Qy - y)Y = 0 for all y e Y and xeX 

(cf. Luenberger [1]). P is said to be a /mear bounded orthogonal projection of K 
onto N(A) and Q is a linear bounded orthogonal projection of Y onto R(A). Let 
us notice that since 

R(l -P) = N(P) and R(l - Q) = N(Q), 

R(l - P) and R(l - Q) are closed. 
As a restriction A|K(/_p) of A onto R(l — P) is a one-to-one mapping of R(l — P) 

onto R(A), it possesses a linear inverse operator A+ eL(R(A), R(l — P)), i.e. 

(3.10) AA+A = A. 

As obviously AA+Q = Q, it follows from (3,9) that (Ax, AA+Qy - y)y = (Ax, Qy - y)Y 

= 0 for every yeY and x e l Hence by 3.25 A+Qy is for any y e y a least square 
solution of (3,1). 

Let us put 

(3.11) A# =(I-P)A+Q. 

Evidently A(l - P) = A and hence (Ax, AA*y-y)Y = (Ax, AA + Qy- y)Y = 0 
for every x e l and yeY. Since according to (3,8) (v, A*y)x = (v, (/ - P) A+Qy)x 

= 0 for each v e N(A) and y e y, it follows from 3.28 that for every yeY, u0 = A*y 
is a best approximate solution to (3,1). Moreover, it is easy to verify that 

(3.12) AA*A = A, A*AA*=A*, A*A = I-P, AA* = Q. 

3.30. Remark. If AeB(X, y), then the condition (3,6) becomes A*Au0 = A*y or 
denoting u0 = A*y, 

(3.13) A*AA* =A*. 

Let us notice that if R(A) is closed, then (3,12) implies (3,13). In fact, given xeX 
and y e i ; we have by (3,9) 0 = (x, A*Qy - A*y)x, i.e. A*Q = A*. This together 
with the relation AA* = Q from (3,12) yields A*AA* = A*Q = A*. Finally, as 
A# = A*AA*9 A# = (/ - P) A* and hence by (3,8) (v, A*y)x = (v, (/ - P) A*y)x 

= 0 for every veN(A) and ye Y. It means that (3,12) implies also (3,7). 
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Given AeL(X, Y), any operator A+ eL(Y,X) satisfying (3,10) is called a gener
alized inverse operator to A. If AeB(X, Y), then the unique operator _4# e B(Y, X) 
satisfying (3,12) is called the principal generalized inverse operator of A. 

3.31. Remark. If X = K„, Y = Rm and A is an m x ^-matrix and -4# its generalized 
inverse matrix defined by 2.2, then the vector u0 = A*beRn satisfies the con
ditions (3,13) and (3,7). In fact, as by 2.7 v e N(A) if and only if v = (/ - A*A) d 
for some deR„ we have owing to (2,16) (v, A*b) = v*A*b = d*(l - (_4M)*).4#b 
= d*(_4# - _4#_4_4#) b = 0. Furthermore, A*AA* = A* by (2,17). Thus iSRH and Rm 

are equipped with the Euclidean norm |.|e, _4#b is for any beRm a unique best 
approximate solution of (2,1). 

4. Perron-Stieltjes integral 

This section contains the definition of the Perron-Stieltjes integral based on the 
work of J. Kurzweil [1], [2]. Some facts concerning this integral are collected here. 
These facts are necessary for the subsequent study of equations and problems in
volving the Perron-Stieltjes integrals. 

Let a fixed interval [a, b], — oo < a < b < + oo be given. We denote by £f = £f[a, b] 
the system of sets S = R2 having the following property: 

for every T G [a, b] there exists such a S = S(T) > 0 that (T, t) e S whenever 
T G [a, b] and t G [T - 5(T\ T + 3(T)]. 

Evidently any set Se£f[a, b] is characterized by a real function S: [a, b] -• (0, + oo). 
Let / : [a, b]-> R and g: [a, b] -> R be real functions, — o o < a < a < b < / ? 

< +oo. If a(t) is defined only for tG[a, b] then we assume automatically that 
g(t) = g(a) for t < a and g(t) = g(b) for t > b. It is evident that if var£ g < oo, 
this arrangement yields varf g = var£g for any a, j? such that <x<a<b< /?. 

4.1. Definition. A real valued finite function M: [a, b]-> K is a major function 
of f with respect to g if there exists such a set Se^\a,b] that 

(T - T0)(M(T) - M(T0)) > (T - T0)/(T0)(</(T) - g(z0)) 

for (T0, T) G S. The set of major functions of/ with respect to g is denoted by M(f g). 
A function m: [a, b] -> R is a minor function off with respect to g if — meM( —/ #), 

i.e. if — m is a major function of —/ with respect to g. The set of minor functions 
of / with respect to g is denoted by m(f g). 

4.2. Definition. Let M(f g) + 0 and m(f g) =t- 0. The lower bound of the numbers 
M(b) - M(a) where M e M(f g) is called the upper Perron-Stieltjes integral of f 
with respect to g from a to b and is denoted by \b

a f da. Similarly the upper bound 
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of the numbers m(b) — m(a), m e m(f, g) is called the lower Perron-Stieltjes integral 
of f with respect to g from a to b and is denoted by \b

a f dg. 

4.3. Lemma. // M(f g) =t= 0 and m(f g) # 0, then 

}dg. 
a 

For the proof of this lemma see Kurzweil [1], Lemma 1,1,1. 

4.4. Definition. If M(f g) 4= 0, m(f g) 4= 0 and the equality 

Гfdg< [/ 
Ja Ja 

i fdg= [V dg 

holds, then by the relation 

ffdg= Pfdg 
Ja Ja 

the Perron-Stieltjes integral j"Jj f dg of the function f with respect to g from a to b 
is defined. In this case f is called integrable with respect to g on [a, b]. If a = b, 
then we set J«fdg = 0 and if b < a, then we put J£fdg = -Jjjfda. 

Now we give a different definition of the Stieltjes integral which is also included 
in the paper Kurzweil [1] and is equivalent to Definition 4.4. This is a definition 
of the integral using integral sums which is close to the Riemann-Stieltjes definition. 

For the given bounded interval [a, b] cz R we consider sequences of numbers 
A = {a0, T15 a1?..., xk, a j such that 

(4.1) a = a0 < (xl < ... < ak = b, 

(4.2) otj_ l <Tj< ocj, j = 1,2,..., k. 

For a given set Se^[a, b], A satisfying (4,1) and (4,2) is called a subdivision 
of [a, b] subordinate to S if 

(4.3) (Tj,t)eS for te [ a ^ ^ a j , j=l,2,...,k. 

The set of all subdivisions A of the interval [a, b] subordinate to S is denoted 
by ,4(S). 

In Kurzweil [1], Lemma 1.1.1 it is proved that for every Se^\a, b] we have 

(4.4) -4(S)*0. 

If now the real functions f: [a, b] -+ R, g: [a, b] -+ R are given and 
A = {a0,Tpttj,...,xk,afc} is a subdivision of [a,b] which satisfies (4,1) and (4,2), 
we put 

(4.5) B/,^) = ZfW(«(«J)-#J-i)). 
J = I 
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If no misunderstanding may occur, we write simply B(A) instead of Bfg(A). 

4.5. Definition. Let / : [a, b] —> R and g: [a,b] -* R. If there is a real number J 
such that to every e > 0 there exists a set S e £f[a, b] such that 

\Bf,g(A) - J\ < s for any A e A(S), 

we define this number to be the integral 

"fdg 
l 

of the function f with respect to g from a to b. 
The completeness of the space R of all real numbers implies that the integral 

ja / dg exists if and only if for any e > 0 there exists a set Se £f[a, b] such that 

\BLg(A,) - BfjA2)\ < e for all Ax,A2eA(S). 

In Kurzweil [1] (Theorem 1.2.1), the following statement is proved. 

4.6. Theorem. The integral §a f dg exists in the sense of Definition 4.4 if and only 
if \b

a f dg exists in the sense of Definition 4.5. If these integrals exist, then their values 
are equal. 

4.7. Remark. In Schwabik [3] it is shown that the integral introduced in 4.4 and 4.5 
is equivalent to the usual Perron-Stieltjes integral defined e.g. in Saks [1]. Con
sequently the Riemann-Stieltjes, Lebesgue and Perron integrals are special cases 
of our integral. In particular, if one of the functions / g is continuous and the other 
one is of bounded variation on [a, b], then the integral \b

a f dg exists and is equal 
to the ordinary Riemann-Stieltjes integral of / with respect to g from a to b. 

The a-Young integral described in Hildebrandt [1] (II. 19.3) is not included in 
the Perron-Stieltjes integral (see Example 2,1 in Schwabik [3]). However, if 
/ : [a, b]-^R is bounded and geBV[a,b], then the existence of the o-Young 
integral Y\b

afdg implies the existence of the Perron-Stieltjes integral \b
afdg 

and both integrals are then equal to one another (Schwabik [3], Theorem 3,2). 
Now we give a survey of some fundamental properties of the Perron-Stieltjes 

integral. The proofs of Theorems 4.8 and 4.9 follow directly from Definition 4.5. 

4.8. Theorem. / / / : [a,b] -• R, g: [a,b] -* R, XeR and the integral \b
af dg exists, 

then the integrals \b
a If dg and \b

a f d[Xg] exist and 
rb rb n rb 
\Xfdg = l\fdg, \fA[Xg\ = X \ f dg. 

Ja Ja Ja Ja 

4.9. Theorem. If fv,fi'- [a,b] -* R, g: [a,b] -» R and the integrals \b
aft dg and 
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la fi dg exist, then the integral \b
a (fx + f2) dg exists and 

ľ(fi+f2)d«= ľ/.dø 
Ja Ja 

fгàg-

If f: [a, b] -> JR, gl5g2: [a, b] -> K and the integrals Ja/dg i and Ja/dg2 exist, 
then t/ie integral ja /d[g i + g2] exists and 

ľ / d [ đ l + ű 2 ] = ľ/dflf. 
Ja Ja + /dg2 

4.10. Theorem. If f: [a, b] -> JR, g: [a, b] -+ R and Ja/dg exists, then for any 
c, d e R, a < c < d < b the integral \d

c f da exists. 

4.11. Theorem. I/' f: [a, b] -+ JR, g: [a, b] -+ #, c e [a, b] and t/ze integrals 
la f dg, Jc / dg exist, then also the integral ]a f dg exists and the equality 

holds. 
f / d a = \Cfdg+ \"fdg 

Ja Ja Je 

The statement 4.10 can be proved easily if 4.6 is taken into account. The proof 
of 4.11 is given in Kurzweil [1] (Theorepi 1.3.4). 

4.12. Theorem. Let f: [a, b]-• #, g: [a, b]-• JR be given and let the integral 
la f dg exist. If ce [a, b], then 

hm 
t-*c 

te[a,b] І fdg-f(c)(g(t)-g(c)) = \ f dg . п 
(See Kurzweil [1], Theorem 1.3.5.) 

4.13. Corollary. If the assumptions of 4.12 are satisfied, then 

lim 
t-*c 

te[a,b] 

fdg = fàg 

if and only if lim g(t) = g(c) or f(c) = 0. 
t-*c 

te[a,b] 

If g: [a,b] ->K possesses the onesided limits g(c + ), g(^~) fl* ce[a,fc] (e.g. if 
ae£V[a,b]) , then 

(4,6) lim Pfdg 
t-*c+ 1 
*e[a,5] • / f l 

»»=[. 
Ja 

fdg+f(c)(g(c+)-g(c))= f dg + f(c) A+g(c) 
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and 

<4'7) ,!™ \/d9 = \/dg ~ f^^c) - (fa-)) = f/dff ~ f(c) A~g(c) 
te[a,b] ° Jo 

for ce(a,b] 

where we have used the notation A+g(c) _ g(c + ) — g(c), A~g(c) = g(c) — g(c-). 

4.14. Lemma . / / / : [a, b]^R, i - 1 , 2 , geBV[a,b] and A = {«0,Tl,..., -_,»_} 
is an arbitrary subdivision of [a, b] satisfying ( 4 j ) an^ (42), then 

(4,8) \B,JA) - B/2,9(A)| s sup \f(t) - f2(t)\ var$ g. 
*e[a,fc] 

Proof. Evidently 

KM) - BfxM)\ = £ ( / I ( T .) _ /_(,.)) (f l(a.) _ 3(a._ i)} 
1=1 

< l\Uh)-f2(rj)\\g(*j)-g(«j-1)\ 
1=1 

< sup 1 / ^ ) - / ^ __!_(«.)-«(«,_,)! 
and (4,8) holds. ' ^ i~1 

In the same trivial way the following lemma can be proved. 

4.15. Lemma. Let f. [a, b] -> R, \f(t)\ _ M /or a// 1e [a, 0], & e BV[a, fc], i = 1,2. 
Then for any subdivision A = {a0,Tj, ...,Tk,aJ o/t/ie interval [a,b] satisfying (4,1) 
and (4,2) we have 

(4,9) |B / i f t(A) - BfjA)\ < M vat* (g_ - g2). 

4.16. Lemma. / / / : [a, &]-•_*, ae£V[a,b] and the integral J*/da exists, then 
the inequality 

holds. 
fàg <sup|Д í) |vаr£a 

Ja te[a,b] 

Proof. Since the integral J«/dg exists, for every e > 0 there exists Se^[a,b] 
such that for any A e A(S) we have 

BfM)-[fd9 <e-
Let us set fx(t) = f(t\ f2(t) = 0 for t e [a, b]. Then by 4.14 we have for any A e A(S) 

*fM ~ [f dg + \Bf,9(A)\ < £ + KM) - BfjA)\ 

< s + sup |/M| varj g. 
te[a,b] 

/ : 
fda 
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Hence the inequality is proved because e > 0 is arbitrary. 

4.17. Theorem. / / /„: [a, b] -+R, n = 1,2,..., limfn=-f uniformly on [a,b], 
geBV[a,b] and $bfndg exists for all n = 1,2, ^^then the limit lim$af„dg as 
well as the integral \b

afdg exist and the equality 

(4.10) \im[fndg = P/dg n-*°°Ja Ja 
holds. 

The proof of the existence of the limit lim \b
a fn dg and of the integral [b

a f dg 
follows from 4.14. The equality of these quantities is an immediate consequence 
of 4.16. 

4.18. Theorem. Let gn,geBV[a,b], n = 1,2,... and lim var*(gn - g) = 0. Assume 
n-*ao 

that f: [a,b] -> R is bounded and \b
afdgn exists for all n = 1,2,.... Then the limit 

lim \b
a f dgn as well as the integral \b

a f dg exist and 
n-+ao 

(4.11) lim \bfdgn= [bfdg. 
"""Ja Ja 

(The proof follows from 4.15; cf. Schwabik [3], Proposition 2,3.) 
If fgeBV[a,b], then by Hildebrandt [1] (II.19.3.11) the tx-Young integral 

y \b
af dg exists. Taking into account the relationship of the or-Young and the 

Perron-Stieltjes integrals (cf. 4.7) we obtain immediately the following. 

4.19. Theorem. If f, g e BV[a, b], then the integral \b
afdg exists. 

4.20. Remark. For a given a e [a, b] and for t e [a, b] we define 

(4.12) </C(0 = O if t<a, ifr:(t)=l if a < t 

and 

(4.13) xl*;(t) = 0 if t < a, iAa"(t) = 1 if oi<t. 

The functions i/ta
+, ij/' are called simple jump functions. 

A real function / : [a, b] -• JR is said to be a finite-step function on the interval 
[a,b] if there is a finite sequence a = d0 < dx < ... < d* = b of points in [a,b] 
such that in every open interval (^_ l 5^) (i = l,2,...,/c) the function / equals 
identically a constant ct e JR. Let us put for t e [a, b] and i = 1,2,..., fc 

gi(t) = <# + „,(t) - *i(t)) + M-i)(^- .W - *-.-.('))• 

It is easy to see that 0;(t) = f(t) if t e [<i,_.,<*,) and af(t) -* 0 if t e [a,6]\[di_.,cff). 
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Hence, for any t e [a, b] we have 

Ati-ioM+mKit) 
1 = 1 

i c ,#t ,w - * J ; W ) + M - .) (^- ,w - ^ . , w ) + m M). 
І = I 

i.e. any finite-step function can be expressed in the form of a finite linear combination 
of functions of the type </t+ and if/'. 

Since any function /: [a, b]->R which possesses the onesided limits /(c + ) 
for any ce[a,b) and f(c — ) for any ce(a,b] can be approximated uniformly on 
[a, b] by a sequence of finite-step functions (see e.g. assertion 7.3.2.1 (3) in Aumann 
[1]), it follows from 4.17 that to prove 4.19 it is sufficient to show that the integrals 
JJj \jt + da and \b

a i>~ da exist for any g e BV[a, b] and any a e [a, b]. 

4.21. Lemma. Let cce[a, b] and let \j/+: [a, b]->R and \l/~: [a, b]->R be the 
simple jump Junctions defined by (4,12) and (4,13) in 4.20. 

(a) The integrals \b

a g d</̂ + and \b

a g dif/' exist for an arbitrary function g: [a, b] ~> R 
and 

]>-{.* V.-.: 
<̂> f----{r ?:::: 

(b) If fe BV[a, b] then the integrals \b

a <>+ d/ JJ <>~ d/ exist and 

(4,16) Í / ' + d / = { ( 

j>«4? 

/(*>)-/(« + ) if a < b , 
0 • j / a = b, 

(4,n) U . - d / - | f > - ^ - > ' • < • • 
1 ' n i/ a = a. 

Proof, (a) If a = b then by definition i/t+(t) = 0 for every te[a,b] and for any 
subdivision A: a = a0 < xx < OL1 < ... < xk < ock = b we have Bgl>+(A) = 0. Hence 
JJ g d^+ = 0. If a < b let us define <5(f) = ±|t - a| for t G [a, 6], "r * a, <5(a) = 1. 
Evidently <5: [a, b] -• (0, + oo). We define 

S = {(T, t) e R2; xe [a, b], t e [x - <5(T), T + <5(T)]} , 

by definition we have Se^[a,b]. For every subdivision AeA(S) we have 
O j - i , * J <= [T,. - <5(T,), T,. + <5(T,)], i.e. 

0 < (Xj- a7-_! < 2<5(T,) 

for any I'^ 1,2,..., fc (see (4,1), (4,2)). Moreover, there exists an index i, 1 ̂  i*^ /c, 
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such that a e [a f_!, af). If T, =j= a then we obtain a contradictory inequality 

0 < a, - a<_! < 2(5(T,) = ^ - a| < ^ - a,. -J. 

Hence x{ = a. For every subdivision A e A(S) we have 

-WW = t */)[*>,) - *.+(«,-i)l = flfo) [+M - *.+(««-i)] = flfo) = a(a). 
1= 1 

Hence the integral \b
agd\l/a exists and equals g(a) by Definition 4.5. The result 

for the integral \b
a g d^~ can be proved similarly. 

(b) The existence of the integrals \b
a \j/a df j * \l/~ df follows imeediately from 4.19. 

It is not difficult to compute their values using 4.11 and 4.13. See also Schwabik [2], 
Proposition 2.1. 

4.22. Lemma. For ae[a , b] define \l/a(t) = 0 if te[a, b], t =# a, ^a(a) = 1. Then 
for any geBV[a, b] the integrals JJi/^da, j_gd^ a exist and 

(4,18) [V a dg = g(a + ) - a(a-) = Aa(a), 

(reca// that g(a — ) = g(a) and g(b + ) = g(b)), 

(4,19) gdt/^ = 0 řf ae(a,fc), 

í gdlAa = -g(^)» g d*Aь = g(Ь). 

r 

Proof. It is easy to see that \j/a(t) = \l/~(t) - il/a(t) where ^ + , i/f" are given by (4,12) 
(4,13) respectively. The existence of the integrals is clear by 4.19, the relations (4,18), 
(4,19) follow immediately from 4.21. 

4.23. Lemma. Let gB e BV[a, b] be a break function, fe BV[a, b]. Then the integral 

\b

a f dg_ e^sts and 

fdgB = f(a)A+g^a)+ ~ f(x)AgB(x) + f(b)A-g^b) 
a<x<b 

where A+

gB(t) = gjt + ) - 9^), A ~ gB(t) = gB(t) - aB(t - ) , AaB(t) = gB(t+) - g^t -). 

Proof. Since aB is a break function, there exists an at most countable set (tu t2,...) 
of points in [a, b\ and two sequences c+, cf, i = 1,2,... such that 

9s(t) = ~ c,+ + ~ cr 
a<n<t a<u<t 

where var£gB = £ \c~\ + £ \c+\ < + oo. By definition it is c+ = A+gB(tt), 
a<ti<b a<tti<b 
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cr = A"aB(ti). Using the functions i/t + , $* defined by (4,12), (4,13) we can write 

00 

»*M = I [c.+MO+ <f *.:(')] 
i = l 

= f [ A + ^ ( t i ) ^ ( 0 + A-9B(t,)-A,7W]-
i = l 

Let us define 

9i(t) = I [A+^t.) *.! W + A-^t,) «A,7(t)] , 
i = l 

we have 
/ 00 > 

var*(gB - gN
B) -= var£ £ [A+aB(t;) ^,+(t) + A ^ t , ) ^ ( t ) ] 

= N+1 

= £ [|A+
flB(l.)| + |A-9B(t,)|]. 

i = iV + 1 

This yields 
lim vara (g5 - g2) = 0 

since the series £ [|A+aB(t;)| -f | A - a ^ ) | ] = var£gB converges by the asumption. 
i = l 

Evaluating \b
afdgN

B we obtain by the results of 4.21 

PVdg£ = £ |A+gB(tf) [* /# + + A-g^-) [V#-T = 
Ja i=l L Jfl Ja 

= I[A+aB(ti)fW + A-^) f ( t i ) ] -
i = l 

Recall that we assume g(a-) = g(a), g(b) = g(b + ). By 4.18 we have 

\bfdgB = lim fVdg£ = £ (A+g^.) + A-a^))/^.) 
Ja "-"'Ja i=l 

and the proof is complete. 

In Hildebrandt [1] (II. 19,3.14) the following result is proved for the Young 
integrals. 

Osgood Convergence Theorem. If /„: [a, b] -» JR, n = 1,2,... are uniformly bounded 
on [a,b], i.e. |/n(r)| < M /or a// re [a, b] and n = 1, 2,..., ge£V[a, b], lim/.(f) 

n-*oo 

= /(t) /or a// te[a,b], and i/ Yjjj/da and YJ^/da exist, then lim Yj^/da 
H-*00 

= Y ftfdg. 
In virtue of the relations between the Young integral and the Perron-Stieltjes 

integral mentioned in 4.7 the following statement can be deduced. 
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4.24. Theorem. If f,g,fneBV[a,b], \fn(t)\ < M for all te[a,b], n = 1,2,... and 
lim j„(f) = f(t) for all t e [a, b], then the integrals J* j„ da, J* j da exist and 

n\imSbfndg = $bfdg. 
n-*ao 

This statement follows from the above quoted Osgood Convergence Theorem 
in the following way: Since all functions in question belong to BV[a, ft], the integrals 
tfj,da, tfjda, Y\b

ajndg and Ytfjda exist and \b

afnAg=Y\b

afndg, $fdg 
= Y Ja fdg (see 4.7). Hence all the assumptions of the Osgood theorem are satisfied 
and our statement holds. 

4.25. Theorem (Substitution Theorem). If h e BV[a, ft], g: [a, ft] -> R and 
f: [a, ft] -* K, the integral \b

a g dh exists a/irf / is bounded on [a, ft], then the integral 
J« /(0 d(Ja g(T) dMT)) exfefs if and only if the integral J* f(t) g(t) dh(t) exists and in 
this case the two integrals are equal. 

Proof. Let us show that the following statement holds. If \b

agdh exists then for 
every n > 0 there is an Sle9)[a,ft] such that for every AeA(S1)9 A: a = a0 

< tj < ... < Tk < ock = ft we have 

(4,20) 
k 

I 
1=1 

J a , - i <ч. 

Let .7 > 0 be given. By definition there exists Sx e £?[a, ft] such that if A e A(SX) 
then 

: • 
Bв,h(A)- gàh 

and if also A' e A(SX) then 

1=1 

lą^-^ИH^-

Ja, _ ! J 

Let A: a = a0 < i t < ... < Tk < ock = ft, AeA^) be fixed. Assume that Uj 
= {Ii>I2>--v,jm}> m < / is an arbitrary set of integers such that 1 <jt <j2 < ... 
< j m < k. Since by 4.10 the integrals Ĵ «_ a dh, i = 1,2,..., m exist there is an 

Ji 1 

5 2 e^[a, ft], S2 c: 5X such that for any subdivision A. of the interval [a^.-j, a .J 
which is subordinate to St we have 

(4,21) BJA,)- ('" 
J a 1 i " l 

gdh 
Am 

Let us refine the subdivision A in such a way that for i = 1,...,m the points a^.j 
< tj. < oij. are replaced by the points of At and the points a ^ < T} < ay, j$ Ux 
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remain unchanged. Let us denote this refinement by A\ evidently A eA(Sx). 
We have 

IM*ЛM«,)-%,- i) ]- | gdh 
1ЄU 

Z W * A ) M « * ) - M - A - . ) ] - - U - « ) ) + i(вMÒ- gdh 
" J , - l 

I g(ь) Ш - Қ*j-.)] - I g(h) ÍҚ*j) - Қ*j-.)] - 1 -U-«) 
1=1 

+ 1 в. r,h(A,)- V fldh 

1=1 
HUІ 

<\BM)-B.ÅП + ^<\ĄĄ 

because A, A e A(S^ and (4,21) holds. 
Since the set Ul a {1,..., k} of indices was arbitrary, we obtain that for a given 

r\ > 0 there exists Sx e/f[a,/3] such that for any AeA(Sl) and Ul <= {1,2,..., k} 
the inequality 

holds. Let us set 
I^ЛM«,)-%,-i)]- Г gdh 

J=V\ Jaj-i 
< 2 

dj = ФjШ*j)-Қ*j-г)l gdh 

and assume that U1 is the set of all je {l,...,k} for which d}> 0, U2 = {1,..., fc}\t/1. 
Then we have 

IШ-24-24--
1=1 JeUt jeU2 

24 
jeUi 

+ 24 
JeV2 

<*l, 

i.e. (4,20) holds. 
Now, let us prove the theorem. Assume that e > 0 is given. If the integral 

$b

afydh exists then by definition there exists S. e Sf[a, b] such that for all 
AeA(Si) 

(0 \if(*j)g(*j)[h(«j) ~ M«,-i)] - [fg*h\ <\. 

Since the integral \b

a g dh exists, by the above statement there is S2 e £f[a, b] 
such that for any A e A(S2) we have 

(-) 
1=1 

ФJШ«J) " % , - . ) ] - Г' Иlt 2c 
where C > 0 is the bound for/ i.e. |/(*)| < C for all t e [a, b]. If we set S = SxnS2 

then S € /5^[a, b] and for any >1 e A(S) the inequalities (i), (ii) are satisfied. Let us 
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set k(t) = \l

a g(x) dh(t), t e [a, b]. Then for A e A(S) we have by (i) and (ii) 

ЬÁЛ) - £ fgdh lAtj) 
1=1 -í ^d fc - fgáh 

I /(T,) <? dh - f(xj) g(xj) [h(aj) - %,_ . ) ] 
1=1 Jf l t j - i 

'5 

+ I j ( ^ Л % , ) - % , - > ) ] -
1=1 

jffdh 

< c l 
J=i 

\g(xj)[h(aj)-h(a . - . ) ] - f" fldЛ 
JOLj- 1 

є Cє є 
" } - - < + - = £ . 

2 2C 2 

Hence according to Definition 4.5 the integral \a f dk = ja f(t) d(\a g dh) exists 
and equals \b

a fg dh. Using the same technique the second implication can be also 
proved. 

4.26. Theorem. Assume that for the functions g,h e BV[a, b]9 / : [a, b] -> JR, 
<p: [a, b]-># the integrals J*/da, Ja<pdh exist. I/ to every re [a, b] there is a 
(5*(T) > 0 such that 

(4,22) \t - x\ \f(x) (g(t) - g(x))\ <(t-x) cp(x) (h(t) - h(x)) 

holds for every x e [a, b], t e [a, b] n [T — <5*(T), T -f <5*(T)], then 

fdg 

This statement is proved in Kurzweil [2]. 

cpdh. 

4.27. Corollary. Assume that geBV[a,b]. / / / : [a,b] -> K, |/(t)| < M = const. 
for all t e [a, b] and §a f da exists then for every [c, d] cz [a, b] we have 

/dflf < Mvarfg 
Jc 

and consequently var* (Jj. / dgr) < M var£g < oo. 

/ / fe BV[a, b] then j£ / da exists and 
Гь 

fdg 
ГЬ 

| /(t) |d(vari 0 )<sup|/(r) |var*a. 
te[a,b] 

Proof. In the first case we have 

' \t~A IfM (g(t) - g(*))\ < (t - t) |f(T)| (vari g - varj g) 

<(t-x) M(vari g - vari g) 
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for every xe[a, b], re [a, b]. Since the integral j^Md(var^a) exists and equals 
Mvarfg we obtain the result by 4.26. The second statement can be derived in 
a similar way, when 4.19 and the fact that | / |eBV [a , b] are taken into account. 

4.28. Theorem. Let us assume that g: [a, b] -• R is nondecreasing, fuf2: [a, b] -> _R, 
/-(f) < f2(t) for all t e [a, b] and \b

a f da exists for i = 1,2. Then 

/ i dg < /2 dg • 

This statement follows from 4.26. 

4.29. Theorem. / / h: [a, b] -> R is nonnegative, nondecr easing and continuous from 
the left in [a, b] (i.e. h(t — ) = h(t) for every re (a, b]), then 

(4.23) I hk(t) dh(t) < — 1 — [hk+ x(b) - h'+ *(a)] 
Ja k + 1 

for any k = 0,1,2, . . . .// h: [a, b] -• K is assumed to be nonnegative, nonincreasing 
and continuous from the right (i.e. (h(t +) = h(t) for every t e [a, b)), then 

(4.24) \\k(t) dh(t) > -±— [hk+ \b) - hk+ '(a)] 
Ja k + I 

for any k = 0,1,2,... 

The proof of the first part is given in Kurzweil [2]. The second part can be proved 

similarly. 

4.30. Theorem. Assume that g: [a, b] -> R is a nonnegative nondecreasing function, 
cp: [a, b] -> R nonnegative and bounded, i.e. cp(t) < C = const, for all t e [a, b]. 

(a) Ifg is continuous from the right on [a, b) and if there exist nonnegative constants 
Ku K2 such that 

(4.25) <p(Z)<Ki + K2 [V)da(T) 

for every £ e [a, b], then 

(4.26) CP(T) < x.e-^-w-*™ 

for any T e [a, b]. 

(b) Ifg is continuous from the left on (a, b] and if there exist nonnegative constants 
KUK2 such that 

(4.27) <p(i)<Kl + K2 [V(t)da(T) 
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for every £, e [a, b], then 

(4,28) ^ ( T ) ^ K 1 C K ^ > - » ( - » 

for any x e [a, b]. 

Proof. We prove only (a). The statement (b) can be proved in the same way. Let 
us define 

w(t) = LeK2{g{b)~9{t)), te[a,b] 

where L > 0 is a constant. 

For any £ e [a, b] we have 

L + K2 vv(t)dg(T) = L + K2L\ eK2{g{b)-g{x))dg(x) 

00 

Since the series £ K2(g(b) - g(T))l/i! evidently converges uniformly on [a,b], 
i = 0 

4.17 ensures that in the last term the integration and summation are interchangeable. 

Hence by (4,24) from 4.29 we obtain 

L + K2 I W(T) dg(T) = L ( l + K2 f ^ J"(#) - <,(T))' dfl(-)) = 

- L 0 - *-|0 l £ J W ) - «M/<*(#) - flto)) < 
( oo j ^ i v 

1 + Io~(g(6) - 0(£))'J = Le^ (b )-^ . 
Let a > 0 be arbitrary. We set 

we(t) = (K! + e) e«2(»(fc)-»(0) ? t e [a> b] . 
Then 

<4'29> ^ ^ ^ ^ J W ) ^ ) ^ ^ ) , {6[a,6]. 
For the difference mtf) = ^ - wj^ w e h a y e b y ( 4 ^ ^ 

(4,30) ^ ) ^ - e + K 2 L ( T ) d , ( T ) ; -e[ f l,6-
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and, in particular, mE(b) < —e<0. Moreover, it is easy to see that \mc(£)\ s Cl 

= const, for £ e [a, b]. By 4.12 we have 

mtf) <-s + K2 mt(b) [g(b) - g(b-)] + lim K2 \ mc(z) dg(x) 
<5-0+ J^ 

< - £ + K2 mE(b) [g(b) - g(b-)] + C2[g(b-) - g(£)] , C2 = K2C{ . 

Since geBV, there exists n > 0 such that if 0 < b — ^ < n then C2(g(b^) — g(£)) 
< a/2. Hence for £ e [b — n, b] we have mE(£) < 0. Let us set 

(4,31) T = inf {t e [a, b]; mg) < 0 for { e [t, b]}. 

We have shown that T< b and we have evidently mE(t) < 0 for te(T,b]. Further 
by (4,30) and 4.12 

Cb 

mXT)< -г + K2 m k)Ч*) 

= - e + K2 mE(T)(g(T+) - g(T)) + lim K2 | mc(T)da(r) < - e < 0 
d^° + jT + d 

since g(T+) - g(T) = 0 and J7+<5m£(T)dg(T) < 0 for every d > 0. 
If T > a then we repeat the above procedure and show in the same way that 

there exists an n > 0 such that mE(£) < 0 for all £e[T-n, T]. This contradicts 
(4,31). Hence T= a and mj£) < 0 for all £e[a ,b] , i.e. 

</>(£) < K e * 2 ^ - ^ + seK2{9(b)~g{a)) 

for all £ e [a, b] and e > 0. This yields (4,26). 

4.31. Theorem. Let h: [a,b] x [c,d] -+ R be such that \h(s,t)\ < M < oo and 
var£ h(., t) + varj! h(s, .)<oo for every (t, s) e [a, b] x [c, d]. Then for any feBV[a, b] 
and any geBV[c, d] both the iterated integrals 

[V(s)([W)d0(o) and {" (["df(s)h(s,t))dg(t) 

exist and are equal. 

(See Hildebrandt [2], p. 356 and [1], 11.19.) 

4.32. Theorem (Dirichlet formula), if h: [a,b] x [a,b] -> R is bounded on fob] 
x [a, b] and varjj h(s, .) < oo for every s e [a, b], var* h(., t) < OO for every 
t e [a, o], then for any fge BV[a, b] we have 
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(4,32) 

= ^{jЬdg(t)h(s,t)) 

м h(s,t)d/(s) 

dg(t)h(s,t) d/(s) + X A-g(t)h(t,t)A-f(t)- £ A+g(t)h(t,t)A+f(t) 
/ te(a,b) te[a,b) 

whereA'g(t) = g(t) - g(t-\ A+g(t) = g(r-f) - g(t). 

Proof. Let us define fc(s, t) = h(s, t) for a < s < t < b and fc(s, t) = 0 for a < t 
< s < b. Then fc: [a, b] x [a, b] -• K evidently satisfies the assumptions of 4.31 
and this theorem gives 

(4,33) £dg(<)( 

Moreover for t e [a, b) it is 

fc(s, t) df(s) = 'h(s, t) df(s) + k(s, t) df(s) 
Ja Jt 

= \'h(s,t)df(s) + h(t,t)A+f(t), 

since from 4.13 and from the definition of k(s, t) we have by (4,6) 

"fc(s, t) d/(s)) = J" (Jàg(t) k(s, t)) dДs). 

f 

k(s, t) df(s) = lim fc(s,ř)dДs) + fc(t,í)(Дt + ) - Д t ) ) 

= k(t,t)A+f(t) = h(t,t)A+f(t). 

If t = b, then Ĵ  fc(s, b) df(s) = Ĵ  /z(s, b) df(s). Hence for an arbitrary t e [a, b] we 
can write 

(4,34) Tfc(s, t) df(s) = [\(s, t) d/(s) + h(t, t) A+f(t) 
Ja Ja 

if we set A+f(b) = 0. 
A similar argument gives 

(4,35) ţ"dg(t)k(s,t) = | ' àg(t) h(s, t) + A g(s) h(s, s) 

for every se [a, b] if the convention A g(a) = 0 is used. Setting (4,34) and (4,35) 
into (4,33) we obtain 

(4,36) da(t] (J> o« 
"dfís) ( [ V t)da(t)) + f*A-g(s) h(s, s) df(s) - \dg(t)h(t, t) A+f(t 

a \Js / Ja Ja 
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Since g e BV[a, b], there is an at most countable set of points al9 a2,... in [a, b] 
oo 

such that A~a(s) = 0 for all se[a ,b] , s + a, and £ |A~a(a,)| < varjjg < -hoc. 

Let us set H(s) = A~a(s)h(s, s) for any se[a , b]. Then H(s) = 0 for all se[a , b], 
s =t= a„ i = 1,2,... and 

f Я(s)dДs) A-a(s)/i(s,s)d/(s) = 

Let us define for N = 1,2,... and s e [a, b] 

where i/ta(s) = 0 if s + a and i/̂ a(a) = 1. 

Evidently HN(s) = 0 for all se[a, b], s =t= a1 ?a2,..., aN and HN(ai) = H(a,) for 
i = 1,2, ...,N. For se[a, fc], s£a l 9a2 , . . . , aN we have 

Iff^s) - H(s)| = |H(s)| < sup |ff(«,)|< £ |A-a(ai)h(a„a,)| 
i = N+l,... . - - M J . 1 i = N + 1 

< M £ |A-a(a,)| 
i = N+l 

where M is the bound of |/i(s, t)|. 
00 

Since the series £ |A~a(a,;)| is convergent, we obtain that for any e > 0 there is 
i = l 

oo 

a natural N such that M £ |A~g(af)| < e and also 
i = /V+l 

|HN(s) - H(s)\ < e 

for all s G [a, b], i.e. lim HN(S) = H(s) uniformly in [a, b]. Using (4,18) we conclude 
N-+00 

"HN(S) df(s) = £ A-g(a,) % „ a,) A/(a,) 

and by 4.17 we obtain 

Va (s )h (s , s )d / (s )= (bH(s)df(s) = TM \bHN(s)df(s) = 
2 Ja * a 

= t A-0(«.) %> «<) Af(«<) = I A"3(s) % s) A/(s). 
i = l se(a,b] 

. Similarly it can be proved that 

I dg(t) (h(t, t) Д+/(í)) = I Лöftø Қt, t) Д+/(t). 
te[a,b) 
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If we set these expressions into (4,36) we obtain 

M Һ(s,t)df(s) 

dg(t)h(s, t)Jdf{s) + Z [A'g(s)h(s, s) Af(s) - Ag(s) fa s) A+f(s)] 

+ A~g(b) h(blb)Af{b) - Aa(a) h(a, a) A 7(a) 

and this yields the result. 

4.33. Theorem (integration-by-parts). Let / geBV[a, ft]; the# / o r any interval 
[c, d] cz [a, ft] we have 

f fda + űd/^ jИaИ-Лc)^)- X Д+j(т)Д+
ð(т)+ Z Д-j(т)Д-«(т) 

c ^ r < d 

where A+f(x) = f(x + ) - f(x), A~f(x) = f(x) - f(x-) and similarly for A+g(x), 
A-a(t). 

Proof. If we set h(s,t) = 1 on [a,b] x [a,b] then for every f,9sBV[a,b] we 
have by 4.32 

(4,37) 

-f(í 
df(s))dg(t) 

<Mt))dj(s) + Z Д-a(t)ДY(t)- £ Д+ö(t)A+f(t). 
řє(c,d] řє[c,J) 

Moreover, 

£ (j'dj(s)) da(t) = JV(0 - A4 m = f f(t) Mt) - fW foM - «(c)) 

and similarly 

ľ([W) 
*lC \VS ' 

Гd 

df(s) a(()dj(t) + flИ(fИ-fW)-

Inserting this into (4,37) we obtain the result. (A direct proof of the integration-
by-parts theorem 4.33 is given in Kurzweil [3].) 

The Lebesgue-Stieltjes integral has been defined and studied in many monographs 
on integration theory. (See e.g. Saks [1], Hildebrandt [1], Dunford, Schwartz [1] 
etc.) In the next theorem its relationship with the Perron-Stieltjes integral is cleared 
up. The proof follows e.g. from Theorem VI (8.1) in Saks [1]. 

4.34. Theorem. Let geBF[a,ft] and /: [a,ft]->.R fte such that the Lebesgue-
Stieltjes integral (L-S) J(a b) / da over the open interval (a, ft) exists. Then the Perron-
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Stieltjes integral §h
a f dg also exists and 

fàg = (L-S) fdg+f(a)A+g(a) + f(b)A-g(b). 
(a,b) 

4.35. Remark. If f: [a, b] -» R is bounded, h: [a, b] -> R is Lebesgue integrable 

on [a,b] (heLl[a,b]) and g(t) = g(a) + \l
ah(x)dx on [a,b] (geAC[a,b]\ then 

in virtue of 4.25 and 4.34 

f(t)àg(t) = f(t)Қt)dt, 

where the right-hand side integral is the Lebesgue one. 

For the proof of the following assertion see e.g. Natanson [1] (Corollary of 
Theorem XII.4.2). It is also included as a special case in the "symmetrical Fubini 
theorem" for Lebesgue-Stieltjes integrals (cf. Hildebrandt [ l ] , X.3.2). 

4.36. Theorem (Tonelli, Hobson). If h: D = [a, b] x [c, d] -> R is measurable and 
if any one of the three Lebesgue integrals 

\h(t, s)\ dř ds, 

exists, then the Lebesgue integrals 

h(t, s) dř ds , 

\h(t, s)\ ds I dř, 

h(t, s) dsjdt, 

\h(t, s)\ dř ds 

h(t, s) dř J ds 

all exist and are equal to one another. 

One of the most helpful tools for the investigation of integro-differential and 
functional-differential equations is the "unsymmetrical Fubini theorem" 4.38. For 
its proof the following lemma is needed. 

4.37. Lemma. Let h: [a, b] x [c, d] -+ R be such that h(., s) is measurable on [a, b] 
for any s e [c, d], %(t) = \h(t, c)\ + varf h(t, .) < oo for a.e. t e [a, b] and x e Lp[a, b], 
1 < p < oo. Then 

(a) given fe Lq[a, b] with q = pj(p — 1) if p > 1 and q = oo if p = 1, the function 

cp: se [c,d] f(t) h(t, s) ds 

is defined for any s e [c, d], belongs to BV[c, d] and 

(4,38) q>(s + ) = f(t)h(t, s + )dt forany se[c,d), 

(p(s —) = f(t) h(t, s — )dt for ony s e (c, d] ; 
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(b) given g e C\c, d] (or g e BV\c, d]), the function 

rj: te\a,b]-+\ ds\h(t, s)] g(s) 

is defined a.e. on [a, b] and belongs to LF\a, b\ 

Proof. Clearly, cp(s) is defined for any se\c,d\ For an arbitrary subdivision 
c = s0 < s, < ... < sk = d of [c,d] we have 

I \<p(sj) - ^ V ,)| < P|/(0| I | % -y) " Mt, s,- ,)| dt 
1=1 Ja 1=1 

Гь 

< | / (r) |x(0dr<oo, 

i.e. <p G BV[c, d\ Furthermore, 

\f(t) h(t, G)\ < \f(t)\ x(t) for a.e. t e [a, b] and any a e [c, d] . 

Applying the Lebesgue Dominated Convergence Theorem we obtain immediately 
(4,38). 

(b) Under our assumptions rj(t) is defined a.e. on [a, b\ If g: \c, d] -* R is a finite 
step function with jumps at s,e[c, d] (j = 1,2,..., k) (cf. 4.20), then according to 
4.21 rj(t) is a.e. on \a,b] equal to a linear combination of the values h(t, b), h(t,a), 
h(t,Sj + ) and h(t,Sj — ) (j = 1,2,..., k). In particular, in this case rj is measurable 
on [a, b\ Making use of the fact that any function a which is continuous on [a, b] 
or of bounded variation on [a, b] can be approximated uniformly on [a, b] by finite 
step functions (Aumann [1]) and applying 4.17 we complete the proof oi' the mea-
surability of rj on [a, b\ By 4.16 

\rj(t)\ < x(t) (sup |g(s)|) a.e. on [a, b] 
se[c,d] 

and hence rj e Lp\a, b] for any a e C\c, d] (or a e BV\c, d]). 

4.38. Theorem (Cameron, Martin). Let h: [a, b] x [c, a1] -» K fulfil the assumptions 
of 4.37. Then for any fel3\a,b\ where q -= p/(p — 1) z/p > 1 ana7 q = cc if p = I, 
and any g e C\c, d] (or a e BV[c, d]) the integrals 

м ds[h(t, s)] g(s) I dr anď d. 
Гь 

f(t)h(t,s)dt Ф) 

both exist and are equal to one another. 

Proof. Let the functions cp: [c,d] -> R and rj: \a,b]-+ R be defined as in 4.37. 
By 4.19 and 4.37 both the integrals 

bf(t)rj(t)dt and Pd\cp(s)] g(s) 

50 



1.4 

exist. Let gn: [c,d] -> R (n = 1, 2,...) be a sequence of finite step functions such 
that lim gn(t) = g(t) uniformly on [c, d\ (Such a sequence exists according to 

n-+ oo 

7.3.2.1 (3) in Aumann [1].) To prove the theorem it is sufficient by 4.17 and 4.20 
to show that 

(4,39) ^f(t)rj(t)dt = ^d[cp(s)]g(s) 

holds for all simple jump functions g(s) = ^a

+(s) or g(s) = ij/~(s) (ae [c,d]) defined 
by (4,12) and (4,13). Let ae[c, d] and g(s) = i/C(s) o n [c,d], then in virtue of 4.21 

\h(t,d) - h(t,(x + ) if a < d 

^ (0 if « = d 
аnd 

\<p(d) - <p(a +) if a < d 
d[(p(s)] g(s) = , LV W J uy ' ' 0 if a = d 

and (4,39) follows from (4,38). Analogously we can show that (4,39) holds also if 

g(s) = *l**(s) on [c,d]. 

4.39. Integrals of matrix valued functions. If F = (fd), i'.= 1,2,..., p\ j; = 1,2,..., r; 
G = (g7,fc), j

f = 1, 2,..., r, k = 1, 2,..., q are matrix valued functions defined on the 
interval [a, b] (fy. [a, b] -> R, gjk: [a, b] -> P), then we use the following symbols 

FdG =(a / f c ) , i = l , 2 , ...,p, k=l,2, ...,q, 

and 

d[F]G = ( jSj , i=l,2,...,p, k=l,2,...,q 

r p r p 
a»,fc = Z /ijdffM a n d A.k = Z ffMd/-,j» 

1= 1 Ja 1=1 Ja 

whenever the integrals appearing in these sums exist. In the same way it is possible 
to define also integrals of the type J J Fd[G] H etc. if the products of matrices oc
curring in the expressions are well defined. 

Since the integral of a matrix valued function with respect to a matrix valued 
function is a matrix whose elements are sums of Perron-Stieltjes integrals of real 
scalar functions with respect to real scalar functions, all statements from this section 
can be used also for such integrals. 

where 
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5. The space BVn 

In this section we recall some basic properties of the linear space of functions with 
a bounded variation from the functional analytic point of view. 

Let us consider the linear set of all functions x: [0, 1] -» R with a bounded 
variation var0 x. Let this linear set with the norm 

(5.1) xeBV-> \\x\\BV = |x(0)| F var0x 

be denoted by BV[0, l] or simply BV 
It is easy to check that (5,1) satisfies all the axioms of a norm. 
If x e BV, then evidently 

(5.2) |x(r)| < |x(f) - x(0)| F |x(0)| < |x(0)| F var0 x < ||x|| BV for any t e [0,1] . 

5.1. Proposition. The normed linear space BV is a Banach space (i.e. BV is complete). 

(See Dunford, Schwartz [ l ] or Hildebrandt [1], II.8.6.) 
Further it can be easily shown that BV is not separable. Indeed, if we set xa(t) = 0 

for 0 < t < a, xa(r) = 1 for a < t < 1 for any ae(0,1), then evidently x aeBV 
for any ae(0,1) and 

provided a, /Je(0,1), a 4= ft. Hence BV cannot contain a countable subset which 
would be dense in BV This implies that BV is not separable. 

In the same way we can introduce the Banach space BV„ of all column n-vector 
functions x = (xl5..., x,,)*: [0,1] -» B„ of bounded variation if for the definition 
of var0 x some norm in Rn is used. The norm in BVn is given by 

x e BVn -> ||x||BVn = |x(0)| F var0 x . 

It is evident that x: [0,1] -• Rn belongs to BJ^, if and only if any component xi9 

i = 1,2,..., n belongs to BV Hence it is sufficient to consider only the space BV 
instead of BJ^.. All essential properties of BV are transferable to BVn. 

Let us consider some subspaces of BV which are of interest for the subsequent 
investigations. 

By NBV we denote the set of all functions (peBV for which cp(t + ) = cp(t) if 
te(091) and cp(0) = 0. 

Similarly NBV" denotes the set of all functions cpeBV such that (p(t-) = q>(t) 
for t G (0,1) and cp(0) — 0. Further we denote by 5 the linear set of all functions 
WGBVsuch that w(t + ) = w(t-) = c = const, for every te(091), w(0) = W(0F) = c, 
w(l) = w(l—) = c. 
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5.2. Proposition. The linear sets NBV, NBV~, S are closed in BV 

Proof. Let {rDJ, / = 1,2,... be a sequence with (pxeNBV, such that lim \<px — (p\\BV 

= 0 for some (peBV For t e (0,1) we have 

M ' + ) - <p(t)\ = M ' + ) - <Pi(t+) - (<p(t) - <PM)\ <\\<PI- <p\\By 

for any natural / since (pteNBV Hence cD(f + ) = q>(t). Similarly for any / we have 

|</>(0)| = |(p,(0) - <p(0)| < \q>{ - (p\\BV 

and consequently <p(0) = 0 and (peNBV The closedness of NBV~ and S can be 
proved by the same reasoning. 

We denote by AC the linear set of all absolutely continuous functions on [0,1]. 
If xeAC then by definition there exists S > 0 such that for every system [ah fej, 
i = 1,..., k of nonoverlapping intervals on [0,1] with 

i(bi-a,)<5 
i = l 

we have 

i \x(b() - x(at)\ < 1 . 
i = l 

If we subdivide the interval [0,1] into m intervals by the division points 0 = c0 

< cx < ... < cm = 1 such that ct — c,-_, < <5, i = 1,2,..., m, then vdLVc
c\_x x < 1 

m 

for i = 1,2,..., m and consequently var0x = Y, va rc!-, x < m. Hence xeBV and 
i = l 

the inclusion AC a BV holds. 

5.3. Proposition. The linear set AC is closed in BV 

Proof. Let lim \(pk - <p\\BV = 0 for (peBV and (pkeAC, fc = 1,2,.... For an 
fc-+oo 

arbitrary system [a,-,fej, i = 1,..., fc of nonoverlapping intervals in [0,1] we have 

I W(b) - <p(ai)\ < i \<plbt) - <p(b) - (<p,(a,.) - ^ l + i \<p{b) - 9Ha,$ 
i = l i=i , = 1 

k 

^ \\<Pi - <P\\BV + Z \<Pi(bi) - <Pi(ai)\ 
i = l 

for any / = 1,2,.... Let 8 > 0 be given. Let us choose an integer /0 > 1 such that 
\\<Pi ~ <P\\BV < z\2 for / > l0. For any fixed / > /0 there is S > 0 such that if 

k 

I 
i = l 

then 
fc 

I \<Pi(bi) ~ <Pi(ai)\ < e • 
i = l 
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k 

Hence by the inequality given above we have £ |<p(̂ i) ~~ <P(tfi)| < 8 ar-d (pe AC. 
i= 1 

5.4. Remark. From 5.2 and 5.3 it is evident that if the closed linear sets NBV, NBV~, 
S, AC in BV are equipped with the norm (5,1) of BV, then they are Banach spaces. 

By NBVn, NBV~, Sn, ACn we denote the closed linear subsets in BVn which are 
defined similarly as NBV, NBV~, S, AC for n-vector functions. For the same reason 
as above NBVn, NBV~, Sn, AC„ equipped with the norm of BVn are Banach spaces. 

Let us now assume that xe BV and define w(0) = w(l) = x(0), w(t) = x(t) — x(r + ) 
+ x(0) for te(0, 1). Then evidently weS, since the difference x(t) — x(t + ) is 
nonzero only on an at most countable set A c (0, 1) and 

var0 w = 2 ]T |x(t +) — x(t)\ < 2 var0 x < oo . 
re.4 

Further let us set cp(t) = x(t) - w(t) for f e[0, 1]. It is cp(0) = x(0) - w(0) = 0, 
cp(t) = x(t + ) - x(0) for te(0, 1), <p(l) = x(l) - x(0), i.e. cpeNBV 

In this way we have obtained 
x = cp + w 

for any xeBV where cpeNBV and weS. Since evidently NBVnS = {0}, this 
decomposition is unique. Hence the Banach space BV can be written in the form 
of the direct sum of closed subspaces NBV and S, i.e. 

(5,3) BV = NBV®S. 

Similarly it can be shown that also the decomposition 

BV= NBV 0 S 
holds. 

For any xe BV and i/t e BV we can define the expression 

(5,4) f{x) = Гx| í ) # ( t ) -

By 4A9 the integral on the right-hand side in (5,4) exists. The functional f is evidently 
linear. Further it is 

I/WI < sup |x(ř)| var0 i/t < \x\BV \\\t\BV 
ře[0.1] 

x(t) d\j/(t 

(see 4.27). Hence if / is given by (5,4) with ij/eBV, then fe BV 

5.5. Proposition. Assume that weBV. Then 

(5,5) x(t)dw(t) = 0 
Jo 

for any x e BV if and only if weS. 
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Proof. Let us suppose that f0x(r)dw(r) = 0 for any xeBV For a given ae [0, 1] 
we define xa(t) = 0 if te[0, l]\{a}, xa(a) = 1. Then evidently xaeBV and we 
obtain by the assumption 

xa(r)dw(r) = w(a + ) - w(a-) = 0, 
o 

i.e. w(a + ) = w(a-) for any ae(0,1) and j 0 x.(r)dw(r) = w(l) - w(l - ) = 0, 
j 0 x0(t) dw(t) = w(0 +) - w(0) = 0 (cf. 4.22). This means that w differs from a con
tinuous function only on an at most countable subset in (0,1). 

Assume that w <£ S. Then there exist two points a, /} e [0,1], a < /? such that a, ft 
are points of continuity for w and w(a) =t= w((l). We define x[afi](t) = 1 for r e [a, f\ 
and x[afi](t) = 0 for te [0, l ] \ [a , /?]. Evidently x[aP]eBV. Using the properties 
of the integral we obtain the relation 

f1 P 
x[ap](t)dw(t) = w(a)- w ( a - ) + dw(r) + w(/J + ) - w((3) 

Jo Ja 

dw(r) = w(p) - w(a) + 0 

which contradicts the assumption. Hence weS. Let us assume that weS; w is 
evidently a break function with Aw(r) = w(r + ) — w(t —) = 0 for every re(0, 1) 
and A+w(0) = w(0 + ) - w(0) = 0, A"w(l) = w(l) - w(l - ) = 0. Hence by 4.23 we 
have J0 x(t) dw(t) = 0 for every xeBV 

5.6. Corollary. Let \jj e BV be given. Using (5,3) ij/ can be uniquely written in the form 
ij/ =- cp + w where cpeNBV, weS and 

f1 f1 

j- x(t) di>(r) = x(t) dcp(t) 
Jo Jo 

for every xe BV. 
Let us define for x e BV, cpe NBV the relation 

(5,6) <*,<?> = x(t)dcp(t). 
Jo 

This relation evidently defines a bilinear form on BV x NBV 

5.7. Lemma. Let cpe NBV. If <x, cp} = 0 for every xeBV, then cp = 0. 
Let xeBV If <x, cp} = 0 for every cpeNBV, then x = 0. 

Proof. (1) If <*,</>> = 0 for every xeBV, then cpeS by 5.5. Hence cpeNBVnS 
and by (5,3) we obtain cp = 0. 

(2) Assume that (x,<p} = 0 for every cpe NBV but x =t= 0. Then either there 
exists a e (0,1] such that x(a) * 0 or x(t) = 0 for all t e (0,1] and x(0) + 0. In the 
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first case we set <p(t) = 0 for fe[0,a), cp(t) = 1 for te[a, 1]. Evidently cpeNBV 
and cp is a simple jump function (see 4.20). By 4.21 we have {x,<p} = J0 x(t) dcp(t) 
= x(a) + 0 and this contradicts the assumption. For the second case we set (p(t) = 1 
for te(0, 1], cp(0) = 0, then cpeNBV is also a simple jump function (cp = i^0) 
and by 4.21 we have <*,<?> = §l

0 x(t) d(p(t) = x(0) 4- 0. Again we have obtained 
a contradiction and our lemma is proved. 

5.8. Proposition. The pair of spaces BV, NBV forms a dual pair (BV, NBV) with 
respect to the bilinear form <., .> given by (5,6). 

Proof follows immediately from 5.7 and from the definition of a dual pair given 
in 3.1. 

5.9. Remark. It follows easily from 5.8 that (BVn, NBVn) is a dual pair with respect 
to the bilinear form 

xєBVn,q>єNBVn-+<x,q>У **(t)<Mt) = I Xj(t)d<Pj{t). 

Let us mention that for every fixed <p e NBVn by <x, <p> a bounded linear functional 
on BVn is defined. In fact, we have by 4.27 

|<*,Ф>| џ{t)M) < ( sup |x(ř)|)(vari <p) = (var0 <p) \\x\\BVn 
re[0, l ) 

for every x e BVn and <p e NBVn. 
The space BVn has important subspaces called the Sobolev spaces Wp (1 <p< oo) 

including in particular the space ACn of absolutely continuous functions on [0,1]. 

5.10. Definition. Given a real number p, 1 < p < oo, Wp denotes the space of all 
absolutely continuous functions x: [0,1] -> Rn whose derivatives x' are Lp-integrable 
on [0,1]. Furthermore, 

/f1 \1/p 

\x\wP = |x(0)| 4- M |x'(r)|*dt) = |x(0)| + llx'H^ for any xeWp. 

(Wp = Wp and instead of ||. \\wP we write ||. H^.) 

5.11. Remark. Evidently, any Wp (peR, p > 1) equipped with the norm ||.| |^p 
is a linear normed space. 

5.12. Remark. It is well-known that any x e BVn possesses a.e. on [0,1] a derivative 
x'(t) which is L-integrable on [0,1] (x' eL\). Furthermore, xeACn if and only if 
there is z e Li such that 

x(ř) = x(0) + z(т) dт on [o.i], 
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i.e. Wn = ACn. Given XEAC„, we have var 0x = ||x'||L. and therefore also the 
norms ||. H^ and ||. \\wi are identical (cf. e.g. Natanson [1]). 

5.13. Proposition. Given peR9 p > 1, the space Wp is isometrically isomorphic 
with the product space Lq

n x Rn and its dual space is isometrically isomorphic with 
Lq x R*9 where q = pj(p — 1) if p > \ and q = oo if p = 1. 

Proof, (a) The mapping xeWn

p-+(x'9x(0))eLp x Rn and its inverse (z,c)eLJ x Rn 

-> x(r) = c + Jo Z(T) dT G Wp establish an isometrical isomorphism between Wp 

and Lp x Rn. 
(b) Let f be an arbitrary linear bounded functional on Wp and let us put for any 

ceRn and zeLp f,(z) = f(<Pz) and f2(c) = f(4>c), where 

f : ж є Ц - »£ z(T)dxeWp
9 &: ceRn - u(t) = ce Wp. 

Then f and f2 are linear bounded functionals on Lp and Rn9 respectively, while 
f(x) = f(Vx' + *x(0)) = fi(x') + f2(x(0)) for any xeWp. Consequently, given 
fe(Wp)*9 there exist uniquely determined y*eL^ (q = p\(p — 1) if p > 1, q = oo 
if p = 1) and A* e K* such that (cf. 3.10) 

f(x) = y*(t) x'(t) dr + k* x(0) for any xeWp. 

Furthermore, 

H f l ^ sup |/i(z)|= ||y*||Lq, | |f2 | |=SUp|f2(c)| = |A*| 
I I - | | L P = 1 | C | = 1 

and hence 

1/1 = S«P l/WI = l(y*.A*)1I..X* = «y*|w + |A*| • 
HYP : = 1 

5.14. Remark. In accordance with 3.6 we denote for x e Wp
9 y* eLq

n and k*eR* 

<x, (y*, A*)>„, = <x', y*>L + A* x(0) = J y*(t) x'(t) dr + k* x(0). 

Let us notice that x e Wp -• <x, (y*, A*)>^ is the zero functional on Wp if and only 
if y*(t) = 0 a.e. on [0,1] and k* = 0. As a consequence we have 

5.15. Proposition. / / Y*eLq and A*eK*, then 

J0 
OГ 

['-y*(í)x'(í)dí + A*x(0) = 0 forany xeWn" 

í y*(t)z(t) At + A*c = 0 for any zeLp and ceRn 

if and only if y*(t) = 0 a.e. on [0, l ] and k* = 0. 
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5.16. Proposition. SeB(Wn
p, Rm) if and only if there exist an m x n-matrix M and 

an m x n-matrix valued function K with \\K\\Lq < oo (q = p\(p — 1) if p > 1, 
a = oo if p = 1) such that 

Sx = M x(0) + K(t) x'(f) dí jor any x є rV/ 
Jo 

5.17 Lemma. Let JeBV be right-continuous on [0,1) and left-continuous at 1 and 
f(\) = 0. Then 

M 

x(s) df(s) = 0 for any x e IV/ with x(0) = x(l) = 0 
o 

if and only if f(i) = 0 on [0,1]. 

Proof. Let us assume that f(t) ^ 0 on [0,1], e.g. let /(t0) 4- 0. Then var0 / 
> |/(1) - /(r0)| = |/(t0)| > 0. Let e > 0 be such that a = var0 / > 3e > 0. By the 
definition of a variation there exists a subdivision {0 = t0 < tx < ... < tm = 1} 
of [0,1] such that 

Z|A/| = £ | / ( ^ ) - / ( V i ) l > - - ^ 
a 1=1 

for any of its refinements o = {0 = s0 < sl < ... < sq = 1}. In virtue of the one
sided continuity of / there exist T7G(0, 1) (j = 1,2,...,m) such that 0 < T0 < 
< T - < . . . < T m < 1, tj_x <Tj_1 <tj(j= l , 2 , . . . , m - l ) , t m _ ! < T m _ ! < T m < t m = l 

and 
I \f(tj) - JK)\ + |j(l) - j(OI -5 I var?; j + v < j < £. 

1=0 1=0 

Putting x(0) = 0, x(t) = sign (/(*,) - / ( T ^ - ) ) for ^ [ v ^ J (j = 1,2, ...,m- 1), 
x(t) = sign(/(Tw) - / ( T ^ - ) ) for t e ^ . ^ i j , x(l) = 0 and extending the defi
nition of x to the whole [0,1] in such a way that x is linear on the rest of [0,1], 
we obtain 

m-í rxj 

I *(sKMI + 
1=0 Jtj J 

x(s)d[j(s)] 
m - 1 

< Z Varrj / + VarL / < £ ' 
1=0 

Hence 
x(s)d[j(s)] 

m - 1 Пj 

i ю-ňъ-ä + iлo -л^-л +1 x(s)d[л-)] + 1=i 
m - l 

1 = 0 

X(5)d[/(S)] 

> Z IЛ^) - ЛVi)l + ІЛO -Л^m-i)| - в > ЦAfl - 2г > a - Зв > 0, 
1=i 

where a = {0 = r0 < T0 < tx < zx < ... < tm-x < xm-x < xm < tm = 1}. Since 
obviously xeWp and x(0) = x(l) = 0, this completes the proof. 
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6. Variation of functions of two variables 

Various definitions of the variation of functions of two or more variables are known., 
In our considerations we use one of them, the so called Vitali variation. This section 
is devoted to the definition of this sort of variation for functions of two variables 
and to the fundamental properties of functions with finite variation in this sense. 

Let a nondegenerate interval I = [a, b] x [c, d] a R2 be given. We consider 
a real function k: I -> R defined on I. 

For a given subinterval J = [a, b'] x [c', d'] c / , a < a' < b' < b, c < c < d' < d 
we set 

(6.1) mk(J) = k(b', d') - k(b', c') - k(a', d') + k(a', c'). 

Let us define 

(6.2) v;(/c) = supXK(^.)|, 
i 

where the supremum is taken over all finite systems of nonoverlapping intervals 
J. c= I (i.e. for the interiors J° of the intervals J. we assume that J? n J° = 0 
whenever i + j). 

6.1. Definition (Vitali). The real function k: I -• R is of bounded variation on I 
if v,(k) < +oo. 

6.2. Remark. If on the interval / = [a, b] x [c, d] an n x n-matrix K(s, t) = (k0(s, t)) 
(i,j = 1,..., r) is given, i.e. K: I -> L(-R„), then we can set 

mK(J) = K(b', d') - K(b', c') - K(d, df) + K(a', cr) 

as above and define the number v7(K) = sup^|mK(Jt)| in the same way as in (6,2) 
i 

where the norm in the sum on the right-hand side is some norm of an n x n-matrix 
(cf. 1.1). For the case of the norm defined in 1.1 we have evidently v7(k0) < v7(K) 
for all ij = 1,2, ...,n. 

6.3. Remark. Assume that a = a0 < ocl < ... < <xk = b, c = y0 < yl < ... < yt = d 
are some finite subdivisions of the intervals [a, b], [c, d] respectively. The finite 
system of subintervals 

Jij = [<*i-i,*i] x IT,-1>)'/]> i = l,...,fe, ; = 1,...,/ 

is called a net-type subdivision of the interval / = [a, b] x [c, d]. Evidently every 
net-type subdivision of / is a finite system of nonoverlapping intervals. 

It is easy to see that for every finite system of nonoverlapping intervals J, c I 
there is a net-type subdivision of I such that every J. is the union of some of its 
elements. Using this fact it is not difficult to show that for the definition of v7(k) 
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from (6,2) the supremum can be taken over all finite net-type subdivisions and the 
number v7(k) remains unchanged. 

6.4. Examples. Assume that f e BV[a, b], g e BV[c, d]. Then for k(s, t) 
— f(s) g(0: [fl> ^] x [c> d] -» R we have by definition 

Let us set vwlx ,c - J(*) - va r j / varj | - < co . 

h(s, t) = 0 for 0 < t < s < 1 , h(s, t) = 1 for 0 < s < t < 1 . 

Then for every net-type subdivision Ji} = [ a^^a , ] x [ a ^ - ^ a j , i,j = 1,...,k, 
0 = a0 < aj < ... < <xk = 1 we have 

t WI.J = I WIu)l + _ M-VOI =2k - i 
i,j= 1 i= 1 i = 2 

since mfc(J4il.) = 1, m,,(J.,.-i) = 1 and m^JiJ = 0 if j 4= i,i-l. Hence vl01]x[0a](/z) 
cannot be finite. 

The following lemma can be easily verified. 

6.5. Lemma. // Ij a I a R2, j = 1,..., m is a finite system of nonoverlapping in
tervals in I and k: I -• R, then 

m 

(6.3) _v,,(fc)_v.(*). 
1=1 

6.6. Lemma. Lef k: / = [a, b] x [c, d] -+ R be given such that v7(k) < oo, 
var*k(., y0) < oo for some y0e[c,d], i.e. k(.,y0)eBV[a,b] for some y0e[c,d]. 
Then k(.,y)e BV[a, b] for all y e [c, d] and 

(6.4) varba k(.,y)< v,(k) + var» k(., y0). 

If k: [a,b] x [c, d] -* R and ye[c,d] is fixed, then we denote the usual variation 
of the function k(s,y) in the interval [a,b] by var*k(.,y). Similarly for varfk(a, .) 
where (xe[a,b] is fixed. 

Proof. For any y, y0 e [c, d], a;_ x, <x} e [a, b] we have 

\k(<*Py) - fc(a/-i,,)| < \mjj(k)\ + |fc(ap7o) " fc(aj-i,7o)| 

where J} = [ a ^ ^ a j x [y0, y]. Hence for each finite decomposition a = a0 <a x 

< ... < afc = b we have 

i\K*j.v)-K*j-»vi 
1=1 

k k 

-- I \m4k)\ + I HaP Vo) - K*j-1. To)| <• v,(fc) + var£ k{., y0) 
; = i J = I 

and this inequality implies (6,4). 
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For a given fc: I -> R, I = [a, b] x [c, d] we put 

(6.5) co1(a) = 0, tt>1(o-) = v[flifflx[Ci<f](/c) for o"G(a,fc] 

and similarly 

(6.6) co2(c) = 0, CO2(T) = v[flibl x [c<r](fc) for T G (C, ci] . 

6.7. Lemma. The function col: [a, fc] -• R from (6,5) is nondecreasing on [a, fc], 
co^b) = Vj(fc); hence coleBV[a, b] if v7(fc) < +oo. Similarly for the function 
a>2: [c, d] -+ R from (6,6). 

The proof follows easily from the definitions. 

6.8. Lemma. If k: I -+ R, I = [a, b] x [c,d], v7(fc) < oo and varflfc(., c) < oo, 
then the set of discontinuity points of fc in the first variable s lies on a denumerable 
system of lines in I, which are parallel to the t-axis. 

Proof. For any s, s 0 e[a , b], te[c, d] we have 

|fc(s, t) - fc(s0, t)\ < |fc(s, t) - fc(s, c) - fc(s0, t) + fc(s0, c)| + |fc(s, c) - fc(s0, c)| 

< jco^s) - co^So)! + |varflfc(., c) - varfl° fc(., c)\ 

where cox: [a, b] -> JR is given by (6,5). Since col G BV[a, b] by 6.7 and the function 
varfl fc(., c) is also of bounded variation on [a, fc], the above inequality gives that 
there exists an at most denumerable set of points M a [a, fc] such that lim fc(s, t) 

= fc(s0, t) whenever s0 e [a, fc]\M and t e [c, d] are arbitrary. This yields our 
proposition. 

6.9. Lemma. If fc: I -» _R, v7(fc) < oo, varfl fc(., c) < oo, varc fc(a, .) < oo, then the 
set of discontinuities ofk in I = [a, fc] x [c, ci] //cs on a denumerable set of lines in I 
parallel to the coordinate axes. 

This proposition is proved in Hildebrandt [1], III.5.4. If fc(s, t) satisfies the 
assumptions of 6.8 then h(s, t) = fc(s, t) — fc(a, t) satisfies the assumptions of 6.9 
and 6.8 is a corollary of 6.9. 

6.10. Lemma. If fc: I -* _R, 7 = [a, fc] x [c, d], v7(fc) < +oo, then for an arbitrary 
subdivision c = y0<yl<...<yl = d and any two points sus2e[a,b] we have 

І [vаr? (fc(., Уj) - Қ., ľ,_ 0) - vаr- (fc(., ľ,) - fc(., ľ,_,))] < jшДsг) - ©.(s.)! 

where col: [a, fc] -> JR is defined by (6,5). 

Proof. Let us set h(s, t) = fc(s, t) — fc(s, c) for (s,t)el. Then h(s, c) = 0 for any 
s G [a, fc] and by 6.6 varj h(., t) < oo for any t e [c, ci] because evidently v7(h) < oo. 
Hence varfl h(., t) is finite for any sG [a, fc], t e [c, d]. For any j = 1,..., / we have 
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h(s, yj) - h(s, y,-_,) = k(s, y,-) - k(s, y}_ x) and var* (fc(., y,) - fc(., y,_ J) is also finite 
for every se [0, 1]. This implies that for any j = 1,..., / we have 

|var^(fe(., y.) - fc(., y,._1;) - var? (fc(., y-) - fe(., ŷ— 0)1 

< |var;̂  (fe(., y,) - fe(., y;_i;)| < v[SllS2myj.uYj](k). 

By 6.5 we obtain the inequality 
/ 

LV[SuS2)x[yj_uyj)(k) < V [ s i f S 2 ] x [ C i d ] ( f c ) 

1=1 

^ K,S2]*[cAk) - V»llMcd)(fc)| = K f o ) - ^ l (S l ) | 

which yields our result. 

6.11. Lemma. If k: I -» R, I = [a, b] x [c, d], v7(fe) < oo and for some s0e[a,b] 
the relation 

(6.7) lim |fe(s, t) - k(s0, t)\ = 0 
S->SQ± 

holds for all t e [c, d], then 

(6.8) lim co^s) = CO^SQ) 
S-*SQ± 

where col: [a, b] -» R is defined by (6.5). 

This is proved in Schwabik [2], Lemma 2.L 

6.12. Remark. If for fe: I -> R we have v7(fe) < oo and var£ fe(., c) < oo, then by 
6.8 the relation (6,7) is satisfied for all s0 e [a, b] except for a denumerable set of 
points in [a, b]. Moreover, in this case fe(., t)eBV[a, b] for every te[c, d] (cf. 6.6). 
Hence by the elementary properties of functions of bounded variation the onesided 
limits lim k(o, t) = fe(s0 +, t), lim k(o, t) = fe(s0 —, t) exist for every s0 e [a, b), 

a -* so + O-*SQ — 

s0 s (a, b], respectively, and for every t e [c, d]. 

6.13. Lemma. If k: I -> R (I = [a, b] x [c, d]) is given, then for every sl,s2e [a, b] 
we have 

(6.9) varf (k(s2, .) - k(st, .)) < |©.(s2) - a>,(Sl)| 

where co1: [a, b] -> R is defined in (6,5). 

Proof. For an arbitrary subdivision c = y0 < yx < ... < yl = d we have by 6.5 
/ 

£ IMS2, y^ - % , y^ - Ks» yj- 0 + % , y,._ 1;| 
j=i 

-̂  v[si,S2]x[c,#) < |v[fl,S2]x[M](fc) - vIfltSl]x[Cid](fc)| = Ico^s,) - co^sJI 

and proceeding to the supremum for all finite subdivisions of [c, d] we obtain (6,9). 

62 



1.6 

6.14. Lemma. Assume that k: I -» R (I = [a, b] x [c, J]) is aiven with v,(k) < oo 
and /or some s0 e [a, b) the limit 

(6,10) lim /c(s,f) = /c(s0 + , t) 
S -• so + 

exists for every t e [c, d\. Then 

lim vard (k(s0 + 5, .) - /c(s0 + , .)) = 0. 
d~* o + 

Proof. Define k°: I -» K such that k°(s, t) = k(s, t) if (s, t)e 1, s + s0 and k°(s0, t) 
= k(s0 + , t). Since varc(k(s0 + , .) — k(s0, .)) < oo we obtain Vj(k°) < co. Let 
co?: [a, b] -> R, a>?(a) = 0, co?(cr) = v[fliff] x [cui](k

0) for cr e (a, b\. Since 
lim (k°(s, t) - k°(s0, t)) = 0 for every t e [c, d], we have by 6.11 lim co%s) = (O?(s0). 
s->so + s-*so + 

For every 6 > 0 such that s0 + 5 e [a, b] we have by 6.13 

varf (/c°(s0 + 3, .) - /c°(s0, .)) = varf (/c(s0 + 5, .) - /c(s0 + , .)) 

< K ( s 0 + <5)-co?(s0)|. 

The limitation process S -> 0+ yields our result. 

6.15. Corollary. If k: I-> K (1 = [a, b] x [c, d]) is such that v7(k) < oo and 
var£ k(., c) < oo, then for any s0 e [a, b) wc have 

varc
d(k(s0 + , .) - k(s0, .)) < CDX(S0 + ) - CO^SQ) 

where a)l: [a, b] -• K is given by (6,5). 

Proof. The assumptions assure by 6.6 that var£k(., t) < oo for every r e [c, ti] 
and consequently the limit lim k(s, t) = k(s0 + , t) exist for every te[c , d\ The 

s-*s0 + 

statement follows immediately from 6.13. 

6.16. Corollary. If k: I -> £, v7(k) < oo, var£ k(., c) < oo, then for any s0e [a, b) 
we have 

lim sup |k(s0 + (5, t) - k(s0 +, t)| = 0, 
<5-+0+ te[cjy ' 

i.e. 
lim k(s0 + 5, t) = k(s0 +, t) uniformly in [c, d] . 

d—*o + 

Proof. For any t e [c, d] we have evidently 

|k(s0 + <5, t) - k(s0 + , t)\ < |k(s0 + <5, c) - k(s0 + , c)| + varf (k(s0 + 5, .) - k(s0 + , .)) 

and our result follows immediately from the fact that lim k(s, c) = k(s0 +, c) 
exists and from 6.14. 

6.17. Remark. It is easy to see that the statements from 6.14, 6.15 and 6.16 are 
also reformulate for the case of left-hand limits. 
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Further it is clear that 6.4 — 6.16 are also valid if the real function fc: / -> R is 
replaced by a matrix valued function K(s, t) = (fcjs, r)). If some continuity properties 
are needed, then the usual norm of a matrix is used. Compare also 6.2. 

6.18. Theorem. Let fc: / -> R, I = [a, b] x [c, d] be given. Let us suppose that 
v7(fc) < -Poo and varf fc(a, . )< oo. 

/ / a e BV[c, d], then the integral 

(6,12) £a(t)d,[/c(5,t)] 

exists for every se[a,b]. For any se[a,b] the inequality 

(6,13) g(t)d,[k(s,t)] \g(t)\ dr[var^ k(s, .)] < sup \g(t)\ var? fc(s, .) 
Je teled] 

holds and moreover 

(6,14) vaп g(t) dt[k(., t)] < |a(t)| dtó2(t) < sup |0(t)| v7(/c) 
íє[c,d] 

where cO2: [c\d] -^ R is defined by (6,6). T/iws tne integral (6,12) as a function of the 
variable s belongs to £V[a, b]. 

Proof. By 6.6 fc(s, .)e£V[c,d] for every se[a,fc]. Hence by 4.19 the integral 
(6,12) exists for every _e[a,b]. The inequality (6,13) follows immediately from 
4.27. In order to prove (6,14) we assume that an arbitrary subdivision a = a0 < <x1 

< ... < ak = b of the interval [a, b] is given. By 4.27 we have 

a(Odf[fc(ai,.)-k(ai_1,t)] 

Consequently 

< |g(t)| d(var<,(%, . ) - % , - „ .))). 

(6,15) I 
І = l 
I г g(í)d,[% i,t)-fc(a í_1,t)] 

^ [VOI d^Iv-i. (%,.)-%_,,.)) 

Using 6.10 we obtain for all f, T G [a, b] 

kH.WI 
k^ 

i=í 

X vаr< (fc(ař, .) - fc(ař_ l9 .)) - £ vаr^ (fc(ař, .) - fc(a,_ l9 .)) 
І = I 

< (í - -t) И*)l (a>2(t) - co2(x)) 
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since cO2: [c, d] -> R is nondecreasing and consequently 4.26 gives the estimate 

)d(t)\ d(t va i i (%, .) - % _ „ •))) < \\g(t)\ da>2(t). 
Jc \ i = l / Jc 

Since this holds for every subdivision of [a, b] we get by (6,15) the inequality 

var ( p . ) _,[*(.,.)] < \g(t)\da>2(t) 

By 4.27 we have 

\g(t)\ dco2(t) < sup \g(t)\ vaif (o2 = sup \g(t)\ x,(k). 
te[c,d] te[c,d) 

6.19. Corollary. If the assumptions of 6.IS are satisfied, then 

(б,iб) sup 
sє[a,Ъ) í g(t)d,[k(s,t)] < sup \g(t)\ (var? % .) + v,(/c)). 

<e[c.-] 

Proof. For any se [a, b] we have by 4.27 

Í g(t) d,[k(s, t)] < ţ"g(t)d,[k(a,t)] + var' g(t)Ф(-,t)] 

< sup \g(t)\ varf % .) + vara ( g(t) d,[k(., t)]). 
te[c,d] \JC J 

(6.16) follows now easily from (6,14). 

6.20. Theorem. Let k: I = [a, b] x [c,d] -> R be given. Suppose that v,(k) < oo, 
var? k(a, .) < oo and var* £(.,._) < oo. IffeBV[a,b], geBV[c,d], then 

(6.17) p _ ) d< ( [ V 0 df(s)) = £ (£W) d<[%')]) df(s) 

holds and the integrals on both sides of (6,17) exist. 

Proof. By 6.18 jd
c g(t)dt[k(., t)]eBV[a,b] and 4.19 yields the existence of the 

integral on the right-hand side of (6,17). By 6.6 we obtain fc(., t)eBV[a,b] for 
every t e [c, d] and by 4.19 also the existence of the integral JJ fc(s, t) df(s) for any 
£e [c, d]. Let c = y0 < 7i < ••• < 7/ = d be an arbitrary subdivision of [c, d]. For 
any se [a, b] and i = 1,..., / we have 

|fc(s,yl.)-fc(5,y,_1)| 

< |fc(s, y.) - fc(a, y£) - fc(s, y,_ x) -F fc(a, y4_ Jj + |fc(a, y4) - fc(a, y,_ ,)| 

-- V ] x [ 7 M , J ) + l % y . ) - % y . - i ) | • 
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Hence by 4.27 and 6.5 

I I (/c(s,ľí)-fc(S,ľj_1))dДs) 

^ I K..«x „,_,.„,(*) + 1 % y.) - %vi-i)|] v a i-/ 
i = 1 

< (v7(fc) + varf fc(a, .)) var* / < oo . 

Taking the supremum over all finite subdivisions of [c, d] on the left-hand side 
of this inequality we obtain 

(6,18) var? ( |fc(s, .) d/(s)J < (v,(fc) + varf fc(a, .)) var* / < oo . 

From 4.27 the existence of the integral on the left-hand side of (6,17) follows. 
Let now ae [c, d] and let ^(t) be the simple jump function defined for t e [c, d] 

(see 4.20). By 4.21 we have 

i/ta

+(t)dt[fc(s,t)] = fc(s,d)-fc(s,a + ) 

аnd 

(6,19) JV(s, d)-fc(s,a + ))d/(s). ^+(t)d([fc(s,0]jd/(s) 

On the other hand, we have by 4.21 

(6,20) j Va+(t) d, I V 0 df(s) 1 = J V -) 4j(s) - ton T fc(s, a + S) df(s 

= lim (fc(s, d) - k(s, a + 8)) d/(s). 

< sup |fc(s, a + ) - fc(s, a + ô)\ vаr* / 
sє[a,b] 

By 4.27 we have 

Cb 

(fc(s,a + )-fc(s,a + <5))d/(s) 
•la 

and by 6.16 we obtain 

lim+ (fc(s, a + ) - fc(s, a + 5)) d/(s) = 0. 

Hence by (6,20) 

«/C(t)d, 
Гь 

k(s,t)df(s) (k(s,d)-k(s,a+))df(s) 

and this together with (6,19) yields that for g = i/t* the equality (6,17) is satisfiec 
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In the same way it can be proved that (6,17) holds if we set g(t) = ij/~(t), where 
\\J~ is the simple jump function given by (4,13). From these facts and from the linearity 
of the integral it is now clear that (6,17) holds whenever geBV[c, d] is a finite 
step function (cf. 4.20). 

Let now g e BV[c, d]. There is a sequence g{ e BV[c, d], I = 1, 2,... of finite step 
functions such that lim gt(t) = g(t) uniformly on [c, d] (see Aumann [ l] , 7.3.2.1). 

/ - O P 

Since by (6,18) it is \b
ak(s, .) df(s)eBV[c,d], we have by 4.17 

(6,21) lim r^f) d, ( [ V t) df(s)) = \g 
Jc \*!a / Je 

9(t)à, k(s,t)df(s)\. 

Further by 6.19 we obtain 

r\g(t)-g((t))d,[k(s,t)] sup 
se[a,b] f < sup \g(t) - g,(t)\ (vaří k(a, .) + v,(*)). 

<6[C,<Í] 

Hence Гd 

lim 
l->ao 

g,(t)d,[k(s,t)]= | g(t)d,[k(s,t)] 

uniformly on [a, b] and by 4.17 the relation 

Гь 
(6,22) lim 

. - o o 

^ ř ) d,[k(s, t)]J df(s) = £ (Jф) d,[k(s, í)]) d/(s) 

holds. Since g{ are finite step functions we have for any / = 1,2,... 

g,(t)d,[k(s,t)] d/(s) = 
Гd 

a,(í)d, k(s,t)df(s) 

as was shown above. Consequently, by (6,21) and (6,22) we obtain the desired 
equality (6,17) and the proof is complete. 

6.21. Remark. If all assumptions of 6.20 are satisfied, then it can be proved that 
the equality 

(6,23) f0(0 d, ( f / (s) ds[k(s, tft = f / (s) ds ( \"g(t) dt[k(s, t)] 
Jc \Ja Ja \Jc 

also holds (see Schwabik [2]). 

6.22. Theorem. Let K(s,t): I = [a,b] x [c,d] -+L(Rn) be given, K(s,t) = (ktj(s,t)), 
i,j = 1,..., n. Suppose that v7(K) < oo, var? K(a, .) < oo, varj K(., c) < oo. If 
x e BVn[c, d], y e BVn[a, b], then the equality 

Cb / Cd \ * rd / ri> 
(6,24) f(fd,[K(S' í)]' x(í) dy(s) = x*(í)d, K*(s,f)dy(s] 

holds and the integrals on both sides of (6,24) exist. 
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Proof. By definition we have 

(6,25) d,[K(s,t)]x(t) dy(s) 

- I P ( l P*A)d([Ms,t)]W) = £ t r([''x/t)dI[Ms,t)3)dyI.(s). 
i = l Jfl \ j = l Jc / «=- 7=1 Jfl \Jc / 

Since all xp yh kip ij = 1,...,n satisfy the assumptions of 6.20 we can use this 
theorem for the interchanging of the order of integrations in the expression (6,25). 
If we do this we obtain 

£(p.[кfcO- x(t) dy(s) = I £ xþ) d, k,js, t) àУi(s) 

Xj{t) d, JX(s, t) djф)) = jV(í) d, (jV(s , t) dy(s)) 

and (6,24) is proved. 

6.23. Remark. A similar formulation in terms of a matrix valued function K and 
vectors x, y can be given for the equality (6,23) from 6.21. 

6.24. Remark. In this paragraph only such results on functions of bounded variation 
in two variables are presented which are in some manner used in the forthcomming 
investigations of integral equations in the space BVn. For the reader interested 
in this topic we refer to further results contained in the book Hildebrandt [1], III.4. 
(for example Helly's Choice Theorem, Jordan decomposition, etc.). 

6.25. Remark. Let / = [a, b] x [c, d] be given. Let us denote by SBV(I) the set 
of all functions k: I -+ R such that vf(K) < oo, var£fc(., c) < oo, var^fc(a, .) < oo. 
SBV(I) is evidently a linear set. SBV(I) can be normed by setting 

||fc|| = |fc(a,c)| + var£fc(., c) + vaif fc(a, .) + v7(fc). 
Evidently 

|fc(s, t)\ < ||fc|| for every (s, t) e / . 

The same holds even if the functions on / are matrix valued. 

1. Nonlinear operators and nonlinear operator equations 
in Banach spaces 

This section provides the basic tools for the investigation of nonlinear boundary 
value problems for ordinary differential equations contained in Chapter V, The 
reader interested in more details concerning differential and integral calculus on 
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Banach spaces is referred to the monographs on functional analysis (e.g. Kantorovic, 
Akilov [1]). 

Throughout the paragraph, X, Y and Z are Banach spaces. 

7.1. Preliminaries. Given a Banach space X with the norm ||.||x, Q0 > 0 and 
x 0 eX , 93(x0,o0; X) denotes the set of all xeX such that ||x - x0\\x < Q0. 

Let F be an operator acting from X into Y and defined on D cz X (F: D -> Y). 
F is lipschitzian on D0 a D if there exists a real number A, 0 < A < oo, such that 

\\F(x') - F(x")\\y < l\\x' - x"\\x 

for all x', x" eD0. If A < 1, F is said to be contractive on D0. 
The operator F : D c z X x Z - > Y i s said to be locally lipschitzian on D0 a D 

near z — z0 if for any x0 e D0 there exist Q0 > 0, o0 > 0 and X > 0 such that 
x', x" G 93(x0, £0; X) and z e S(z0, a0; Z) implies (x', z) e Z), (x", z)eD and 

| |F(x',z)-F(x",z)| |y<A||x'-x"||x . 

7.2. Gateaux derivative. The operator F acting from X into Y and defined on 
D c X is Gateaux differentiable at x0eD if there exists a bounded linear operator 
G e £(X, Y) such that for any f e X 

lim 
a-o 

F(x0 + a{) - Ғ(x0) 
GÇ 9 

= 0. 

G is the Gateaux derivative of F at x = x0 and is denoted by G = F(x0). If F(x) 
exists for all x e !>', where D' c= D is an open subset in X, and the mapping 

F:xeD0-+F(x)eB(X, Y) 

possesses the Gateaux derivative H e B(X, B(X, Y)) at x = x0 e D0, H is said to 
be the second order Gateaux derivative of F at x = x0 and H = F"(x0). 

In general, if H is the k-th order Gateaux derivative of F on D0 c D c I and 
L is the Gateaux derivative of H at x = x0 e D0, then L is the (k + l)-th order 
Gateaux derivative of F at x0 and L = F**+1)(x0). 

Let X,,X2,...,Xn be Banach spaces. Let F: (x1?x2,...,x„) -> F(xl5x2, ...,X„)G Y 
be an operator from the product space S = Xx x X2 x ... x Xn into a Banach 
space Y The derivative of F at a point x = (x1,x2,...,x„) with respect to thej-th 
variable (i.e. if we fix the other variables and F is considered as an operator from 
Xj into Y) is denoted by FJ(x) or FXj(x). (F(x) is defined and continuous on the open 
subset D c S if and only if FJ(x) (j = 1,2,..., n) are defined and continuous on D. 
Then for any x e 3 and { = ({l5 $2, ...,£„) e 2 

[f(x)]« = ZWx)]5,.). 
1=1 
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If on D c S F possesses all the derivatives F{?j)(x) (7 = 1,2,...,«) which are con
tinuous in x on D, we shall write FeCPlP2 Pn(D). If F is continuous on D, we 
shall write FeC(D). 

Let us summarize some basic properties of the Gateaux derivative, 
(i) Any linear mapping A e B(X, Y) is Gateaux differentiable on X and A'(x) = A 

for any xeX. 
(ii) If the operators Fl,F2: X -+Y are Gateaux differ entiable at x0eX and 

ax,OL2eR, then also OLXFX + a2F2 is Gateaux differ entiable at x0 and 

(a-F. + a2F2)' (x0) = a.F;(x0) + a2F2(x0). 

(iii) Let the operators F: X -+ Y and G: Y -+ Z be Gateaux differ entiable on open 
subsets DF cz X and Dc cz Y (DF z> F(DF)), respectively. Then, if the mapping 

yeDGcz Y-+G'(y)eB(XB(Y,Z)) 

is continuous (GeCi(DG)), then the composed operator T = GF: K-• Z is 
Gateaux differ entiable on D . If moreover, FeCl(D ), then also TeCl(D ). 

(iv) If the operator F: X —> Y is Gateaux differ entiable at any point x of the domain 
D in X and \F'(x)\B{X Y) < M < 00 for any xeD, then F is lipschitzian on D 
(with the Lipschitz constant M). 

7.3. Abstract functions. The operators acting from R into a Banach space Y are 
called abstract functions. 

The derivative f' of the abstract function f: JR -* Y at the point t0 e R is defined by 

lim 
í - í o 

f(t) - f(h) f%) = 0. 

Let the abstract function f: R -> Y be defined and continuous on the interval 
[a,b] ( — 00 < a < b < 00). Then there exists ye Y such that given s > 0, there 
is a S > 0 such that for any subdivision a = [a = t0 < tx < ... < tm<j = b] of the 
interval [a, b] with (t} — tj-x) < d (7 = 1,2,..., mj and for an arbitrary choice 
of t'j e (tj.!, tj) (7=1,2, . . . , mc) it holds 

imh-h-i)-ү 
1=1 

< г. 

We denote 

-І f(t)dt 

and y is said to be the abstract Riemann integral of f(t) over the interval [a, b\. 
The abstract Riemann integral possesses analogous properties as the usual 
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Riemann integral of functions [a, b] -> R. In particular, if ||f(0||y < M < oc on 
[a, b], then 

f(t)dt \\f(t)\\rdt<M(b-a) 

Furthermore, if f' exists and is continuous on (a, ft) -=> [a, b], then 

V(t)dt = f(b)-f(a). 

7.4. Lemma (Mean Value Theorem). Let X, Y, Z be Banach spaces, and x0 e X, 
z0 e Z. Let the operator F: X x Z ^ Y be defined and Gateaux differentiable on 
S(x0 ,e0; X) x 93(Z0,CT0; Z) (Q0 > 0, c0 > 0). 77ien for any x „ x 2 e23(x0,e0; *) 
and Z!,z2€S(z0, a0; Z) 

F(x2,z2) - F(Xl,Zl) = [F;(x, + % 2 - x,), z, + 9(z2 - z,))](x2 - x.)d3 
Jo 

+ I [Fz'(x, + % 2 - x,), z. + 9(z2 - z,))] (z2 - z.)d9 . 
Jo 

(The mapping 

8e[0,1] -> [F(x, + 5(x2 - x.), z, + 9(z2 - z.))] [(x2,z2) - (x„z.)] 

= [Fx(Xl + 9(x2 - x,), z. + 9(z2 - z,))] (x2 - x,) 

+ [f5(x, + % 2 - x.), z, + S(z2 - z.))] (z2 - z.)e y 

is an abstract function.) 

7.5. Theorem (Implicit Function Theorem). Let X, Y and Z be Banach spaces, 
x0el, z 0 eZ , g0 > 0, r/0 > 0. Let the operator F: X x Z -+ Y be defined and 
continuous on 93(x0, Q0 ; X) x 93(z0, o0; Z), whi/e 

(i) F(xO9zo) = 0; 
(ii) F e C 1 ' 0 ^ , ^ ; K) x 93(z0,c/0; Z)) (cf. 7.2); 

(iii) Fx (x0, z0) possesses a bounded inverse operator. 

Then there exist o > 0 and o > 0 such that for any ze93(z0, a; Z) there exists 
a unique solution x = <p(z) 6 93(x0, Q ; K) to the equation 

(7,1) F(x,z) = 0. 

Moreover, the mapping ze93(z0, a; Z) -> <p(z)e9?(x0, o; K) is continuous. 

(Proof follows easily by applying Corollary 7.7 of the Contraction Mapping 
Principle 7.6 to the equation 

x = x-[Fx ' (x0 ,z0)]-1F(x,z).) 
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7.6. Theorem (Contraction Mapping Principle). Let X be a Banach space and let 
D a X be closed. Let the operator T: X -+ X be contractive on D and T{D) cz D. 
Then there exists a unique xeD such that x = T{x). 

(The sought solution is the limit of successive approximations 

xll-=T(x11_I) ( n= l , 2 , . . . ) , 

where x0 may be an arbitrary element of D.) 

7.7. Corollary. Let X and Z be Banach spaces. Let x0 e K, z0 e Z, Q0 > 0, o0 > 0, 
0 < X < 1 and let T be a continuous mapping of 93(x0, Q0; X) x 93(z0, o0; Z) into X 
such that 

(0 ||T(*i.*) - T(x2 ,z) | |x < X\\Xl - x2\\x 

for all Xj,x2 e93(x0, ^0; X) and ze93(z0, o0; Z); 

(ii) | | T ( x 0 , z ) - x 0 | | x < ^ 0 ( l - A ) 

for all z e ©(z0, o0; Z). 
Then, given z e 93(z0, o0; Z\ there exists a unique element x = q>{z) e 93(x0, Q0 ; X) 

such that x = T(x, z). 
The mapping z e 93(z0, o0; Z) -> <p{z)e 93(x0, ̂ 0; X) is continuous. 

Another version of the Implicit Function Theorem which is of interest for our 
purposes is the following theorem which also follows from the Contraction Mapping 
Principle. 

7.8. Theorem. Let X and Y be Banach spaces. Let x0eX, Q0 > 0 and x0 > 0. 
Let the operators F: X -> Y and G: X x [0, XQ] -• Y satisfy the assumptions 

(i) F(*oH<>; 
(ii) FEC^X^Q^X)); 

(iii) F(x0) possesses a bounded inverse operator; 
(iv) G is locally lipschitzian on -B(x0, g0; X) near e = 0. 

Then there exist Q > 0 and x > 0 such that for any e e [0, x] there is a unique 
solution x = <p(e)e93(x0, Q; X) of the equation 

(7.2) F(x) + eG(x,e) = 0. 

Moreover, the mapping e e [0, x] -• <p{e) e 93(x0, Q; X) is continuous. 

7.9. Quasilinear equation — noncritical case. Of special interest are quasilinear 
(weakly nonlinear) equations of the form 

(7.3) Lx-eN(x9e) = 0, 

72 



1.7 

where L is a linear bounded operator acting from a Banach space X into a Banach 
space y with the definition domain D(L) = X (L e B(X, Y)) and N is in general 
a nonlinear operator acting from X x R, into y 

The case when L possesses a bounded inverse operator is called noncritical case. 
In such a case the equation (7,3) is reduced to the equivalent equation 

(7.4) x = eL~1 N(x,e). 

For e = 0 (7,4) has the unique solution x0 = 0. To solve it for e > 0 we may apply 
Theorem 7.8, where F = L and 6 = — N. 

7.10. Quasilinear equation — critical case. A linear bounded operator LeB(X, Y) 
possesses a bounded inverse if and only if N(L) = {0} and R(L) = Y (cf. Bounded 
Inverse Theorem 3.4). 

In a general case when either dim N(L) > 0 or R(L) §; Y the projection method 
may sometimes be used to consider the equation (7,3). 

Let L G B(X, Y) be such that 

(7.5) R(L) is closed, a(L) = dim N(L) < oo , 

j3(L) = codim R(L) < oo 

(L is said to be noetherian). Then there exist linear bounded projections P of K 
onto N(L) (PeB(X\ R(P) = N(L), P2 = P) and Q of Y onto R(L) (QeB(y), 
R(Q) = R(L\ Q2 = Q) such that R(l - P) is closed in X, dim R(l - Q) = jB(L) and 

(7.6) X = N(L) © K ( l - P ) , y = K(L) 0 K(/ - Q) 

(cf. Goldberg [1] II.1.14 and IL1.16). Thus Lx = eN(x,e) if and only if both 

(7.7) Q(Lx - e N(x, e)) = Lx - eQ N(x, e) = 0 

and 

(7.8) (/ - Q) (Lx - e N(x, e)) = - e(/ - Q) N(x, e) = 0. 

Any x G K may be written in the form x = Px + (/ — P) x. For x G X let us denote 
u = (I — P) x and v = Px. Then the system (7,7), (7,8) becomes 

Lxu - eQ N,(u, v, e) = 0, (/ - Q) N^u, v, e) = 0, 
where 

Lx: ueK(/ - P)->LueR(L) = K(Q) 
and 

N^u, v, e) = N(u + v, e) 

for u e R ( l - P), vG/V(L) and ee [0,x0]. Clearly, LA eB(R(I - P), K(L)) is a one-
to-one mapping of R(l - P) onto R(L). (L^ = 0 implies UGR(P) and since 
,R(P) n R(l - P) = {0}, u = 0). 
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7.11. Theorem. Let LeB(X, Y) fulfil (7,5) and let PeB(X) and QeB(Y) be the 
corresponding projections of X onto N(L) and of Y onto R(L), respectively. Let 
h G R(L) and Lx0 = h. 

Let Q0>0, x0 > 0 and D = 93(x0,o0; X) x [0, x 0 ] , Let NeCl0(D), N(xo ,0) 
G R(L) and (I — Q) N'x(x0,0) possesses a bounded inverse. 

Then there are x > 0 and Q > 0 such that for any e G [0, x] there exists a unique 
solution x = <p(e) G 23(X0, g; X) of the equation 

(7,9) Lx = h + eN(x,e) . 

The mapping <p: s e [0, x] -> <p(e) G 93(X0, O ; K) is continuous. 

Proof. Let us denote U = R(l - P), V = R(P) = N(L). Then U and V are Banach 
spaces with the norms induced by \\.\\x- Given xeX, let us put u == (/ — P)x 
and v = Px. In particular, u0 = (/ - P)x 0 , v0 = Px0 . Since hGK(L), (/ - Q)h = 0 
and (7,9) becomes 

Lxu-h- sQ N(u + v, e) = 0 , (/ - Q) N(u + v, e) = 0, 

where Lx = L ^ G B(J7, K(L)) possesses a bounded inverse. Let D1 czU x Vx [0, x0] 
denote the set of all (u, v, C)G U X Vx [0, x0] such that ||u - u ^ * < \Q0 and 
||v — v0 | |x < ^Q0. Given ( u j ^ j e D j , (u + v, s)eD and we may define 

- / ^ /^ L i u - h - eQN(u + v, e)\ , . , . 

^ ' • * » - ( ( . - Q ) N ( „ + , , £ , > * < 1 » - * 

Clearly, T is a continuous mapping of £>, c U x V x [0, x 0 ] into Yx Y Moreover, 

for any (u,v,e)eDl and (£,ij)eU x V 

^ - £ Q [ N ' > + v,£)]({ + ^ 
[T' (u>,v,e)].(^) V ( / _ Q ) [ N , ( u + v e ) ] ^ + i / ) ; , 

the mapping (u, v,e)eD x -» T(uv)(u, v,e)GB(L7 x 17 Yx Y) being continuous. 

Since N(u0 + v0, 0 ) G R(L) and L ^ o = h, T(u0, v0,0) = 0. Moreover, 

[ T ; U > O , V 0 , O ) ] ( ^ ) = ( ( / _ Q ) N ^ O ) ( ? + | ? ) 

for any (£, tj) e U x K It is easy to see that for any p G R(L) and q G K(/ - (?) 

[T-;u>>o,vo,0)](?,iy) = ^ 

if and only if { = L" lp and 9 = [(/ - Q) Nx (x0 ,0)] " l q _ £. Applying the I m p l i c i t 

Function Theorem 7.5 we complete the proof. 



II.1 

II. Integral equations in the space BVn[0, 1] 

1. Some integral operators in the space BVn[0, 1] 

In this paragraph we assume that on the twodimensional interval I = [0, 1] x [0, 1] 
cz R2 an n x n-matrix valued function K(s,t) = ktj{s,t)), ij = 1,2, ..., ri is given, 
i.e. K: I -• L(Rn). Moreover let the twodimensional variation of K: I -» L(Rn) be 
finite, i.e. (cf. 1.6.1) 

(1,1) v,(K) < oo . 

The operator d,[K(S,ř)]x(t) 

Let us assume that x e J3V„[0,1] = BVn is given, i.e. x(t) = (xj(t), x2(t), ..., x„(£))*; 
t e [0,1]. If it is assumed that 

(1.2) varjK(0, . )< oo, 

then by 1.6.6 we obtain var0 K(s, .) < v7(K) 4- var0 K(0, .) < -f oo for every s e [0,1]. 
This yields by 1.4.19 the existence of the Perron-Stieltjes integral 

(1.3) £d([K(S,0]x(t) = y(S) 

for any se [0,1]. The integral (1,3) evidently defines a function y: [0 ,1]- • #„. 
By 1.6.18 we have 

(1.4) var£ y < sup |x(t)| v7(K) 
- e [ 0 , l ] 

and consequently yeBVn. Hence the integral (1,3) defines an operator acting in 
the Banach space BVn. Let us denote this operator by 

(1.5) Kx = idt[K(s, t)] x(t), x e BVn. 
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1.1. Theorem. If K: I -> L(Rn) satisfies (1,1) and (1,2) then the operator K defined 
by (1,5) is a bounded linear operator on BVn (KeB(BVn)) and 

(1,6) |K||B(Bv„,<var»K(0, .) + V/(K). 

Proof. The linearity of the operator K is evident. Further for any x e BVn it is 

£d,[K(0, t)] x(t) + var' (£d,[K(. , t)] x(t) F*IIBV„ 

< sup |x(t)| (var' K(0, .) + v7(K)) < (var* K(0, .) + V/(K)) \\x\\BVn 
fe lO. l ] 

where (1.6,13) and (1.6,14) from 1.6.18 was used. This implies the boundedness of K 
and the inequality (1,6). 

1.2. Lemma. If K: I-+ L(R„) and K: / - JL(i?„) satisjy (1,1) and (1,2), then 

(1.7) Pd,[K(S, t)]x(t) = PdlKMlxtt) 
Jo Jo 

for every xe BVn and s e [0,1] if and on/y if the difference 

W(s, t) = K(s, t) - K(s, t) 
satisfies 

(1.8) W(s,* + ) = W ( s , t - ) = W ( s , l - ) = W(s,0 + ) = W(s, l )= W(s,0) 

for every s e [0,1] and t e (0,1). 

Proof. The assumptions on K,K guarantee that for W: I-+L(Rn) we have 
V|(W) < oo and var0 W(0, .) < oo. Hence by 1.6.6 also var0 W(s, .) < oo for every 
se [0,1]. The equality (1,7) can be written in the form J£ df[W(s, t)] x(t) = 0. 
The assertion of our lemma follows now immediately from 1.6.5 since (1,8) is 
equivalent to the fact that for every se[0,1] the elements of the matrix W(s, .) 
belong to S[0,1]. 

1.3. Corollary. If K,K: I -> L(Rn) satisfies (1,1) and (1,2) where for the difference 
W(s, t) = K(s, t) — K(s, t) the chain of equalities (1,8) holds for any se [0,1] and 
t e (0,1), then the operator K e B(BVn) defined by the relation 

= p([ќ(s,t)] x(t), xeBVn 

is identical with the operator K e B(BV„) defined by (1,5). 
If we define for any se [0,1] 

(1,9) K(s,t) = K(s,t + )-K(s,0) for te(0,l ) , 

K(s, 0) = 0, K(s, 1) = K(s, 1) - K(s, 0), 
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then v7(/C) < oo, var0 £(0, .) < oo and the difference VV(s, t) = K(s, t) - £(s, t) 
satisfies (1,8) for any se[0,1] and f e(0, 1). Hence the operator 

K x = I d,[tf(s,t)]x(r), XG_?V„ 
Jo 

is the same as the operator KeB(BVn) defined by (1,5), i.e. K = £. 

Proof. The first part of this corollary simply follows from 1.2. For the second part 
it is necessary to show that K: / -• L(Rn) from (1,9) satisfies (1,1) and (1,2). 

Assume that 0 = a0 < ax < ... < afc = 1 is an arbitrary subdivision of [0,1] 
and Jtj — [oii-uaLi~] x [a,-1,0,], ij — 1,..., fc is the corresponding net-type sub
division of / (see 1.6.3). We have for any given 3 > 0 

k 

I 
І=I 

£ |K(a„ a. + S) - K(a„ a0) - K(a,_,, a. + S) + K(a,- „ a0)| 

+ £ I lK(«p «;+<5) - *(«•> «;-1 + «*) - *(«.-.,«,• + <*) + *(«.-., a,._. + 5)\ < v,(K) 
j = 2 i = l 

where we assume that K(s,t) = K(s, 1) if t > 1. Since for K: / -> L(K„) (1,1) and 
(1,2) hold, the limit lim K(s, t + 8) = K(s, f+ ) exists for every se [0,1], re [0,1]. 

Passing to the limit S -> 0+ in the above inequality we obtain for K the inequality 

I I key 
j = i i = i 

He fc 

Z Z 1 % , «j) - K(a., aj_ J - K(at._ 1? a,) + % , _ 1? a,._ 1;| < v,(K) 
J = l i = l 

which holds for every net-type subdivision Ji} of /. Hence (see 1.6.3) we obtain 
v,(£) < v,(K) < 00. Since var0 K(0, .) < 00 and /C(0, t) = K(0, t + ) - K(0,0) differs 
from K(0, t) - K(0,0) only on an at most countable set of points in [0,1], the 
variation var0 £(0, .) is finite. For VV(s, t) = K(s, t) - /C(s, t) we have evidently 

VV(s,t~) = K(s,t-) - R(s,t-) = K(s,t-) - limK(s,t + ) + K(s,0) = K(s,0) 
x-*t-

if s e [0,1], te (0,1). Similarly also VV(s, t +) = VV(s, 1 - ) = W(s, 1) = VV(s, 0 +) 
= VV(s, 0) = K(s, 0) holds and the assertion of the second part of the corollary is 
valid. 

1.4. Remark. The corollary 1.3 states that we can assume without any loss of gener
ality that the kernel K: / -> L(Rn\ which defines by (1,5) the operator KeB(BVn), 
satisfies 

(1.10) K(s,t + ) = K(s,t) for any s e [ 0 , l ] , te(0,l) 

and 

(1.11) K(s,0) = 0 for any 5 6 [0,1]. 
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It is clear that if in (1,9) the right-hand limit K(s, f+ ) is replaced by the left-hand 
limit K(s, r - ) , then 1.3 holds too. This justifies the possibility of replacing the con
dition (1,10) by 

(1,10') K(s,t-) = K(s,t) forany s e [ 0 , l ] , re(0 , l ) . 

Hence without any restriction it can be assumed that the kernel K: I -> L(Rn) 
defining the operator KeB(BVn) by (1,5) satisfies (1,10') and (1,11), K remaining 
unchanged also in this case. 

Moreover, any operator KeB(BVn) given by (1,5) with K: I -* L(Rn) satisfying 
(1,1) and (1,2) can be represented by a kernel K: / -• L(Rn) satisfying the additional 
assumptions (1,10), (1,11) (or (1,10'), (1,11)). Using the notations from 1.5 the ad
ditional assumptions (1,10), (1,11) ((1,10), (1,11)) state that the elements k^sj) of 
K: I -> L(Rn) as functions of the second variable t belong to the class NBV 
(NBV). 

1.5. Theorem. / / K : / - > L(Rn) satisfies (1,1) and (1,2), then the operator KeB(BVn) 
defined by (1,5) is compact, i.e. KeK(BVn). 

Proof. For proving KGK(J5V„) we use 1.3.16. Let {x j , xkeBVm k = 1,2,... be 
an arbitrary sequence with 

lkl|BVM = |xk(0)| + var0 xk < C = const., k = 1,2,.... 

By Helly's Choice Theorem (cf. 1.1.4) there exists a function xeBVn and a sub
sequence xtl, / = 1,2,... of {x j such that lim xkl(t) = x(t) for any t e [0,1]. 

Let us put 
zl(t) = xkl(t)-x(t), re [0,1], J = 1 , 2 , . . . . 

Then ||z,||BFri < C + ||x||BKn < oo, zteBV„ / = 1,2,... and 

(1,12) lim zz(f) = 0 forany te[0,l]. 
l!-*oo 

Using 1.6.18 (see (1.6,14)) we have 

(1.-3) var» (£d, [K( . , t)] (xjt) - *(»)) = var' ( £ d , W - . 0] *«(')) 

dco2(t) 
Jo 

where <x>2: [0,1] -> R is nondecreasing, a>2(0) = 0, cO2(l) = vf(K), (see 1.6.7). For 
every te[0 ,1] and / = 1,2,... we have evidently 0 < |z,(f)| < ||Z/||BF„ < C + ||x||BFn 

and the real valued function |z,(f)|: [ 0 , 1 ] - * ^ belongs to BV[0,1] for every 
/ = 1,2,...,. Hence by 1.4.19 the integral J0 |*.(t)| dco2(t) exists for every / = 1,2,.... 
1.4.24 implies by (1,12) 

lim |z,(t)| dco2(t) = 0 
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and this together with (1,13) leads to the relation 

(1,14) lim var0 (£d . [K( . , tj] xkl(t) - £d,[K(„ t)] x(t)) = 0. 

By (1.6.13) we have further 

[d,[K(0,t)]z,(t) < |z((í)|d[varoK(0, .)] 

and the same argument as above gives by (1,12) 

(1,15) lim 
/ - 0 0 

ЧWCíДxJt)- [1d,[K(0,f)]x(t) 
o Jo 

= 0. 

Let us now denote y(s) = J0 dr[K(s, t)] x(t). By 1,1 evidently ?sBVn and by 
(1,14) and (1,15) we obtain 

lim ||Kxkl - y\\BVn = lim {|Kxkl(0) - y(0)| + var0(Kx,, - y)} = 0, 
/->QO /-•OO 

i.e. the sequence {KxJ contains a subsequence which converges in BVn. Hence 
KeK(BVn). 

The operator 
Jo 

, í) dę(s) 

Let us assume that <peBVn is given, <p(t) = (cp^t), <p2(t)9 ..., (P„(t))*, ts [0,1]. If 

(1,16) var o K(.,0)< oo, 

then by 1.6.6 we obtain var0 K(., t) < v,(K) + var0 K(., 0) < oo for every t e [0,1] 
provided (1,1) is fulfilled. In this case by 1.4.19 the Perron-Stieltjes integral 

(-47) K(s, t) dф) = Щ 

exists for every t e [0,1]. 

Let us show that the function ^ : [0,1] -* Rn defined by (1,17) is of bounded 
variation on [0,1] if (1,16), (1,1), (1,2) are assumed. 

Let 0 = y0 < yx < ... < yt = 1 be an arbitrary subdivision of [0,1]. By 1.4.27 
we have 

Ш-Hvi-ä jW^-KM-i))^) 
< sup.jK(s,yf)-K(s,yf_1)|varJí» < (v[o>i,x,y(.1,,l](K) + |K(0,y,) - K(0,y(-i)|) var0<p 
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I l l 

because for every se [0,1] 

|K(_I,yi)-K(s,y,._1)| 

< |K(s,7i) - K(_,y(_.) - K(0,y() + K(0,7l-_.)| + |K(0,y() - fC(0,-.i_1)| 

< v i o ^ x t o - , . , ^ + |K(0,y() - K(0,y(_.)| 

(cf. 1.6). Hence by 1.6.5 

(M8) II*W-*(y.-.)l 
i = 1 

-5 Z(V[O,I,M^..V,](K) + |K(0,y() - K(0,y(-.)|) varj? 
i = l 

< [V/(K) + var0 K(0,.)] var0 9 < [V/(K) + var0 K(0, .)] || v||BKn 

for all subdivisions 0 = y o < y 1 < . . .<}> ,= 1 and so var£ ijf < 00. In this way 
the integral (1,17) defines an operator acting on BVn\ we set 

(1.19) K<p K(s,t)d<p(s), <peBV„. 

1.6. Theorem. / / K: / -> L(R„) satisfies (1,1), (1,2) and (1,16), then the operator K 
defined by (1,19) is a bounded linear operator on BVn; i.e. KeB(BVn) and 

(1,20) \\RUBvn) < |K(0,0)| + varoK(.,0) + var0 K(0, .) + v,(K). 

Proof. The linearity of R is obvious. For any <peBVn by 1.4.27 we have 

< sup |K(s, 0)| var0 <p < (|K(0,0)| + var0 K(., 0)) ||«pj|B^„. 
se[0,l] 

K(s,0)d<p(s 

Using (1,18) we obtain 

I|K^||BK- = + var( 0£к(s,.)d<p(s) K(s,0)d<p(s) 

< [|K(0,0)| + var0 K(0, .) + var0 K(., 0) + V/(K)] \\<p\\BVn. 

Hence KeB(BVn) and (1,20) holds. 

1.7. Lemma. Let M: [0,1] -> L(Rn) be an nx n-matrix valued function such that 

(1,21) var0 M < oo . 

Assume that a fixed ere [a, b] is given. Define for xeBVn the operators 

Mx = M(t) x((r), M+x = M(t) A+x(a), Mx = M(t) A"x((j) 

where A+x(<r) = x(<7 + ) — X(CT), A~X(<T) = x(a) — x(cx —). 77ie operators M,M+,M~ 
are compact linear operators on BVn, i.e. M,M + ,M~ eK(BVn). 

80 



U.i 

Proof. Since evidently 

||Л1x||вv„ = |Лl(0)x(<r)| + vari(Л1(.)x(<7)) < [|Л1(0)| + varJЛl] |x(cт)| 

<[|Л1(0)| + variЛ1]||x||ßVr, 

we have Л1 £ B(BV„) and 

ИI|ß(Bк„,<[|Л1(0)| + var'Лl]. 

The same argument gives also /И + ,/И~ єB(BVn) and the inequalities 

И + Uвvn) < [|ЛІ(0)| + var0 /И] , \\M-\\BiBVn) < [|/И(0)| + var0 M] . 

Let us denote by ß = {xєБVп; ||x||B ri < 1} the unit ball in BVn. M + (B) 
= {үєBVn; ү = /И+x, XЄJB} ІS the image of B under the map M+. Let үkєM+(B), 
к = 1,2,... be an arbitrary sequence in M+(B), i.e. there is a sequence xkєB such 
that үk = M+xk. Since xkєB, к = 1,2,... we have 

|Д + x f c (a) |<var 0 x f c < ||xfc||ßKn< 1 

and there is a subsequence {xfc/}, / = 1,2,... such thatlim Д+xfc/((г) = zєRn and 
M(t) zєBVn. Since evidently '~*°° 

||/И+xfc/ - M(t)z\\BVn < (|/И(0)| + var0/И) |Д+xfc/ - z\ 

we obtain that 

lim үkl = lim M+xkl = /И(ř) z in BҚ 
/-*oo /-+oo 

and /И + єK(ßҚ). 
For an analogous reason the results MєK(BVn\ M~ єK(BVn) are derivable. 

1.8. Lemma. Let {o^^L^ be an arbitrary sequence ofreal numbers in [0,1]. Suppose 
that Mt: [0,1] -* L(Rn), l = 1,2,... is a sequence of n x n-matrix valued functions 
satisfying 

oo 

(1.22) YД ľедi + v a r å Л l ^ o o . 
1=1 

Defìnefor xєBVn the series 

(1.23) Rx = f/И,(í)A+x(a,), 
/ = 1 

(1.24) Lx^fлi^A-x^) 
1=1 

where Д+x((г) = x((г + ) - x(o\for oє [0,1) A"x((г) = x(cт) - x((г-),for (гє(0, l] 
Д+x(l) = 0, Д"x(0) = 0. 
Æořft expressions (1,23) and (1,24) de/ïne compact operators on BVn, i.e. R, L є K(BVn\ 
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III 

Proof. We prove this lemma only for R; the proof for L is similar. First let us prove 
that R e B(B Vn). The linearity of the operator R is evident. Let 0 = a0 < ax < ... < ak = 1 
be an arbitrary subdivision of [0,1]. We have 

k 

I 
1=1 

k oo 

< £ ^Mfaj) - Mfaj.^wаilx 
j = i 1 = 1 

X(/VI,(a,)-/vl,(aJ._1))A+x((Tí 

ř = 1 

oo / k 

= Z ( Z |^i( ai) - A 1/( a1- i)l ) v a r o x < Z v a r o M, v a r o x • 1 = 1 \ j = l 

Hence 

Further 

vari Rx < ( X var£ M, j varj x < I Y, var£ /V.,) ||x||BV>i. 

Y,/И,(0)Д+x(<т;) 
/ = 1 

<Y,|/И,(0)|var*x< Z|/И,(0)| ||x l|BVn 

and consequently 

|Rx||BKn < £ (|/v.,(0)| + varjM,) I x Ц ^ , i.e. ReB(BVn). 

Let us now define for every N = 1,2,... the operator 

R„x = X/V./(t)A+x(a,), xeBK,. 
."=1 

1.7 implies that RN is compact for every N = 1,2,... because RN is a finite sum 
of compact operators. Further for every xeBVn we have 

Rx - RNx = X м /( ř ) Д + X Ы 

and as above also 
/ = N + 1 

|Rx - R ^ H ^ < [ t (|M,(0)| + varJ/vl,) 
\вvn 

Hence by the assumption (1,22) we obtain that lim RN = R in B(BVn) and therefore 
by 1.3.17 we get R e K(BVn). JV"fl0 

1.9. Theorem. If K: I -• L(K„) satisfies (1,1), (1,2) and (1,16), then the operator 
K e B(BVn) defined by (1,19) is compact, i.e. K e K(BVn). 

P r o o t In 1.6 we have proved that KEB(BVU). The assumptions guarantee by 1.6.5 
that var0 K(., t) < oo for every t e [0,1]. Hence by the integration-by-parts formula 
1.4.33 we get 

(1,25) P K ( S , t) d<p{s) = - fd jycfc r)] <p(s) + K(l, t) <p(l) - K(0, t) <Mp) 
Jo Jo 

- £ A+K(<M)A+<p(<r)+ £ A - K M A - ^ f f ) 
0 < ( T < 1 0<<T<1 
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II. 1 

for any te[0,1], where As
+K(<r, t) = K(a + 9 t)- K(a, f), A;K(o,t) = K(o,t)-K(o-j\ 

A>(cr) = <p(a + ) - <p(a\ A'<p(a) = <p(a) - <p(a-\ 
By 1.5 the integral j 0 ds[K(s, t)\ <p(s) defines a compact operator on BVn. Further 

by (1,1) and (1,2) we have var0 K(s, .) < oo for any s e [0,1] (cf. 1.6.6). Hence by 1.7 
the expressions K(l, t)<p(l\ K(0, t)<p(0) determine compact operators on BVn. If we 
prove that the last two terms on the right-hand side in (1,25) define compact operators 
on BVn\ then K e B(BVn) is expressed by (1,25) in the form of the finite sum of compact 
operators and is therefore also compact. 

Let us consider the term 

(1.26) ~ As
+K(<T,f)A>(<7) = fty 

0 < < r < 1 

from the expression (1,25). Since (1,1) and (1,16) are assumed, the set of discontinuity 
points of K(s, t) in the first variable lies on an at most denumerable system of lines 
parallel to the t-axis (see 1.6.8) i.e. there is a sequence ah I = 1,2,..., <Xje[0, 1] 
such that A+K(cr, t) = 0 whenever a + ah I = 1,2,..., ae [0,1), and t e [0,1] is 
arbitrary. Hence the sum R<p from (1,26) can be written in the form 

R<p = f AtK(aht)A
+<p(al). 

i=i 

By 1.6.15 we have 

var0 As
+K(<jj, .) < 0 ^ + ) - (Dx(o^ 

where OJX: [0,1] -• R is defined by (1.6,5) for K: I -• L(Rn). Hence (see 1.6.7) 
00 00 

X var0 A+K(oh .) < £ ( 0 ^ + ) - co^)) < var0 co, = v7(K). 
/ = i z = i 

Further evidently 
00 

Y.|As
+K((T(,0)|<var£K(.,0)<oo 

1=1 

by (1,16). Hence 

£ (|As
+K(a„0)| + var» As

+K(a„ .)) < oo . 
1=1 

All assumptions of 1.8 being satisfied we obtain that R<p is a compact operator acting 
on BVn. In a similar way we can show that the expression £ As~K(o", t)A~<p(a) 

0 < < T < 1 

from (1,25) also defines a compact operator on BVn and this yields our theorem. 
From 1.9 the following can easily be deduced. 

1.10- Theorem., If K: I -> L(Rn) satisfies (1,1), (1,2) and (1,16) and moreover 

(1.27) K(s,t + ) = K(s,t) forany s e [ 0 , l ] , re(0 , l ) , 

K(s,0) = 0 forany se[0,l] 
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n.l 

then the expression 

(1,28) KV = K*(s,íj(ty(s), <peNBVn 

defines a compact linear operator acting on NBVn, i.e. K'eK(NBVn). (By K*(s,t) 
the transposition of the matrix K(s, t) is denoted.) 

Proof. Using the properties of the norm of a matrix (see 1.1.1) we easily obtain 
that for K*: I -> L(Rn) we have var0 K*(0, .) < oo, var0 K*(., 0) < oo, v,(K*) < oo, 
K*(s,t + ) = K*(s,t) for any S G [ 0 , 1 ] , te(0,l) and K*(s,0) = 0 for any s e [ 0 , l ] 
whenever the assumptions of the theorem are satisfied. By 1.9 the operator Kij/ 
= J0 K*(s, t) dtfr(s), il*eBVn belongs to K(BVn). The operator K' given by (1,28) is 
evidently a restriction of K to the closed subspace NBVn c BVn (cf. 1.5.2). For an 
arbitrary ^eBVn we have by (1,27) 

I K*(s, 0) d^(s) = 0 and for any t є (0,1) 

lim 
Ó-+0 + 

K*(s, t + ô) dф(s) = K*(s, t) dф(s) 
» Jo 

since by 1.4.27 we have 
I 

(K*(s, t + d)- K*(s, t)) di/r(s) 

and by 1.6.16 

Г < sup|K*(s,t + <5)-K*(S,í)| W|Bv„ 
se[0,l] 

lim sup |K*(s, t + ô)~ K*(s, í)| = 0. 
í " * 0 + se[0,lj 

Hence the above mentioned operator ReK(BVn) maps BVn into NBVn when (1,27) 
is satisfied and its restriction K' to the closed subspace NBVn c: BVn consequently 
belongs to K(NBVn). 

Let us now consider the pair of Banach spaces BVn, NBVn which form a dual 
pair (BVn, NBVn) with respect to the bilinear form 

i 

(1,29) <x, <p} = x*(t) d<p(t), xeBVn, <peNBVn 
Jo 

(see 1.5.9). By the results from 1.3 we have 

Kx = f 'd.Ws, t)] x(t) = f 'd . t^s , 0] x(t), s e [0,1] 
Jo Jo 

for every x G £Vn, where R(s, t) is defined by (1,9) and R(s, t) evidently satisfies (1,1), 
(1,2), (1,16) and (1,27) (i.e. the assumptions of 1.10). Hence 

<кx,v> = <jЧ[tf(-,0M0>? 
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II.2 

for every x e BV„, <pe NBVn. Using 1.6.22 we obtain 

<Kx, <p> = (x , £*(s, .) d<p(s)) for every x e BVn, <p e NBVn, 

i.e. 
<Kx,9> = < x , K » 

where 

(1,30) K> = J K*(s, t) d<p(s), t e [0,1] , <p e N£V„ 

and K' is a compact operator acting on the space NBVn. Resuming these results 
we have 

1.11. Theorem. If K: I -• L(Rn) satisfies (1,1), (1,2), then for the operator K e K(BVn) 
given by (1,3) we have 

<Kx,^> = <x,KV> 

for every xeBV„ <peNBVn where K! eK(NBVn) is given by (1,30) and the bilinear 
form <x,p> on BVn x NBVn is given by (1,29). 

2. Fredholm-Stieltjes integral equations 

In this section we consider the Fredholm-Stieltjes integral equation 

x(t)-^ds[K(t,s)]x(s) = f(t) 

in the Banach space BVn[0,1] = BVn. 
The fundamental results concerning equations of this kind are contained in the 

following 

2.1. Theorem. If K: I -> L(Rn) (I = [0,1] x [0,1] cz R2) satisfies 

(2.1) v7(K) < oo , 

(2.2) varjK(0, . ) < oo, 

then either 

I. the Fredholm-Stieltjes integral equation 

(2.3) x{t) - rds[K(t, s)] x(s) = f(t), t € [0,1] 

admits a unique solution in BV„ for any feBVn or 
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II.2 

II. the homogeneous Fredholm-Stieltjes integral equation 

(2.4) x(t)-£ds[K(f,s)]x(s) = 0 

admits r linearly independent solutions xl,...,xreBVn where r is a positive integer. 

If moreover it is assumed that 

(2.5) va r 0 K(. ,0 )<co , 

(2.6) K(r,s + ) = K(r,s) for any re [0,1], se(0,1) 

and 

(2.7) K(r,0) = 0 for any re [0,1], 

then in the case I. the equation 

(2.8) <p(s)- {1K%s)d<p(t) = ilf(s) 

admits a unique solution in NBVn for any # e NBVn and in the case II. the corresponding 
homogeneous equation 

(2.9) <p(s)- i1K*(t,s)<l<p(t) = 0 

admits also r linearly independent solutions <pl,<p2, -,(pr^ NBVn. 

Proof. Let us denote by 

Ax = (/ - K) x = x(r) - I ds[/C(r, s)] x(s), x e BVn 

Jo 
the linear operator corresponding to the Fredholm-Stieltjes integral equation (2,3). 
By / we denote the identity operator on BVn and K is the operator defined by (1,5). 
Since 1.5 implies KsK(BVn), we have by 1.3.20 ind-A = ind(/ - K) = 0 and this 
implies the first part of our theorem immediately. 

Under the assumptions of the second part we have by 1.11 <Kx, <p} = <x, K'<p} 
for every xeBVn, <peNBVn where K'<p = j 0 K*(t, s) d<p(t) is a compact operator 
acting on NBVn (see 1,10). Hence ind(/ - K) = 0 and by 1.3.20 we have oc(l - K) 
= a(/ - K') = p(l - K) = P(l - K'). This completes the proof. 

2.2. Theorem. If K: J -• L(Rn) satisfies (2,1), (2,2), (2,5), (2,6) and (2,7), then the 
equation (2,3) has a solution in BVn if and only if 

(2,10) Г(ť)<Mt) = o 
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II.2 

for any solution <peNBVn of the homogeneous equation (2,9) and symmetrically the 
equation (2,8) has a solution in NBVn if and only if 

(2,11) x*(ř) dф(t) = 0 

for any solution x e BVn of the homogeneous equation (2,4). 

Proof. In the proof of 2A it was shown that all assumptions of Theorem 1.3.2 are 
satisfied. Hence this statement is only a reformulation of the results from 1.3.2. 

2.3. Remark. 2A and 2.3 represent Fredholm theorems for the Stieltjes integral 
equations (2,3) and (2,8). It is of interest that the corresponding integral operators 
occuring in these equations are not connected with one another by the usual concept 
of adjointness. In this concrete situation the difficulties with the analytic description 
of the dual BV* obstruct the analytic description of the adjoint K*. Fortunately 
the concept of the conjugate operator K' with respect to suitably described total 
subspace NBVn works in our case and the results are given in an acceptable form. 

2.4. Remark. Let us mention that in accordance with 1.4 in the same way the con
jugate equation (2,8) in NBVn can be replaced by the same equation working in 
NBV~ when instead of (2,6) we assume that K{t,s~) = K{t,s) for any te[0,1], 
se(0,l). 

2.5. Theorem. Let K: I = [0,1] x [0,1] -> L{Rn) satisfy (2,1), (2,2) and (2,5). If the 
homogeneous Fredholm-Stieltjes integral equation 

(2,4) x{t) - J ds[K(t, s)] x(s) = 0, t e [0,1] 
Jo 

has only the trivial solution x = 0 in BVn9 then there exists a unique n x n-matrix 
valued function T(r, s): I -> L{Rn) such that 

(2.12) V /(r) < oo , 

(2.13) var o F( . ,0)<oo, 

(2.14) varoF(0, . ) < o o , 

and for all {t,s)el the equation 

(2.15) r{t,s) = K{t,s)+ dr[K(r,r)]F(r,s) 
Jo 

is satisfied. 

87 
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Moreover for any f e BVn the unique solution xeBVn 0f the Fredholm-Stieltjes 
integral equation (2,3) is given by the formula 

(2,16) x(t) = f(t) + ' ds[Г(t,s)]f(s), t є [ 0 , l ] . 

Proof. Let us set A = / - KeB(BVn) where Kx = J0 ds[K(t, s)] x(s), xeBVn 

and / is the identity operator on BVn. By assumption we have N(A) = {0}. Since 
KeB(BVn) is compact by 1.5, we have 0 = a(A) = p(A) = dim (BVj R(A)) by 1.3.20. 
Since R(A) is closed, we obtain R(A) = BVn. Hence the Bounded Inverse Theorem 
1.3.4 implies that the inverse operator A~leB(BVn) exists and for any feBVn 

the unique solution of (2,3) is given by A~1f and for this solution the estimate 

(247) ||X||BK„ < C\\f\ вvn 

holds where C = \\A \\B(BV„) 1s a constant. 
Let us consider the matrix equation (2,15). Evidently the /-th column _T,(r, s) of 

r(t, s): / -* L(Rn), I = 1,2,..., n satisfies the equation 

(2,18) Г/(t,s) = K,(í,s) + dr[K(t,r)]Г((r,s), 

i.e. rt(t, s) satisfies in the first variable the equation (2,3) with f (t) = Kt(t, s) for any 
se [0,1]. We have feBVn since by 1.6.6 var0 K(.,s)< v7(K) + var0 K(., 0) and 
(2,1), (2,5) are assumed. By 2.1 the equation (2,18) has exactly one solution for any 
fixed s e [0,1] and consequently the same holds also for the matrix equation (2,15). 

Let us now consider the properties of the matrix F(t, s) defined by (2,15). By (2,17) 
the inequality 

W.tS^Bv.ZClK^s)^ 

holds for every se [0,1], / = 1,2,..., n. Hence (from the definition of the norm in 
BVn) we obtain for any s e [0,1] the inequality 

|r(0, s)\ + var0 r(.,s)< C(|K(0, s)\ + varj K(., s)) 

which yields (2,13). 
Let 0 = a0 < a! < ... < ak = 1 be an arbitrary decomposition of [0,1]. If T(t, s) 

satisfies (2,15), then for any j = 1,..., k and t e [0,1] we have 

r(t, a,) - r(t, a,_,) = K(t, a,) - K(t, a,_ t) + f'd-flCfc r)] (r(r, a,) - T(r,«,_,)), 
Jo 

i.e. the difference F(t, a7) — r(f, a^ j) satisfies a matrix equation of the type (2,15) 
and consequently by the Bounded Inverse Theorem 1.3.4 we have as above 

(2,19) |r(0,a,) - ^ 0 , ^ ) 1 + varj(r(.,a,) - I\-^j-i)) 

< C(|K(0,a,) - K^a^,) ! + vari(K(.,a,) - K^a,,,)). 



Hence 

t |F(0,a,) - ZXO-â OI < C(varoK(0, .) + £ var0 (K(., a,) - Kf.-a^)) 
1=1 j=i 

<C(varoK(0, .) + v7(K)), 

and since the subdivision 0 = a0 < otx < ... < ak = 1 was arbitrary we get (2,14) 
by passing to the supremum over all finite subdivisions of [0,1]. 

Let now Jtj = [ a . ^ a , ] x [a^-i-a,-], ij = 1,2,..., k be the net-type subdivision 
of I corresponding to the arbitrary subdivision 0 = a0 < OL1 < ... < <xk = 1 of [0,1]. 
For F: I -» L(KW) satisfying (2,15) we obtain by (2,19) the following inequality 

k 

.IJtMIo)! = .£/(«,•,«,) - ->..«j-i) - ->.-„<-,) + r(a,-_„a,_,)| 

-5 I var2.i(rt.,a,)-rt.,a,_I))--Iv_S(r(.,aJ)-r(.,a,_1)) 
M = l J'= 1 

< C £ (|K(0,a,) - K^a,.,)! + varj(K(.,a,) - K(.,a,_,))) 
7 = 1 

<C(varjK(0, .) + v,(K)). 

This inequality yields evidently (2,12) and the first part of the theorem is proved. 
Now we prove that by (2,16) really the unique solution of (2,3) is given Since 

r. I -> L(Rn) satisfies (2,12) and (2,14), by 1.6.18 the integral J0 ds[F(t, 5)] f(s) exists 
for any f _ BVn and t e [0,1]. Putting (2,16) into the left-hand side of (2,3) we obtain 
the expression 

f(t) + £d.[rtt, s)] f(s) - j \ [K( t , r)] (f(r) + j \ [ r ( r , , ) ] f(S)) = l(t). 

Hence 

/(t) = f(f) + 
n 

d5[r(t,s)-K(t,s)]f(s)- dr[K(t,r)] ds[r(r,S)]f(S). 
1 Jo Jo 

Using 1.6.20 we obtain 

f 'dr[K(t, r)] f !ds[r(r, s)] f(s) = f 'ds ( {\[K{t, r)] T(r, 5)) f(s), i.e. 
Jo Jo Jo \Jo / 

'W = f(<) + j \ [ ty s) - K(̂ . s) + £ W - r)] r(r'5)] f(s) = f(f) 
since F: I -» !-(_*,.) satisfies (2,15) and consequently (2,16) gives the solution-of (2,3). 

. This concludes the proof of our theorem. 

2.6. Remark. The matrix valued function _T(f, s): I-+L(Rn) given in 2.6 is the 
resolvent of the Fredholm-Stieltjes integral equation (2,3). This resolvent gives 

89 



11.3 

by (2,16) the unique solution of (2,3) for every feBVn. For the existence of the re
solvent r(t, s) the assumption oc(A) = dim (/ — K) = 0 is essential. 

Further let us investigate the equation (2,3) when r = OL(A) = dim (I — K) + 0. 
By assertion II. from 2.1 the homogeneous equation (2,4) admits in this case r 

linearly independent solutions xu..., xr e BVn and R(l — K) + BV„, i.e. (2,3) has 
no solutions for all feBVn 

The following theorem holds in this situation. Let K: I = [0,1] x [0, 1] -> L(Rn) 
satisfy (2,1), (2,2), (2,5) and K(r, s + ) = K(t,s) for any fe[0,1], se(0, 1), K(t,0) = 0 
for any t e [0,1]. Then there exists an n x rc-matrix valued function f(t, s): I -> L(#„) 
such that v7(_f) < oo, var0 f( . , 0) < oo, var0 f(0, .) < oo and if the Fredholm-
Stieltjes integral equation (2,3) has solutions for feBVn (i.e. if feR(l — K), see 
also 2.3), then one of them is given by the formula 

(2,20) x(t) = f(t) + I ds[f(t, s)] f(s), t e [0,1] . 
Jo 

The general form of solutions of (2,3) is 

x(t) = f(t)+ [\[t\t,s)]f(s) + icc,x^t), 
Jo .-=1 

where x1, i = 1,..., r are linearly independent solutions of the homogeneous equation 
(2,4) (cf. 2.1) and a1?...,ar are arbitrary constants. 

The proof of this assertion is based on some pseudoresolvent technique using 
projections in BVn. The theorem is completely proved in Schwabik [6]. 

3. Volterra-Stieltjes integral equations 

In this section we consider integral equations of the form 

(3.1) x(t) - J ds[K(t, s)] x(s) = f(t), t e [0,1] 

in the Banach space BVn[0,1] = BVn with' feBVn. Equations of the form (3,1) 
are called Volterra-Stieltjes integral equations. 

Throughout this paragraph it will be assumed that K: / = [0,1] x [0,1] -> L(Rn) 
satisfies 

(3.2) v7(K) < oo 

and 

(3.3) varoK(0, . ) < oo . 

Let us mention that (3,3) can be replaced by var0 K(t0, .) < oo, where t0 e [0,1] 
is arbitrary. This follows from 1.6.6. 
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Since (3,2) and (3,3) are assumed, for every fixed t e [0,1] we have var* K(t, .) < oo 
by 1.6.6. Hence for any xeBVn and f e[0,1] the integral J"0 ds[K(t, s)] x(s) exists 
by 1.4.19. 

Let us show that the equation (3,1) is a special case of the Fredholm-Stieltjes 
integral equation considered in the previous Section II.2. 

To any given kernel K: / -> L(Rn) satisfying (3,2) and (3,3) we define a new 
"triangular" kernel KA: I -• L\Rn) as follows: 

(3.4) KA(t, s) = K(r, s) - K(f, 0) if 0 < s < t < 1, 

K% s) = K(r, r) - K(r, 0) = KA(r, r) if 0 < t < s < 1. 

It is obvious that KA(t, 0) = 0 for any t e [0,1] and KA(0, s) = KA(0,0) = 0 for any 
SG [0,1]. Let 

Ju = [ a i-1 ' a d x K - 1 ' aj] > Uj = 1,..., fc 

be an arbitrary net-type subdivision of the interval I corresponding to the sub
division 0 = a0 < ctl < ... < (xk = 1 of [0,1]. By definition (3,4) of KA we have 

mKA(J0) = mK(J0) if 0 < j < i < k, 

mKA(J0) = 0 if 0 < i < j < k 
and 

mK A(JU) = K(a£, â ) - K(a„ af _ j) for i = 1,2,..., k . 

(For mK(J) see 1.6.2.) Hence 

i K4Jij)\ = i L K(-!u)| + i |K(a„ a,) - K(a, a;_ .)| 
U = l i = l j=l i = l 

^ i I M - U I + 1 .*(«..«.) - K K «.-1) - K(°> «.)+K(°> «<-i)i 
i = l j = l i = l 

+ i |K(0, a;) - K(0, a,-_ .)| < v7(K) + varj K(0, . ) . 
i = l 

Consequently we obtain by definition (cf. 1.6.1, 1.6.3) 

(3.5) v,(KA) < v7(K) + varj K(0, .) < GO 

Since K*(t,s) is by definition constant on the interval [t, 1] for every te[0,1], 
we have 

(3.6) j \ [K A ( t , s ) ]x(s ) = 0 

for every x e BVn. Further 

'ds[K% s) - K(t, s)]x{s) = - f ds[K(t, 0)] x(s) - 0, 
o Jo 
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ì.e 
'ds[K*(t,s)]x(s) = fds[K(t,s)]x(s). 
o Jo 

Using (3,6) we obtain for an arbitrary Te [0,1] the equality 

(ЗJ) d s[K(t,s)]x(s)= fTds[KA(t,s)]x(s) 
o Jo 

for any x e BVn and t e [0, T]. 
Let us summarize these results. 

3.1. Proposition. Let K: I -> L(Rn) satisfy (3,2), (3,3). Then for the triangular kernel 
KA: I -» L(Rn) defined by the relations (3,4) the following is valid. 

(a) var0 KA(., 0) = 0, varj KA(0, .) = 0, v7(KA) < oo, 

(b) for every xeBVn, Te [0,1] and £e[0, T] the equality (3,7) ho/ds, i.e. by the 
relation 

(3,8) Kx = J ds[K(t, s)] x(s) = I \lK\t, s)] x(s), X6BF„ 
JO JO 

an operator on BVn is defined and by 1.5 we have KeK(BVn). 

3.2. Remark. Proposition 3.1 states that the Volterra-Stieltjes integral equation (3,1) 
is equivalent to the Fredholm-Stieltjes integral equation 

(3,9) x(t) ds[Kд(í,s)]x(s) = f(í), t є [ 0 , l ] . 

Hence by Theorem 2.1 either the equation (3,1) admits a unique solution in BVn 

for every feBVn or the corresponding homogeneous equation 

(3.10) x(t) - J ds[K(t, sj] x(s) = 0, f 6 [0,1] 

has a finite number of linearly independent solutions in BVn. Our aim is to give 
conditions under which the equation (3,1) is really of Volterra type, i.e. when the 
equation (3,10) admits only the trivial solution x = 0 in BVn. 

3.3. Theorem. Let the kernel <: I -.» L(Rn) satisfy (3,2), (3,3) and 

(3.11) lim|K(r,cj)-K(t,s)| = 0 
< T " + S -

for any r 6 [0,1], 5 G (0,1], Then the homogeneous Volterra-Stieltjes integral equation 
(3,10) has only the trivial solution x = 0 in BVn. 
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Proof. Let KA: / -> L(Rn) be the triangular kernel corresponding to K by the 
relations (3,4). Since (3,11) holds we have also 

(3,12) lim |KA(r, a) - KA(r,s)| = 0 
< T - + S -

for any t e [0,1], s e (0,1]. Let us set 

coA(0) = 0, co*(s) = v [ 0 t l ] X I O i S l(KA) for se(0, 1] . 

The function or*: [0,1] -• R is evidently nonnegative and nondecreasing (see 1.6.7). 
Since (3,12) holds we have cof(s —) = coA(s) for every se(0,1] by 1.6.11, i.e. C/JA is 
left continuous on [0,1]. 

Assume that xeBVn is a solution of (3,10). Then evidently x(0) = 0 and 

|x(s)| < |x(0)| + var0 x = var0 x 

for every s e [0,1]. Using (b) from 3.1 we get 

var 0 x = var0 ( fd,[K(t,s)] x(s)) = var0 f ^[K A (. ,s)] x(s)\ 

for every ^ e [0,1]. If (1.6,14) from 1.6.18 is used then we obtain 

varS x = varS ( f"ds[KA(., s)] x(s)) < [jx(s)| dorf(s) < £var 0 x da;A(s) 

and 1.4.30 yields the inequality var& x < 0 for every £ e [0,1]. Hence x(s) = 0 
on [0,1], i.e. x=0eBVn. 

3.4. Example. Let us define h(t) = 0 if 0 < t < \, h(t) = \\t if \ < t < 1, g(s) = 0 
if 0 < s < | , g(s) = s if \ < s < 1. Evidently KgeBV If we set fc(t,s) = h(t)g(s) 
for ( t ,s)e/ = [0,1] x [0,1], then clearly v,(fc) < oo (cf. 1.6.4), var£fc(0, .) < oo 
and var£fc(.,0) < oo. Let us consider the homogeneous Volterra-Stieltjes integral 
equation 

x(t) = \\W?>s)] x(s) = MO \x(s) Ms)> t € [0,1] . 
Jo Jo 

Let us set y(s) = 0 for 0 < s < f, j^s) = 1 for ^ < s < 1. By easy computations 
using 1.4,21 we obtain 

. \y(s)dg(s) = 0 if 0 < t < | , 
Jo 

[y(s)dg(s) = ±y($+ f y(S)ds~t if \ 
Jo Jl/2 

h(t)ťy(s)dg(s) = y(t) 

^<t<\ 
Jl/2 

and consequently 
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for every t e [0,1]. Hence y e BV is a solution of the homogeneous Volterra-Stieltjes 
integral equation and y + 0. The condition (3,11) is in this case affected. In fact, 

lim (k(u a) - k(t, ±)) = $h(t) and h(t) * 0 e.g. for t = i 
<r-+ 1 /2 -

3.5. Remark. Example 3.4 shows that for K: I -> L(Rn) satisfying (3,2) and (3,3) 
the corresponding homogeneous Volterra-Stieltjes integral equation (3,10) need not 
have in general only trivial solutions, i.e. for the corresponding operator K e K(BVn) 
we can obtain in general a nontrivial null space N(l — K). If (3,11) is assumed, 
then this situation cannot occur. The condition (3,11) is too restrictive as will be 
shown in the following. We shall give necessary and sufficient conditions on 
K: / -> L(Rn) satisfying (3,2) and (3,3) such that the equation (3,10) has only the 
trivial solution in BVn. 

3.6. Proposition. Let #M: / = [0, 1] x [0, 1] -• L(Rn) satisfy v,(M) < oo, 
varQ.M(0, .) < oo. Then for any ae[0,1] there exists a nondecreasing bounded 
function £: [a, 1] -> [0, -Foo) such that for every be [a, 1] and xeBVn we have 

(3.13) v a r ^ d s . [ M M ] x ( s ) J < |x(a)| (£(a + ) - £(<,)) + ||x|^ i i I. f fc l(^) - %a + )). 

Proof. Let M*: I -> L(Rn) be the triangular kernel which corresponds to 
M: I -> L(Rn) (see 3A). For any re [a, b] we have (see (3,7)) 

(3.14) Pds[M(t, s)] x(s) = \bds[M% sf] x(s). 
Ja Ja 

Let us define the function 

* ) = v[fl)1]xM(A1A) for t e ( a , l ] , ^(a) = 0. 

£: [a, 1] -> R is evidently nondecreasing and bounded on [a, 1] (cf. 1.6.7). 
From (1.6,14) in 1.6.18 we obtain 

(3.15) var* (Jd,[M(t, s)] x(s)) < |jx(s)l d^(s) • 

Using 1.4.13 we have 

(3.16) f|x(s)| di(s) = \x(a)\ («(a+) - {(a)) + Hm P |x(S)| dZ(s) 
Ja Ja+d 

and for any 0 < ( 5 < b - a b y 1.4.27 

Í " |x(s)| dф) < sup |x(s)| (Џ) - ф + ô)) < Ц x l ^ ^ Ь ) - ţ(a + )). 
Ja + d se[a + d,b] 

Hence (3,15) and (3,16) imply (3,13). 
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3.7. Proposition. Let H: [0,1] -• L(Rn) be such that 

(i) var0 H < oo, 
(ii) there is an at most countable set of points t{ e [0,1], i = 1, 2,... such that 

H(t) = 0 for re [0,1], f-M,-, i = 1,2,..., 

(iii) the matrix I — H(t) is regular for all t e [0,1]. Let us define the linear operator 

(3.17) Tz = [l-H(t)]~1z(t), t e [0,1] for ze£V„. 

The/? there exlsfs a constant C > 0 such that 

(3.18) ||Tz||BVn < C\\z\\BVn for every zeBVn, 

i.e. TeB(BVn). 

Proof. By (iii) the inverse matrix [/ — H(t)]"1 exists for every te[0,1] and the 
operator T from (3,17) is well-defined. 

Since / = (/ - H(t)) [I - H(t)] ~ x = [/ - H(t)] ~ l - H(t) [/ - H(t)] ~l for any 
re [0,1], we have [I - H(t)]~l = I + H(t) [I - H(tj]~* and for any zeBVn 

we have 

(3.19) Tz = z + u 

where 

(3.20) u(t) = H(t) [I - H(t)] ~1 z(t), t e [0,1] . 

The assumption (ii) implies u(t) = 0 for any te[0,1] , t =4= ti9 i = 1,2,.... Hence 
evidently 

(3.21) var0 u = 2 £ |u(t,.)| = 2 £ |H(t,) [/ - H(t,)] " J r(^)| 
i=l i=l 

oo 

^2||z||BVnY:|H(tI.)M[/-H(ti)]-
1|. 

i = l 

By (i) and (ii) we have 

£ \H(ti)\ < |H(0)| + |H(1)| + 2 X |H(t.)| = var0 H < oo ; 
I = l f , e ( 0 , l ) 

hence there exists an integer i0 > 0 such that \H(tt)\ < \ for any i > i0. This implies 

|[/ - H(fi)r| < 1 + \H(ti)\ + ... + |H(0|" + ... = -_jL__ < 2 

for i > i0 and immediately also the inequality 

£|H(tj)||[/-H(fi)]-
1|<Z|H(fi)M[/-H(ti)]-

1| + 2 £ |H('.)I 
r = l i=l i = to + 1 

< ( max | [ / - H ( t i ) ] - 1 | + 2)£|H(^)l = Co<oo 
i= 1 .2 , . . . , io i = l 
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which yields by (3,21) 
var0u<2C0 | |z | | f lKn . 

Hence (see (3,19)) 

\\Tz\\BVn = |[/ - H(O)]"1 z(0)| + var0 Tz < (|[l - H(O)]"1! + 1 + 2C0) \\z\\BVn 

and (3,18) is satisfied with C = 1 + 2C0 + \[l - H(0)]'l\. 

3.8. Proposition. Let us assume that K: I = [0,1] x [0,1] -> L(Rn) satisfies (3,2) 
and (3,3). Define M: I -+ L(Rn) as follows: 

(3,22) M(u s) = K(r, s) if (f, s) e I, r.+ s, 

M(t,t) =K(t,t~) if £e(0 , l ] , 

M(0,0) = K(0,0). 
Then 

(i) v7(M) < oo, varoM(0, .) < oo, 
(ii) if xeBVn, then for any fixed te[0,1] we have 

lim ľds[/И(t,5)]x(s) = 
t-" _ Jo J 

ds[/И(ŕ, s)]x(s), 

i.e. £/ie integral J0 ds[iM(t, s)] x(s) does not depend on the value x(t) e Rn9 

(iii) for every xeBVn and re[0,1] we have 

(3.23) |'ds[K(t, s)] x(s) = |ds[M(t, s)] x(s) + H(t) x(t) 
JO JO 

where 

(3.24) H(r) = K(t, t) - K(t, t-) for t e (0,1] , 

H(0) = 0, 

(iv) for H: [0,1] -> L(K„) given b>> (3,24) there exists an at most countable set of 
points tt e [0,1], i= 1,2,... sucfc t/iat H(r) = 0 for te [0,1], £ + £t, i = 1,2,... 
and var0 H < oo. 

Proof. In order to prove (i) let us mention that M(0, s) = K(0, s) for all s e [0,1] 
and consequently var0 M(0, .) = var0 K(0, .) < oo. Further let 0 = a0 < at < ... 
< ak = 1 .be an arbitrary subdivision of [0,1] and let 

Ju = [<*i- u «.] x [a,-1» a J , *\j = 1,..., fc 

be the corresponding net-type subdivision of I. We consider the sum Y, |m/v.(A/)l 
where l J = 1 

^AI(^O) = M(*i> a1) ~ M K a 1 -1)"" A 1 ( a »-1 ' a1) + M ( a i - 1 . a1-1) 
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for ij = 1,..., k. Usual considerations using the definition of Ai in (3,22) give 

£ \mM(Ju)\ < v,(K) + 4 £ |K(a„ a,) - K(a,, a-)\. 
U=l j=l 

Since 

£ |K(a , , a , ) -K(a„a , - ) | 
; = i 

< £ |K(^ a,) - K(a,, a , - ) - K(0, a,) + K(0, a , - ) | + £ |K(0, a,) - K(0, a , - ) | 
7 = 1 y = i 

< v,(K) + var^ K(0, . ) , 
we obtain 

t \mJJtJ)\ < 5v,(IC) + 4 var0 K(0, .) < oo 

and (i) holds since J,7 was an arbitrary net-type subdivision. 
Let te(0, 1] be fixed, x,yeBVn, x(s) = y(s) for se[0,t) . By 1.4.21 and from the 

definition of M we obtain 

/'• 
Jo 

ds[M(t, s)] (x(s) - y(s)) = (M(t, t) - M(t, t-)) (x(t) - y(t)) = 0. 
;o 

Hence 

d s[/И(ř,S)]x(5)= ds[M(t,s)]ү(s) 
JO JO 

or in other words: for all xeBV„ we have 

lim \ds[M(t,s)]x(s)= \'ds[M(t,s)]x(s). 
*-*<- Jo Jo 

For t = 0 the statement is trivial. Hence (ii) is proved. 
Further for any te(0,1] and xeBVn we have 

I ds[K(£, s) - M(r, s)] x(s) = [K(t, t) - M(t, t) -K(t,t-) + M(t, t-)] x(t) 

= [K(t, t) - K(t, t -)] x(t) = H(t) x(t), 

and (3,23) holds. For t = 0 the equality (3,24) is evident. Hence (iii) is valid. 
By 1.6.8 the set of discontinuity points of K(t, s) in the second variable s lies on 

an at most countable system of lines in I which are parallel to the t axis, i.e. there 
is an at most countable system ti9 i = 1,2,... of points in [0,1] such that H(t) 
= K(t, t) - K(t, t~) = 0 for all te [0,1], t =f= tt, i = 1,2,.... 

For any te[0,1] we have evidently 

\H(t)\ = \K(t,t)-K(t,t-)\ 

< \K(t, t) - K(t, t-) - K(0, t) + K(0, t-)\ + |K(0, t) - K(0, t-)\. 
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Let 0 = a0 < a1 < ... < ak = b be an arbitrary finite subdivision of [0,1]. Then 

t | H ( a i ) - H ( a , . _ 1 ) | < 2 i ; | H ( a , . ) | 
1 = 1 1 = 1 

< 2H|*M . ) - *(«*«_-) ~ *(<U) + K(0,a£-)| + |K(0,a,) - K^a,^)!] 
<2(v7(K) +varoK(0, .))< oo 

and (iv) is also proved. 

3.9. Theorem. Let the kernel K: I -> L(Rn) (I = [0,1] x [0,1]) satisfy (3,2) and 
(3,3). Then the homogeneous Volterra-Stieltjes integral equation (3,10) has only the 
trivial solution x = 0 in BVn if and only if the matrix I — (K(t, t) — K(t, f —)) :s regular 
for any re(0,1] *). 

Proof. By (iii) from 3.8 the equation (3,10) can be written in the equivalent form 

(3.25) x(t) = d8[M{t, s)] x(s) + H(t) x(t), t e [0,1] 
Jo 

where M: I - L(Rn), H: [0,1] -> L(K„) are defined by (3,22), (3,24) respectively. 
Hence if we assume that for any t e [0,1] the matrix / — H(t) = / — (K(f, t) — K(t, t —)) 
is regular, then the inverse [/ — H(t)] - 1 exists for any te [0,1] and (3,25) can be 
rewritten in the equivalent form 

(3.26) x(t) = [/ - H(t)] -1 I ds[M(t, 5)] x(s), t e [0,1] . 
Jo 

This equality can be formally written in the form x = TMx where 

Tz = [/ - H(t)]"x z(t) for z e BVn 

and 

/Иx = ds[/И(í, s)] x(s) for xєBVn. 

Assume that xeBVn is a solution of (3,10). Then evidently x(0) = 0 and by 3.7, 
3.6 we have for any 5 (0 < 8 < 1) 

(3,27) | |x|B V n [ 0,a ] = |x(0)| + var0 x = ||TA1x||BKn[0,d] < c||/V1x||BKn[0,a] 

= C varS (£ds[M(.,s)] x(s)) < c(|x(0)| (.(0+) - {(0)) + ||x||Bn,[M](£(<5) - .(0 + )) 

= C(i(5) - .(0 + )) |x||BK„[0,a] 

*) In this ease we have K(0,0) = K(0,0-) if we use the agreement K(0, s) = K(0,0) for s < 0, i.e. 
in fact / — (K(0,0) — K(0,0 —)) = / is also regular. Nevertheless this is not used in the proof of the 
theorem and the result does not depend on the behaviour of K(0,0) - K((), 0 - ) . 
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where £: [0,1] —> [0, +oo) is bounded and nondecreasing by 3.6 and C > 0 is 
a constant (cf. 3.7). The function £ is of bounded variation and has consequently 
onesided limits at all points of [0,1]. Hence we can find a O > 0 such that 
C(£(8) - £(0 + )) < i and by (3,27) we obtain 

| |X | |BVn[0,<5] < 2i |X | |BVn[0,<5] » 

i.e. x(t) = 0 for all te[0,5]. 
Let us now assume that t*e[0, 1] is the supremum of all such positive 3 that 

the solution x e BVn of the equation (3,10) equals zero on [0, 3~\. Evidently x(t) = 0 
for all t e [0, t*). Since by (ii) from 3.8 we have 

v rx 
ds[M(r*, s)] x(s) = lim ds[M(r*, s)] x(s) = 0 

o *-'*- Jo 

and [/ - H^*)]'1 exists, we have by (3,26) x(t*) = 0, i.e. x(t) = 0 for te[0,f*]. 
Now assuming t* < 1 we have 

x f = [/ - Цt)]-> ľds[Л1(ř,S)]x(5) - [I - H ( t ) Г 
Jo 

ds[/И(í,s)]x(s) 

for all t e [t*, 1]. Using the same procedure as above we can determine a 3 > 0 
such that the inequality 

| |X | |BVn[f*,r* + <5] - ^ 2 | | X | | f iV n [ t* , t* + a] 

holds and consequently x(t) — 0 for te[t*, t* + 3]. Hence we obtain a con
tradiction to the property of t*. In this way we have t* = 1, i.e. x(t) = 0 for all 
t e [0,1] and the "if part of the theorem is proved. 

For the proof of the "only if part of the theorem we refer to the Fredholm alter
native included in 2.1. (cf. also 3.2) which states that either (3,10) has only the trivial 
solution x = 0 in BVn or there exists feBVn such that the equation (3,1) has no 
solutions in BVn. 

Let us now assume that the matrix / — (K(t,t) — K(t,t — )) = / — H(t) is not 
regular for all t e (0,1]. This may occur only for a finite set of points 0 < tx < ... < tk 

in (0,1] because var0 H < oo by (iv) from 3.8 and consequently \H(t)\ < \ for all 
t e [0,1] except for a finite set of points in (0,1], Hence [/ — H(t)j"1 exists for all 
t e [0,1], t + t.9 i = 1,2,..., k, and / — H(t.), i = 1,2,..., k is not regular. Evidently 
there exists yeRn such that y$R(l — H(tx))9 i.e. the linear algebraic equation 

(l-H(tl))x = Y 

has no solutions in R„. Let us define 

f(t) = 0 for t e [ 0 , l ] , r * t l f f(tx) = y 

and consider the nonhomogeneous equation (3,1) with this right-hand side. Let us 
assume that xeBVn is a solution of this equation. In the same way as in the proof 

99 



II.3 

of the "if part we can show that x(t) = 0 for all te [0, tx) since [/ — H^j]'1 exists 
for all t e [0, t,). Using the expression (3,23) and (ii) from 3.8 for JJ.J ds[K(t-, s)] x(s) 
we obtain 

[/ - H(.,)] x(r,) = \"ds[M(tus)] x(s) + f(f,) = y 
Jo 

and x(f.) cannot be determined since y$R(l - H(tx)) and consequently there is no 
xeBVn satisfying (3,1) with the given feBVn. By the above quoted Fredholm 
alternative the equation (3,10) possesses nontrivial solutions and our theorem is 
completely proved. 

3.10. Theorem. Assume that K: I = [0, 1] x [0,1] -> L(Rn) satisfies (3,2), (3,3) and 
the matrix I — K(t, t) — K(t, t — )) is regular for any te(0,1]. 

Then there exists a uniquely determined T: I -» L(Rn) such that the unique solution 
in BVn to the Volterra-Stieltjes integral equation (3,1) with feBVn is given by the 
relation 

(3.28) x(t) = f(t) + j \ [ r ( t , s)] f(s), t e [0,1] . 

The matrix T(t, s) satisfies the integral equation 

(3.29) T(t, s) = K(t, s) - K(t, 0) 4- | dr[K(t, r)] T(r, s) for 0 
Jo 

KVe have r(t, s) = T(t, t) for 0 < t < s < 1, T(t,0) = 0, var0 T(0, .) < oo and 
\t(r) < oo. 

Proof. By 3.1 the equation (3,1) can be written in the equivalent Fredholm-Stieltjes 
form 

(3.30) x(t) - fds[K
A(t, s)] x(s) = f (t), t G [0,1] 

where KA: / -> L(-Rw) is the corresponding triangular kernel given by (3,4). By 3.9 
the homogeneous equation 

< s < í < 1. 

« ( - ) - ds[Kд(t,s)]x(s) = 0, t є [ 0 , l ] 

has only the trivial solution x = 0 in BVn. Since KA satisfies evidently all assumptions 
of 2.6, we obtain by this theorem the existence of .T: / -> L(Rn) such that the 
solution of (3,30) and consequently also of the equivalent equation (3,1) is given by 

(3,31) x(t) = f(t) + Pd-ITX'. 5)] f(s), t e [0,1] 
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where F(t, s) satisfies the matrix integral equation 

F(f, s) = K% s) + | dr[KA(t, r)] F(r, s) for all (t, s) e I . 
Jo 

Using the definition (3,4) of KA(t, s) and (3,8) we have 

r(f, s) = K(t9 s) - K(t, 0) + dr[K(t, r)] F(r, s) for 0 < s < t < 1 
Jo 

and (3,29) is satisfied. For 0 < t < s < 1 we have similarly 

Г{t,s) = K%t) + 

and 

Hence 

d,[K(t,r)]Г(r,s) 

Г(t,t) = KA(t,t) + \d,[K(t,r)-]Г(r,t). 

Г(t, s) - Г(t, t) = àr[K(t,r)-](Г(r,s)-Г(r,t)), 

i.e. T(t, s) = r(t, t) since Theorem 3.9 yields that the homogeneous equation 
x(t) - j 0 ds[K(t, s)] x(s) = 0 has only the trivial solution x = 0eBVn. Similarly 
we obtain .T(t, 0) = 0 for all t e [0,1], The inequalities var0 T(0, .) < oo, v7(F) < oo 
are immediate consequences of 2.5. 

From *he equality T(r, s) = T(t, t) valid for t < s we get 

[1ds[r(r,s)]x(s)= f'ds[r(f,s)]x(s) 
Jo Jo 

for all xe BVn and hence by (3,31) we obtain (3,28). 

3.11. Theorem. Let K: / = [0,1] x [0,1] -» L(Rn) satisfy (3,2), (3,3) and let 
t0 G [0,1] be fixed. Then the integral equation 

(3,32) x(í) = ľd.[K(í,s)]. 
•Iřo 

r(s), í є [ 0 , l ] 

possesses only the trivial solution x = 0 in BVn if and only if for any te(t0,1] the 
matrix I — (K(t, t) — K(t, t —)) is regular and for any t e [0, t0) the matrix 
I + K(t, t + ) - K(t, t) is regular. 

The proof of this statement can be given by a modification of the proof of 3.9. 
Since serious technical troubles do not occur we add only a few remarks on this 
proof. It is evident that x(t0) = 0 for any solution of (3,32). The proof of the fact 
that x(t) = 0 for t e (t0, l ] if and only if / - (K(r, t) - K(t,t-)) is a regular matrix 
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for te(t0, 1], follows exactly the line of the proof of 3.9. For proving "x(t) = 0 
for t e [0, t0) if and only if / + K(t, t +) - K(t, t) is regular for all t e [0, t0)", the 
decomposition (t e [0, t0)) 

I d.v[K(t, s)] x(s) = (ds[/И(í, s)] x(s) - (K(t, t+) - K(í, t)) x(t) 
J-o 

valid for any xeBVn can be used where the integral J|0 d,[M(t, s)] x(s) does not 
depend on the value x(t). This can be done in the same way as in 3.8 when it is assumed 
that M(t,s) = K(t,s) if (f,s)e/, t + s, M(t, t) = K(r, t +) if te[0,l) , M(l, 1) = K(l, 1). 
Using the above decomposition of J|0 ds[K(f, s)] x(s) the approach from 3.9 can be 
used in order to prove the result. 

3.12. Corollary. Let K: I-+L(Rn) satisfy (3,2), (3,3) and let foe[0,1] be fixed. 
Then the integral equation 

(3,33) x(t) = ds[K(t,s)]x(s)+f(í), t є [ 0 , l ] 

has a unique solution for every feBVn if and only if for any te(t0, l] the matrix 
I - (K(t,t) - K(t,t-)) is regular and for any te[0,to) the matrix / + K(t, t + ) 
— K(t, t) is regular. 

Proof. Let us define a new kernel Kr°: I -> L(Rn) as follows. 
If t0 < t < 1, then 

Kr°(r, s) = K(r, s) for t0 < s < t, 

Kt0(r, s) = K(u t) for t < s < 1, 

Kt0(t, s) = K(t, t0) for 0 < s < r0 

and if 0 < t < t0, then 

Kf0(r, s) = -K(t, s) for t < s < t0, 

Kf0(t,'s) = -K(t, t) for 0 < s < t, 

K'°(t, s) = -K(t, t0) for t0 < 5 < L 

It is a matter of routine to show that vz(K'°) < oo, var0 K
fo(0, .) < oo and 

'd s[K(t,s)]x(s)= f ' d ^ K ' ^ s ) ] ^ ) , 
Jto JO 

for every te [0,1] and xeBVn. Hence the equation (3,33) can be rewritten in the 
equivalent Fredholm-Stieltjes form 

c(í) ds[K">(t,s)]x(s) = f(t), Í Є [ 0 , 1 ] . 
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By 3,11 the corresponding homogeneous equation 

<(/)- ľds[K'°(t,S)]x(5) = 0, fє [0, l ] 

has only the trivial solution if and only if the regularity conditions given in the 
corollary are satisfied. The corollary follows now immediately from 2.1. 

Notes 
The Fredholm-Stieltjes integral equation theory is based on the investigations due to Schwabik 

[-]• [5]-
The case of Volterra-Stieltjes integral equations was considered by many authors in terms of product 

integrals, the left and right Cauchy integral or other types of integrals. See e.g. Bitzer [ l ] , Helton [l], 
Herod [ l] , Honig [ l] , Mac Nerney [2]. 

103 



I I I . I 

III. Generalized linear differential equations 

1. The generalized linear differential equation 
and its basic properties 

We assume that A: [0, 1] -> L(Rn) is an n x ri-matrix valued function such that 
var0 A < oo and gsBVn[0,1] = BVn. 

The generalized linear differential equation will be denoted by the symbol 

(1.1) dx = d[A] x + dg 

which is interpreted by the following definition of a solution. 

1.1. Definition. Let [a, b] a [0,1], a < b\ a function x: [a, b] -> Rn is said to be 
a solution of the generalized linear differential equation (1,1) on the interval [a, b] 
if for any t, r0 e [a, b] the equality 

(1.2) x(t) = x(t0) + f d[A(s)] x(s) + g(t) - g(t0) 
Jto 

is satisfied. 

In the original papers of J. Kurzweil (cf. [ l ] , [2]) on generalized differential 
equations and in other papers in this field the notation 

^ = D[/»(t)x + g(t)] 

was used for the generalized linear differential equation. 
It is evident that the generalized linear differential equation can be given on an 

arbitrary interval [a, b] cz R instead of [0,1]. 
If x0eJR„ and t0e\a, b] <= [0,1] are fixed and x: [a, fc]-> jRn is a solution 

of (1,1) on [a, b] such that x(r0) = x0, then x is called the solution of the initial 
value (Cauchy) problem 

(1.3) dx = d[A] x + dg, x(t0) = x0 

on [a, b]. 
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1.2. Remark. If B: [0, l] -* L(Rn) is an n x r/-matrix valued function, continuous 
on [0, 1] with respect to the norm of a matrix given in 1.1.1 and h: [0, l] -* Rn is 
continuous on [0, l] , then the initial value problem for the linear ordinary dif
ferential equation 

(1,4) x' = B(f)x + h(f), x(r0) = x0 

is equivalent to the integral equation 

x(f) = x0 + B(s) x(s) ds + h(s) ds, te [0,1] . 
J.o Jh) 

If we denote A(t) = Jf
0 B(r)dr, g(t) = f0 h(r)dr for f e [0,1], then this equation 

can be rewritten into the equivalent Stieltjes form 

x(f) = x0 + \'d[A(s)] x(s) + g(t) - g(t0), t e [0,1] . 

The functions A: [0,1]-> L(K„), g: [0,1] -• Rn are absolutely continuous and 
therefore also of bounded variation. In this way the initial value problem (1,4) has 
become the initial value problem of the form (1,3) with A, g defined above and both 
problems are equivalent. Essentially the same reasoning yields the equivalence of the 
problem (1,4) to an equivalent Stieltjes integral equation when B: [0,1] -> L(Rn), 
h: [0,1] -• Rn are assumed to be Lebesgue integrable and if we look for Caratheodory 
solutions of (1,4). 

1.3. Theorem. Assume that A: [0,1] -* L(Rn) is of bounded variation on [0,1], 
g e BVn. Let x: [a, b] -> Rn be a solution of the generalized linear differential equation 
(1,1) on the interval [a,b] c: [0,1]. Then x is of bounded variation on [a,b]. 

Proof. By the definition 1.1 of a solution of (1,1) the integral j"|o d[A(s)] x(s) exists 
for every t,t0e[a,b]. Hence by 1.4.12 the limit lim j[o d[_4(s)] x(s) exists for 

t-*to + 

t0 e [a, b) and lim j"|o d[_4(s)] x(s) exists for f0 e (a, b]. Hence by (1,2) the solution 
t~*to~ 

x(t) of (1,1) possesses onesided limits at every point f0 e [a, b] and for every point 
f0 G [a, b] there exists 3 > 0 and a constant M such that |x(f)| < M for 
f e (f0 — 5, t0 + S) n [a, b]. By the Heine-Borel Covering Theorem there exists a finite 
system of intervals of the type (f0 — <5, f0 + 3) covering the compact interval [a, b]. 
Hence there exists a constant K such that \x(t)\ < K for every te[a,b]. If now 
a = f0 < tl < ... < tk = b is an arbitrary subdivision of [a,b], we have by 1.4.27 

Mt.)-*(t.-,)|.- d[A(5)]x(S) 
ti-l 

+ liW-i(t.-.)l 

__íCvar|;.1A + |g(t,)-g(t l_1)| 
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for every i = l,...,/c. Hence 

k 

X |x(ff.) - x(r,. _ . )| < K varj A 4 var* g 

and var£ x < GO since the subdivision was arbitrary. 
Throughout this chapter we use the notations A + f(t) = f(t + ) - f(t), A~f(t) 

= f(t) - f{t — ) f°r a ny function possessing the onesided limits f(t-f-) = limf(r), 
r-*f + 

f (t —) = lim f (r). This applies evidently also to matrix valued functions. 
r-*t-

Since by definition the initial value problem (1,3) is equivalent to the Volterra-
Stieltjes integral equation 

(1,5) x(t) = x0 + \'d[A(s)] x(s) + g(t) - g(t0), t € [0,1] , 
J to 

the following theorem is a direct corollary of II.3.12. 

1.4. Theorem. Assume that A: [0,1] -+ L(Rn) satisfies var 0 A< oo. If t oe[0, 1), 
then the initial value problem (1,3) possesses for any ge BVn, x0 e Rn a unique solution 
x(t) defined on [t0,1] if and only if the matrix I — A" A(t) is regular for any t e (t0, 1]. 
If toe(0,1], then the initial value problem (1,3) possesses for any geBVn, x0sRn 

a unique solution x(t) defined on [0, t0] if and only if the matrix I 4 A+A(t) is regular 
for any t e [0, t0). If t0 G [0,1], then the problem (1,3) has for any g e BVn, x0 e Rn 

a unique solution x(t) defined on [0, l] if and only if I — A~A(t) is regular for any 
te(t0,1] and I + A + A(t) is regular for any te[0, t0). 

1.5. Remark. Let us mention that by 1.3 the solutions of the problem (1,3) whose 
existence and uniqueness is stated in Theorem 1.4 are of bounded variation on their 
intervals of definition. Further, if in the last part of the theorem we have t0 = 0, 
then the regularity of / 4- A+A(0) is not required. Similarly for t0 = 1 and for 
the regularity of / — A~A(1). 

Let us mention also that Theorem 1.4 gives the fundamental existence and unicity 
result for BV„-solutions of the initial value problem (1,3). 

Let us note that if A: [0,1] -> L(Rn) is of bounded variation in [0,1], then there 
is a finite set of points t in [0,1] such that the matrix / — A~A(t) is singular and 
similarly for the matrix / + A+A(t). In fact, since varj A < oo the series £ A"A(t) 

re(a,b] 

converges. Hence there is a finite set of points te [0,1] such that |A~A(t)| > | . For 
all the remaining points in [0, 1] we have |A~A(t)| < \, and consequently 

oo 

[/ — A~A(t)}-1 = ]T (A~A(t))k exists since the series on the right-hand side con-
fc = 0 

verges at these points. For the matrix / 4- A+A(t) this fact can be shown analogously. 
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1.6. Proposition. Assume that A: [0,1] -* L(Rn), var0 A < oo, geBVn. Let x be 
a solution of the equation (1,1) on some interval [a, b] c: [0, 1], a < b. Tlien all the 
onesided limits x(a + ), x(t + ), x(t —), x(b —), te(a,b) exist and 

(1,6) x(t + ) = [/ + A + A(f)] x(t) + A + g(t) /or a// te [a,b), 

x ( t - ) = [ / -A"A( t ) ]x(r ) -A-g( t ) /or a// re(a,b] 
ho/as. 

Proof. Let te[a , b). By the definition of the solution x: [a, b] -» Rn we have 

x(t + S) = x(f) + | '+ 'd[A(s)] x(s) + g(t + 3)- g(t) 

for any 6 > 0. For (5 -• 0+ we obtain by 1.4.13 the equality 

x(r + ) = x(t) + (A(r + ) - A(t)) x(t) + g(r + ) - g(r) 

= x(t) + A+A(t) x(t) + A+g(t) 

where the limit on the right-hand side evidently exists. The second equality in (1,6) 
can be proved similarly. 

1.7. Theorem. Assume that A: [0,1] -> L(Rn), var0 A < oo, toe[0,1] and that 
I + A+A(t) is a regular matrix for all t e [0, t0) and I — A~A(t) is a regular matrix 
for all te(t0,1]. Then there exists a constant C such that for any solution x(t) of the 
initial value problem (1,3) with geBVn we have 

(1.7) |x(r)| < C(|x0| + var^ g) exp (C var;o A) for t e [t0,1] 

and 

(1.8) |x(t)| < C(|x0| + varj? g) exp (C war? A) for t e [0, t0] . 

Proof. We consider only the case t < t0 and prove (1,8). The proof of (1,7) can be 
given in an analogous way. Let us set B(t) = A(t + ) for te [0, t0) and B(t0) = A(t0). 
Hence B(t) - A(t) = A+A(t) for t e [0, t0), B(t0) - A(t0) = 0, i.e. B(t) - A(t) = 0 
for all t e [0, t0] except for an at most countable set of points in [0, t0) and evidently 
var0° (B — A) < oo. Hence for every xeBVn and te [0, t0) we have by 1.4.23 

d[B(s) - A(sj] x(s) = -A+A(t)x(t) 

and by the definition we obtain 

x(t) = x0 + d[B(sj] x(s) - A+A(t) x(t) + g(t) - g(t0), t e [0, t0) 

i.e. 

(1.9) x(t) = [/ + A ^ t ) ] " 1 (x 0 + g(t) - g(t0) + |'°d[B(s)]x(s)), ts[0,to). 
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Let us mention that for all t e [0, f0) we have 

(1,10) |[I + A + A(t)]~l\ < C, C = const. 
x> 

This inequality can be proved using the equality [/ + A + A(t)]~ l = £ ( - 1)' (A + A(r))' 
j = 0 

which holds whenever |A + _4(r)| < 1. Hence 

^m--*—i1 
J = 0 

|[/ + A+A(ř)]-Ч<i:|Л+A(ř)|
i = < 2 

1 - |A+A(r)| 

provided |A + /\(t)| < y, i.e. for all t e [0, t0) except for a finite set of points in [0, t0). 
The estimate (1,10) is in this manner obvious. Using (1,10) we obtain by (1,9) the 
inequality 

x(í)| < C |x0 | + |g(ř) - g(t0)| + d[B(s)]x(s) 

t e [0, t 0 ] . This inequality together with 1.4.27 yields 

(LПÌ x(f)| < C x0 + var'0°g + \x(s)\ d vať0 B 

C(|x0| + var'0
üg) + Cj°|x(s)|dh(s) 

where h(s) = var0 B is defined on [0, f0] and is evidently continuous from the 
right-hand side on [0, t0) since B has this property by definition. Using 1.4.30 for 
the inequality (1,11) we obtain 

|x(t)| < C(|x0| + varo°g)exp(C(h(g - h(t))) 

< C(|x0| + var0°g)exp(C(var0°B - varr
0 B)) 

= C(|x0| + var'0°g)exp(Cvar;°B) 

and this implies (1,8) since var|° B < var|° A. 

Remark. A slight modification in the proof leads to a refinement of the estimates 
(1,7), (1,8). It can be proved that 

|x(r)| < C(|x0| + var'f0 g) exp (C varj0 A) for t e [t0,1] 
and 

|x(r)| < C(|x0| + var;° g) exp (C var[° A) for t e [0, t0] 

holds. 

1.8. Corollary. Let A: [0,1] -> L(Rn) fulfil the assumptions given in 1.7 for some 
t0 e [0,1], g,ge BVn, x0, x 0 e Rn. Then if xe BVn is a solution of (1,3) and xeBVn 

is a solution of 
dx = d[A] x + dg, x(t0) = x 0 , 
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we have 

(1,12) |x(f) - x(t)\ < C(|x0 - x0| + vaitf (g - g)) exp (C varj" A) for t e [0, r0] 

|x(r) - x(r)| < C(|x0 - x0| + var/o (g - g)) exp (C var|o A) for r e [r0, 1] , 

where C > 1 is a constant. Hence 

(M3) \x(t) - x(t)| < K(|x0 - x0| + var0 (g - g)) 

/or a// r G [0,1] where K = C exp (C var0 A). 

1.9. Remark. The inequality (1,13) yields evidently x(t) = x(t) for all te[0, l] 
whenever x0 = x0 and var0 (g — g) = 0. In this way the unicity of solutions of the 
initial value problem (1,3) is confirmed. 

1.10. Theorem. Assume that t0 e [0,1] is fixed. Let A: [0,1] -• L(Rn) be such that 
var0 A < oo, / — A~A(t) is a regular matrix for te(t0,1] and I + A + A(t) is a re
gular matrix for te [0, t0). Then the set of all solutions x: [0,1] -* Rn of the homo
geneous generalized differential equation 

(1,14) dx = d[A]x 

with the initial value given at the point t0 e [0,1] is an n-dimensional subspace in BVn. 

Proof. The linearity of the set of solutions is evident from the linearity of the integral. 
Let us set e(fc) = (0,...,0,1,0,...,0)*eRn, k = l,...,w (the value 1 is in the fe-th 
coordinate of e{k)eRn) and let <p{k): [0,1] -+ Rn be the unique solution of (1,14) 
such that <p{k)(t0) = e(fc), fe= J,..., n (they exist by 1.4). The unicity result from 1.4 

yields that £ ck q>{k)(t) = 0, ckeR if and only if ck = 0, fc = 1,..., n. If x: [0,1] - Rn 
k=\ 

is an arbitrary solution of (1,14), then clearly 

*(t)=ixjt0)9*\t) 

for all t e [0,1], i.e. x is a linear combination of the linearly independent solutions 
</>(fc), fe = 1,..., n and this is our result. 

1.11. Example. We give an example of a generalized linear differential equation 
which demonstrates the role of the assumptions concerning the regularity of the 
matrices / + A+A(t), I - A~A(t) in 1.4. Let us set 

* - Q - -»-CD 
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for 0 < t < \, \ < t < 1 respectively; for this 2 x 2-matrix A: [0,1] -• L(R2) 
we have evidently A+A(t) = 0 for all te [0,1), A'A(t) = 0 for all te(0,1], r #= i 
and 

fa, 0> 

^0, 1, 
Hence 

is not regular. We consider the initial value problem 

(1,15) dx = d [ A ] x , x(0) = xo 

where x 0 = (c1? c2)* e R2. For a solution x(t) of this problem we have 

x(í) = x0 + d[A(s)]x(s) = x0 = (Cl,c2)* if íє [ 0 , i ) . 

Further, by 1.6 we obtain x(\-) = [I - A~A(|)] x(£), i.e. (c-, c2)* = [/ - A"A(i)] x(i) 
= (^(DJO)*. This equality is contradictory for c2 =t= 0. Hence the above problem 
(1,15) cannot have a solution on [0, | ] when x0 = (cl9c2)* e R2 with c2 #= 0. 

Let us now assume that x0 = (cl9 0)* e R2. Then we have for t > \ 

x(t) = x0 + f d[A(s)] x(s) = x(i) + f d[A(s)] x(s) = x(i). 
JO J l /2 

By 1.6 necessarily 

[/-A-A(|)]xШ = ^ o J x ( | ) 
1,0 

Hence x(|) = (c1? d)*9 where deK is arbitrary, satisfies this relation. It is easy to 
show that any vector valued function x: [0,1] -> ,R2 defined by x(t) = (c l50)* 
for 0 < t < | , x(t) = (cl9 d)* for \ < t < 1, satisfies our equation. 

Summarizing these facts we have the following. If x(0) = (cl9c2)* and c2 =1= 0, 
then a solution of (1,15) does not exist on the whole interval [0,1], If x(0) = (cl9 0)*, 
then the equation (1,15) has solutions on the whole interval [0,1] but the uniqueness 
is violated. 

If we consider the initial value problem dx = d[A]x, x(\) = (cl9c2)* for the 
given matrix A(t), then it is easy to show that this problem possesses the unique 
solution x(t) = (cl9 0)* if t e [0, | ) , x(t) = (cl9 c2)* if t e [j91]. Hence the singularity 
of the matrix / — A~A(t) for t = \ is irrelevant for the existence and uniqueness 
of solutions to the initial value problem mentioned above. 
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2. Variation of constants formula. The fundamental matrix 

In this section we continue the consideration of the initial value problem 

(2.1) dx = d[A] x + dg, x(t0) = x0 

with A: [0,1] - L(/g, var0A < oo, geBVn[0,1] = BV„ t oe[0,1] , x0eRn. 

2.1. Proposition. Assume that A: [0,1] -> L(Rn), var 0 A< oo, toe[0,1] is fixed, 
the matrix I — A~A(t) is regular for all te(t0 ,1] and the matrix I + A + A(t) is 
regular for all t e [0, t0). 

Then the matrix equation 

(2.2) X(0 = X + fd[A(r)]X(r) 
Jtl 

has for every X e L(Rn) a unique solution X(t)eL(Rn) on [tl9l~\ provided t0 < f. 
and on [0, f J provided tx < t0. 

Proof. Let us denote by Bk the k-th column of a matrix BeL(Rn). For the k-th 
column of the matrix equation (2,2) we have 

(2.3) X,(t) = Xk + Pd[A(r)] Xk(r), k = 1,..., n. 
Jti 

If t0 < tly then for every te(tl91] the matrix / - A"A(t) is regular. Hence by 1.4 
the equation (2,3) for Xk(t) has a unique solution on [tu 1] for every k = 1,..., n 
and this implies the existence and unicity of an n x n-matrix X(t): [tl91] -> L(Rn) 
satisfying (2,2). The case when tl < t0 can be treated similarly. 

2.2. Theorem. 7f the assumptions of 2.1 are satisfied, then there exists a unique 
n x n-matrix valued function U(t, s) defined for t0 < s < t < 1 and 0 < t < s < t0 

such that 
<*t 

(2.4) U(t9s) = \+ d[A(r)]U(r,s). 
Js 

Proof. If e.g. t0 < s < 1 and s is fixed, then the matrix equation 

(2.5) X(t) = / + £d[A(r)]X(r) 

has by 2.1 a uniquely determined solution X: [s, 1] -> L(Rn). If we denote this 
solution by U(t, s), then U(f, s) is uniquely determined for t0 < s < t < 1 and 
satisfies (2,4). 

Similarly if 0 < s < t0, s being fixed, the matrix equation (2,5) has by 2.1 a unique 
solution X: [0, s] -• L(Rn) which will be denoted by U(t,s), and U(t,.s) evidently 
satisfies (2,4) for 0 < t < s < t0. 
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2.3. Lemma. Suppose that the assumptions of 2A are fulfilled. Then there exists 
a constant M > 0 such that \U(t,s)\ < M for all t,s such that 0 < t < s < t0 or 
t0 < s < t < 1. Moreover we have 

(2,6) \U(t2, s) - U(tl9 s)\ < M var^ A 

for all 0 < tx < t2 < s if s < t0 and all s < tx < t2 < 1 if t0 < s. Consequently 
var0 U(.,s) < M var0 A, var,1 U(.,s) < M var] A if 0 < s < t0, t0 < s < 1 
respecnve/y. 

Proof. Since U(t, s) satisfies (2,4) in its domain of definition, the k-th column 
(k = 1,..., n) of U(t, s) denoted by Uk(t, s) satisfies the equation 

Uk(t,s) = ëk> + ţ'd[A(rj]Uk(r,s) 

for every t e [0, s] when s < t0 (eik) means the fc-th column of the identity matrix 
/ G L(Rn), i.e. Uk(t, s) is a solution of the problem dx = d[A] x -f dg, x(s) = e(k)). 
Hence by 1.7 we have 

|Uk(r, s)\ < C\e(k)\ exp (C varj A) < C exp (C var0 A), k = 1,..., n 

for every 0 < t < s < t0 where C > 1 is a constant and evidently also 

|U(r, s)\ < f \Uk(t, s)\ < nC exp (C var0 A) = M . 
k= 1 

If t0 < s, then 1.7 yields the same result for s < t < 1 and the boundedness of 
U(t, s) is proved. 

Assume that 0 < t{ < t2 < s < t0. Then we have by 1.4.16 

\U(t2,s)-U(tl,s)\ = 

f 
J í l 

, 2d[4(r)]U(r,s)- Í"d[.4(r)] U(r, s)| 
$ J s 

< M var^ A . d[A(r)]U(r,s) 

A similar inequality holds if f0 < s < tx < t2 < 1 and (2,6) is proved. 

2.4. Theorem. Suppose that the assumptions of 2.1 are fullfilled and t± e [0, l ] . Then 
the unique solution of the homogeneous initial value problem 

(2.7) dx = d[A]x, x(tx) = x 

defined on [t-, 1] if t0 < tx and on [0, t t ] if t{ < t0 is given by the relation 

(2.8) x ( r ) = U ( r , t x ) x 

on the intervals of definition, where U is the n x n-matrix from 2.2 satisfying (2,4). 
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Proof. Under the given assumptions the existence and uniqueness of a solution 
of (2,7) is quaranteed by 1.4. Let us assume that t0 < tx. Since by 2.2 U(t,tx) is 
uniquely defined for tx < t < 1, by (2,8) a function x: [f,, 1] -> Rn is given. By 2.3 
we have var.̂  U(.,t{) < oo and consequently var^ x = var/t Ui^t^x < / . For 
x: [tj, 1] -» Rn given by (2,8) the integral {J. d[A(s)] x(s) evidently exists (see 1.4.19) 
for every te [tl91] and by (2,4) we have 

'd[A(s)] x(s) = *d[A(s)] U(s, t{) x = (U(r, t,) - /) x = x(t) - x , 
»J f i Jti 

i.e. x(r) = U(r, t{)x is a solution of (2,7) on [tl91]. The proof of this result for the 
case tj < t0 is similar. 

2.5. Corollary. If the assumptions of 2.1 are satisfied and U(t,s) is the n x n-matrix 
determined by (2,4) for t0 < s < t < I and 0 < t < s < t0, then 

(2.9) U(t9s)= U(t9r)U(r9s) 

if t0 < s < r < t < 1 or 0 < t < r < s < t0 and 

(2.10) U(t,t) = / 

for every te [0,1]. 

Proof. Let e.g. 0 < t < r < s < r0, then by (2,4) we obtain 

U(r, s) = / + [ d[A(o)] U(Q, s) = / + J d[A(g)] U(o, s) + [ d[A(o)] U(o, s) 

= U(r,s)+ rd[A(e)]U(e,s) 
Jr 

for every 0 < t < f. Hence U(t, s) satisfies the matrix equation 

X(t)=U(r,s) +Jd[A(o)]X(o) 

for 0 < t < r and by 2.4 this solution can be expressed in the form U(t, r) U(r, s), 
i.e. (2,9) is satisfied. If t0 < s < r < t < 1, then (2,9) can be proved analogously. 
The relation (2,10) obviously follows from (2,4). 

2.6. Lemma. If the assumptions of 2.1 are satisfied, then for U(t,s) given by 2.2 
we have 

(2,11) \U(t,s2) - U(t,s.)| < M2 var*? A 

for any sl9 s2 such that t0 < s1 < s2 < t < 1 or 0 < t < sx < s2 < t0 where M is 
the bound ofU(t9 s) (see 2.3). Hence var|0 U(f, .) < M2 var[o A ift0 < t and varf0 U(t, .) 
< M2 varj0 A if t < t0. 
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Proof. Let us consider the case when t0 < S l s s2 < r. By (2,4) we have 

U(t,s2) - U(t,Sl) = Pd[A(r)] U(r,s2) - Pd[A(r)] U(r,Sl) 
Js2 Jsi 

= Pd[A(r)]U(r,s 2 )- f 'd[4(r) ]U(r , S l )- [ " d ^ r ) ] U(r,Sl), 
Js2 Js2 Jsi 

i.e. the difference U(t,s2) — U(t,sx) satisfies the matrix equation 

* ( ' ) = - d[Л(r) ]Цr, S l )+ d[A(r)]X(r 

for s2 < t < 1. Hence by 2.4 we obtain 

U(t,s2) - U(t,Si) = U(t,s2)(- £2d[4(r)] U(r,s^ 

and by 2.3 and 1.4.16 it is 

\U(t,s2)-U(t,Sl)\<M ľ 2 d[A(r)]Цr, S l ) 
Jsi 

< M2 var?2 A. 

The proof for the case 0 < t < sl < s2 < t0 can be given similarly and (2,11) is valid. 

2.7. Lemma. Suppose that the assumptions of 2.1 are satisfied. Let us define 

(2,12) 0(r, s) = U(t, s) for t0<s<t<l, 

Q(t, s) == U(t, t) = / for t0 < t < s < 1, 

and 

(2,13) Ö(ř, s) = U(í, s) for 0 < t < s < t0 , 

Ö(ř, s) -= U(ř, ŕ) = J for 0 < s < t < t0 , 

where U(t, s) e L(Rn) is given by 2.2. 
Then for the twodimensional variations of 0 on the squares [t0,1] x [t0,1] and 

[0, t0] x [0, t0] on which 0 is defined we have v[fo>1]x[,o>1](0) < oo and v[0>fo]x[0>,o](U) 
< 00. 

Proof. Assume that t0 = a0 < OL1 < ... < ock = 1 is an arbitrary subdivision of the 
interval [t0,1] and JtJ = [a,-i,a,] x [«/-i,a/]> U = I,.-.,* the corresponding 
net-type subdivision of [r0,1] x [t 0,1]. We consider the sum (see 1.6.2, 1.6.3) 

i \m0(
jij)\-i ( I W - M + H(ju)\ + i ho(̂ )i) • 
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0 k 

where we use the convention that £ |̂ o(^u)l = ^ anc* Z lmu(̂ u)l = 0- **y (2,12) 
j = i j = k + i 

we have m.-,^) = m^J,-,) if I < i - 1, 

mu(Jn) = °(ai' a0 ~ °(aPa i- i) " 0(ai-i>ai) + 0(a i - i?
a i - i ) 

= 0(a, a.) - 0(a, a4_ _) = U(a„a,) - U(a, a._,) 

and m^Jij) = 0 if i 4- 1 < J Hence 

(2,14) _ |m0(J0.)| = I _ W u ) l + - l U K ««) - U(«" ««- i)l • 
> , j = l i = l j = l i = l 

If j < i — 1, then a^_, < a_, < af_ _ < af and by 2.5 

mu(Jij) = u(a.'aj) ~ u(a.-.aj-i) - U(a.-i.«j) + U(a.-i.aj-i) 

= U(a, «,-_ i) U(a,_ j,«;) - U(a,._., a,) - U(a, «,_,) U(af_., «_.-_ j) + U(a,._„ «,-_,) 

= [U(«, «,_.) - I] U(ai_1,«j) - [U(a,«j_1) - I] U(af_ „«,._,) 

- [U(a,ai_1) - /] [U(ai_1,a,) - U(af_,,«,_,)] 

- [U(a, a,_,) - U(a,_ „ af_.)] [U(a,._„ a,) - U(a,._ „ «,-_ t)] . 

Hence by 2.3 and 2.6 we obtain 

K(<y = m«*«.-i) - u^-i^i-i)! m«_-i>«,) - ^-_.«,-_). 
< M(var_; _. A) M2 var£ _ x A = M3 var£ _. A var̂ j _. A 

and 

I l W u ) l ^ M ' 1 var"!-.A Eva- . i . , -* -- ^3(vari A)2. 
i = l j=l i = l j = l ' 

Further, by (2,11) from 2.6 we have 

_ |U(«,«f) - U(«,«,_!)! < £ M2var£_, A - M2var/0A. 
i = l i = l 

Hence by (2,14) we have 

I |mD(J0.)| < M^var^A)2 + M2 var^A 
*J=i 

and since the net-type subdivision was chosen arbitrarily, we have by the definition 
also 

VnxKo,^ 0 ) -- M3(va<>»)2 + M2 var^A < co . 

The ilniteness of v[0 Io] x [0,rOj(^) c a n ^e Prove(i similarly. 
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2.8. Theorem (variation-of-constants formula). Let A: [0,1] -> L(Rn) satisfy the as-
sumptions given in 2.1 where £0 e [0,1] is fixed. Then for every x0eRn, geBVn 

the unique solution of the initial value problem (2,1) can be expressed in the form 

(2,15) x(í) = Цř, t0) x 0 + g(t) - g(t0) - ds[Цt,s)](ř(s)-g(to)) 

where U is the uniquely determined matrix satisfying (2,4) from 2.2. 

Proof. We verify by computation that x: [0,1] -» Rn from (2,15) is really a solution 
of (2,1). Let us assume that t < t0. Then 

(2,16) ['d[A(r)] x(r) = Pd[A(r)] U(r, t0) x0 + Pd[A(r)] (g(r) - g(t0)) 
J to J to J to 

- fd[A(r)] fd s[U(r,5)](g(5)-g(g) 
J to J to 

= (U(t, t0) - I) x 0 + f'd[A(r)] (g(r) - g(t0)) - ['d[A(r)] f ds[U(r, 5)] (g(s) - g(t0)) 
Jio Jto Jto 

since U satisfies 2.4. Let us now consider the last term from the right-hand side 
in (2,16). We have 

'd[A(r)] fd 5 [U(r,5)](g(5)-g(g)= P°d[A(r)] f'°ds[0(r, 5)] (g(s) - g(t0)) 
Jto Jto Jt Jt 

where 0 is defined in 2.7 and satisfies by 2.7, 2.3 and 2.6 the assumptions of 1.6.20 
on the square [t, t 0] x [t, r0]. Hence we interchange by 1.6.20 the order of integration 
and obtain by the definition of U 

d[A(r)] d s[Цr,5)](g(5)-g(д) = d[A(r)]ö(r,5) M-ІЇo)) 

d[A(r)]Ö(r,5)+ d[A(r)]G(r,s; Ш-M) 

= d 

Jto 

Ш - г(fo)) d[A(r)]Цr,s)+ d[A(r)] 
Jt0 

= I d s[Цt, s) - / + A(s) - A(í0)] (g(s) - g(t0)) 
Jt0 

'ás[U(t,,)] (g(s) - g(t0)) + ľd[A(s)] (g(s) - g(t0)). 
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Using this expression we obtain by (2,16) 

'd[A(r)] x(r) = U(t, t0)x0 - x 0 + |'d[A(r)] (g(r) - g(f0)) 
O * l*0 

- 'ds[U(t,,)] (g(s) - g(t0)) - \'d[A(s)] (g(s) - g(t0)) 
Jfo J*o 

= U(f, t 0 )x 0 + g(t) - g(f0) - I'ds[U(t, s)] (g(s) - g(t0)) - (g(f) - g(t0)) - x0 

= x(t)-x0-(g(t)-g(t0)). 

Hence x(t) is a solution of (2,1) for t < t0. For the case t0 < t the proof can be 
given analogously. Using 1.4 the solutions of (2,1) are uniquely determined and this 
completes the proof. 

2.9. Remark. Let us mention that the operator x e BVn -> j | 0 d[_4(s)] x(s) appearing 
in the definition of the generalized linear differential equation (2,1) can be written 
in the Fredholm-Stieltjes form j 0 ds [K(t, s)] x(s) where K: [0,1] x [0,1] -> L(Rn) 
is defined as follows: if t0 < t < 1, then 

K(t,s) = A(t0) 

K(t,s) = A(s) 

K(t,s) = A(t) 

and if 0 < t < t0, then 

K(t,s)= -A(t) 

K(t,s)= -A(s) 

K(t,s)= -A(t0) 

for 0 < s < t0, 

for ř0 < s < t, 

for t < s < 1, 

for 0 < s < t, 

for ř < s < t0, 

for t0 < s < 1. 

If this fact is used and IL2.5 is taken into account, then the solution of the equation 
(2,1) can be given by the resolvent formula (II.2.16) in the form 

(2,17) x(t) = x0 + g(t) - g(t0) + j ds[r(r, s)] (x0 + g(t) - g(t0)), 

for te[0,1] since (2,1) has a solution uniquely defined for every x0eRn, geBVn. 
The resolvent kernel f: [0,1] x [0,1] -> L(Rn) satisfies 

r(t,s) = K(t,s)+ dr[K(t,r)]r(r,t). 
Jo 

If we set U(u s) = I + T(t, s) - T(t, t), then the variation-of-constants formula (2,15) 
can be derived from (2,17). 
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In the following we consider the initial value problem (2,1) with the assumptions 
on A: [0,1] -> L(Rn) strengthened. 

2.10. Theorem. Assume that the matrix A: [0,1] -• L(Rn), var0 A < oo is such that 
I — A"A(t) is regular for all te(0,1] and I + A+A(t) is regular for all fe[0,1). 

Then there exists a unique n x n-matrix valued function U: [0, l] x [0, l] -> L(Rn) 
such that 

%t 

(2.18) U(t,s) = / + d[A(r)]U(r,s) 
Js 

for all r, s e [0,1]. 
The matrix U(t, s) determined by (2,18) has the following properties. 

(i) U(M) = / far all t e [ 0 , l ] . 
(ii) There exists a constant M > 0 such that \U(t, s)\ < M for all t ,se [0,1], 

var0 U(t, .) < M, var0 U(.,s)< M for all t,se [0,1]. 
(iii) For any r,s,te [0,1] the relation 

(2.19) U(t,s)=U(t,r)U(r,s) 

holds. 
(iv) U(t + ,s) = [/ +A+A(t)]U(r,s) forte[0,l), S G [ 0 , 1 ] , 

U(r-,s) = [/-A"A(t)]U(t,s) for te (0 , l ] , s e [ 0 , l ] , 
U(t,s + )=U(t,s)[l + A-^^s)]"1 for t e [ 0 , l ] , S G [ 0 , 1 ) , 

U ( t , s - ) = U(t,s)[»-A-A(s)]"1 for t e [ 0 , l ] , s e ( 0 , l ] . 
(v) Trie matrix U(t, s) is regular for any t,se [0, l ] . 
(vi) The matrices U(t, s) and U(s, t) are mutually reciprocal, i.e. [U(t, s)]~l = U(s, t) 

/or every t, se[0,1] . 
(vii) The twodimensional variation ofU is finite on [0, l ] x [0,1], i.e. v[0 1]x[0 t](U) 

< oo. 

Proof. By 2.1 for every fixed se[0,1] the matrix equation 

X(0 = X + £d[A(r)]X(r), XeL(Rn) 

has a unique solution X: [0,1] -* L(Rn\ which is defined on the whole interval [0,1]. 
Hence the existence of U(t, s) satisfying (2,18) is quaranteed. 

(i) is obvious from (2,18). (ii) follows immediately from 2.3 and 2.6. For (iii) we 
have 

U(t,s) = l + d[A(Є)] U(Q,S) = I + £d[A(í>)] Ч M + ['d[A(<?)] ЩQ,І 

= U(r,s) +J'd[A(Є)]U(ß,s), 

118 



111.2 

i.e. U(t, s) satisfies the matrix equation 

X(r)-=U(r,s)+|d[A(r)]X(r). 

Hence by 2.4 we obtain U(t,s) = U(t,r)U(r,s) for every r,s, £e[0,1], and (2,19) 
is satisfied. 

The first two relations in (iv) are simple consequences of 1.6. To prove the third 
relation in (iv) let us mention that for any t e [0,1], se [0,1) and sufficiently small 
(3>0we have by definition 

U(t,s + ð)- U(t,s) d[A(r)] U(r, s + 8)- d[A(r)] U(r, s) 
6 Js 

d[A(r)] (U(r, s + 5)- U(r, s)) - j d [ A ( r ) ] U(r, s), 
s + d Js 

i.e. the difference U(t, s + d) — U(t, s) satisfies the matrix equation 

Гs + Ô 

d[A(r)-]U(r,s) + d[A(r)]X(r) 
S + ô 

X(t) = -

and consequently by 2.4 it is 

U(t, s + d) - U(U s) = U(U s + d)(- | *d[A(r)] U(r9 s)). 

For 6 -> 0+ this equality yields 

U(t,s + ) - U(t,s)= -U(t,s + )A+A(s)U(s,s)= -U(t, s + ) A+A(s). 

Hence U(t,s) = U(u s+) [I + A+A(s)] for any te[0,1], se[0,1) and the as
sumption of the regularity of the matrix / + A+A(s) gives the existence of the inverse 
[/ + A+A(s)]-1 and also the third equality from (iv). The fourth equality in (iv) 
can be proved analogously. 

By (iii) we have U(t, s) U(s, t) = I and U(s, t) U(t, s) = / for every t, s e [0,1]. 
Hence U(t,s) = U(s,t)~x and U(s,t) = U(r,s)_1 and (vi) is proved. From (vi) the 
statement (v) follows immediately. (In this connection we note that a direct proof 
of (v) can be given without using (iii), see Schwabik [1].) 

Finally by (iii) we have U(t,s)= U(t,0)U(0,s) for every (t,s)e[0,1] x [0,1]. 
By (ii) it is var0 U(.,0) < oo and varj U(0, .) < oo. Hence by 1.6.4 we have 
v[o,i]x[o,i](L/) < oo and (vii) is also proved. 

2.11. Corollary. If A: [0,1] -• L(Rn), var0 A < oo, satisfies the assumptions given 
in 2.10, then 

(2,20) U(f, s) = X(r) X" l(s) for every s, t e [0,1] 
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where X: [0, l] -• L(Rn) satisfies the matrix equation 

(2,21) X(t) = I + d[A(r)] X(r), t e [0, l] . 
Jo 

Proof. Since the matrix equation (2,21) has a unique solution, it is easy to compare 
it with (2,18) and state that X(t) = U(f,0). By (hi) from 2.10 we have U(t,s) 
= U(t,0)U(0,s) and by (vi) from 2.10 it follows U(0,s) = [U(s,0)]_1 = X^js). 
Hence (2,20) hold. 

2.12. Remark. If the matrix A: [0, l] -> L(Rn) satisfies the assumptions of 2.10, 
then evidently the assumptions of 1.4, 2.1—2.8 are satisfied for every £0e[0,1]. 
Hence by 1.4 the initial value problem (2,1) has for every foe[0,1], x0eRn, 
ge BVn a unique solution x: [0,1] -> Rn defined on the whole interval [0,1]. 

The variation-of-constants formula 2.8 leads to the following. 

2.13. Theorem (variation-of constants formula). Let us assume that A: [0,1] ->L(iRM) 
satisfies the conditions given in 2.10. Then for any t oe[0,1] , x0eR„ geBVn the 
solution of the nonhomogeneous initial value problem (2,1) is given by the expression 

x(t) U(t, t0) x0 + g(() - g{t0) - f ds[Цf, 5)] tøs) - g(ř0)), t є [0, 1] 
Jfo 

where U(t,s): [0,1] x [0,1] -> L(Rn) is the matrix whose existence was stated 
in 2.10. 

The proof follows immediately from 2.8. 

2.14. Corollary. If A: [0, l] -> L(Rn) satisfies the assumptions from 2.10, then the 
above variation-of-constants formula can be written in the form 

(2.22) x(t) = g(t) - g(t0) + X(t) j x - %) x 0 - | ' d s [ X - \s)] (g(s) - g(f0))J 

for t e [0,1] where X: [0^ l] -> L(Rn) is the uniquely determined solution of the matrix 
equation (2,21). 

The proof follows immediately from 2.13 and from the product decomposition (2,20) 
given in 2.11. 

2.15. Proposition. If A: [0,1] -> L(Rn) satisfies the assumptions given in 2.10 and 
X: [0,1] -> L(Rn) is the unique solution of the matrix equation (2,21), then 

(2.23) X" \s) = / + A(0) - X" '(s) A(s) + Pd[X- *(r)] A(r) 

for every se[0,1]. 
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Proof. For X: [0,1] -» L(R„) we have by (2,21) 

X(s) - l = | d[A(r)] X(r) = Pd[A(r)] (X(r) - ») + A(s) - A(0) 
Jo Jo 

for every se[0,1]. Using the variation-of-constants formula (2,22) in the matrix 
form we get 

X(s) - / = A(s) - A(0) - X(s) £d[X"'(/")] (A(r) - A(0)) 

= A(s) - A(0) - X(s) Pd[X- '(r)] A(r) + X(s) [X~ >(s) - X" '(0)] A(0) 
Jo 

= A(s) - X(s) A(0) - X(s) f d[X~ >(r)] A(r). 
0 

Multiplying this relation from the left by X x(s) we obtain for every se [0,1] 

/ - X~\s) = -A(0) + X-^s) A(S) - PdtX-1^)] A(r) 

and (2,23) is satisfied. 

2.16. Definition. The matrix U(t,s): [0,1] x [0,1] -> L(Rn) given by 2.10 is called 
the fundamental matrix (or transition matrix) for the homogeneous generalized linear 
differential equation dx = d[A] x. 

2.17. Remark. If B: [0,1] -• L(Rn) is an n x n-matrix, continuous on [0,1] and 
x = B(t)x is the corresponding ordinary linear differential system, then in the 
theory of ordinary differential equations the transition matrix 0(r, t0) is defined 
as a solution of the matrix differential equation 

X' = B(t)X 

satisfying the condition X(t0) = / e L(Rn), Hence for # we have 

#(t,t0) = / + B(T)#(T,r0)dT, 
J to 

i.e. 4> satisfies the generalized matrix differential equation 

Ф(t, t0) = / + d[A(t)]Ф(т,t0) 

where A(t) = j 0 B(T) dT (see also 1.3). The variation-of-constant formula for the 
generalized linear differential equation 

dx = d[*4] x + dg, x(t0) = x0 
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where g(t) = |Joh(s)ds, which corresponds by 1.3 to the ordinary linear system 

x' = B(t)x + h(t), x(t0) = x0 

has the form 

d.[*M](ř(-)--«(ío)) x(t) = <P(t,t0)x0 + g(t)-g(t0) 

= <P(M0)x0 + h(s)ds+ *( t , s )d( h(a)da)-$(t,t) h(s)ds 
Jt0 Jt0 \Jt0 / Jto 

= 0(t,to)xo+ <P(t,s)h(s)ds. 
Jt0 

This is the usual form of the variation-of-constants formula for ordinary linear 
differential equations. 

2.18. Definition. The n x n-matrix U(t,s) defined for t, se [0,1] is called harmonic 

if var0 U(t, .) < oo for every f e[0,1], varj U(.,s) < co for every se[0,1]. 

(2,19) U(t, s) = U(t, r) U(r, s) for any three points r, s, t e [0,1] , 

(2.24) U(t, t) = / for any t e [0,1] . 

For the concept of harmonic matrices see e.g. Hildebrandt [2], Mac Nerney [1], 
Wall [1]. 

As was shown in 2.10 for A: [0,1] -> L(Rn), var0 A < oo with the matrices 
/ — A~A(t), I + A+A(t) regular for te(0,1], te[0,1) respectively, the corresponding 
fundamental matrix U(t, s) is harmonic (see (i), (ii) and (iii) in 2.10). In other words, 
to any n x n-matrix valued function A: [0,1] -> L(Rn) with the above mentioned 
properties through the relation 

U(t, s) = I + J d[A(r)] U(r, s), t,se [ 0 , 1 ] 

a uniquely determined harmonic matrix U(t, s) corresponds. In the opposite direction 
the following holds. 

2.19. Theorem. If the n x n-matrix U(t,s): [0,1] x [0,1] -• L(Rn) is harmonic, then 
there exists A: [0,1] -* L(Rn) such that v a r 0 A < o o , the matrices I — A~A(t), 
I + A+A(t) are regular for all te(0,1], te[0,1), respectively and U satisfies the 
relation 

(2.25) U(t, s) = / + f'd[A(r)] U(r, s), t, s e [ 0 , 1 ] , 

i.e. U(t, s) is the fundamental matrix for the homogeneous generalized linear differential 
equation with the matrix A (see 2.16). 
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Proof. Let us set 

A(t,т)= ľdr[U(r,т)]U(т,r) 
Jo 

for t,TG[0, 1]. This integral exists for every t,x by 1.4.19. For every t,ie[0,1] 
we have by (2,19) and (2,24) 

Mf-1) = I dr[U(r, T) U(T, 0)] U(0, T) U(T, r) = f dr[U(r, 0)] U(0, r) = A(t, 0). 
Jo Jo 

Hence the matrix A(t, T) is independent of T and we denote A(t) = A(t, T) = A(t, 0) 
for t e [0,1]. Evidently var0 A < oo by 1.4.27. Further we have by the definition 
of A, by the substitution theorem 1.4.25 and by (2,19), (2,24) 

j d[A(r)] U(r, s) = Pd r [ [de[U(g, 0)] U(0, o)l U(r, s) 
Js Js LJo J 

dr[U(r,0)]U(0,r)U(r,s) = dr[U(r,0)]U(0,s) 

= (U(t,0) - U(s,0)) U(0,s) = U(t,s)-l, 

i.e. U(t, s) satisfies (2,25) for every t, s e [0,1]. Finally we show that A: [0,1] -* L(Rn) 
satisfies the regularity conditions for / - A~A(t), / + A+A(r). By definition we have 
for te(0,1] 

A~A(t) = A(t) - lim A(t - 8) 
v ' v ' <5-*0 + 

= P d r [ l % 0 ) ] U ( 0 , r ) - lim [' V[U(r,0)]U(0,r) 
Jo *-*0 + Jo 

= lim I f dr[U(r, 0)] U(0, r) = lim (U(t, 0) - U(t - 8, 0)) U(0, t) 
d-*0+ Jt_d

 v <5-->0 + 

= U(t, 0) U(0, t) - lim U(f - 3, 0) U(0, t) = / - lim U(t -3,t), 

where 1.4.13 was used. Hence 

(2,26) / - A~A(t) = lim U(t-8,t)= U(t-,t) 

for every t e (0,1]. Since U is assumed to be harmonic, we have U(t — 8, t) U(t, t — 8) 
= / for any sufficiently small 8 > 0. U(t, s) is of bounded variation in each variable, 
the limits lim U(t -8,t) = U(t~, t) and lim U(t, t-8) = U(t, t-) exist. Hence 

Ô-+0 + 

U(t-, t) U(t, t-) = lim U(t - 8, t) U(t, t-8) = l 
Ô-+0 + 

and the matrix U(t — ,t) is evidently regular since it has an inverse [U(t — , t ) ] _ 1 

= U(t,t-). This yields by (2,26) the regularity of / - A~A(t) for every te(0,1]. 
The regularity of / + A+A(t) for every re [0,1) can be proved analogously. 
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3. Generalized linear differential equations on the whole real axis 

In this section let us assume that A: R -> L(Rn) is an n x ^-matrix defined on the 
whole real axis R and is of locally bounded variation in R, i.e. varj A < oo for every 
compact interval [a, b\ <= R. We consider the generalized linear differential equation 

(3,1) dx = d[.4]x + dg 

where g: R -> Rn is of locally bounded variation in R. 
The basic existence and uniqueness result follows from 1.4. 

3.1. Theorem. Assume that A: R —> L(Rn) is of locally bounded variation in R and 
I — A~_4(f), / + A+A(t) are regular matrices for all teR. Then for any t0eR, 
x0eRn and g: R —> Rn of locally bounded variation in R there is a unique solution 
x: R -> Rn of the equation (3,1) with x(t0) = x0 and this solution is of locally bounded 
variation in R. 

Proof. This theorem follows immediately from 1.4 and 1.7 since evidently the as
sumptions of 1.4 are satisfied on every compact interval [a, b] cz R. 

In this way our preceding arguments on generalized linear differential equations 
are applicable to the case of equations on the whole real axis R. Especially the 
fundamental matrix U(t, s) determined uniquely by the equation 

U{t,s) = l+ ľd[A(r)]Цr,5) 

is defined for all t,seR, has the properties (i), (iii), (iv), (v), (vi) from 2.10 and is 
of locally bounded variation in R in each variable separately (see (ii) in 2.10). More
over, the twodimensional variation of U on every compact interval / = [a, b] x [c, d\ 
cz R2 is finite. 

Now we prove a result which is analogous to the Floquet theory for linear systems 
of ordinary differential equations. 

3.2. Theorem. Assume that A: R-+ L(Rn) is of locally bounded variation in R such 
that I — A~A(t), \ + A+A(t) are regular matrices for every teR. Moreover let 

A(t + co) - A(t) = C for every t e R 

where co > 0 and C e L(Rn) is a constant n x n-matrix. IfX: R -> L(Rn) is the solution 
of the matrix equation 

X(t) = l+ d[A(r)]X(r), teR 
Jo 

(i.e. X(t) = U(t, 0)) then there exists a regular n x n-matrix P: R -> L(R), which is 
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periodic with the period co (P(t + CO) = P(t)) and a constant n x n-matrix Q e L(Rn) 
such that 

X(t) = P(r)ef(? 

is satisfied for every teR. 

Proof. By definition we have 

X(t + co) = l+ d[A(r)] X(r) = X(co) + d[A(r)] X(r) 

= X(co) + d[A(r + cof] X(r + co) = X(ш) + d[A(r) + C] X(r + to) 

= X(co) + d[A(r)] X(r + co) 

for every teR. Using the variation of constants formula 2.14 in the matrix form 
we get 

X(r + cO) = X(t) X(co) for every teR. 

By (v) from 2.10 the matrix X(cO) = U(cO, 0) is regular. Using the standard argument 
we conclude that there is a constant real n x n-matrix Q e L(Rn) (Q is not unique) 
such that X(cO) = Q(OQ (see e.g. Coddington, Levinson [1], III.l.), i.e. 

X(t + cO) = X(t)ew(?. 

Let us define P(t) = X(t)e~tQ for every teR. We have 

P(t + 60) = X(t + w)e-{t+C0)Q = X^e^Q-^ e~tQ = X(r)e~^ = P(t) 

for all teR, i.e. P is periodic with the period co. The regularity of P(t) is obvious 
by the regularity of X(t) and e"t<?. Hence X(t) = P(t)etQ and the result is proved. 

Remark. This theorem is a basis for more detailed considerations concerning the 
linear system (3,1) with A: R -* L(Rn) satisfying the "periodicity" condition 
A(t + co) — A(t) = const. Some special results are contained in Hnilica [ l ] . 

4. Formally adjoint equation 

Let B: [0,1] -• L(Rn), var^B < oo and geBVn. Let us consider the generalized 
linear differential equation for a row w-vector valued function y* 

(4,1) dy* = -y* d[B] + dg* on [0,1] , 

which is equivalent to the integral equation 

y*(s) = y*(s0) - \Sy*(t) d[B(t)] + g*(s) - g*(s0), s, s0 e [0,1] . 
J SO 
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Obviously, y*: [0,1] -> Rn is a solution to (4,1) on [a, b] c [0,1] if and only 
if y verifies the equation 

(4.2) Y(s) = Y(so) ~ fd[B*( t)J Y(t) + f(s) - g(s0) 

for every s, s0 6 [a, 6]. Thus taking into account that / - A~(- B*)(s) = [/ + A~B(s)]* 
on (0,1], / + A+(-B*Xs) = [/ - A+B(s)]* on [0,1) we may easily obtain the 
basic results for the equation (4,1) as consequences of the corresponding theorems 
from the foregoing sections. 

Given yj e R*, the equation (4,1) possesses a unique solution y* on [0,1] such 
that y*(l) = y*. or y*(0) = y*. if and only if 

(4.3) det [/ - A+B(s)] + 0 on [0,1) 

or 

(4.4) det [/ + A"B(s)] + 0 on (0,1] , 

respectively (cf. 1.4). 

If (4,3) holds, then by 2.2 there exists a unique n x n-matrix valued function W(f, s) 
defined for t, s e [0,1] such that s > t and fulfilling for all such t, s the relation 

W(t,s) = l - íd[B*(r)]VV(r,s). 

Furthermore, given t, s e [0, 1], var^ W(., s) + var,1 W(t, .) < oo, W(t + , s) 
= [/ - A+B(t)]* W(t,s) if t < s and W(t-,s) = [/ + A"B(t)]* W(t,s) if t < s 
(cf. 2.10). It follows that the function V(t, s) = W*(s, t) for t > s is a unique nx n-
matrix valued function which fulfils for t, s e [0,1], t > s the relation 

(4.5) V(t,s) = l+ |V(t,r)d[B(r)]. 

Moreover, given t, s e [0,1] 

var0 V(f, .) + vars
x V(., s) < oo 

and 

(4.6) V(U s+) = V(u s) [I - A-+ B(s)] if t > s, 

(4.7) V(t, s - ) = V(t, s) [/ + A~B(s)] if t > s. 

If y*. G R* is given, the unique solution y* of (4,1) on [0,1] with y*(l) = yj is given 
on [0,1] by 

(4.8) Y*(S) = yj V(l, s) + g*(s) - g*(l) + | V W - ^l1)) W ' s)l 

(cf. 2.8). 
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If (4,4) holds, then the fundamental matrix V(r, s) for (4,1) is defined and fulfils 
(4,5) for t < 5, (4,6) holds for t < s and (4,7) holds for t < s. Furthermore, var0 V(., 5) 
-F var.1 V(t, .) < 00 for all t,se[0, 1] and given y$eR*, the unique solution y* 
of (4,1) on [0,1] with y*(0) = y*. is given on [0,1] by 

(4.9) y*(s) = y* V(0,5) + g*(s) - g*(0) - £(g*(t) - g*(0)) d,[V(t, 5)] . 

If both (4,3) and (4,4) hold, then there exists M < oo such that given t, s e [0, l ] 

|V(t,s)| + var0 V(t, .) + var0 V(.,s) + vt0iljx[(U,(V) < M < oo . 

Moreover, in this case, given t, s, r e [0,1], 

(4.10) V(t, r) V(r, s) = V(t, s) and V(t, t) = / 

(cf. 2.10). 

The equation (4,1) is said to be formally adjoint to (1,1) if 

(4.11) B(t+) - A(t+) = B(t-) - A(t-) = B(0) - A(0) on [0,1] . 

(According to the convention introduced in 1.3 we have 

B(O-) - A(O-) = B(0) - A(0) = B(l + ) - A(l + ) = B(l) - A(l).) 

The condition (4,11) ensures that 

(4.12) y*(t) d[B(t) - A(t)] x(t) = 0 for all x,yeBVn 

(cf. 1.4.23). (4,11) holds e.g. if B(t) = A(t) on [0,1] or 

(4.13) B(t) = A.(t) = A(t-) + A+A(t) ^n (0,1), 

B(0) = A,(0) = A(0), B(1) = A,(1) = A(1). 

Without any loss of generality we may assume that A(0) = B(0). 

4.1. Theorem. Let the n x n-matrix valued functions A, B be of bounded variation 
on [0,1] and such that (4,11) with 4(0) = B(0) holds. 

0) V 
(4.14) det (/ - A"A(t)) det (/ - A+B(t)) det (/ + A+A(t)) # 0 on [0,1] 

or 

(4.15) det (/ - A"A(t)) det (/ - A+B(t))det (/ + A"B(t)) * 0 on [0,1] , 
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then the fundamental matrices U(t, s) to (1,1) and V(t, s) to (4,1) fulfil the relation 

(4.16) V(t, s) = U(t, s) + V(t, s) [A(s) - B(s)] - [A(t) - B(f)] U(f, s) 

+ Vt(f, s) A+B(s) A+A(s)-A-B(t) A'A(t) U(t, s) 

+ £ V(f, T) [A+B(T) A+A(z) - A " B(T) A " A(T)] U(T, S) if t > s, 
s<z<t 

V(t, t) = U(t, t) = l. 

(ii) If 

(4.17) det (/ + A+A(t))det (/ + A~B(f)) det (/ - A+B(f)) # 0 on [0,1] 

or 

(4.18) det (/ + A+4(f)) det (/ + A " B(f)) det (/ - A " A(t)) + 0 on [0,1], 

then 

(4.19) V(f, s) = U(f, s) + V(t, s) [A(s) - B(s)] - [A(t) - B(f)] U(f, s) 

+ V(t, s) A"B(s) A~ A(s) - A+B(t)A+A(t) U(t, s) 

+ £ V(t, T) [A-B(T) A-4 (T) - A+B(T) A+A(T)] U(T, S) if t < s, 
t<z<s 

V(t, t) = U(t, f) = / . 

(In (4,14)-(4,19) A-A(O) = A-fl(O) = 0 and A+A(l) = A+B(l) = 0.) 

Proof. Let e.g. (4,14) hold. Then U(f,s) is defined for all f,se[0,1] and V(t,s) is 
defined for f > s. Let t,se [0,1], t > s be given and let us consider the expression 

W = £dt[V(f, T)] U(T, f) + |V(f, T) dt[U(T, f)] . 

Inserting into W from (2,4) and (4,5) and making use of the subsitution theorem 
1.4.25 we easily obtain 

rt 

W= V(t,T)d[A(T)-B(T)]U(i,r) 
Js 

and according to (4,11) and 1.4.23 

W = V(t, s) [A+A(s) - A+B(s)] U(s, t) + [A'A(t) - A~B(t)] 

= - V(t, s) [A(s) - B(s)] U(s, t) + [A(t) - B(t)] 

because the components of A(t) — B(t) are evidently break functions on [0,1]. 
On the other hand, the integration-by-parts theorem 1.4.33 yields 

W= I - V(f,s)U(s,t) - A2
+V(f,s)A+U(s,f) + A2-V(f,f)Ar/U(f,f) 

+Z [A~ V(t, T) A;U(X, t) - A + V(t, T) A+U(T, f)] , 
s < t < ( 
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where A + Z(t, s) = Z(r + , s) - Z(t, s), A+Z(t, s) = Z(t, s + ) - Z(t, s), A ^ r , 5) = Z(t, s) 
- Z(t-,s) and A2 Z(t,s) = Z(t,s) - Z(r,s-) for Z = U and Z = V. Taking into 
account the relations (4,6), (4,7), (4,10) and 2.10 we obtain immediately (4,16). 

The remaining cases can be treated similarly. If (4,17) or (4,18) holds, then instead 
of the expression W we should handle the expression 

dt[V(s,т)]U(т,s) + V(s,т)dt[U(т,s)], 

4.2. Theorem (Lagrange identity). Let A: [0,1] -> L(Rn) and B: [0,1] -> L(Rn) be 
of bounded variation on [0,1] and let (4,11) hold. Then for any x e BVn left-continuous 
on (0,1] and right-continuous at 0 and any yeBVn right-continuous on [0,1) and 
left-continuous at 1 

(4.20) ( V ( t ) d \x(t) - f d[A(s)] x(s)l + f d \y*(s) - f V ( t ) d[B(f)]l x(s) 
Jo L Jo J Jo L Js 

= y*(l)x(l)-y*(0)x(0). 

Proof. Applying the substitution theorem 1.4.25 the left-hand side of (4,20) reduces to 

1y*(t)d[x(t)-]+ [1d[y*(t)]x(t)+ fV(t)d[B(0-A(t)]x(r). 
i Jo Jo 

The integration-by-parts formula 1.4.33 yields 

\*(t)d[x(t)] + fd[y*(t)]x(0 = y*(l)x(l) - y*(0)x(0) 
Jo Jo 

whence by (4,11) and (4,12) our assertion follows. 

4.3. Remark. The relations (4,16) and (4,19) are considerably simplified if 

(4.21) A+B(t) A+A(t) = A~B(t) A~A(t) on [0,1] . 

This together with (4,11) and A(0) = B(0) is true e.g. if 

(i) B = A and (A+A(t))2 = (A~A(t))2 on [0,1], or 
(ii) B = A+ (cf. (4,13)), (A+A(0))2 = (A"A(1))2 = 0 and A+A(t) A"A(t) 

= A~A(t) A+A(t) on (0,1). 

5. Two-point boundary value problem 

Let M and N be m x n-matrices and r e Rm. The problem of determining a solution 
x: [0,1] -*Rn to 

(5,1) dx = d[A] x + df 
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on [0,1], which fulfils in addition the relation 

(5.2) Mx(0) + Nx(l) = r , 

is called the two-point boundary value problem. 

5.1. Assumptions. Throughout the section, A, B are n x n-matrix valued functions 
of bounded variation on [0,1]. Moreover we suppose that (4,11) with A(0) = B(0), 
(4,21) and at least one of the conditions (4,14), (4,15), (4,17), (4,18) are satisfied. (In 
particular, the assumptions of4.1 are fulfilled.) M and N are m x n-matrices, feBVn 

and reRm, m > 1. 

Making use of the variation-of-constants formula (2,15) we may reduce the 
boundary value problem (5,1), (5,2) to a linear nonhomogeneous algebraic equation. 

5.2. Lemma. 7/(4,14) or (4,15) holds, then x: [0,1] -> Rn is a solution of the problem 
(5,1), (5,2) if and only if 

(5.3) x(t) = U(t, 0) c + f(t) - f(0) - \ds[U(t, sj] (f(s) - f(0)) on [0,1] , 
Jo 

where c e Rn is a solution to the algebraic equation 

[M + N V(l, 0)] c = r + N |v ( l , 0) f (0) - f (1) + \\[V{1, s)] f (s)l. 

7/(4,17) or (4,18) holds, then x: [0,1] ->• R„ is a solution to (5,1), (5,2) if and only if 

x{t) = U{t, 1) c + f{t) - f(l) + J \ [ ^ s)] (f(s) " f(l)) on [0,1] , 

where 

[M V(0,1) + N] c = r + M j - f ( 0 ) + V(0,1) f(l) - PdS[V(0, s) f{s 

Proof. Let (4,14) or (4,15) hold. Then by 2,15 x: [0,1] ->• Rn is a solution of the 
given problem if and only if it is given by (5,3), where c e R„ fulfils the equation 

[M + N U(l, 0)] c = r + N j u ( l , 0) f(0) - f(l) + \ ds[U{l, s)] f{s] 
I Jo 

By (4,16) and (4,21) 

(5.4) V(l, s) = U(l, s) + V(l, s) (A(s) - B{s)) + V(l, s) A+B(s) A+A{s) 

and thus 
V(l,s + ) - U(l,s+) = V(l,s-) - U(l,s^) 
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for any se[0,1] . (In particular V(1,0)= U(1,0), V(l, 1) = U(l, 1).) This implies 
by 1.4.23 

\[U{1, s)~] v(s) = \\[}f{l, s)] v(s) for any v e BVn 
Jo Jo 

wherefrom our assertion follows. 
The cases (4,17) and (4,18) could be treated analogously. (V(0, s) = U(0, s) 

+ V(0,s) (A(s) - B(s)) + V(0,s) A"B(s) A~A(s) on [0,1].) 

5.3. Remark. Consequently, in the cases (4,14) or (4,15) the problem (5,1), (5,2) 
has a solution if and only if 

(5.5) A*[A1 + NV(1,0)] = 0 

implies 

(5.6) k*N V(l, 1) f(1) - k*N V(l, 0) f(0) - I'ds[A*N V(l, s)] f(s) = k*r. 
Jo 

Let us denote yf(s) = k*N V(l,s) for se[0,1] and keRm. Then (5,6) becomes 

y*(i) f(i) - y*(o) f(o) - £<-[>!(*)] f(s) = x*r. 

By (4,8) for any A* e R% and s, s0 e [0,1] 

У*(s) = У*(so) + y*(t)d[ß(t)]. 

Moreover, if A*GK* verifies (5,5), then y*(0) = X*N V(1,0) = -A*M and y*(l) 
= A*N. Analogously, if (4,17) or (4,18) holds, the problem (5,1), (5,2) possesses 
a solution if and only if k*[M V(0,1) + N] = 0 implies 

/!(!) f(l) - y*(0) f(0) - £d[y*(S)] f(s) = A*r, 

where y*(s) = -A*M V(0,s) on [0,1]. 

5.4. Lemma. Let g e BVn and p,qe Rn. If (4,14) or (4,15) holds, then y*. [0,1] -• JR* 

is a solution to the generalized differential equation 

(5.7) dy* = - y * d[B] + dg* on [0,1] 

and together with k* e K* verifies the relations 

(5.8) y*(0) + k*M = p* , y*(l) - k*N = q* 

if and on/y if 

(5.9) y*(s) = (A*N + q*) V(l, s) + g*(s) - g*(l) + ^(g*(t) - g*(l)) d,[V(t, s)] 
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on [0,1] and 
k*[M + N U(l, 0)] 

= p* - q* U(l, 0) - g*(0) - g*(l) U(l, 0) + g*(f)d([U(t,0)] 

(By (4,16) V(f,0) - U(t,0) = (A{t) - B(t)) U(t,0) + A^B(t) A~A(t) U(t,0).) 
7/(4,17) Or (4,18) holds, then y*: [0, 1] -• K* and A* e P* veri/> the system (5,7), 

(5,8) if and only if 

(5,10) Y*(s) = (p* - k*M) V(0, s) + g*(s) - g*(0) - \\g*(t) - g*(0)) dt[V(t, s)] 
Jo 

on [0,1] 
and k*[M U(0,1) + N] 

= p* U(0,1) - q* + g*(l) - g*(0) U(0,1) g*(í)d([U(t,l)]. 

(V(r, 1) - U(t, 1) = (A{t) - B{t)) U(t, 1) + V{U 1) A + B{t) A+A{t) by (4,19).) 

Proof. In virtue of our assumption (4,21) the fundamental matrices U(t,s) and 
V(r, 5) fulfil the relation (5,4). Inserting (4,8) or (4,9) into (5,8) we complete the proof. 

5.5. Theorem. Under the assumptions 5.1 the given problem (5,1), (5,2) possesses 
a solution if and only if 

(5.11) y*(l) f(1) - y*(0) f(0) - | d[y*(t)] f(t) = A*r 
Jo 

for any solution (y*, A*) of the homogeneous system 

(5.12) dy* = -y*d[B] on [0,1], 

(5.13) y*(0) + A*M = 0, y*(l) - X*N = 0. 

Proof follows immediately from 5.2 (cf. also 5.3). 

5.6. Theorem. Let A, B, M, N fulfil 5.1. Then given geBVn and p,qeRn the system 
(5,7), (5,8) possesses a solution if and only if 

g*(l)x( l ) -g*(0)x(0)- g*(s) d[x(s)] = q* x(l) - p* x(0) 

for any solution x of the homogeneous equation 

(5.14) dx = d[A] x on [0,1] 

which fulfils also 

(5.15) #Mx(0) + Nx(l) = 0. 
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Proof. If (4,14) or (4,15) holds, then by 5.4 the system (5,7), (5,8) possesses a solution 
if and only if 

(5.16) [M + NU(l,0)]c = 0 

implies 

q* xc(l) - p* xe(0) = g*(l) xc(l) - g*(0) xc(0) - Jo g*(s) d[xc(s)] , 

where xc(t) = U(t,0)c for te [0,1] and ce Rn. By 5.2 x: [0,1] -> Rn is a solution 
to (5,14), (5,15) if and only if x(r) = U(r,0)c on [0,1] where ceRn verifies (5,16). 
Now, our assertion follows readily. 

5.7. Definition. The system (5,12), (5,13) of equations for y*. [0,1] -> R* and 
A* e R* is called the adjoint boundary value problem to the problem (5,1), (5,2) (or 
(5,14), (5,15)). 

5.8. Definition. The homogeneous problem (5,14), (5,15) (or (5,12), (5,13)) has exactly k 
linearly independent solutions if it has at least k linearly independent solutions on 
[0,1], while any set of its solutions which contains at least k -f- 1 elements is linearly 
dependent on [0,1]. 

Another interesting question is the index of the boundary value problem, i.e. the 
relationship between the number of linearly independent solutions to the homo
geneous problem (5,14), (5,15) and its adjoint. 

5.9. Remark. Without any loss of generality we may assume rank [M, N] = m. 
In fact, if rank [iM, N] = mx < m, then there exists a regular m x rz-matrix 0 such 
that 

where Ml9 N1 e L(Rn9 Rmi) are such that rank [Ml9 Nx] = mv Let r e Rm, 

Or = I l J, r1 e Rmi and r2 e Rm-mi. Then either r2 + 0 and the equation for 

(5.17) [M,N]d = r 

possesses no solution or r2 = 0 and (5,17) is equivalent to [Mx,Nx]d = rv 

5.10. Theorem. Let A, B, M9 N fulfil 5.1 and rank [M9 N] = m. Then both the homo
geneous problem (5,14), (5,15) and its adjoint (5,12), (5,13) possesses at most a finite 
number of linearly independent solutions on [0,1]. Let (5,14), (5,15) possess exactly k 
linearly independent solutions on [0,1] and let (5,12), (5,13) possess exactly k* linearly 
independent solutions on [0,1]. Then k* — k = m — n. 
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Proof. Let us assume e.g. (4,14). By 5.2 the system (5,14), (5,15) possesses exactly 
k = n — rank [M + N U(1,0)] linearly independent solutions on [0,1]. (If Cje Rn 

are linearly independent solutions to (5,16), then since U(0,0) = /, the functions 
xj(t) = U(t, 0)cj are linearly independent solutions on [0,1] of the system (5,14), 
(5,15).) 

On the other hand, the equation (5,5) has exactly m — rank [M + NU(l,0)j = /i 
linearly independent solutions. Let A denote an arbitrary h x n-matrix whose rows 
^*, X_,..., A* are linearly independent solutions of (5,5). Let us assume that the 
functions y*(s) = A*N V(l,s) are linearly dependent on [0,1], i.e. there is xeRh9 

<x 4= 0 such that <x*/lN V(l, s) = 0on [0,1]. In particular, 0 = <x*/iN V(l, 1) = <x*/lN 
and 0 = <x*/iN V(1,0) = -a* / lM Since (5,17), a*A = 0 and by the definition 
of A it is a = 0. This being a contradiction, fc* = m — rank [/W + N U(1,0)] and 
k* — k = m — n. 

5.11. Definition. Given m x n-matrices M, N with rank [M, N] = m, any 
(2n — m) x n-matrices Mc, Nc such that 

(5.18) detl"*1' N l * 0 V ' IMC, Nc] 

are called the complementary matrices to [M, N]. 

5.12. Proposition. Let M, N e L(Rn, Rm), rank [M, N] = m and let Mc, Nc 

e L(Rn,R2n_m) be arbitrary matrices complementary to [M, N]. TTien there exist 
uniquely determined matrices P,QeL(R2n_m,Rn) and P0, Qc e L(Km, £„) such that 

(5.19) d e t [ Q ' , Q ] + ° 
and" ytx, - y*x0 = (y*/* + yfQc)(A1x0 + Nx.) + (y^P + yfQ)(Mcx0 + Ncx,) 
jbra//x0,x„y0,yie/?„. 

Proof. Let P,QeL(R2„_m , jg and /* Qc e L(Rm, .R„) be such that 

~M, N~\-1[-Pc, -P~\ 

_MC, N'} l Q<, Q J -
(5,20) 

Then 

(5,21) -FM- PMC - l„, -PcN-PNc = 0, 

QcM + QMc = 0, QcN + QNc = ln 

and 

(5,22) i>. p i r^. N i= r - ,«'° i 
IQC, QJlMc, Ncj I 0, / J ' 
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Thus, given x0, xx, y0, yx e R„ 

^ - y o % = ( y S , y T ) [ - ; : ; j ( : j 

"(yo'yi)LQc,Qj[/vic,NcJUj 
= (ytP0 + y*Qc) {Mx0 + N X l ) + (y*P + Y*Q) (Mcx0 + ISTx.). 

5.13. Remark. It follows from (5,20) that according to 5.12 the matrices P, Q 
£ URm-m, K) a n d Pc, Qc e L{Rm, Rn) associated to M, N, /Mc, Nc fulfil besides (5,21), 
(5,22) also 

[ 
-M, N~ 

_-Mc, Nc 

i.e. 

(5.23) -Mr +NQc ==,m 

(5.24) -MCP° + NcQc^0, 

The following assertion is evident. 

'P*, P 

LQC, Q 
= / 2 и ' 

MP + NQ = 0 , 

MCP + NCQ = /2п_ 

5.14. Proposition. Let M,Ne L(R„, Rm), rank [M, N] = w and fet P, QeL(R2„__, /?_) 
««d Pc, Qc e L(R„„ R„) be s„cn that (5,19) and (5,23) teW. Then P„ Qj e L(K2„_m, R„) 
and P[, Qc 6 L(Rm, Rn) fulfil also (5,19) and (5,23) i/and on/); i/tner. exist a regular 
matrix EeL(J?2„_J and FeL(Rm,R2n_J such that 

(5.25) Pi = PE, QX = QE 

and 

(5.26) PJ = | * + PF, QC^Q+QF. 

5.15. Definition. Let M,NeL(Rn,Rm) and let P,QeL(R2n_m,Rn) and P,QC 

e L(Km, Rn) be such that (5,19) and (5,23) hold. Then the matrices P, Q are called 
adjoint matrices associated to [M, N] and the matrices Pc, Qc are called com-
plementary adjoint matrices associated to [iM, N]. 

5.16. Remark. If M, N e L(Rm, Rn), rank [M, N] = m and if ^ Q e L ^ ^ , ! * , , ) 
are arbitrary adjoint matrices associated to M, N, then 

(5,27) rank И- 2n — m 

and the rows of the m x 2n-matrix [ — M9 N] form a basis in the space of all solutions 
d* e K*„ to the equation 

(5,28) ^ [ Q ] ^ -
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5.17. Remark. Let M,NeL(R„Rm) and rank [M,N] = m. Let P,Q and P\QC 

be respectively adjoint and complementary adjoint matrices to \M, N]. If 
y*: [0,1] -+ R* and k* e R* fulfil (5,13), then 

(5.29) y*(0)P + y*(l)Q = 0 

and 

(5.30) y*(0) Pc + y*(l) Qc = k* . 

On the other hand, if y*: [0, 1] -> R* fulfils (5,29), then there exists k* e R% such 
that (5,13) and consequently also (5,30) hold (jf. 5.16). 

5.18. Corollary. Let the assumptions 5,1 be fulfilled. Then the boundary value problem 
(5,1), (5,2) has a solution if and only if 

(5.31) y*(l) f(l) - y*(0) f(0) - | d[y*(s)] f(S) = [y*(0) P + y*(l) Q«] r 
Jo 

for arty solution y*: [0,1] -• R* of the system (5,12), (5,29) where P,Q and PC,QC 

are respectively adjoint and complementary adjoint matrices associated to [iW, N]. 

Proof follows immediately from 5.5 and 5.17. 

5.19. Remark. If PUQ{ and P1?Qi are also adjoint and complementary adjoint 
matrices associated to [M, N], then by 5.14 there exist a regular matrix E e L(R2n-m) 
and FeL(Rm, R2n-m) such that for all y*., y*eK* we have y*,Pj + y*Qi 
= [ytP + y?Q] E and y*Pc + y*Qc

x = y*Pc + y*Qc + [y*P + y*Q] F. Thus 
y*^ + Y*Q = ° a n d y*pc + Y*QC = *<* if and only if also y%Px + y*Q{ = 0 and 
Yo î + y*Qi = -̂ *- This means that neither the boundary condition (5,29) nor 
the condition (5,31) depend on the choice of the adjoint and complementary adjoint 
matrices associated to [M, N]. 

5.20. Remark. The matrix valued functions A: [0,1] -> L(Rn) and B: [0,1] -* L(R„) 
of bounded variation on [0,1] fulfil 5.1 e.g. if 

(i) A is left-continuous on (0,1] and right-continuous at 0, det [/ + A+A(t)] + 0 
on [0,1] and B = A^ (cf. (4,13)), or 

(ii) (A+A(0))2 = (A"A(1))2 = 0, (A+A(t))2 = (A"A(t))2 on (0,1), det [/ - (A+A(f)]2 

+ 0 on [0,1] and B = A, or 
(iii) A+A(t) = A~A(t) on [0,1], (A+A(t))2 = 0 on [0,1] and B = A. 

(In the case (iii) 

[/ + A+A(t)] [/ - A-A(t)] = / - (A+A(t))2 = / . ) 

We shall see later that the problems of the type (5,1), (5,2) cover also problems with 
a more general side condition (cf. V.7.19). 
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Notes 

The theory of generalized differential equations was initiated by J. Kurzweil [ l] , [2], [4]. It is based 
on the generalization of the concept of the Perron integral; special results needed in the linear case arc 
given in IA Differential equations with discontinuous solutions are considered e.g. in Stallard [2], 
Ligeza [2]. 

The paper by Hildebrandt [2] is devoted to linear differentio-Stieltjes integral equations. These 
equations are essentially generalized linear differential equations in our setting where the Young integral 
is used for the definition of a solution. Some results for the equations of this type can be found in 
Atkinson [1], Honig [1], Schwabik [ l] , [4], Schwabik, Tvrdy [ l] , Mac Nerney [1], Wall [1]. 

Boundary value problems for generalized differential equations were for the first time mentioned in 
Atkinson [1] (Chapter XI). They appeared also in Halanay, Moro [1] as adjoints to boundary value 
problems with Stieltjes integral side conditions. A systematic study of such problems was initiated in 
Vejvoda, Tvrdy [1] and Tvrdy [ l] , [2]. Further related references are Krall [6], [8], Ligeza [ l] and 
Zimmerberg [1], [2]. 
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IV. Linear boundary value problems 
for ordinary differential equations 

1. Preliminaries 

This chapter is concerned with boundary value problems for linear nonhomogeneous 
vector ordinary differential equations 

(1.1) x'-A(t)x = f(t) 

and the corresponding homogeneous equation 

(1.2) x -A(t)x = 0. 

The differential equations (1,1) and (1,2) are considered in the sense of Caratheodory. 
In the theory of ordinary differential equations the locution "boundary value 

problems" (BVP) refers to finding solutions to an ordinary differential equation 
which, in addition, satisfy some (additional) side conditions. In general, such con
ditions may require that the sought solution should belong to a prescribed set of 
functions. Very often this set is given as a set of solutions of a certain, generally 
nonlinear operator equation. In this chapter we restrict ourselves to the case of 
linear Stieltjes-integral side conditions of the form 

(1.3) Sx = M x(0) + N x(l) + d[K(t)] x(t) = r 

or 

(1.4) M x(0) + N x(l) + d[K(tj] x(t) = 0. 
Jo 

Throughout the chapter the following hypotheses are kept to. 

1.1. Assumptions. A: [0,1] -* L(Rn) and f: [0,1] -> Rn are L-integrable on [0,1] 
(feLn)\ M'and NeL(Rn,Rm), reRm9 m>\ and K: [0,1] -> L(Rn, Rm) is of 
bounded variation on [0,1]. 
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1.2. Definition. A function x: [0,1] -+ Rn is a solution to the equation (1,1) on 
[0,1] if it is absolutely continuous on [0,1] (x e ACJ and verifies x'(t) - A(t) x(t) 
= f(t) a.e. on [0,1]. 

1.3. Remark. Consequently x: [0,1] -• Rn is a solution to (1,1) on [0,1] if and 
only if for any t, t0 e [0,1] 

x(t) = x(t0) + A(s) x(s) ds + f(s) ds, 
Jto J'o 

i.e. (1,1) is a special case of the linear generalized differential equation 

(1.5) dx = d[B] x + dg (B(t) - \A(s) ds, g(t) = \f(s) ds). 
Jo Jo 

1.4. Definition. A function x: [0,1] -> Rn is a solution to the nonhomogeneous 
boundary value problem (BVP) (1,1), (1,3) (verifies the system (1,1), (1,3)) if it is a solution 
of (1,1) on [0,1] and satisfies (1,3). The problem of finding a solution x: [0,1] -> Rn 

of the homogeneous equation (1,2) on [0,1] which fulfils also (1,4) is called the 
homogeneous BVP (1,2), (1,4). 

1.5. Notation. Throughout the chapter U: [0,1] x [0,1] -• L(Rn) is the funda
mental matrix for the equation (1,5) defined by III.2.2 and X(t) = U(t, 0). 

Let us recall that det X(t) # 0 on [0,1], U(r, s) = X(t) X l(s) on [0,1] x [0,1], 

(1.6) X(t) X '(s) = / + A(T) X(T) X" *(s) dr for all t, s 6 [0,1] 

and 

(1.7) X(t) X~ !(s) = / + X(t) X '(z) A(T) di for all r, s e [0,1] . 

Both X(t) and X" 1(s) are absolutely continuous on [0,1]. The variation-of-constants 
formula reduces to 

(1.8) x(t) = U(t, t0) x(t0) + U(t, s) f(s) ds for all t, t0 e [0,1] . 
J to 

1.6. Remark. Since A(t) is supposed to be L-integrable on [0,1], for any xeACn 

the function x'(t) — A(t) x(t) is defined a.e. oi\ [0,1] and is L-integrable on [0,1]. 
Hence the operator 

(1.9) L. xeACn->Lx, (Lx)(t) = x'(t) - A(t)x(t) a.e. on [0,1] 

maps ACn into Ln. Obviously it is linear and 

v. = f|x'(ť) - A(0*(0I dt < [\x'(t)\ dt + ( [\A(t)\ dt) sup \x(t)\ 
Jo Jo \Jo / íe[0,l] 

|Lxв_ 
J o ' 

< U + 
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for any x e AC„. Moreover, for a given x e C„ 

<(|/M| + |N| + variK) | |x | | c M x(0) + N x(l) + d[K(t)] x(t) 

and the operator 

(1,10) S: x є C „ - / И x ( 0 ) + Nx(l) + d[K(í)]x(í)єҚ, 

is linear and bounded. Consequently, under the assumptions 1.1 

<£: xeAC„ 
Lx 

Sx 
6 L\ x Rm 

is linear and bounded. The given BVP (1,1), (1,3) may be now rewritten as the linear 
operator equation 

1.7. Proposition. Given ceRn and feLn, the unique solution x to (1,1) on [0,1] 
such that x(0) = c can be expressed in the form 

*(') = (1*0 (') + 0Т)(0 оп[0,1], 

и. сеК„-Х(г)сеЛС„ 
where 

(Ml) 
and 

(1,12) V: f e L\ -> X(t) ( V \s) f(s) ds e ACn 

are linear and bounded operators. 

Proof. The linearity is obvious. Let ceRn and feLn. Then 

|Uc|Lr< 1 + |X'(t)|dt)|c| = x г | c | , к 1 < 0 0 

0 / 
and 

\yfÍAc = X'(t) X - ^ ^ d s j + ^t) dt 

f | ť = X 2| | f | |£ . l , X2 < CO. |x'(t)|dt (suplx-^D + i 
SG[0,1] 

1.8. Remark. By the Riesz Representation Theorem an arbitrary linear bounded 
mapping S: Cn -> Rm may be expressed in the form (1,10), where M = N = 0. 
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If K(t) is the sum of a series of the simple jump functions of bounded variation 
on [0,1] with the jumps AK,- at t = T}f e [0,1] (j = 1,2,...), then (1,3) reduces to the 
infinite point condition (cf. 1.4.23) 

oo oo 

A1 x(0) + X AK, X(T,) + N x(l) = r ( £ |AK,| < cx>). 
1=i J = I 

In particular, if K(t) is a finite-step function on [0,1] (K(t) = Kj for T ^ < t < Tj 
(j = l , 2 , . . . , p - 1), K(t) = Kp for Tp_! < t < 1 where 0 = T0 < T, < ... < TP = 1), 
then (1,3) reduces to the multipoint condition 

M x(0) + P ^ AK; X(T,.) + N x(l) = r (AK,- = Kj+, - K,-) 
1=i 

or even to the two-point boundary conditions (if AKj = 0, j = 1, 2,..., D — 1). 
The problem of determining a function x: [0,1] -> K„ absolutely continuous 

on each subinterval (T,-,TJ+1) (j = 0,1,...,p — 1, 0 = T0 < TX < ... < TP = 1) and 
such that x'(t) - /-(t)x(t) = f(t) a.e. on [0,1] and 

Mx(0) + Z[MJX(TJ + ) + N,.X(T,+ 1 - ) ] + Nx(l) = r 
1=o 

is called the interface problem and is to be dealt with separately. 

1.9. Remark. If we put K0(t) = K(t + ) - K(l - ) for t e [0,1) and K0(l) = 0, then 
K - K0 is of bounded variation on [0,1], A+K0(t) = 0 on [0,1), K 0 ( l - ) = K0(l) 
= 0, K(t + ) - K o ( t + ) = K ( t - ) - K o ( t - ) = 0 on [0,1], K(l) - K0(l) = K(l), 
K(0) - Ko(0) = -A+K(0) - K( l - ) and hence for any xeCn (cf. 1.4.23 and 1.5.5) 

M x(0) + N x(l) + п d[K(t)] x{t) = M 0 x(0) + N 0 x(l) + d[K0(t)] x(() 
• J o 

(M0 = M- A+K(0) - K ( l - ) , N0 = N + K(l).) 
Thus, without any loss of generality we may add the following hypotheses to 1.1. 

1.10. Assumptions. K(t) is right-continuous on [0,1), left-continuous at 1 and 
K(1) = 0. 

1.11. Definition. The side condition (1,3) (Sx = r) is linearly dependent if there 
exists q e Rm, q =f= 0 such that q*(Sx) = 0 for all x e ACn. It is linearly independent 
if it is not linearly dependent. 

1.12. Proposition. Let M, N and K(t) fulfil the hypotheses 1.1 and 1.10. Then the 
side condition (1,3) is linearly dependent if and only if there is q e Rm, q 4= 0 such that 

q*M = q*N = q* K(t) = 0 on [0,1] . 
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Proof. Let q + 0 and let 

(1,13) q*[M x(0) + N x(l) + d[K(r)] x(t)] = 0 for each x e ACn. 
Jo 

Then for every x e AC„ with x(0) = x(l) = 0 we have 

1d[q*K(t)]x(0 = O. 
0 

By 1.5.17 this implies q* K(t) = 0 on [0,1] and hence (1,13) reduces to 

q*[Mc + Nd] = 0 for all c,deK„. 

Choosing c = 0 and </ e #„ arbitrary or d = 0 and ceR„ arbitrary, we obtain 
q*N = 0 or q*M = 0, respectively. 

1.13. Definition. The side condition (1,3) is said to be nonzero if the corresponding 
operator S given by (1,10) is nonzero. Given reRm, the side condition (1,3) is 
reasonable if q*r = 0 for any qeRm such that q*(Sx) = 0 for all xeACn. 

(Obviously, given ( )eLn x Rm, BVP (1,1), (1,3) may be solvable only if the side 

condition (1,3) is reasonable.) 

Given xeACn, let S,x (j = 1,2,..., m) denote the components of the vector 
SxeRm. Then Sy. xeACn -> SjxeR are linear bounded functional on ACn and 
the side condition (1,3) may be rewritten as the system of equations SjX = r} 

(j = 1,2,..., m), where r, are components of the vector r. The side condition (1,3) 
is linearly dependent if and only if the functionals SJEAC* (j = 1,2,..., m) are 
linearly dependent. Since the linear subspace of ACn spanned on {Sl9S2,...9Sm} 
is finite dimensional, the following assertion is obvious. 

1.14. Proposition. If the side condition (1,3) is nonzero and reasonable, then there 
exist a natural number /, matrices M0, N 0 e L(Rn, Rt), r 0 e Rt and a function 
K0: [0,1] -* L(Rn,Rl) of bounded variation on [0,1] such that the condition 

Sox = /Иox(0) + Nox(l) + 
П 

d[K0(t)] x(í) = 

is linearly independent, while Sx = r for x e ACn if and only if S0 x = r0. 
Henceforth let us assume that the side condition (1,3) is reasonable, linearly 

independent and fulfils the hypotheses 1.1 and 1.10. Let us denote by p the dimension 
of the linear subspace spanned on the rows of K(t). If 0 < p < m, then there exists 
a regular m x m-matrix Ix such that 

Z i K ( í ) s [4 ) ] °n [o,i]' 
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where the rows of R: [0,1] -> L(Kn, Rp) are linearly independent on [0,1], Let us 
denote m0 = m - p and let the matrices M 0, N 0 e L(Rn, Rmo) and M, N e L(K„, Kp) 
be such that r . - Kl n 

„ r- , x-i /™ n , N n , 0 

If there were a*[M 0 ,N 0 ] = 0, then /^-[Al-N,!^*)] = 0 or according to 1.12 
/?*r, = 0 should hold for /J* = (a*,0)eR*. As 1, is regular, 0*1", = 0 implies 
P* = 0 and hence also a* = 0. This means that the m0 x 2/1-matrix [M0, N 0 ] has 
a full rank (rank [M0, N 0 ] = m0). If rank [M, N] = m0 + mu i.e. 

M0, N 0 

JA, N 

then there exists a regular p x p-matrix I2 such that 

Mo N 0 

rank m 0 + Wj (0 < mx < p), 

o, г2 

/И0, N 0 

Д Ñ 

where Ml9N: eL(Rn,Rm^) are such that 

"•i5> " < : » ! 

Denoting 

Л1,. N, 

0, 0 

m 0 + řПj. 

we obtain 

(1,16) 

41: 
[/И,N,K(í)] = 

- . 

M0, N0, 0 

M„ N1; K.(t) 

0, 0, K2(t)_ 

where Kx: [0,1] -> L(Rn, Rmt), K2: [0,1] -> L(Rn, Rm2) (m. + m2 = p) are given by 

[ад]s ҝ° ( t ) = І2Ќ(í) on[0'1]-
As I2 is regular, the rows of the p x n-matrix K°(t) are linearly independent on [0,1]. 
Finally, let us notice that the m x m-matrix 0 is regular. To summarize: 

1.15. Theorem. Any linearly independent and reasonable Stieltjes-integral side con
dition (1,3) fulfilling 1.1 and 1.10 is equivalent to the system 

(1,17) Mox(0) + N .x(l) = r 0 , 

Mt x(0) + Nx x(l) + J d[Kj(t)] x(t) = r. , 

£d[K2(t)]x(.) = r2, 
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where r0eRmo, rleRmi, r2eRm2 and the m0 x n-matrices iM0, N0, the mx x n-
matrices Mu Nu Kx(t) and the m2 x n-matrix K2(t) are such that (1,15) holds and the 
rows of the (m{ + m2) x n-matrix [K*(t), Kf(t)]* are linearly independent on [0,1]. 
There exists a regular m x m-matrix 0 such that (1,16) and Or = (r*,, r*, rf )* hoW. 

1.16. Definition. The system (1,17) associated to (1,3) by 1.15 is said to be the 
canonical form of (1,3). 

1.17. Remark. By 1.5A 6 the general form of the linear bounded operator S: ACn-+Rm 

is 

(1,18) S: xeAC„^A1x(0 )+ K(t)x'(t)dt, 

where M e L(Rn, Rm) and K: [0,1] --> L(Rn, Rm) is measurable and essentially 
bounded on [0, 1]. If K is of bounded variation on [0,1], then by integrating by 
parts we may easily reduce S to the form (1,10). 

Most of the results given in this chapter may be extended to BVP with the side 
operator S of the form (1,18). Some of them are formulated and proved in the fol
lowing chapter for more general BVP which include integro-differential equations, 
the rest is left to the reader. 

2. Duality theory 

Let us consider BVP (1,1), (1,3), i.e. the system 

(1,1) x - A(t) x = f(t), (1,3) M x(0) + N x(l) + d[K(f)] x(t) = r, 
Jo 

where A: [0,1] -> L(JR„), M and NeL(Rn,Rm) and K: [0,1] ^ L(R„ Rm) fulfil 
1.1 and 1.10. Moreover, we suppose that (1,3) is nonzero and reasonable (see 1.13). 

Let feLn and reRm. By the variation-of-constants formula 1.7 a function 
x: [0,1] -• Rn is a solution to BVP (1,1), (1,3) if and only 

x = Uc + Vf 
and 

(2.1) (SU)c = r - ( S V ) f , 

where U: R„ -* AC„ and V: L„ -» ACn are the linear bounded operators respectively 
given by (1,11) and (1,12), 

SU = M X(0) + N X(l) + d[K(t)] X(t) 
and Jo 

(2.2) (SV) f = N X(l) f V *{t) f(t) dt + f ' d ^ O ] X(t) [x~ l{s) f(s) ds. 
Jo Jo Jo 
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This yields immediately the following necessary and sufficient condition for the 
existence of a solution to BVP (1,1), (1,3). 

2.1. Theorem. BVP (1,1), (1,3) has a solution if and only if 

(2.3) k*(SU) = 0 

implies 

(2.4) k*(SV)f = k*r. 

2.2. Remark. Applying the Dirichlet formula 1.4.32 to (2,2) we obtain for any feL\ 

(2.5) (SV)f = ^F(t)f(t)dt, 

where 

(2.6) F{t) = (N X(l) + Tdf^s)] X(s)) X" l(t) on [0,1] . 

Hence the condition (2,4) may be rewritten as 

Í A*F(t)f(f)dí = A*r. 

By (III. 4,8) the n-vector valued function y*(r) = k* F(t) is for any k* e R* a unique 
solution of the initial value problem 

(2.7) dy* = - y* d[B] - d(k*K) on [0,1] (B(t) = A(s) ds), y*(l) = k*N . 
Jo 

(In fact, if heBVn is right-continuous on [0,1) and left-continuous at 1, then in
tegrating by parts (cf. 1.4.33) we reduce the variation-of-constants formula for the 
initial value problem 

dy* = - y * d[B] - dh* , y*(l) = y* 
to the form 

(2,7a) y*(t) = (y* X(l) + £d[h*(s)] X(s)) X~ *(t) on [0,1] .) 

Furthermore, if X*(SU) = 0, then 

y*(0) = A* (N X(l) + J d[K(t)] X(t) j = -A*M . 

On the other hand, it follows from the variation-of-constants formula that if 
y*: [0,1] -+ J?* and A* e R*, solve (2,7) on [0,1] and 

(2.8) y*(0) + k*M = 0, y*(l) -X*N = 0, 
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then 

(2.9) y*(t) = k* F(t) on [0,1] and k*(SU) = -y*(0) + y*(0) = 0 . 

This completes the proof of the following theorem. 

2.3. Theorem. BVP (1,1), (1,3) has a solution if and only if 

(2.10) [\*(t)f(t)dt = k*r 

for any solution (y*, k*) of the system (2,7), (2,8). 

2.4. Definition. The system (2,7), (2,8) of equations for y*: [0,1] -> R* and k* e R* 
is called the adjoint boundary value problem to BVP (1,1), (1,3) (or (1,2), (1,4)). 

The following assertion provides the necessary and sufficient condition for the 
existence of a solution to the nonhomogeneous BVP corresponding to BVP (2,7), 
(2,8). 

2.5. Theorem. Let p,qeRn and let geBVn be right-continuous on [0,1) and left-
continuous at 1. Then the system 

(2.11) dy* = y* d [ - B ] - d(k*K) + dg* on [0,1] , 

(2.12) y*(0) + k*M = p* , y*(l) - k*N = q* 

has a solution if and only if 

Í d[g*(t)]x(t) = q*x(l)-p*x(0) 

for any solution x of the homogeneous BVP (1,2), (1,4). 

Proof. Inserting (2,7a), where h*(t) = k* K(t) - g*(t) into (2,12) we easily obtain 
that y*: [0,1] - R* and k*eRZ verify (2,11), (2,12) if and only if 

(2,13) y*(t) = k* F(t) + q* X(l) X \t) - Pd[g*(s)] X(s) X l(t) on [0, [] 

(F(t) given by (2,6)) and 

k*(SU) = p* X(0) - q* X(l) + £d[g*(t)] X(t). 

Since all the solutions of BVP (1,2), (1,4) are of the form X(t) c where (SI/) c = Q 
the theorem follows immediately. 

2.6. Remark. Let us notice that under our assumptions all the solutions y *: [0,1] ̂  ^ 
of (2,11) on [0,1] are of bounded variation on [0,1], right-continuous on TQ A 
and left-continuous at 1. 

146 



IV.2 

2.7. Theorem. The homogeneous problems (1,2), (1,4) and (2,7), (2,8) possess exactly 
k = H — rank (SU) and fc* = m — rank (SU) linearly independent solutions, re
spectively. 

Proof. The homogeneous algebraic equation 

(2,14) (SU)c = 0 

has exactly fc = n — rank (SU) linearly independent solutions. Let C0 be an arbitrary 
n x fc-matrix whose columns form a basis in the space of all solutions to (2,14). 
((SU)C0 = 0 and rank(C0) = fc.) This obviously implies that the columns of the 
n x k-matrix valued function 

X0(t) = X(t)C0 on [0,1] 

form a basis in the space of all solutions of BVP (1,2), (1,4). 

The latter assertion follows from the fact that y*: [0,1] -> JR* and A*eR* 
verify the system (2,7), (2,8) if and only if y*(t) = A* F(t) on [0,1] and (2,3) holds 
(cf. 2.3 and its proof). In fact, since (2,3) has exactly fc* = m — rank (SU) linearly 
independent solutions, BVP (2,7), (2,8) has also exactly fc* linearly independent 
solutions on [0,1]. In particular, given an arbitrary A0sL(Rn, Rk*) whose rows 
form a basis in the space of all solutions to (2,3), the rows of (A0 F(t), A0) form a basis 
in the space of all solutions to BVP (2,7), (2,8). 

2.8. Remark. From the proof of 2.7 it follows that all the solutions to BVP (1,2), 
(1,4) or BVP (2,7), (2,8) are of the form 

x(t) = X0(t)d, dsRk or (y*(t),A*) = 5*(/l0F(t),/l0), 5*eK*, 

respectively. Furthermore, by the definition of X0(t), A0, F(t) 

rank (X0(t)) = fc and rank (A0 F(r), A0) = fc* on [0,1] . 

2.9. Remark. The number fc* — fc = m — n is called the index of BVP (1,2), (1,4). 

2.10. Remark. If we added one zero row to the matrices M, N, K(t) in (1,4), 
we should obtain the equivalent problem. Let us assume that it has exactly fc 
linearly independent solutions. Then by 2.8 its adjoint should have exactly both 
fc + m — n and k + (m + I) — n linearly independent solutions. This seems to be 
confusing. But we must take into account that while in the former case the adjoint 
problem has solutions (y*, A*) with A* e R*, in the latter case the adjoint has solutions 
(y*- A-*), where fi* is an (m + l)-vector, with an arbitrary last component. Nevertheless 
it can be seen that it is reasonable to remove from (1,4) all the linearly dependent 
rows and to consider the given BVP with linearly independent side conditions. 
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2.11. Remark. Given xeAC„, y*eL^ and A*eK*, we have by 1.4.33 

(2.15) ү*(t) [x'(í) - A(í) x(t)] dt - A* \M x(0) + N x(l) 

y*(t) + y*(s) Ąs) ds + X*(K(t) - N) 

+ y*(s)A(s)ds- A*(/И + N - K(0)) 

d[K(t)]x(t) 

x'(í) dt 

<(0). 

In particular, applying again 1.4.33 to the right-hand side of (2,15), we obtain that 

(2,16) y*(í) [x'(t) - A(t) x(í)] dí - A* AI x(0) + N x(l) + d[K(t)] x(t) 
o L Jo 

= i d -y*(í) + y*(l) - i y*(s)A(s)ds - A* K(t) x(t) 

- [y*(o) + **M] *(o) + [y*!1) - ** N ] M1) for a11 x e ^c«> y e BV„, A* e R* . 

The formulas (2,15) and (2,16) will be called the Green formulas. 
The adjoint BVP (2,7), (2,8) is a system of equations for an n-vector valued function 

y*(t) of bounded variation on [0,1] and an m-vector parameter. Our wish is now 
to disclose the relationship between y* and A* if (y*, A*) solves BVP (2,7), (2,8). 
To this end it appears to be convenient to consider BVP (1,1), (1,3) with the side 
condition in its canonical form (see 1.16) 

(2,17) = r, /Иox(0) + N o x(l) 

M, x(0) + N t x(l) + I d[Kx(í)] x(t) = Г l , 

1 d[K2(t)]x(t) = r 2 . 

In this case the adjoint BVP (2,7), (2,8) reduces to the system of equations for 

YeBVn, x*eR*,0, x*eRZt and x*eR* v m 2 

(2.18) dy* = y* d [ - B ] - dlxfKj + x*K2) on [0,1] , 

(2.19) y*(0) + x%M0 + x*M1=0, y*(l) - x*N0 - x*N, = 0 . 

2.12. Remark. Let 0 be a regular m x m-matrix such that 

M0, N0, 0 

[M,N,K(t)] = on [0,1]. Mi, N., K,(t) 

-0, 0, K2(t)J 

Given A* e R*, let x* e R*o, x*eR*t and x* e R*2 be such that A* = (x*, x*, x*) 0. 
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Then 
A*M = x*,A10 + x*M,, X*N = x*N0 + x*Nx 

and 
A* K(t) = x* K,(t) + x* K2(r) on [0,1] . 

It follows that y*: [0,1] -> K* and A*GJR* satisfy (2,7), (2,8) if and only if 
(y*, x£, x*, x*), where x* G R*O, xj G R*. and x* G _R*2 are such that A* 
= (x*, x*, x*) <9, satisfy (2,18), (2,19). 

2.13. Notation. In the following C and D denote the / x n-matrices such that 
C* = [/V1*,M*] and D* = [N*,N*] (/ = m0 + mj, Mc and Nc being arbitrary 
(2n- /) x n-matrices complementary to [C,D] (cf. 111.5.11). Let P,Qe L(R2n_t,Rn) 
and Pc, Qc G L(JR„ Rn) be associated to C, D, Mc, Nc by III.5.12. 

Furthermore, let Pg, Q0 G L(Rmo, Rn) and PJ, Qc
x eL(Rmi, Rn) be such that Pc 

= [Pc, PJ] and Qc = [Qc
0, Q

CJ. (By 1.16 rank [C, D] = /.) 
Let us recall that according to III.5.12 

(2,20) 

and 

(2,21) 

M0, N0 

Mu Nx 

Mc, Nc _QS, Qì, QJ 

Ln, 0, m0» 

0, lm,0 

Ю, 0, I -l-l 

[ ^ PÍ, P~\ 
LQCO, QCU Q Í 

M0, N0 

M,, N, 
Mc, Nc [ 0, J ' 

Analogously as in III.5.17 it is easy to show on the basis of (2,20) that (2,19) holds 
if and only if 

(2.22) y*(0)P +y*( l )Q = 0 , 

y*(0)Pg + y*(l)Qc
o = xS5 

y*(0)Pf+ y*(l)Qc
x = x * . 

This implies that BVP (2,18), (2,19) is equivalent to the problem of determining 
y*: [0,1] -> R* and x* G JR*2 such that y* is a solution to 

(2.23) dy* = y* d [ - B ] - d[(y*(0) Pf + y*(l) Qc) K, + x*K2] on [0,1] 

and 

(2.24) y*(0)P + y*(l)Q = 0. 

In particular, if (y*, x*) is a solution to (2,23), (2,24) and x% e JR*0 and x* G Rmx 

are given by (2,22), then (y*, x*, x*, x*) is a solution to (2,18), (2,19). On the other 
hand, if (y*, xg, x*, x*) is a solution to (2,18), (2,19), then (y*, x*) solves (2,23), (2,24) 
and x£ G Rmo and x* G _R*t are given by (2,22). 
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2.14. Corollary. BVP (1,1), (2,17) has a solution if and only if 

Y*(t) f(t)dt = (y*(0)Pg + y*(l)Q 0 )r 0 + (y*(0)Pf + y*(l)Q1)r. + x*r2 

for any solution (y*, x*) of BVP (2,23), (2,24). 

Proof follows immediately from 2.3 and (2,22). 

Г 

2.15. Remark. It is easy to see that BVP (2,23), (2,24) also possesses exactly fc* 
= m — rank (SU) linearly independent solutions. 

2.16. Remark. The m2 x m2-matrix 

^K2(t)K*2(t)dt 

is regular. In fact, if there were d*T = 0 for some d* eR*2, then we should have 
also d*Td = 0, i.e. 

0 = [1h*(í)h(t)dř = t Í W ) ) 2 d ř ' 
Jo 1=i Jo 

where h*(t) = (ht(t)9 h2(t\ ..., hn(t)) = d* K2(t) is of bounded variation on [0,1]. 
This may happen if and only if h*(t) = d* K2(t) = 0 a.e. on [0,1]. Since by the 
assumption K2 is right-continuous on [0,1) and left-continuous at 1, we have even 
d* K2(t) = 0 on [0,1] and in virtue of the linear independence on [0,1] of the rows 
in K2(r), it is d* = 0. 

Let us put 

L2(t) = - K*(s) T1 ds on [0,1] . 

For K2(l) = 0 and L2(0) = 0, the integration-by-parts formula 1.4.33 yields 

(2,25) p P M ' ) ] M') = (£*2(t) **(t) dt) T > = TT-i = lm . 

This enables us to express also the parameter x* in (2,23), (2,24) in terms of y*. Let 
(y*, x*) verify (2,23) on [0,1], then by (2,25) 

*iY = £ d [y*W - J V ( - ) M?) ds - (y*(0) P{ + y*(l) Q\) K. (t)] L2(t) 

= fd[.**K2(t)]L2(r)--x*. 
Jo 
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The operator y e#V„-»#2y e_R*2 is linear and bounded. In fact, given yeBVn, 

M -* [var0 y* + ( sup |y*(r)|)] ( \)A(S)\ ds + (|PJ| + \Q\\) var£ K) ( sup |L2(f)|) 
te[0,l] \Jo / fe[0,l] 

1 + |.4(S)|d. + (|i*| + |Qe
1|)var1JK1 

SUP IMOI Il y* I L ' 
ls[0,l] 

The adjoint BVP (2,23), (2,24) to BVP (1,1), (2,17) may be thus written in the form 

dy* = y* d [ - B ] - d[(* lX) K, - (<f>2y) K2] on [0,1] , 

y*(0)P + y*(l)Q = 0, 

where <P;: BVn -> R* (j = l,2) are known linear bounded operators 
(4>iy-=y*(0)PJ +y*(l)Q t

1). 

3. Generalized Green's functions 

Let us continue the investigation of BVP (1,1), (1,3). In addition to 1.1 we assume 
throughout the paragraph that 1.10 holds (K is right-continuous on [0,1) and 
left-continuous at 1 and K(l) = 0). 

Let _Sf denote the linear bounded operator 

/ x T x'(t)-A(t)x(t) 1 , 

(cf. 1.6). It may be shown from 2.3 that its range R(&) is closed in Ln x JRW and 
consequently R(&) equipped with the norm of Ln x Rm becomes a Banach space. 
We shall show this fact directly, without making use of Theorem 2.3. The symbols 
U, y are again defined by (1,11) and (1,12). 

3.1. Theorem. The range R(&) of the operator (3,1) is closed in Ln x Rm. 

Proof. A couple f j e Ln x Rm belongs to R(&) if and only if (2,1) has a solutior; 

CGJR„, i.e. if and only if r — (Sy)feR(SU). R(SU) being finite dimensional, it is 
closed. Since 

W:(f)eL],xRm^r-(SV)feRm 

is a continuous operator, the set W_ ^(SU)) = R(^) of all ( ) e L\ x iRm such 

that W r J GJR( SU) is also closed. 
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The concept of the generalized inverse matrix introduced in the Section 1.2 and 
in particular theorems 1.2.6 and 1.2.7 enables us to give the necessary and sufficient 
condition for the existence of a solution to BVP (1,1), (1,3) in the following form. 

3.2. Theorem. BVP (1,1), (1,3) possesses a solution if and only if 

[lm-(SU)(SU)*][r-(SV)f] = 0, 

where (SU)* is the generalized inverse matrix to (SU). If this condition is satisfied, 
then any solution x of BVP (1,1), (1,3) is of the form 

(3,2) x(t) = X(t)[ln-(SU)*(SU)]d 

+ X(t) (SU)* [r - (SV) f] + (Vf) (t) on [0,1] , 

where de Rn may be arbitrary. 

Proof follows by 1.2.6 and 1.2.7 from the equivalence between BVP (1,1), (1,3) 

and the equation (2,1) ((SU) c = r - (SV) f). 

3.3. Remark. By 2.3 the homogeneous BVP (1,2), (1,4) has only the trivial solution 
if and only if rank (SU) = n. Consequently, BVP (1,1), (1,3) is uniquely solvable 

for any T ) e R(&) if and only if rank (SU) = n. 

On the other hand, BVP (1,1), (1,3) has a solution for any feLl
n and reRm if 

and only if (SU)c = q is solvable for any qeRm. ((2,1) has to be solvable for any 
reRm and f(t) = 0 on [0,1].) This holds if and only if (2,3) has only the trivial 
solution, i.e. if and only if rank (SU) = m. 

In particular, BVP (1,1), (1,3) has a unique solution for any feL\ and rejRm 

if and only if m = n and det (SU) 4= 0. 

3.4. Theorem. Let BVP (1,1), (1,3) have a solution. Then all its solutions are of the form 

(3.3) x(t) = x0(t) + H0(t) r + I G0(u s) f(s) ds on [0,1] , 
Jo 

where x0(t) = X(t) [I - (SU)* (SU)~\ d (deRn) is an arbitrary solution to the homo
geneous BVP (1,2), (1,4), 

(3.4) H0(t) = X(t)(SU)* for re [0,1], 

G0(t, s) = X(t) A(t, s) X *(s) - X(t) (SU)* F(s) far t, 5 e [0,1] , 

A(t, s) = 0 for t < s, A(t, s) = /„ fort>s 
and 

(3.5) F(S) = [ N X ( 1 ) + P d W T f l X ^ l x - ^ ) for se[0,l]. 
- Js J 
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Proof follows immediately from 3.2 and (2,5), (2,6). 

3.5. Remark. Let us notice that the representations (3,2) or (3,3) of the solutions 
to BVP (1,1), (1,3) are true even if the generalized inverse matrix (SU)* to (SU) 
is replaced by an arbitrary n x m-matrix B such that (SU) B(SU) = (SU) (see 1.2.11). 

3.6. Lemma. The n x m-matrix valued function H(t) = H0(t) and the n x n-matrix 
valued function G(f, s) = G0(t, s) defined by (3,4) possess the following properties 

(i) H(t) is absolutely continuous on [0, l ] , 
(ii) G(t,s) is measurable in (t,s) on [0,1] x [0,1], var0 G(.,s)< oo for a.e. 

se [0,1] and G(t, .) is for any te[0,1] measurable and essentially bounded 
on [0,1], 

(iii) y(s) = |G(0, s)\ + var0 G(.,s) is measurable and essentially bounded on [0,1], 
(iv) G(t, s) = Ga(t, s) - Gb(t, s) on [0,1] x [0,1], where for any s e [0,1] Ga(.,s) 

is absolutely continuous on [0,1] and Gb(.,s) is a simple jump function with 
the jump ln at t = s. 

Proof. The assertions (i) and (ii) are obvious. Furthermore, F is of bounded varia
tion on [0,1] and for any s e [0,1] 

y(s) < \X->(s)\ + |(SU)*| \F(s)\ + (var>X)(|X-*(s)| + |(SO)*| |F(s)|) 

< (1 + var0 X) sup flX"1^)! + |(SU)*| \F(s)\) = x < oo . 
se[0,l] 

The last assertion is proved by putting Ga(t, s) = G0(t, s) if t > s, Ga(t9 s) = G0(r, s) 
+ /„ if t < s and Gh(u s) = 0 if t > s, Gb(t, s) = /„ if t < s. 

3.7. Remark. Let us notice that actually we have proved that y(s) is bounded on [0,1] 
and hence also G0(t, s) is bounded on [0,1] x [0,1] (|G0(t, s)\ < y(s) < x < oo 
on [0,1] x [0,1]). Moreover, by (3,4) varJ G0(t, .) + var0 G0(., s) < oo for all 
t,se [0,1]. 

3.8. Lemma. Let H: [0, 1] -• L(Rm, Rn) and G: [0, 1] x [0, 1] -• L(Rn) fulfil 

(i)-(iii) from 3.6. Then for any couple ( J e Ln x Rm the n-vector valued function 

Г 1 

h(í) = H ( í ) r + G(ř,s)f(s)ds 
Jo 

is of bounded variation on [0,1] and the linear operator 

|6D„xR„->heBK, 

is bounded. 

, n m 
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Proof. Given feLl

m reRm and a subdivision {0 = t0 < tx < ... < tp = 1} of [0,1], 

E 
1=1 

I G{tj, s) f{s) ds - \lG{tj„., s) f(s) ds + f G(0, s) f(s) ds 
Jo Jo Uo 

Hence also 

and 

wiiere 

var^ 

o vZ|G(0^) - <-(-,-i.-)| + |G(0,s)|J|ř(s)| ds 

f ? ( - ) | f ( - ) | d s á ( s u p | y ( s ) | ) | | f l t l ^ x | | f l t l . 
Jo se[0,ll 

|1G(.,s)f(s)ds>)+ pG(0,s)f(s)ds 
o / Uo 

i - * 

-í 4||f L + И) = C 
вv Ll*R 

c = x + |H(0)| + | (ř)| dř < oo . 

3.9. Remark. Let the operator -SP® be defined by 

(3,6) <eą єЦ,xRm-*H0{t)r + G0(t,s)f(s)dsGAC„, 

where the matrix valued functions G0(t, s) and H0(t) are given by (3,4) (R(&e) <= v4C„ 
due to 3.4). According to (3,2) and (3,4) 

U(SUf (r - SVf) + Vf = U(SU)* r + Vf - U(SU)* (SV) f 

for any fel}n and reRm. Consequently 5£® is linear and bounded (cf. also 3.6 
and 3.8). Moreover, for any fel}n and reRm such that BVP (1,1), (1,3) has a solution 

' J and hence <£<£®<ex = S£x for any xeAC„ 

i.e. Sese®$e = <£ (<e® is a generalized inverse operator to <SP). 

((JW.SP)) &<£®(f
r 

In particular, if m = n and rank (SU) = n, then by 3.3 -SP® becomes a bounded 
inverse operator to <£P. In this case the functions G0(t, s), H0(t) are called the Green 
couple of BVP (1,1), (1,3) (or (1,2), (1,4)), while the function G0(t, s) is the Green 
function of BVP (1,1), (1,3). 

3.10. Definition. A couple G(t, 8), H(t) of matrix valued functions fulfilling (i)-(iii) 
of 3.6 is called the generalized Green couple if for all feL\, reRm such that BVP 
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(1,1), (1,3) has a solution, the function 

x(t) = H(t)r + 

is also a Solution to BVP (1,1), (1,3). 

G(í, s) f (s) ds 

3.11. Remark. By 3.4 and 3.6 the couple G0(t, s), H0(t) given by (3,4) is a generalized 
Green couple of BVP (1,1), (1,3). 

3.12. Theorem. A linear bounded operator &+: R(&) - ACn fulfils Se<e+Se = Se 
if and only if there exists a generalized Green couple G(t, s), H(t) such that Sf+ is 
given by 

(3.7) &+: (f J e R(Se) -» H(t) r + J G(t, 5) f(s) ds e ACn. 

Proof. Let Sf£e+Se = <£ and let £e® be given by (3,6). According to 3.9 

<e(<e+ - <e®)y J = 0, i.e. (£e+ - &®)(f)eN(£>) for each feLn and reRm . 

In particular, £e+ = ^ e on R(Se) if N(^) = {0}. If fc = dim JV(JSf) = n - rank (SU) 
> 0, let X0(t) be defined as in the proof of 2.7. Then rank (X0(t)) = k on [0,1] 

(cf. 2.8) and given ( ) e K(-Sf), there exists d e Rk such that 

(3.8) (<e+ - se®) ( f ) (t) = X0(t) d on [0,1] . 

By 1.2.6,1.2.7 and 1.2.15 this is possible if and only if 

dSXS(t)(*+-&*)(£)(t) on [0,1]. 

By the definition X0(t) = X(t) C0 on [0,1], where C0 6 L(/?t, Rn) has a full rank 
(rank(C0) = fc). According to 2.16 X$(t) = C$ X_1(t). It follows immediately that 
the mapping / A ,.s 

*: {^r)eR(<t>)^d = X*(t)(<?+ -£e»)\{r)(t)eRk 

is a linear bounded vector valued functional on R(Se). Let *P be its arbitrary ex
tension on the whole space Ll

n x JRW. (V is defined and bounded on L\ x Rw and 
!P = $ on R(&)) Then there exist a function 0X. [0,1] -> L(Rn,Rk) essentially 
bounded and measurable on [0,1] and 02 e L(Rm9 Rk) such that 

^Г 
0.(s) f(s) ds + 02r for all ('] eLl„x Rm. 
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Together with (3,6) and (3,8) this yields (3,7), where 

(3,9) G(t, s) = G0(t, s) + X0(f) O^s) for all t e [0,1] and a.e. s e [0,1] , 

H(t) = Ho(t) + Xo(t)02 on [0,1] 

obviously fulfil the conditions (i) —(iii) of 3.6. 
The proof will be completed by taking into account the obvious fact that if 

G(t, s), H(t) is a generalized Green couple, then the operator (3,7) fulfils S£S£+S£ = S£. 

3.13. Proposition. A couple (z*, A*) e L„°° x R* fulfils 

(3,10) z*(t) f(t) dt = k*r for all ( \<=R(g>) 

if and only if there exists y*: [0,1] -*• R* such that y*(t) = z*(t) a.e. on [0,1] and 
(y*, k*) is a solution ofBVP (2,7), (2,8). 

Proof. Let z* e I " and k*eR*. Then by the Green formula (2,15), (3,10) holds 
if and only if for any x e ACn 

(3,11) J z*(t) + z*(s) A(s) ds + X*(K(t) - N) x'(t) dt 

+ z*(s) A(s) ds - X*(M + N - K(0)) x(0) = 0. 

In particular, if x(t) = x(0) on [0,1], (3,11) means that 

I *(s)A(s)ds - X*(M + N- K(0)) c = 0 

for each c e Rn, i.e. 

(3.12) z*(s) A(s) ds = k*(M + N- K(0)). 

Consequently (3,11) holds for each x e ACn if and only if 

z*(t) + z*(s)A(s)ds + k*(K(t) - N) v(t)dt = 0 for any veL„ 

or z*(t) = u*(t) a.e. on [0,1], where 

(3.13) u*(t) = - I z*(s) A(s) ds - k*(K(t) - N) on [0,1] . 

Let us put y*(t) = u*(t) on (0,1), y*(0) = u*(0+) and y*(l) = u*(l-) . Then owing 
to (3,13) and (3,12) 

y*(l) = k*N and y*(0) = -k*M 
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and (z*, X*) fulfils (3,10) if and only if z*(f) = y*(r) a.e. on [0,1]. The proof will be 
completed by taking into account that 

f> y*(s)A(s)ds = 
Jt 

and hence 

z*(s) A(s) ds for any t є [0,1] 

y*(í) = y*(l) + y*(s) Ąs) ds + X* Щ on [0,1] . 

The latter implication follows from 2.3. 

The set of all generalized Green couples is characterized in the following theorem. 
If k = n — rank (SU) > 0, then C 0 is an arbitrary n x /c-matrix whose columns 

form a basis in the space of all solutions to (SU) c — 0 and X0(t) = X(t) C0 on [0,1]. 
If k* = m — rank (SU) > 0, then A0 is an arbitrary k* x n-matrix whose rows 

form a basis in the space of all solutions to X*(SU) = 0 and Y0(t) = A0 F(t) on 
[0,1], where F(t) is given by (3,5). 

3.14. Theorem. A couple G: [0,1] x [0,1] -+ L(Rn), H: [0,1] -> L(Rm,Rn) is a 
generalized Green couple to BVP (1,1), (1,3) if and only if there exist a function 
01: [0,1] -• L(Rn, Rk) essentially bounded and measurable on [0,1], a function 
I: [0,1] -• L(Rk*,Rn) of bounded variation on [0,1] and 02eL(Rm,Rk) such that 

(3,14) G(t, s) = G0(t, s) + X0(t) 0,(s) + I(t) Y0(s) 

for all t e [0,1] and a.e. s e [0,1] , 

H(t) = H0(t) + X0(t) 02 - I(t) A0 on [0,1] , 

where G0(t,s) and H0(t) are given by (3,4), the terms X0(t) &i(s) and Xo(t)02 

vanish if k = 0 and the terms I(t) Y0(s) and I(t) A0 vanish if k* = 0. 

Proof. Let us assume that k > 0 and k* > 0. 
(a) Let G(t,s), H(t) be a generalized Green couple of BVP (1,1), (1,3). Then by 

3.12 and its proof there exist 0X: [0,1] -> L(Rn, Rk) essentially bounded on [0,1] 

and 02 e L(Rm, Rk) such that for all ( ) e R(£?) 

H(t)r+ G(t,s)f(s)ds 

= [H0(t) + X0(t) 02] r + J [G0(t, s) + X0(t) 0x(s)] f(s) ds on [0,1] . 

By 3.13 and 2.8 this holds if and only if there exists I: [0,1] -> L(Rk*,Rn) such 
that (3,14) holds. According to 2.8 and 1.2.15 [Y0(s),A0] [Y0(s),A0]* = /k* for 
any S E [ 0 , 1]. The functions P(t,s) = G(t,s) - G0(t,s) - Xo(t)0l(s) and Q(t) 
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= -H(t) -F H0(t) + X0(t) 02 as functions of t for a.e. se [0,1] are of bounded 
variation on [0,1]. Therefore the function I(t) = [P(t,s), Q(s)] [Y0(s),A0~\* for 
all re [0,1] and a.e. se [0,1] (cf. 1.2.6 and 1.2.7) has also a bounded variation 
on [0,1]. 

(b) Let 0 ! . [0, l]-+L(R„,Rk) be essentially bounded on [0,1], 02eL(Rm,Rk) 
and let I: [0,1] -> L(Kk*, R„) be of bounded variation on [0,1]. Then the functions 
G(t,s), H(t) given by (3,14) are sure to fulfil (i) —(iii) from 3.6 and since by 2.3 

Y0(t) f(t) dt = A0r for all (f J e R(&), 

it is easy to verify that G(t, s), H(t) is a generalized Green couple. 
The modification of the proof if k = 0 and/or k* = 0 is obvious. 

3.15. Theorem. Let G0(t, s) and H0(t) be given by (3,4). Then G(t,s) = G0(t,s) and 
H(t) = H0(t) fulfil for any se(0, l) the relations 

*t 

(3.15) G ( t , s ) - G ( 0 , s ) - A(T)G(T,s)dT = z.(f,s) for all re [0,1], 
Jo 

(3.16) M G(0, s) + N G(l, s) + |'d[K(T)] G(T, s) = [/ - (SU) (SU)*] F(s) 

and 

(3.17) H(t) - H(0) - J A(T) H(T) dT = 0 on [0,1] , 

(3,18) УИH(0) + NH(1) + d[K(т)]H(т) = (SU)(SU)*. 

Proof follows easily by inserting (3,4) into (3,15)-(3,18) and making use of (1,6) 
and 

J'd[K(T)] X(T) A(T, S) X~ \s) = [ ' d ^ t ) ] X(T) X- J(s) + A+K(s) 

(cf. also III.2.13). 

3.16. Remark. Let us notice that F(l) = F( l- ) = N and by (1,7) and the Dirichlet 
formula 1.4.32 

(3,19) F(a) A(a) dcт = ł=(s) - Ғ(l) + K(s) on [0,1] . 
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3.17. Theorem. The functions G(f, s) = G0(t, s), H(t) = H0(t) given by (3,4) fulfil 
for any te(0,1) the relations 

(3,20) G( í , s ) -G ( í , l ) G(t, a) A(a) da - H(t) K(s) = A(t, s) 

for any s e [0,1] , 

(3,21) G(t,0) - H(t)M = X(t)[I - (SU)* (SU)] , G(t, 1) + H(t)N = 0. 

Proof. Given re(0,1) and se[0,1] , 

G0(t ,s)= - H 0 ( l ) N X ( l ) X - ' ( S ) 

- H0(t) £d[K(T)] X(T) X- l(s) - j \ [ - l ( < . *)] X W * Ms) • 

Our assertion follows readily taking into account the variation-of-constants formula 
for the initial value problem dy* = — y* d[B] — dh*, y*(l) = y* (cf. also the proof 
of 2.3). 

On the other hand, we have 

3.18. Theorem. Let G: [0,1] x [0,1] -• L(R„) and H: [0,1] -> L(Rm,R„) fulfil for 
any se(0, 1) the relations (3,15)-(3,18) and let y(s) = |G(0,s)| + var0 G(.,s) < y0 

< oo on [0,1], G being measurable [0,1] x [0,1]. Then G(t, s), H(t) is a generalized 
Green couple for BVP (1,1), (1,3). 

Proof. Let I ' \eR(£e) and 

x(t) = H(t) r + G(t, s) f(s) ds on [0,1] . 

£ ( j j A W <=(*> s) f(s)| ds) dT < £|A(T)I (j/o|f(s)l ds) dT 

<(\ |A(T)|dTjy0|jf||L,< oo, 

the Tonelli-Hobson theorem 1.4.36 yields 

['A(T) ( T G(T, S) f(s) ds) dT = Y |'A(T) G(T, S) dTj f (s) d s 

for any re [0,1]. Consequently in virtue of (3,15) and (3,17) 

J(r ,s) f (s)ds^ f( t )dT. 
o Jo 

<(t) - x(0) A(т) x(т) dт = 
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Finally, taking into account that ( )GR(^) if and only if (cf. 3.1) 

[I-(SIІ)(SÜ)*] Ғ(s)f(s)ds = 0 

and applying 1.4.38 it is not difficult to check that x(t) verifies also the side condition 
(1,3). 

3.19. Remark. By the variation-of-constants formula III.2.13 for generalized dif
ferential equations G: [0,1] x [0,1] -> L(Rn) fulfils (3,15) and (3,16) for all se(0,1) 
if and only if there exists C: [0,1] -» L(Rn) such that 

G(t,s) = X(t)A(t,s)X~1(s) +X(t)C(s) for all t e [ 0 , l ] and se(0,1) 

a n d (SU) C(s) = -(SU) (SU)* F(s) on (0,1). 

Hence according to 1.2.6 G(t, s) fulfils (3,15) and (3,16) if and only if 

(3.22) G(t, s) = G0(t, s) + X0(f) D(s), 

where X0(t) has the same meaning as in 3.14 and vanishes if k = n — rank (SU) = 0 
and D(s) is an arbitrary k x n-matrix valued function defined on (0,1). 

Analogously H: [0,1] -> L(Rm,Rn) fulfils (3,17), (3,18) if and only if 

(3.23) H(t) = H0(t) + X0(t) r on [0,1], 

where T e L(Rm, Rk) may be arbitrary. 
Since rank (X0(t)) = k on [0,1] (cf. 2.8), we have by 1.2.6. 

(3.24) D(s)^XS(t)(G(t,s)-G0(t,s)) for all se(0,l) and re [0,1], 

r = X$(t) (H(t) - H0(t)) for all t e [ 0 , l ] . 

Now, let G(t, s), H(t) satisfy also (3,20), (3,21) for any t e (0,1). Then var1 G(t, .) < oo 
for any t e [0,1]. Moreover, by (3,23) and (3,24) 

(3.25) D(0+) = X*(t) (G(t,0+) - Go(t,0+)) = X*(t) (H(t) - H0(t))M = TM » 

and 

(3.26) D ( l - ) = - v N . 

Putting D(0) = D(0+), D(l) = D( l - ) , D will be of bounded variation on [0,1]. 
By (3,20) 

D(s) - D(l) - D(T) A(T) dT - rK(s) = 0 on [0,1] . 

This together with (3,25), (3,26) may hold if and only if there is WeL(Rk„ Rk) such 
that D(s) = WY0(s) on [0,1] and T = WA0 (cf. 2.8). To summarize: 

G: [0,1] x [0,1] ^ L(Rn) and H: [0,1] ^ L(Rm, Rn) 
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satisfy (3,15) —(3,18) for any se(0,1) and (3,20), (3,21) for any re(0,1) if and only if 

G(r, s) = G0(r, s) + X0(r) WY0(s) on [0,1] x [0,1] , 

H(r) = H0(r) - X0(r) WA0 on [0,1] , 

where W e L(Rk*, Rk) may be arbitrary. 

3.20. Remark. By the definition (3,4) of G0(r,s) and H0(r) and 3.17 

(3.27) G0(t, 0 + ) - H o ( r ) M = X(r)[/-(SU)*(SU)] if r > 0 , 

Go(0,0+) - H0(0)M = -(SU)* (SU), 

G0(t, l-) + H0(t)N =0 if t < 1, 

G 0 ( l , l - ) + H 0 (l)N = / . 

In particular, for any geBV„ right-continuous on [0,1) and left-continuous at 1 

(3.28) I"' d[g*(T)] (GO(T,0 + ) - H0(T)M) = fd[g*(T)] X(T) [/ - (SU)* (SU)] 
Jo Jo 

and 
(3.29) j o d[g*(r)] (G 0(T, 1 - ) + H 0 (T) N)=0 

We shall conclude this section by proving that the couple G0(t, 5), H0(t) has 
also the meaning of a generalized Green couple for the adjoint nonhomogeneous 
BVP (2,11), (2,12). 

3.21. Theorem. Let geBVn be right-continuous on [0,1) and left-continuous at 1 
and let p,qe Rn. Then, if BVP (2,11), (2,12) has a solution, the couple (y*, X*) given by 

(3.30) y*(s) = q* G0(l, s) - p* Go(0, s) - [^[g*^)] G 0(T, S) on (0,1), 

y*(0) = y*(0+), y*(l) = y * ( l - ) , 

A* = - q * H o ( l ) + p*Ho(0) + 

is also its Solution. 

d[**м]ад 

Proof, (a) By (3,4) G0(l,s) = X(l)(X_1(s) - (SU)* F(s)) on [0,1] and owing to 
(1,7) and (3,19) pi 

G0(\,a)A(a)da 

= X(\)X-\s) - X(1)(SU)* F(s) - I + X(1)(SU)* F(l) - X(1)(SU)* K(s) 

or 

(3,31) G0(l, s) = G0(l, 1) + ľ G 0 ( l , a) A(a) àa + H0(l) K(s) on [0,1] . 
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Let us notice that G0(l, 1- ) = G0(l, 1) = I - X(1)(SU)+ F(l) and G0(1,0+) 
= Go(l,0) = X(l)-X(l)(SU)*F(0), F(1) = N, F(0) = (SU) - M. Furthermore, 

Go(0,0) = / - (SU)* F(0) = / - (SU)* (SU) + (SU)* M, 

Go(0,s)=-(SU)*F(s) 

if s > 0. In particular, Go(0,1-) = Go(0,1) = -(SU)* F(l) = -(SU)* N. Hence, 
making use of (3,19) 

(3,32) J G O ( 0 , a) A(a) da = Go(0, s) - G0(0,1) - H0(0) K(s) on [0,1] . 

Now, if y*: [0,1] -+ R* and k*<=R% are given by (3,30), then by (3,15), (3,20), 
(3,31), (3,32) and 1.4.32 

y*(s) - y*(l) - y*(a) A(a)da + k* K(s) 

= - £d[g*(T)] (G0(T, S) - G0(T, 1) - £ G 0 ( T , a) A(a) da - H0(x) K(s)^j 

= «*(s)-f*(l) on [0,1]. 

(Here we have also made use of the assumption g*(l—) = g*(l), g*(0 + ) = g*(0) 
and of the fact that G0(0, s+) = Go(0, s) if s > 0 and G0(l, s - ) = G0(l, s) if s < 1.) 

(b) By (3,21), (3,27) and (3,29) 

y*(l) - k*N = q*[G0(l, 1 - ) + H0(l) N] - f>*[Go(0,1 - ) + Ho(0) N] 

- £ d [ f *(T)1 (Go(T' - - ) + HO(T) N) = q*. 

(c) Finally, by (3,21), (3,27) and (3,28) 

y*(0) + k*M = q*[Go(l,0+) - H0(1)M] - />*[G0(0,0+) - Ho(0)M] 

1d[g*(z)-](Go(x,0+)-Ho(r)M) 

P* + 

-Г 
Jo 

q* X(l) - „* - £d[g*(т)] X(т)J [/ - (SO)* (SU)] . Since x0(t) = X(t)[l - (SU)* (SU)] is a solution to the homogeneous BVP (1,2), 
(1,4), the last expression reduces to p* (cf. 2.5). 

Notes 
Canonical form of Stieltjes integral conditions (IV.3.15) is due to Zimmerberg [2]. Section IV.2 is 

based on Vejvoda, Tvrdy [1] and Tvrdy, Vejvoda [1]. In IV.2.16 the idea of Pagni [1] is utilized. For 
writing IV.3, the paper Brown [1] was stimulating. 
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Bryan [1], Cole [2], Halanay, Moro [ l ] , Krall [ l ] - [ 4 ] and Tucker [ l ] are related references to IV.2, 
while Reid [2], [3], Chitwood [1], z^ubov [1], [2] and Bradley [ l] concern IV.3. For a historical survey 
of the subject and a more complete bibliography the reader is referred e.g. to Whyburn [2], Conti [2], 
Reid [ l ] and Krall [9]. More detail concerning some special questions (as e.g. two-point problems, 
second order and n-th order equations, selfadjointness, expansion theorems) as well as examples may be 
found in the monographs Coddington, Levinson [1], Reid [1], Najmark [ l] and Cole [1]. 

The interface problems were treated in Conti [3], Krall [2], [3], ParhimoviC [3], Stallard [1] and 
Zettl [1]. Boundary problems in the Lp-setting were dealt with in Krall [1] —[8], Brown [ l] , [3], Brown, 
Krall [1], [3]. Expansion theorems for problems with a multipoint or Stieltjes integral side conditions 
are to be found in Krall [5], Brown, Green, Krall [ l ] and Coddington, Dijksma [1]. For applications 
to controllability, minimization problems and splines see Brown [2], Brown, Krall [2], Halanay [1] 
and Marchio [ l ] . 
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V. Integro-differential operators 

1. Fredholm-Stieltjes integro-differential operator 

The most part of this chapter is devoted to the Fredholm-Stieltjes integro-differential 
operators of the form 

X -> x ' ( í ) ds[P(r,S)]x(s). 

The kernel P(t, s) is assumed to be an n x n-matrix valued function defined for a.e. 
te[0,1] and any se [0,1] and such that P(.,s) is measurable on [0,1] for any 
s e [ 0 , l ] , 

(1,1) g(t) = \P{t,0)\ + var0P(t, .) = ||P(t, .)||^ < oo a.e. on [0,1] 

and 

(1,2) \\Q\\u = (J\o{t)y^J'P<cx>i 

where 1 < p < oo. 
Such kernels will be called Lp\_BV~\-kernels. 

1.1. Remark. For U cz U if p < r, any U[BV]-kerml is also an Lp[BV]-kernel 
for each p, 1 < p < r. Furthermore 

|P(^s)|<|P(t,0)| + |P(t,s)-P(r,0)|<0.(r) 

for all s e [0,1] and a.e. t e [0,1]. Hence by (1,2) 

|P(r, s)\p At < oo for any s e [0,1] . 

1.2. Proposition. If P(t,s) is an If[BV~\-kernel, then the function 

Px:te[0,l]^{\[P{t,s)]x{s)eRn 
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belongs to LPn for any xe BVn and the operator 

(1,3) P:xeBVn-+ \*d,[P{t, s)] x(s) e L>, 
Jo 

is linear and bounded. 

Proof. By 1.4.27 and 1.4.37 PxeL"„ and 

(1,4) |(Px) (f)| < Q(t) ( sup |x(s)|) a.e. on [0, 1] 
se[0,l] 

for any xeBVn. Since QeLP and sup \x(s)\ < \\x\\BV, our assertion follows im
mediately. seL0'i] 

1.3. Remark. Since (1,4) holds also for any x e C„, the mapping x -+ Px is bounded 
as an operator Cn -> LPW as well. Let us notice, furthermore, that if xk, x e Cn 

(k = 1,2,...) and lim ||xk - x||c = 0, then in virtue of (1,4) lim (Pxk)(t) = (Px)(t) 
/c->oo fc-+oo 

a.e. on [0,1]. In other words, P maps sequences converging uniformly on [0,1] 
onto seuqences converging a.e. on [0,1]. It was shown in Kantorovic, Pinsker, 
Vulich [1] that 

xeC„-> \lds[P(t,s)]x(s)eLn, 
Jo 

with the L^BVJ-kernel P(t,s), is a general form of operators Cn -> L„ possessing 
this property. 

1.4. Proposition. If P(t,s) is an Lp[BV]-kernel, then the operator P: BVn -> Lp 

given by (1,3) is compact. 

Proof. Let xkeBVn and ||x||BF < 1 for each k = 1,2,.... By the Helly Choice 
Theorem the sequence {xk}^=1 contains a subsequence {x^}^! such that 

lim xk|(r) = x(t) on [0,1] 

for some xeBVn. For t, s e [0,1] let us denote 

p(r,s) = vars
0P(t, .) 

and 

^ ) = f ̂ IXt,*)] W s ) - X(5)| . 
Jo 

Given / = 1,2,... and s e [0,1], 
\xkl(s) - x(s)| < ||xki - x||By < \\xkl\\BV 4- \\x\\BV < 1 + \\x\\BV < ao 

and hence by 1.4.27 

\z,(t)\ < (vari P(t, .))(! + | X | | B F ) < (1 + | X | | B K ) g{t) a.e. 0n [0,1] . 
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Moreover, according to 1.4.24 

lim zt(t) = 0 a.e. on [0,1] . 

By the assumption QELP and hence applying the classical Lebesgue Convergence 
Theorem we obtain 

(1,5) lim \zt(t)\
p dt = 0. 

'-*00 Jo 
= 1,2,... 

f \1ds[P(t9s)](xkl(s)-x(s))Pdt< f h W I ' d t , 
Jo Jo Jo 

Since for any / = 1,2,... 

(1,5) implies 

and this completes the proof. 

lim Pxkl - Px ^ = 0 
/—> 00 

1.5. Notation. Throughout the chapter P denotes the operator defined by (1,3) 
or its restriction on Wp (1 < p < oo), where Wp stands for the Sobolev space defined 
in 1.5.10. Furthermore, 

(1.6) D: xeWp-*x'eLp
n 

and 

(1.7) L = D-P: xeWp-*x' -PxeLp 

for any peR, p > 1. 

1.6. Remark. Clearly, D is linear and bounded for any peR, p > 1. Hence if 
P(t, s) is an LP[£V] -kernel, then L is also linear and bounded. We shall show that 
it has a closed range and hence by 1.3.14 it is normally solvable. 

1.7. Proposition. Let P: [0,1] x [0,1] -> L(Rn) be an Lp[BV\kerne\ (\<p< oo). 
Then the operator L: WP->LP given by (1,7) has'a closed range in Lp. 

Proof. Let feLp. Then feR(L) if and only if there exists xeWp such that 

(1.8) x(t) - x(0) - £ (£d s[P(r , s)] *(,)) dx = j V ) d t . 

Hence denoting 

(1.9) <F:heUn^ | h(r)dxeW„", 
Jo 

II: xeWf-* z(t) = x(0) e Wn", 
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we have feR(L) if and only if YfeR(l - (TI + ¥P)), where / stands for the identity 
operator on Wp. 

The operators Tl and V are evidently linear and bounded. As R(n) is finite dimen
sional, II is compact (cf. 1.3.21). Since, given xeWp, \\x\\BV < \\x\\WP, it follows from 
1.4 that also P: Wn

p->LP is compact. Hence the operator 0 = J7 + <PP: Wp-+Wp 

is linear bounded and compact. Consequently R(l — 0) is closed (cf. 1.3.20). 
Since V(R(L)) = R(l - 6>), R(L) is closed. 

1.8. Proposition. If P(t, s) is an U\BV\keme\, then 

n < dim N(L) < oo , 

while dim N(L) = n if and only if R(L) = Lp. 

Proof. By the proof of 1.7 the equation Lx = f is equivalent to the equation 

x - 0x = ¥f, 

where 0 = /I + ¥P: Wp -> Wp is defined by (1,9). Since 0 is compact, by 1.3.20 
we have dim N(L) = dim N(l — 0)<oo and 

(1,10) dim N(L) = codim R(l - 0) = dim WP\R(I - 0). 

It follows from the definition of 0 that 

R(l-0)<={geWn<>;g(O) = O} = KP-
Consequently 

dim Wp\R(l -0)> dim WP\VP. 

If {e1? e2,..., e„} is a basis in Rn and ^{t) = e7- on [0,1] (j = 1,2,..., n\ then the 
system of equivalence classes £j + Vp (j = 1,2,..., n) forms a basis in WP\VP. 
Hence 

dim Wp\Vp = n 

and by (1,10) dim N(L) = n if and only if 

dim Wp\Vp = dim PV//K(/ - 0). 
Since R(/ - 0) = V„p if and only if R(L) = Lp, the proof will be completed by 
means of the following assertion. 

1.9. Lemma. Given a Banach space X and its closed linear subspaces M, N such that 
M c iV c I , dim X\M = dim X\N < oo holds if and only if M = N. 

Proof. Let dimK/M = dimK/N = k < co and let xeN\M. Let Sj = ^ + N 
(j = 1,2,..., k) be a basis in K/N and let 

k 

ax + J ^ e A f c N 
1=i 

167 



V.l 

for some real numbers a, A,- (j = 1,2,..., k). Since ax e N, this may happen only if 
^i£i + 2̂<?2 + ••• + hZk^N, i.e. kx = A2 = ... = 4 = 0. Thus axeM and for 
x ^ M , a = 0. This means that the classes {x + M, ^ + M; j = 1, 2,..., k} are 
linearly independent in XJM and dim XJM > k + 1 > dim K/IV. This being con
tradictory to the assumption, we have M = N. 

1.10. Remark. By 1.8 there exists an n x k-matrix valued function X (k = dimIV(L)) 
such that x e Wp is a solution to Lx = 0 if and only if x0(f) = X(t)c on [0, 1] 
for some c e Rk. Unfortunately, even if k = n, it need not be det (X(t)) + 0 on 
[0,1]. For example, the equation 

(1.Ц) *'(í) (т) dт = f(t) a.e. on [0,1] 

possesses for any feLn and c e Rn the unique solution 

x(t) = 1(1 -At)c + At ( f (T) dr ) ds + f (T) dr on [0,1] 
Jo VJo / Jo 

such that x(0) = c. In particular, xeACn is a solution of the corresponding homo
geneous equation if and only if x(t) = 1(1 — At) c for some ceRn and X(t) = 1(1 — At) 
is the fundamental matrix solution for (1,11). Let us notice that X(̂ ) = 0. 

1.11. Remark. Putting R(t,s) = P(t,s+) - P(u 1) for se(0,1), R(t,0) = P(t,0) - P(t, 1) 
and R(_, 1) = 0, we would obtain 

R(t,s + ) = P(t,s + ) - P ( . , l ) if s e [ 0 , l ) , 

R(t,s-) = P(t,s-)- P(t,l) if 5G(0, 1] 

and hence according to 1.5.5 

ds[P(t, s)] x(s) = ds[R(t, s)] x(s) for each x e ACn. 
Jo Jo 

Given a subdivision a = {0 = s0 < sx < ... < sm = 1} of [0,1] and 5 > 0 such 
that 0 = s 0 < s 0 + O?<s1<s1 + ( 5 < . . . < sw_x < sm_1 + S < sm = 1, we have 

m - l 

F,(t) = |P(t, s0 + 5) - P(t, 0)| + £ |P(t, s, + S) - P(t, S j_. + 8)\ 
I=l 

Consequently 
+ \P(t, 1) - P(í, sm_ l + S)\ < g(t) a.e. on [0,1] . 

m 

YMusJ-R^Sj^^^ lim Vs(t)<e(t) 

and var* R(t, .) < o(t) a.e. on [0,1]. Since |R(t,0)| < 2g(t) a.e. on [0,1] (cf. 1.1), 
it follows that R: [0,1] x [0,1] -> L(Rn) is also an Lp[_5V]-kernel. 
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This means that without any loos of generality we may assume that P(t, .) is 
right-continuous on (0,1) and P(t, 1) = 0 for almost all t e [0, 1] . 

1.12. Remark. Let 

PM = 

-A(t) - C(t) - D(ř) if s = 0, 
-A(t) - D(t) if 0 < s < t , 
-D(ř) if í < s < 1, 

0 if s = 1 , 

where A, C, D are n x rc-matrix valued functions whose columns are elements of LFn. 
Then 

var0 P(t, .) = \A(t)\ + |C(r)| + \D(t)\ a.e. on [0,1] 

and hence P(t,s) is an Lp[BV]-kernel. Furthermore, given xeAC„, 
•i 

ds[P(r, s)] x(s) = 4(f) x(t) + C(t) x(0) + D(t) x(l) a.e. on [0,1] 
o 

and the integro-differential operator L = D — P reduces to the differential-boundary 
operator 

xeWn
p-> x'(t) - A(t) x(t) - C(t) x(0) - D(t) x(l) e L^. 

2. Duality theory 

Our wish is now to establish the duality theory for BVP 

(2,1) 

(2,2) 

*(t) 
o 

Sx 

ds[P(í,s)]x(s) = f(t) a.e. o n [ 0 , l ] , 

= УИ x(0) + K(t) x'(t) dí = г. 
Jo 

In particular, we shall show the normal solvability and qyaluate the index of this 
boundary value problem under the following assumptions. 

2.1. Assumptions. P: [0,1] x [0,1] -> L(Rn) is an Lp-[BV]-kernel, 1 < p < oo, 
feLp, MeL(Rn,Rm), K: [0,1] - L(K„, KJ, ||K||L, < oo, q =pj(p - 1) (/" p > 1, 
q = co if p = 1 a^d r e Km. 

2.2. Definition. A function x: [0,1] -> P„ is said to be a solution of BVP (2,1), 
(2,2) if x e ACn and (2,1), (2,2) hold for a.e. t e [0,1]. 

2.3. Remark. According to 1.13 we may assume that for a.e. £e[0,1] P(t, .) is 
right-continuous on (0,1) and P(t, 1) = 0. Furthermore, let us mention, that if 
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P(t,s) is an Lp[J3V]-kernel and feLp, then obviously x'eLPn for any solution 
xeACn of the integro-differential equation (2,1). Thus given a solution x of BVP 
(2,1), (2,2), xeWp. 

2.4. Notations. The operators DeB(Wp,Lp

n) and PeK(Wn

p,Lp) are defined by (1,3) 
and (1,6), -x 

S: x G Wp - M x(0) + K(r) x'(r) dt G Rm 

and 
~Dx - Px 

(2,з) æ-.xewf . Sx £ L? x Rm . 

Making use of 2.4, we may reformulate BVP (2,1), (2,2) as the operator equation 

(2,4) SЄ* 

It appears to be convenient to handle instead of (2,4) the operator equation for 

S = (*)eW>>xRm 

\ d / 

(2.5) t-Tt = q>, 

where 

(2.6) V: u e L £ - u(x)AxeWp, <f>: XG WP -> v(f) = X(0)G KV/, 
Jo 

/x\ r*x + ypxi / ^ A 
T : ( d J e W ? x l J - ^ l d _ S x J eWyxH, , , and q> = ^ JeWp x Rm. 

Clearly, xeWp is a solution to BVP (2,1), (2,2) if and only if for an arbitrary deRm 

fx\ 
the couple £ — I ) is a solution of (2,5). In particular, 

\dj 

(2.7) dim N(/ - T) = dim N(^) + m. 

Furthermore, f J G L£ X Rm belongs to R(Se) if and only if ( j e R(l - T). 

As according to 1.4 and 1.3.21 the linear operator T given by (2,6) is compact and 

ff\ /*T\ 
the linear operator W: ( 1 e LPn x Rm -> I 1 G K^P X Rm is obviously bounded, 

we have 
2.5. Proposition. Under the assumptions 2.1 the operator 5£ given by (2,3) has a closed 
range in Lp x Rm. 

Since by 1.5.13 the dual space (Wp)* to Wp is isometrically isomorphic with 
LI x R* and (LPn x Rm)* is isometrically isomorphic with Lq

n x R* (cf. 1.3.9 and 
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1.3.10), the adjoint operator to ££ may be represented analytically by the linear 
bounded operator 

(2.8) &*: (y*, X*) e Un x R*m - (L*(y*, A*), L*(y*, A*)) e L J x R* 

which is defined by the relation 

f1 f1 

(2.9) y*(f) [Dx - Px] (t) dt + A*[Sx] = L*(y*, X*) (t) x'(t) dt + L*(y*, X*) x(0) 
Jo Jo 

for all XGKV/, y*eL« and X*eR*. 

Analogously, the operator 
(2.10) T*:(y*,x*,A*)eL«xK* x K* 

-> (T*(y*,x*,A*), T*(y*,x*,A*), T*(y*,x*,X*))e Lq
n x R* x R* 

defined by 

(2.11) y*(t) (Px) (t) dt + x* x(0) + X*(d - Sx) 

T*(y*, x*, A*) x'(t) dt + T*(y*, x*, X*) x(0) + T*(y*, x*, X*) d 
o 

for all x e l V / , deRm, y*eL£, x*eR*, X*eR* 

represents analytically the adjoint operator to the operator T. 

2.6. Theorem. If 2,1 holds and P(t, 1) = 0 a.e. on [0,1], then the operator 
££*'. L\ x R* -> L« x K* aiven by (2,8) venfes (2,9) if and on/)/ if 

(2,12) L*(y*, A*) (t) = y*(t) + y*(s) P(s, t) ds + A* K(t) a.e. on [0,1] , 

(2,13) L*(y*,A*) = A*/И + y*(s)P(s,0)ds. 

Proof. Let x e W>, y*eLq„ and X*eR*. By 1.4.38 

Í y*(í)(Px)(t)dt= d, 
o LJo 

y*(s) P(s, t) ds 
« ( - ) • 

Furthermore, integrating by parts (1.4.33) and taking into account the assumption 
P(t, 1) = 0 a.e. on [0,1], we obtain 

j (t) (Px) (t) dt = - ( j V ( - ) P(s, 0) ds) x(0) - £ y*(s)P(s,í)ds x'(í)dt 
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Hence 
ү*(t) [Dx - Px] (f) df + k*(Sx) 

k*M + y*(s) P(s, 0) ds 
Jo 

<(0) + ү*(t)+ y*(s)P(s,f)ds +A*K(ř) c'{ř) dř 

for all x e Wf, y* e U„ and A* e R*. 

In virtue of (2,9) this yields that 

Ц(y*, k*) (t) - y*(f) - y*(s) P(s, t) ás - A* K(f) x'(ř) df 

+ L*(y*, A*) - k*M - y*(s) P(s, 0) ds x(0) = 0 

holds for all x e Wn
p, y* e Un and A* e R%. 

The proof will be completed by making use of 1.5.15. 
Similarly 

2.7. Proposition. If 2.1 holds and P(t, 1) = 0 a.e. on [0,1], then the operator 
T*: L;; x P* x R* -> L« x R* x K* aiverz by (2,10) verifies (2,11) i/ and on/y if 

T*(y*, X*9 A*) (t) = - L*(y*, A*) (t) + Y*{t) a.e. on [0,1] , 

T*(y*, **, A*) = - L%(y*, A*) + x* , T*(y*, X*9 A*) = A* 

for all Y* e L«, x* e R* and A* e R*. 

2.8. Corollary. dimN(i?*) = dimN(/ - T*) - n < oo. 

Proof follows readily from 2.6, 2.7 and 1.3.20. 

2.9. Theorem. If 2.1 /zoWs and P(r, 1) = 0 a.e. on [0,1], then 

ind («=£?) = dim N[£e*) - dim N(&) = m-n. 

Proof. By 2.5 and 1.3.15 codimR(.Sf) = dim N(«S?*). Hence by (2,7) and 2.8 and 
1.3.20 

ind (Se) = dim N(/ - T*) - n - dim N(/ - T) + m - m - n. 

2.10. Remark. The relation (2,9), where l*^*,**) and L|(y*, A*) are given by (2,12) 
and (2,13) is the Green formula for BVP (2,1), (2,2). 

2.11. Remark. Let A,C,D\ [0,1] --> L(Rn) be Lebesgue integrable on [0,1], let 
P: [0,1] x [0,1] -* Lfo) be an I}\BV\-kernel and let K: [0,1] - L(Rn, Rm) be 
of bounded variation on [0,1] and M, N e L(-Rn, -Rm). Let us consider the problem 
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of determining xeACn which verifies the system 

(2,14) x'(t) - A(t) x(t) - [C(t) x(0) + D(t) x(l)] - Pd s[P(t, s)] x(s) = f(t) 

a.e. on [0,1] 

M x(0) + N x(l) + d[K(ŕ)] x(ř) = r, 

and 

(2,15) 

where feLn and r e Rm. Again we may assume that P(t, .) is for almost all t e [0,1] 
right-continuous on (0,1). Moreover, if we put 

rP(t,0 + ) - P ( t , l - ) if 5 = 0, 
p0(t, s) = J P(u s) - P(t, 1 - ) if 0 < s < 1, 

(0 if 5 = 1 

and C0(t) = C(t) - [P(t,0 + ) - P(t, 0)1 D0(t) = D(t) - [P(t, 1) - P(t, 1-)], for any 
xeACn we should obtain 

C(t)x(0) + D(t)x(l)+ rds[P(t,s)]x(s) 
Jo 

= C0(t) x(0) + D0(t) x(l) + | ds[P0(t, s)] x(s). 
Jo 

Hence, without any loss of generality we may assume that for almost all t e [0,1] 
P(t, .) is right-continuous on [0,1), left-continuous at 1 and P(t, 1) = 0. Analogously, 
K may be assumed right-continuous on [0,1), left-continuous at 1 and K(l) = 0. 

According to 1.12 we may rewrite the equation (2,14) in the form 

(2,16) 

where 

x í - ds[R(t,s)]x(s) = f(î) a.e. o n [ 0 , l ] , 

R(í, s) = Ңt, s) + 

f -A(t) - C(t) - D(í) if s = 0, 

-A(t)-D(t) if 0 < s < t , 

-D(í) if t < s < 1, 

0 if s = 1 

is again an L1[JBV]-kernel. Furthermore, applying the integration-by-parts formula 
and taking into account that K(l) = 0 and 

x(l) = x(0) + X'(T) dt for any x e ACn, 
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we transfer the side condition (2,15) into 

(2,17) Hx(0)+ F(t)x'{t)dt = r, 

where 
H = M + N - K(0), F(t) = N - K(r). 

The system (2,16), (2,17) may be written as the operator equation 

Mx = 
\ r 

with 01: AC„ -* Lj, x J?m defined in an obvious way. Now, proceeding analogously 
as in the close of the proof of IV.3.13 we may deduce from 2.6 that (y*, k*) e N(38*) 
if and only if there exists z e BV„ such that z(t) = y(i) a.e. on [0,1], z(0+) = z(0), 
z ( l - ) = z(l) and 

(2.18) z*(t) + z*(s) R(s, t) ds + k* F(t) = 0 on (0,1), 

(2.19) k*H + z*(s) R(s, 0) ds = 0 . 

As F(1-) = F(1) = N and R(t, 1 - ) = -D(t) for almost all re[0,1] , we have 
by (2,18) 

(2.20) z*(l) = z*(s) D(s) ds - k*N . 
Jo 

Since F(0+) = F(0) = N - K(0) and R(t,0+) = P(t,0) - A(t) - D(t) for almost 
all t e [0,1], the relations (2,18) and (2,19) imply 

z*(0) = - I z*(s)P(s,0)ds + J z*(s)D(s)ds + z*(s) A(s)ds - k*N + k* K(0) 
Jo Jo Jo 

= - \k*H + z*(s)R(s,0)ds - z*(s)C(s)ds + k*M 

= - z*(s)C(s)ds + A*M. 
Jo 

By the definition of R and F we have for any zeBV„ and keRm fulfilling (2,20) 

z*(s)R(s,t)ds + A*F(t) 

= U * N - z*(s)D(s)ds)- z*(s)A(s)ds+ z*(s) P(s, t) ds - k* K(t) 

= -z*(l) - z*(s) A(s) ds + z*(s) P(s, t) ds - k* K(t) on [0,1] . 
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Thus, the adjoint problem to BVP (2,14), (2,15) is equivalent to the problem of de
termining zeBV„ and X*eR* such that 

(2.21) z*(t) = z*(l) + z*(s)A(s)ds - z*(s) P{s, t) ds - X* K(t) on [0,1] 

(2.22) z*(0) + X*M + z*(s) C(s) ds = 0, 

- я * N " f 2*(1)-A*N - 2*(s)D(s)ds = 0. 

2.12. Theorem. Let us assume 2.1 and P(t, 1) = 0 a.e. on [0,1]. Then for given 
feLPn and reRm BVP (2,1), (2,2) possesses a solution if and only if 

y*(t)f(t)dt + A*r = 0 

for any couple (y*, k*) eL\ x R* which verifies the adjoint system 

(2.23) y*(t) + y*(s) P(s, t) ds + k* K(t) = 0 a.e. on [0,1] , 
Jo 

(2.24) k*M + J y*(s) P(s9 0) ds = 0. 
Jo 

Proof follows from 2.5, 2.6 and 1.3.14 (cf. 1.3.23). 

2.13. Theorem. Let us assume 2.1 and P(t, 1) = 0 a.e. on [0,1]. Then for given 
g* e LI and q* e R*, the system 

y*(t) + y*(s) P(s, t) ds + k* K(t) = g*(t) a.e. on [0,1] , 
Jo 

k*M+ y*(s)P(s,0)ds = q* 

possesses a solution (y*,k*)eLl x R* if and only if 

I 

g*(t)xf(t)dt + q*x(0) = 0 f 
holds for any solution x e Wn

p of the homogeneous problem i f x = 0. 

Proof follows again from 2.5, 2.6 and 1.3.14. 

2.14. Remark. Let us notice that the side condition (2,2) is linearly dependent if 
there exists qeRm such that q*M = q* K(t) = 0 a.e. on [0,1] (q*(Sx) = 0 for all 
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x G Wp implies that 

xeWn
p-> q*(Sx) = (q*M) x(0) + (q* K(t)) x'(t) dteR 

Jo 
is the zero functional on Wp). 

Analogously as in the case of Stieltjes-integral side conditions (cf. IV. 1.14, where 
no use of the special form of side conditions was made), we can also show that to 
any nonzero linear operator S0: Wp -> Rk and r0 e Rk such that q*(S0x) = 0 
for any xeACn implies q*r0 = 0, there exist m < k, S: Wp -> Rm and reRm 

such that the condition Sx = r is linearly independent and equivalent to S0x = r0. 

2.15. Remark. It follows from the proof of IV. 1.15 that if (2,2) is reasonable and 
linearly independent, then there exists a regular m x m-matrix 0 such that 

[M,K(t)] 
Mo,0 
Mu K.(í) 
o, K2(t) 

a.e. OП [0, 1] , 

where Ai0 e L(Rm Rmo), M, and Kx(t) 

that m0 + m^ + m2 = m, rank 

linearly independent in L% i.e. 

implies q* = 0. The system 

м0 

L-vi.. 

eL(R„Rmi) and K2(t) e L(Rn, Rj are such 

= m0 + ml and the rows of are 

0 a.e. on [0,1] 

/Иox(0) = ro 

УИ 1 x(0)+ K.(í) Jť(í) dt = r. 

K2(t)x'(t)dt = r 2 

is the canonical form of the side condition (2,2). 

2.16. Remark. Another possible functional analytic way of attacking BVP (2,1), 
(2,2) with reRm fixed consists in considering the linear operator £fr defined on 
D(Ser) = {XGWP; SX = r} CZ WP by 

<£r\ xeD(&r)-+Dx - PxeLp. 

BVP (2,1), (2,2) may be rewritten as the operator equation 

j£x = f. 

176 



V.2 

As R(<er) is the set of all feLp for which (')eR(^) and R(&) is closed by 2.5, 

R(Ser) is also closed. By 2.12 R(<£r) is the set of all feLp which fulfil the relation 

y*(t)f(t)dt + X*r = 0 

for all couples (y*, A*) e N(,&*) c L* x R*. In particular, if N*. denotes the set 
of all y* e L^ for which there exists A* e JR* such that (y*, A*) e N(&*), then 

K( <2>0) = iN*) 

(the set of all feLp for which <f, y*>L = 0 for any y* e N*.). 

2.17. Proposition. K ^ o ) 1 = -V*, where ^ (^o) 1 denotes the set of all y* e Lq
n such 

that 
M 

y*(f)f(t)dt = 0 /or any fe .R(^0) 
0 

and N*. is the set of all y* e Lq
n for which there exists A* e K* such that (y*, A*) G 7V(if *) 

(i.e. (2,23), (2,24) hoW). 

Proof. Let y* e L% Then y* e R(Seo)
L if and only if 

n 0 = y*(ř)[Dx - Px](ř)dř 

y*(ř)+ y*(s)P(s,ŕ)ds 
Jo 

x'(ŕ) dř + 
L J O 

ү*(s) P(s, 0) ds c(0) 

holds for every xeD(Seo) = N(S). 

This is true if and only if (u*, v*) e N(S)-1, where 

(2,25) u*(í) = y*(í) + y*(s)P(s,í)ds on [0,1], 

y*(s)P(s,0)ds. 

Since R(S) is a linear subspace in Rm, it is certainly closed and thus according to 
1.3.14 N(S)1 = R(S*), where 

S*: A* e R* -> (SJA*, S*Jl*) e L« x R* 

is the adjoint of S defined by the relation 

A*(Sx) = I '(S*A*) (t) x'(t) dt + (S*A*) x(0) for all x e W„" and A* e £*,. 
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Obviously, (S*A*)(r) = k* K(t) a.e. on [0,1] and S*A* = X*M. This means that 
(u*, v*)eiV(S)J if and only if there exists A*eRm such that 

u*(t) = A* K(t) a.e. on [0,1] , v* = A*M , 

wherefrom R^o)1 = -V* follows immediately by (2,25). 

2.18. Remark. Since by 2.8 dimNJ < oo, Proposition 2.17 is a consequence of 
the following general assertion due to J. Dieudonne (cf. Goldberg II.3.6). 

If Y is a linear normed space, N a Y*, dim N < oo, then ^N)1 = N. 

3. Green's function 

Let us continue the investigation of the operator 

[ Dx —• Px~ 
Sx JeL*xKm, 

given by (2,15). (cf. also (1,6), (1,3) and (2,2).) We assume again that 2.1 holds. More
over, we assume that P(t, 1) = 0 a.e. on [0,1] (cf. 1.15 and 2.2). 

Of particular interest is the case when the operator equation 

(3.1) 2>x = (J 

(or BVP (2,1), (2,2)) has a unique solution for any feLPn and reRm. 

3.1. Notation. Throughout the section / = dim N(D — P), X(t) is an arbitrary 
n x /c-matrix valued function whose columns form a basis in N(D — P) and (SX) is 
the m x /-matrix 

(3.2) (SX) = A4X(0)+ K(t)X'(t)dt. 

(According to 1.8 n < I < oo.) 

3.2. Lemma, dim N(&) = / - rank (SX). 

Proof. By the definition of X(t) we have X6/V(-Sf) if and only if x(t) = X(t)c 
on [0,1], where ceRt is such that 

(3.3) (SX)c = 0. 

Obviously, the functions X(t)cj with CjeRi (j — 1,2,..., v) are linearly dependent 
in Wn

p if and only if the vectors Cj (j = 1,2,..., v) are linearly dependent. The 
assertion of the lemma follows immediately. 
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3.3. Remark. Since rank (SX) < m and / > n, 3.2 implies 

dim N(Se) >n-m. 

3.4. Lemma. R(S£>) = Un x Rm if and only if dimN(if) = n - m. 

Proof. Since by 2.5 JR(=S?) is closed in Un x Rm, R(S?) = Un x Rm if and only if 

(3.4) 0 = codim R(se) = dim ((Un x Rm)\R(Se)) = dim N(Se*) 

(cf. 1.3.11). According to 2.9 

dim N(Se*) = dim N(Se) + m-n 

wherefrom by (3,4) the assertion of the lemma follows. 

3.5. Corollary. BVP (2,1), (2,2) possesses a unique solution for any feUn and reRm 

if and only if 

(3.5) m = n and dim N(S?) = 0. 

Proof follows from 3.4 taking into account that (3,1) has a unique solution for any 

(f J e R(&) if and only if dim N(S?) = 0. 

Analogously as in the case of ordinary differential equations we want to represent 
solutions to (3,1) in the form 

(3.6) x(t) = G(t, s) f(s) ds + H(t) r on [0,1] . 

3.6. Definition. A couple of functions G: [0,1] x [0,l]^L(Rn) and H: [0,l]->L(Rn) 
is said to be a Green couple of BVP (2,1), (2,2) if for any t e [0,1] the rows of G(t, .) 
are elements of Un and the function (3,6) is for any feUn and reRn the unique 
solution of BVP (2,1), (2,2). 

Clearly, (3,6) verifies (3,1) for any feUn and r e Rn if and only if 

(3.7) x(t) = f XG(r, 5) lx'(s) - ( \ [ P ( s , d)] X(<7)"| ds 

+ H(t) M x(0) + K(s) x'(s) ds on [0,1] 

holds for any x e Wn
p. If for any t e [0,1] the rows of G(t, .) are elements of L% 

then by 1.4.33 and 1.4.38 

[1G(Ua)([ds\P(o,s)]x(s)da\ = f 'd S T[^( t ,a) P(a,s)do]x(s) 

= - M G(t, a) P(a, 0)da) x(0) - M G(t, a) P(a, s) da)x'(s) ds 
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for any t e [0,1] and any x e Wp. (We assume P(t, 1) = 0.) Consequently the right-
hand side of (3,7) becomes 

G(t, s) + G(t, a) P((7, s) do- + H(t) K(s) x'(s) ds 
o L Jo J 

+ |H(r)M + 

Thus, since for any x e Wp 

["(')' G(í, o) P((7,0) da <(0). 

<(t) = x(0) + x'(т) dт = x(0) + A(u s) x'(s) ds on [0,1] , 
Jo Jo 

where 

(3,8) A(t, s) •-

the relation (3,7) may be rewritten as follows 

if ř < s, 
if ř > s, 

(3,9) 

+ H(t)ЛH 

s) + G(ř, a) P(a, s) dст + H(t) K(s) - Л(t, s) x'(s) ds 

G(t,a)P(a,0)da- I ]x(0) = for any x є Wp. 

Applying 1.5.15 we complete the proof of the following 

3.7. Proposition. Let us assume 2.1 and P(u 1) = 0 a.e. on [0,1]. Let G: [0,1] x [0,1] 
-» L(Rn) and H: [0,1] -• L(Rn) and let G(t, .) be U-intergrable on [0,1] for any 
te[0,1]. Then G(t,s\ H(t) is a Green couple of BVP (2,1), (2,2) if and only if (3,5) 
holds and for any t e [0,1] 

(3,10) G(t,s)+ G[t,(r)P((T,s)dG + H(t)K(s) = A(t,s) for a.e. se [0,1], 

H(t)M+ G(t,c/)P(o-,0)do- = J, 
Jo 

where A(t, s) is given by (3,8). 

Moreover, we have 

3.8. Proposition. Let the assumptions of 3.1 be satisfied. If m = n and for any 
t e [0,1] G(r, s) and H(t) satisfy the system (3,10), then G(t, s), H(t) is a Green couple 
of BVP (2,1), (2,2). 

Proof. Since (3,10) implies that (3,9) and consequently also (3,7) hold for any 
x G W*, it is easy to see that then (3,6) is a solution to BVP (2,1), (2,2) for any couple 
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(J\eR(se). Furthermore, if x l 9 x 2 e Wn

p and Sex{ = Sex2 = ( j , then inserting 

x = Xi and x = x 2 into (3,7) we obtain 

xx( í ) = G(t, s) f(s) ds + H(t) r = x2(t) on [0,1] , 

i.e. dim N(se) = 0. If m = n, then by 2.9 codim R(S£) = dim N(Se) = 0. Thus 
R(Se) = Lp

nx Rm (cf. 1.9) and this completes the proof. 

Let Se*: Lq
n x R*-+ L\ x R* denote again the analytical representation of the 

adjoint operator to S£ given by 2.6. 

3.9. Lemma. / / (3,5) holds, then dim N(Se*) = 0 and R(Se*) = Un x R*. 

Proof. By 2.9 (3,5) implies 0 = dimN(^) = codim R(Se*) = dimN(^*) and the 
proof will be completed by means of 1.9. 

Lemma 3.9 together with the Bounded Inverse Theorem 1.3.4 yields 

3.10. Proposition. The operator Se*: Lq x R* -> Lq
n x R* defined by 2.9 possesses 

a bounded inverse. 

3.11. Theorem. Let us assume 2.1 with P(t, 1) = 0 a.e. on [0,1] and (3,5). Then 
there exist junctions G: [0,1] x [0,1] -> L(Rn) and H: [0,1] -» L(Rn) which verify 
the system (3,10) for any te [0,1]. Moreover, 

(i) given te [0,1], \G(u .)\\Lq < co (q = p\(p - 1) if p > 1, q = oo if p = 1), 
(ii) there exists fieR such that 

\\G(t, .)||L, + |H(r)| <JS< oo for any re [0,1], 

(iii) if G: [0,1] x [0,1] -• L(Rn) and H: [0,1] -> L(Rn) also fulfil (3,10) for any 
t e [0,1], (i) and (ii), then G(t, s) = G(t, s) and H(t) = H(t) for all t e [0,1] 
and for a.e. se[0,1] . 

Proof. Let dj(t9 s) and e* (j = 1,2,..., n) be the rows of A(t, s) and /, respectively. 
By 3.10 any equation from the system 

(3,11) <t>*(g*,h*) = (8*(t,.),ef), f 6 [ 0 , i ] , j=l,2,...,n 

has a unique solution (g*(t, .), h*(t)) in L« X R* and 

P'12) l«T(«. Olw +1*7(')| < 4\sj(t, .) |„ + |e;|) 
for any t e [ 0 , l ] a n d j = l,2,...,n, 

181 



V.4 

where x = IK^?*)"1!! < oo. Let us put 

G(t, s) = [gl(t, 5), g2(t, 5), ..., gn(t, 5)]* on [0,1] x [0,1] , 

H(t) =[h1(t), h2(r), ..., hn(t)]* on [0,1]. 

Then, given re[0,1], the couple (G(t,s), H(t)) verifies (3,10). By (3,12) 

\\G(t9 .)\\Lq + \H(t)\ < nx < 00 for any re [0,1] 

whence (ii) follows. The assertion (iii) is a consequence of the uniqueness of solutions 
to the equations (3,11). 

3.12. Corollary. Under the assumptions of 3.11 the given operator $£ possesses 
a bounded inverse 

Se~l: r J E Lp x Rm -> I ^(t , s) f(s) ds + H(t) r e Wp. 

3.13. Theorem. Let us assume 2.1 wit/i P(t, 1) = 0 and (3,5). 77zen the couple 
G(f, s), H(t) given by 3.11 is a Green couple ofBVP (3,1). If6(f, s), H(t) is a/so a Green 
couple to (3,1), then 6(r,5) = G(t,s) ana1 H(t) = H(t) for a// te\0,1] and almost 
all s €[0,1]. 

Proof follows from 3.7 and 3.11. 

3.14. Remark. Let r e Rn. According to the definition 3.1 of X, x e Wp is a solution to 

(3,13) Dx-Px = 09 Sx = r 

if and only if x(t) = X(t) c on [0,1], where CERL fulfils (SX) c = r. In particular, 
if we assume (3,5), then by 1.8 / = n and by 3.2 det(SX) 4= 0, i.e. x e Wp verifies 
(3,13) if and only if x(t) = H(t) r on [0,1], where 

ft(t) = X(t)(SX)-1 on [0,1]. 

On the other hand, if G(t, s), H(t) is the Green couple of BVP (2,1), (2,2), then 
x(t) = H(t) r on [0,1] is for any reRm the unique solution of (3,13) on Wp. Hence 
(H(t) - H(t)) r = 0 on [0,1] for any r e Rn or 

H(t) = X(t)(SX)~l on [0,1]. 

Let us notice that the columns of X being elements of Wp, the columns of H(t) are 
also elements of Wp. 

4. Generalized Green's couples 

If P: [0,1] x [0,1] -> L(Rn) is an L2[£F]-kernel, then obviously 

I |P(T,s)|2dt+ |1 |P(t,tr)|2d(7<oo 
Jo Jo 
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for almost all Use[0,1] (cf. 1.1). Moreover, according to the assumptions (1,1) 
and (1,2) (where p — 2) 

|P(ř,s)|2ds dř < g2(t) dř < oo . 

By the Tonelli-Hobson Theorem 1.4.36 this implies that if an L2[BV]-kernel P(t, s) 
is measurable in (t, s) on [0,1] x [0,1], then 

(4Д) \P(t, s)\2 dí ds = ( |P(í, sf ds j dř < oo . 

[0, l jx[0, l] 

4.1. L2-kernels. The function P: [0,1] x [0,1] -• L(Rn) is said to be an L2-kernel 
if it is measurable in (r, s) on [0,1] x [0,1] and fulfils (4,1). Given an L2-kernel P, 
|||P||| is defined by (4,1). 

Let us recall some basic properties of L2-kernels and of Fredholm integral 
equations for ueL2

n 

(4Д) u ( í ) - P(f,s)u(s)ds = g(íj 
Jo 

with an L2-kernel P. (For the proofs see e.g. Dunford, Schwartz [1] or Smithies [1].) 
Let P: [0,1] x [0,1] -• L^Rn) be an L2-kernel. Then for any u e L2, the n-vector 

valued function 

g(t)= P(í,s)u(s)ds, í є [ 0 , l ] 

is L2-integrable on [0,1] and the mapping ueL2

n-+ geL2

n is linear and bounded. 
(This may be shown easily by making use of the Cauchy inequality and the Tonelli-
Hobson Theorem 1.4.36.) Moreover, a linear operator 0: L2

n->L2

n is compact if 
and only if there exists an L2-kernel T: [0,1] x [0,1] -* L(Rn) such that 

0: ueL2

n-» T(t,s)u(s)dseL2

n. 

If | | |P| | < 1, then the equation (4,2) possesses for any g e L2 a unique solution u 
in L2 and there exists an L2-kernel R: [0,1] x [0,1] -> L(Rn) such that for any 
g e L2 the unique solution ueL2

n of (4,2) is given by 

f1 

u(t) = g{t) + *(*, s) g(s) ds, te [0,1] . 
Jo 

R is called the resolvent kernel corresponding to P. 
Finally, given an L2-kernel P, there exist a natural number n\ functions Px: [0,1] 

-> L(Rn, Rn) and P 2: [0,1] -• L(Rn, Rn.) L2-integrable on [Q, 1] and an L2-kernel 
P0: [0,1] x [0,1] -> L(Rn) such that 

(4,3) | | |P 0 | | < 1 and P(t, s) = P0(t, s) + Px(t) P2(s) on [0,1] x [0,1] . 
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Let us turn our attention to BVP (2,1), (2,2) fulfilling 2.1 with p = q*=2 and 
P(t, 1) = 0 a.e. on [0, l ] . (P(t,s) is an L2[BV]-kernel, K is L2-integrable on [0, l] 
and feL2

n) 
A function x G W2 is a solution to BVP (2,1), (2,2) if and only if 

where x = 0c + Vu + •Ff, 

U(T) dx 6 W„2 (4.4) <*>: ceRn^z(t) = ceW2, Y: ueL2
n 

and the couple ( J e L2 x Rn verifies the system 

(4.5) u - P<f>c - PVu = PYf, 

(4.6) S<f>c + S<Fu = r - S<Ff. 

In fact, if x e W2 is a solution to BVP (2,1), (2,2), then x = # x(0) + YPx + Yf 
and Sx = S# x(0) + SYPx + SVf = r. Consequently, u = Px and c = x(0) 

satisfy (4,5) and (4,6). (Clearly u e L2.) On the other hand, if ( 1 e L2 x Rn is a solu

tion to the system (4,5), (4,6) and x = # c + *Pu + ?Pf, then x(0) = c, Px = P4>c 

+ P¥*u + PYf = u and hence x - <f> x(0) - fPx = !Pf and Sx = r. 
Let us mention that in virtue of 1.4.33, the composed operator P*P: L2 -> L2 

is given by 

(4.7) P¥: ueL2
n-> - \ P(t,s)u(s)dseL2 . 

Now, let a natural number n\ an L2-kernel P0: [0,1] x [0,1]-> L(.R„) and 
LMntegrable functions Px: [0,1] -> L(R^,R„) and P2: [0,1] — L(Rn,Rn) be such 
that (4,3) holds. Furthermore, let R0: [0,1] x [0,1] -> L(K,.) be the resolvent 
kernel corresponding to P0. The symbols P0, Pu P2 and R0 will denote the linear 
operators 

(4,8) P0: ueL2
n-* - P0(í,s)u(s)dsєL2 

P , : d є Я я . - > - P , ( t ) d є L 2 , 

P 2: u e L ^ I P 2(s)u(s)dsєҚ,, 

R0: uєL 2 -* -
*i 

R0(t,s)u{s)dseL2„ 
0 

as well. All of them are obviously compact. 
By (4,3) and (4,8) we may write 

P*P = P0 + P,P2 
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and the equation (4,5) becomes 

u - P0u = P#c + PxP2u + PVf. 

Accordingly 

(4.9) u - [/ + R0] (P4>c + PxP2u) = [/ + R0] P«Pf. 

Let us denote 

d = P2u. 

Then the equation (4,9) reduces to 

(4.10) u = [/ + R0] P#c + [/ + R0] P-d + [/ + R0] PVf. 
Applying P2 to (4,10) and inserting (4,10) into (4,6) we reduce the system (4,5), (4,6) 
to the system of equations for c e Rn and d e Rn* 

•GK-%, 
where 

U 12. B f ^ U R - ( / _ P 2 [ ' + R o ] P < ? C + (' - P ^ + R ^ P l ^ V R 
{' ' \d) n+" \S(I - T[l + Ro]P)0c + S<F[I + R0]P1dy e K"+- , 

and 

(4.13) F,: f e L2„ - P2[/ + R0] P¥»f e J?„,, 

F2: f 6L
2„ -> S«P(/ + [/ + R0] P<F) f eRm. 

The operator B may be represented by a uniquely determined (m + rt) x (n + rt)-
matrix. Let us denote this matrix again by B. 

Thus BVP (2,1), (2,2) possesses a solution x e Wn
2 if and only if the system (4,11) 

possesses a solution I )eRn+n> and x is then given by 

(4.14) x = (# + <P[/ + R0] P#) c + «P[/ + R0] P0d + Y[l + R0] P<Pf + Tf. 

Let J i ^ ^ R j , Jl52eL(Rm,Kw), A2AeL(Rn) and J u 6 L ( R m , K , ) be 
chosen in such a way that 

в+ = ' ' ' \eL(Rm+n,, Rn+n) 
_/-2,l> Z I2,2J 

fulfils BB+B = B (e.g. B+ = B*). Then if (4,11) has a solution, the couple 

(4,15) c = [AUA - Au2F2]f+AU2reRn , 

d=[A2AF1-A2aF2]f+A2r2r<=Rn<, 

is also its solution. 

185 



V.4 

Inserting (4,15) into (4,14) we obtain that if BVP (2,1), (2,2) has a solution, then 

(4.16) x = 0[GJ + H-r] + «P[f + R0] (G2f + H2r) + <Pf 

with 

(4.17) G^A^-A^F,, H,=AU2, 

G2 = P4»(dlflFx - AU2F2) + P.(d2f.F. - A2aF2) + P?P, 

H2 = P«Pd12 + P 1 J 2 2 

is also its solution. As G t : L
2 -> i?n is a linear bounded n-vector valued functional 

on L2 and [I + R0] G2 e K(L2), there exist an L2-integrable function Gx: [0,1] 
-> L(R„) and an L2-kernel G2: [0,1] x [0,1] -• L(Rn) such that 

(4.18) Gt:feLl^ [G,(s) f(s) dseR„, 
Jo 

[I + R0]G2: feL2
n^ ^G2(t,s)f(s)dseLl. 

Applying the Tonelli-Hobson Theorem 1.4.36 we may show that 

J ( I G2(T,S) f(s)ds)dT = I ( f G2(T,S)dT) f(s)ds 
Jo \Jo / Jo \Jo / 

for any feL2
n and t e [0,1], i.e. 

(4.20) <P[l + R0]G2: f e L2 - £ (JG2(T, S) d r ) f (s) ds e PV„2 . 

Furthermore, by (4,3), (4,4) and (4,8) there exist an L2-integrable function H2: [0,1] 
-• L(Km, Rn) such that 

H2 = P # J l j 2 + P1zl2>2: r€Rm-^H2(t)reL2
n. 

Consequently, 

(4.21) «P[/ + R0] H2: reR m - ( T H 2 ( T ) d T V 

where 

H2(f) = fl2(t) + J R0(t, T) H2(T) dT, te [0,1] 

is also L2-integrable on [0,1]. Inserting (4,18), (4,20) and (4,21) into (4,16) we obtain 
that if BVP (2,1), (2,2) has a solution, then also 

(4.22) x(t)=\G0(t,s)f(s)ds + H0(t)r, t e [0 , l ] , 
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with 

(4.23) G0(t, s) = G,(s) + G2(T, S) dT + A(t, s) on [0,1] x [0,1] , 
Jo 

A(t, s) = 0 if t < s, A(t, s) = / if t > s, 

H^^H, + H2(T)dT on [0,1] 
Jo 

is a solution to BVP (2,1), (2,2). It follows from the definition of the functions 
G0(t, s) and H0(t), that the linear operator 

(4.24) S£+: (^ e L2 x Rm - £ c o ( t , s) f(s) ds + H0(t) r e *VM
2 

is bounded. The results obtained are summarized in the following theorem. 

4.2. Theorem. Let the assumptions 2.1 with p = q = 2 be fulfilled and, moreover, 
let P(t, s) be measurable in (t, s) on [0,1] x [0,1]. Then there exist functions 
G0: [0,1] x [0,1] ^L(Rn) and H0: [0,1] -» L(Rm, £„) swc/i tha* for any feL2 

and reRm the function x(t) given by (4,22) belongs to W2 and the linear operator ££+ 
given by (4,24) is bounded. Furthermore, if BVP (2,1), (2,2) possesses a solution, then 

(4,22) (i.e. x = =öf+ I I) is also its Solution. 

4.3. Remark. According to the definition IV.3.10 we may say that G0(t,s), H0(t) 
is a generalized Green's couple of BVP (2,1), (2,2). The operator cSf+ given by (4,24) 
fulfils the relation &&+<£ = <£. 

4.4. Proposition. The functions G0(t, s) and H0(t) defined by (4,23) have the following 
properties 

(i) H0 possesses a.e. on [0,1] a derivative which is L2-integrable on [0,1], 
(ii) G0 is an 1}-kernel, G0(.,s) is of bounded variation on [0,1] for a.e. se [0,1], 

(hi) y(s) = |G0(0,5)| + varl
0 G0(.,s)eL2, 

(iv) for almost every se[0,1] the columns of G0(.,s) — A(.,s) belong to the 
space W2. 

Proof follows from the construction of the functions G0(t,s) and H0(t) (Go(0,s) 
= G^s), varjzl(.,s) < 1 and hence 

y(s) < \Gx(s)\ + J |G2(T, S)\ dT + 1 a.e. on [0,1] .) 

4.5. Remark. If k = dim jV(if) > 0, let X0 denote the n x fc-matrix function whose 
columns form a basis in N(&\ If k* = d i m N ^ * ) > 0, let Y0: [0,1] -> L(Rn,Rk*) 
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and A0eL(Rm, Rk*) be such that the couples (y*, A*) (j = 1,2,..., fc*) of their 
rows form a basis in N(££*\ Then evidently for any L2-integrable function 01: [0,1] 
-• L(1vn, Rk), any matrix 02eL(Rm,Rk) and any function Z: [0,1] -• L(Kfc*, Rn) 
of bounded variation on [0, 1] 

(4.25) G(t, s) = G0(t, s) + X0(r) 0t(s) + Z(t) Y0(s), t,se [0,1] , 

H(t) = Ho(t) + Xo(t)02 + Z(t)Ao 

is also a generalized Green's couple of BVP (2,1), (2,2) and fulfils (i) — (iv) from 4.4 
in place of G0(t, s) H0(t). 

4.6. Definition. Generalized Green's couples of the form (4,25) will be called standard 
generalized Green's couples. 

4.7. Remark. It is easy to verify that given a standard generalized Green couple 
G(t, s), H(t), the operator 

(4.26) ££+: ft) e L\ x Rm -+ PG(t, s) f(s) ds + H(t) r 

is bounded and fulfils the relation <£<£+<£ = <£. *) 

4.8. Remark. Making use of the equivalence between BVP (2,1), (2,2) and the linear 
algebraic equation (4,11) we could obtain (under the assumptions 2.1 with p = q = 2) 
the basic results of the Section V.2 in a more elementary way. An analogous procedure 
can be applied also to BVP 

(4.27) x'(t) - A(t) x(t) - C(t) x(0) - D(t) x(l) - J 'dj/ ty, s]\ x(s) = f(t) 

a.e. on [0,1] , 

(4.28) M x(0) + K(t) x'(t) dt = r, 

where A is supposed to be only L-integrable on [0,1] and K is measurable and es
sentially bounded on [0,1]. (In general BVP (4,27), (4,28) cannot be rewritten as 
the system of the form (2,1), (2,2) fulfilling the assumptions of this section.) If X(t) 
denotes the fundamental matrix solution of the equation x'(t) — A(t) x(t) = 0, 
then BVP (4,27), (4,28) will be transferred to a system of integro-algebraical equations 

*) Since in general we may not assume that X0(r) has a full rank on [0,1] (cf. 1.10), we may not apply 
the procedure from IV.3.12 to show that ^ + e B(L;, x Rm, W2) fulfils SfSf^Sf = 2> if and only if Sf+ 
is given by (4,26), where G(t, s), H(t) is a standard generalized Green's couple. 
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for u e L2 and ceRn of the form (4,5), (4,6) (with an L2-kernel) by means of the 
substitution 

u(t) = C(t) x(0) + D(t) x(l) + j \ [ R ( t , s)] x(s) 

c = *(0). 

On the other hand, 

x(í) = X(í)c + X(t) 

i.e. x = Uc + Vu + Vf. 

X-^sMsJds + Xíí) X-^fisjds, 

5. Best approximate solutions 

We still assume that P: [0,1] x [0, l ] -> L(Rn) is a measurable L2[BV]-kernek 
P(t, 1) = 0 a.e. on [0,1], the columns of K: [0,1] -> L(R„Rm) belong to L2, feL2

n 

and r e Rm. Given x, u e W2, let us put 

(5Д) (x,u)x = u*(t)x(t)dtєR. 

Clearly, x, u e W2 -> (x, u)x e R is a bilinear form on VV„2 x W2, while (x, u)x 

= (u, x)x for all x,ue W2 and (x, x) x = 0 if and only if x(t) = 0 on [0,1]. It means 
that (., .)x is an inner product and x e W2 ~> | |x| |x = (x,x)x

12 is a norm on W2. 

Analogously, 

(5,2) <p = Q tfr = Q e L 2 x Rm -> (<p^)Y = <<p, r>L2«R 

I 

g*(t)f(t)dt+ q*reR 

is an inner product on L2 x Rm and <peL2

n x Rm -> ||<p||y = (<p, <p)1/2 is a norm 
on L2 x Rm. Moreover, as |c| < |c| e = (c*c)1/2 < njcj for any ceRn, 

2 

L 2 * Я 
WV dř f + |r|J> ~((jjf(42 dt)1^ | r | ^ [~ 

On the other hand, 

for all feL\ and reRm. 

n|fW|2dt + |r|2-2(f|f(t)|2dtY/2 |r|>0 
o \Jo / 
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and hence 

2 > 2 ( [W* + ).î(([W*),в
+и),-KfO 

L 2 x R 

l .Є. 

(5,3) - | k | | Y < \\<P\\L2*R< V(2)lkllY for each q>eL2

nxRm. 

It follows immediately that the space L2

n x Rm endowed with the norm 
complete, i.e. it is a Hilbert space. 

1S 

5.1. Notation. In the subsequent text X stands for the inner product space of 
elements of W2 with the inner product (5,1) and the corresponding norm ||. \\x. 
Y denotes the Hilbert space of elements of L2

n x Rm equipped with the inner product 
(5,2) and the corresponding norm ||. ||y. The operator xeX -* 5£xe Y (cf. (2,3)) 
is denoted by si. 

5.2. Remark. Evidently s4 e L(K, Y), R(s/) = R(£e) and N(s/) = N(Se). It follows 
easily from (5,3) and 2.9 that R(s/) is closed in Y. 

5.3. Remark. Let us notice that in general s/ is unbounded. 

5.4. Notation. If k = dim N(£e) > 0, then X0 denotes the n x fc-matrix valued 
function whose columns form a basis in N(5£). If k* = dim N(££*) > 0 and (Yj, A*) 
e L\ x R* (j = 1,2,..., k*) is a basis in N(£e*\ let us put Y*(t) = [Yl(t\ y2(t),..., Yk*(t)] 
on [0,1] and A* = [Al5 A2,..., V ] . 

5.5. Lemma. If k* > 0, then the k* x k*-matrix 

C = J VoWYr*(t)dt + /l0/lS 

is regular. If we put 

iî k*>0, 

ni = » if fc* = o, 

then 17! is an orthogonal bounded projection of Y onto R(srf). 

Proof. If there were S*C = 0 for some deRk*, then it would be also 0 = 5*C5, i.e. 

0 = £ (á* Y0(t)) (Y$(t)S)át + (8*A0)(A*5) = |(¥J(í)í, /H?í)| 
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This may hold if and only if 5*[V0(t), A0~\ = 0 a.e. on [0,1]. Hence d*C = 0 implies 
S* = 0. 

Furthermore, it follows easily from 2.12 that II^eR^s/) for any <peY and 

nxq> = (p if <peR(&0). Finally, given <pe[ ) e Y and ^ = I I e ^ ( ^ ) , we have 
by 2.12 W V q y 

(9 - n1<P, *)Y = £1«*(f) Y?(0 dt + q*A*0 

The boundedness of II x is obvious. 

5.6. Lemma. If k > 0, t/ien the k x k-matrix 

D=\1X*(t)X0(t)dt 

C 1 ]> (s) f(s) ds + Л0r = 0. 

is regular. The mapping 

(5,5) n2: x G X -» X0(t) D"* ( Xg(s) x(s) ds J e X 

/J2 = 0 if k = 0 

is an orthogonal bounded projection of X onto N(#4). 

if k>0, 

Proof. The regularity of D follows analogously as the regularity of C. Obviously 
R(n2) c N(st). Furthermore, if 8 e Rk and x(t) = X0(r) 8 on [0,1] (i.e. x e #(-**)), 
then 

(/I2x)(t) = X0(t) D1 (Tx*(s)X 0(s)ds)8 = X0(t)8 = x(t). 

Consequently R(n2) = N(s/) and III = U2. Finally, given xeX, 8eRk and 
u(t) = X0(t)<5, 

(x - !72x, u)x 

= 5* ( Px^t) x(t) dt) - 5* ( fxS(t) X(t) dt) D- * ( Px$(t) x(t) dt) = 0. 

5.7. Definition. A function u0 e W? is said to be a least square solution or a best 
approximate solution of BVP (2,1), (2,2), if it is a least square solution or a best ap
proximate solution of the operator equation 

(5,6) - - ( r 
sѓx 

respectively. 

Let us assume 2.1 with p = q = 2 and let P(t, s) be measurable in (t, s) 
on [0,1] x [0,1]. Then there exist a standard generalized Green's couple G(t, s), 
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H(t) ofBVP (2,1), (2,2) such that for any fe L2

n and reR„ 

(5Д) u0(í) = G(í, s) f(s) ds + H(t) r on [0,1] 

is the unique best approximate solution of BVP (2,1), (2,2). 

Proof. Let G0(t,s), H0(t) be the generalized Green's couple of BVP (2,1), (2,2) 
given by 4.2 and let Se+: L2 x Rm -> W2 be the corresponding generalized inverse 

operator to S£ given by (4,24). Let us define s/+: ( \eY-> &+ ( \eX and 

(5.8) s4*: (fjeY^(l-n2)s/ + nl(
fJeK, 

where IIleB(Y) and n2eB(X) are given by (5,4) and (5,5), respectively. Then 
srf+eL(XX\ sJ*eL(XX\ s4s4+st = stf and according to 1.3.28 and 1.3.29 

u0 = ss/* ( J is the unique best approximate solution of (5,6) for every feL2
n 

and r e Rm. Taking into account 4.4, (5,4), (4,24) and making use of 1.4.36 we obtain 
that for any feL2

n and reRm 

(5.9) s/+n, (fJ (t) = J G(t, s) f(s) ds + H(t) r on [0,1] , 

where 

(5.10) G(t, s) = G0(t, s)-( J XG0(t9 a) Yg(o) da J C ' Y0(s) on [0,1] x [0,1] , 

H(t) = H0(t) - H0(t) AtC~ M 0 on [0,1] . 

Obviously, fi(r, s) is an L2-kernel and (j(r, s), H(t) is a standard generalized Green's 
couple of BVP (2,1), (2,2). By 4.2 and 1.4.36 we have 

Г Xg(т) Ő(т, s) f(s) ds dт = X*(т) Ő(т, s) dт f(s) ds. 

Consequently, putting 

(5,11) G(t,s) = G(t,s)-X0(t)D-i X*(т)Ő(т,s)dт on [0,1] x [0,1] , 

H(t) = Й(t) - X0(t) D ^ X*(т) H(т) dт on [0,1] , 

we obtain 
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5.9. Remark. Let us notice that veX is a least square solution to BVP (2,1), (2,2) 
if and only if 

(5,12) 0 = (sfx9 s/v-r )) for any x e K . 

Since by the definition (5,2) 

= <x, se*(Sev)* - Se*(f*, r*)>L x R for any x e W„2 , 

the condition (5,12) is equivalent to 

se*(sev)* = se*(f*, r*) 
or 

(5,13) v'(t) + P(í,0)+ ľ l 

•J. P(t,s) + P*(s, í) + 

v(0) 

P*(a, t) P(a, s) áa + K*(t) K(s) v'(s)ds 

= f(t) + P*(s, t) f(s) ds + K*(t) r a.e. on [0,1], 

[ M*M + v(0) P*(a,0)P(a,0)da 
I _ 

+ #M*K(s) + P*(s,0)+ P*(a,0)P(a,s)da v'(s)ds 
Jo L Jo J 

ľp*(s,0)f(s)ds. = M*r + 

Let us notice that the system (5,13) of equations for u = v' e L2 and c = v(0) e Rn 

may be treated in the same way as the system (4,5), (4,6) (cf. also Lemma 3.1 in Tvrdy, 
Vejvoda [1]). If P(.,s) and K are of bounded variation on [0,1], then the system 
(5,13) may be reduced to the form (2,1), (2,2). 

5.10. Remark. Let rejRm be fixed and let us define 

Dr={xeW2; Sx = r} and Ser\ xeDr-* Dx - PxeL2
n. 

Then R{S£r) is closed in L2 (cf. 2.16). Hence if Dr 4= 0, then by the Classical Projection 
Theorem (Luenberger [ l ] , p. 64) R{S£r) contains a unique element y of minimum 
L2-norm and y e R ^ ) 1 . It follows from 2.17 that ||y||L2 < \\f \\L2 for all feR{Ser) 
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if and only if there exists A* e R* such that (y*, A*) e N(5£?*). Thus ueDr fulfils 
|| Du — Pu || L2 < || Dx — Px||L2 for all xeDr if and only if there exists X*eR* 
such that 

£>*((Du - Pu)*, A*) - 0 . 

6. Volterra-Stieltjes integro-differential operator 

Let P: [0,1] x [0,1] -> L(R„) be an Lp[BV]-kernel and let for a.e. re [0,1], 
P(U s) = P(t, t) if 0 < t < s < 1. Then 

% i 

P: xєИÍ" ds[P(t,S)]x(s)= ds[P( t ) S)]x(5)єЦ 
> Jo 

and the Fredholm-Stieltjes integro-differential operator <£ = D — P defined in 1.5 
reduces to a Volterra-Stieltjes integro-differential operator 

(64) ^ = D - P : xєw/->x'(t) ds[P(t,S)]x(S)єLS. 

If P(t, s) = P(r, t) = 0 for 0 < t < s < 1, then by 1.4.38 

«/u \«/ 

ds[P(т,s)]x(S) dт = X I ? s [ p { T ' s ) ] x ( s ) ) d T 

í' 
Jo 

P(т, s) dт Ф) P(т, :з) dт Ф). 

Thus, if f e Un, then by integrating the Volterra-Stieltjes integro-differential equation 
for x e Wf 

(6,2) 

we obtain 

c'(í) - ľds[P(t, S)] x(S) = f(t) a.e. on [0,1] 

6.1. Proposition. If P(t, s) = 0 for 0 < t < s < 1, then a function x e BVn is a solution 
to (6,2) if and only if 

(6,3) x(t) - I ds[Q(t, S)] x(S) = x(0) + I V(x) dT on [0,1] , 
Jo Jo 

where 

(6,4) Q(t, s) = P(T, S) dT if 0 < S < t < 1, Q(t, s) = 0 if 0 < t < s < 1 

(Obviously, if x e BV„ fulfils (6,3), then x e W/.) 
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6.2. Remark. Let us notice that if P0(t,s) = P(t,s) - P(t, t) on [0,1] x [0,1], then 
P0(t, s) = 0 for 0 < t < s < 1 and 

ds[P0(t, s)] x(s) = ds[P(t, s)] x(s) for any t e [0,1] and x e Cn. 
Jo 

This means that the assumption P(t, t) = 0 for every t e [0,1] does not cause any 
loss of generality. 

6.3. Proposition. v [ (U]x[01](Q) < oo, Q(0, s) = 0 on [0,1] and Q(_, t-) = Q(t, _) = 0 
/or any £e(0,1]. 

Proof. Let a net-type subdivision {0 = t0< tt < ... <tk = 1; 0 = s o <s 1 < ... <sk= 1} 
be given. Then 

m, ЛQ) = r. (P(т,_;)-P(т,_,_.))dт < 
J í ť - 1 

S j ) - P ( т , 5 J _ 1 ) | d т . 

Hence 

í Ž"ЧJ(Q)-Î 
i = l 7 = 1 

ľt̂ ,-/ 
Jo J = l 

)-P(т,_ J _ 1 ) |dт__ _(т)dт ÍV)« 
Jo 

and consequently v[0 1 ] x [ 0 4 ] ( Q ) < oo. The other assertions of the lemma follow 
immediately from (6,4). 

Making use of the results obtained for Volterra-Stieltjes integral equations in 
the Section II.3 we can deduce the variation-of-constants formula for Volterra-
Stieltjes integro-differential equations. 

6.4. Theorem. Let P: [0,1] x [0,1] -> L(Rn) be an U\BV\kerne\ such that for 
a.e. t e [0,1] P(t,s) = 0 if 0 < t < s < I. Then for any ceRn and feLp there 
exists a unique solution x of the equation (6,2) in Wp such that x(0) = c. 

Furthermore, there exists a uniquely determined function U: [0,1] x [0,1] -> L(Rn) 
such that for any feLn and ceRn this solution is given by 

(6,5) x(ř)= U(í,0)c + U(ř,s)f(s)ds, t є [ 0 , l ] . 

The function U satisfies the equation 

8 f' 
(6,6) — U(t, s) = dr[P(t, r)] U(r, s) for any s e [0,1] and a.e. t e [s, 1] . 

Moreover, v[0 1 ] x [ 0 n(U)-h varj U(0, .) < oo, U(.,s) is absolutely continuous on 
[0,1] for any s e [0,1] and U(t, s) = I if 0 < t < s < 1. 
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Proof. Let F: [0,1] x [0,1] -> L(Rn) correspond to Q by 11.3.10. In particular, 
the function x: [0,1] -• Rn given by 

x(í) = c + f(x) dx + ГW.-)] 
Jo 

c + f(т)dт 

is for any ceRn and f e LPn a unique solution to (6,3) such that x(0) = c. Integration 
by parts yields 

[*t 

(6.7) x(t) = [/ + r(t91)] c + [»+ r(t, t) - r(t, s)] f(s) ds on [0,1] . 
Jo 

Denoting 
(6.8) U M ^ ' + r ( M ) - F ( t ' S ) l f O ^ * ' * 1 ' 

if 0 < ř < s < 1, 
the expression (6,7) reduces to (6,5). (Recall that r(t,0) = 0 for every £e[0,1].) 
In our case the function T satisfies for 0 < s < t < 1 the relation (cf. (II.3.29)) 

r(r,s). 
t 

dr P(т,r)dт 
0 r _ 

(6,9) r(t, s) = P(T, S) dT - P(T, 0) dT + 
Js Jo 

Taking into account that P(T,r) = 0 if 0 < T < r < l and F(r,s) = F(r,r) if 
0 < r < s < 1 and employing L4.38 we obtain for 0 < s < t < 1 

dr [ [ P(T, r) d J r(r, s) = [dr \ [P(T, r) d J F(r, s) 
Jo LJr J Jo LJo 

= { (£«M;P(T, r)] F(r, 5)) dT = £ ( J \ [ P ( T , r)] T(r, s)) dT 

= [' (£dr[P(x, r)] T(r, s)) dT + ^ ( | \ [ P ( t , r)] T(r, r)) dT . 

It is easy to verify (cf. also (6,8) and (6,9)) that 

U(t,s) = / - J P(T, S)dT - P ( Pdr[P(T,r)] (r(r, s) - T(r, r))\dT 

for 0 < s < t < 1. 

On the other hand, it follows from (6,8) that 

J \ [ P ( T , r)] U(r, s) = -P(T, S) - J \ [ P ( T , r)] (r(r, r) - T(r, s)) 

for 0 < s < T < 1. 
Thus (U(s,s) = l) 

U(t, s) = U(s, s)+ \ l\ dr[P(T, r)] U(r, s) J dT if 0 < s < t < 1, 

which yields (6,6) immediately. 
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As v[0 1 ] x [ 0 1 ] ( r ) < oo (cf. II.3.10), also v [ 0 > 1 ] x [ 0 > 1 ](U) < oo. The other assertions 
of the theorem are evident. 

6.5. Remark. Denoting for ceR„ feLp and re [0,1] 

(6,10) (Фc)(íj=U(f,0)c and (Гf){t) = U(t,s)f(s)ds, 

the variation of constants formula (6,5) for solutions of (6,2) becomes 

(6,11) x(t) = (#c) (t) + (Vf) (t) on [0,1] (x = &c+ Vf). 

By 6.4 the functions 4>c and f f belong to Wp for every ceRn and feLp. More
over, the linear operators # : ceRn-+&ceWn

p and !P: feLp->*PfeWp are 
bounded. Indeed, if feLp and ij/ = *Pf, then in virtue of 1.4.27, 1.6.6 and 6.4 we 
have for a.e. t e [0,1] 

m = 

Consequently 

ds[P(t,s)]ф(s) + f(t) 1dT[P(t,z)]([tU(x,s)f(s)ds 
o \Jo 

+ \m\ 
<Q(t) Štip \U(t,S)\ \\f\\L1 +\f(t)\. 

t,se[0,l] 

\*f\\w, = Mw < (1 + | e | M sup \U(t,s)\)) \\f\\LP., 
ř,se[0,l] 

i.e. *PeB(Lp, Wp). Analogously we could obtain &eB(Rn, Wp). 

6.6. Corollary. Let °Ubea linear normed space and let 0 e B(fll, Lp). IfP: [0,1] x [0,1] 
-> L(Rn) is an Lp[BV]-kernel such that for a.e. te[0,1], P(t,s) = 0 if se[t, 1], 
then for any uetft, feLp and ceRn there exists a unique solution x e Wp of 

Dx-Px = 0u-hf, x(0) = c. 

77ns solution is given by x = 0c + *P0u + *Pf 

6.7. Remark.Let r>0 and let P: [0,1] x [-r, 1] -> L(Rn) be an Lp[J5V]-kernel 
on [0,1] x [-r, 1] such that P(t, s) = 0 if t < s and P(r, s) = P(t, t - r) if s < t - r. 
Let u e BVn[ — r, 0] and f e Lp be given and let us lool^ for a function x e BVn[ — r, 1] 
absolutely continuous on [0,1] and such that x! is LMntegrable on [0,1] and 

(6,12) 

If we put 

Лi) ds[P(t,s)]x(s) = f(t) a.e. o n [ 0 , l ] , 
r 

x(t) = u(t) on [ - r , 0 ] . 

: u є' BV„[-r,0] -> | ° ds[P(t, s)] u(s)є U„, 

197 



V.6 

then 0 is a linear compact operator (cf. 1.4). For any x e BVn[ — r, 1] and t e [0,1] 
we have 

ds[P(ŕ,s)]x(s) ds[P(í,s)]x(s) + ds[P(í,s)]x(s). 

Thus our problem may be formulated in the form of the operator equation 
Dx - Px = 0u + f and according to 6.6 (with % = £V„[-r,0]) the equation 
(6,12) has for any u e B ^ [ - r , 0 ] and xeLp a unique solution x e Wp such that 
x(t) = u(t) on [ - r , 0 ] . This solution is of the form x = <P0u + Vf, where 
0O: ueBVn[ — r,0] ->4>u(0) + *P0ueWn

p is a linear compact operator. (Let us 
notice that in virtue of 1.4.38 

(Ф ou)( í)=Ц í,0)u(0) + rU(ř,T)P(T,s)dTju| (s) on [0,1] 

for any ueBVn[ — r,0].) Thus, the variation-of-constants formula for functional-
differential equations of the retarded type (cf. Banks [1] or Hale [1]) is a con
sequence of Theorem 6.2. 

Analogously we may show that if 0 < rt < r (i = 1,2,..., fc), At: [0,1] -> L(Rn) 
i= 1,2,..., k) are measurable and essentially bounded on [0,1] and _40: [0,1] 
x [-r,0]-» L(#J is measurable and essentially bounded on [0,1] x [-r, 0], 

then the system 

><\ v_wJ° if t-rt>0\ (6,13) 
i=í 

" 0 

u(t - ГІ) if t - ГІ < 0 

f 0 if ř + s > 0 
t + s) if ř + s < 0 

A 0 (M)|- ( f . :. - • " ' : M S 

ds[P(í,s)]x(s) = f(í) a.e. on [0,1] 

has for any f eLJ[0,1], u e L J [ - r , 0 ] a n d c e R „ a unique solution x e L j [ - r , 1] 
such that x(t) = u(t) a.e. on [-r ,0], u(0) = c and x | r 0 . i ] e Wn

p. This solution is 
of the form x = ^ c + ^P0u + *Pf, where 

l A ^ u í ř - r , ) if í - r ŕ < 0 

if f - rг > 0 
: u є L S [ - r , 0 ] - , . . , = ! 

l 0 

+ [>Гs) ï : : : : : i d ^ -
(Functional-differential equations of the type (6,13) were studied in detail in 
Delfour-Mitter [1] and [2].) 
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6.8. Theorem. Let A be a Banach space, SeB(Wp,A) and let P: [0,1] x [0, l] 
-• L(Rn) be an U\BV\kerne\ such that for a.e. te[0,1], P(t,s) = 0 if se[t, 1]. 
Then the linear bounded operator 

&\ xeWp 

has a closed range. 

Dx - Px 

Sx 
єL»„ x Л 

Proof. By 6.5, r j e L J x A belongs to R(£>) if and only if r - SVfeR(S&). As 

W:( leLJ x /l -• r — SVfeA is bounded and K(S4>) is a finite dimensional 

linear subspace in A (<l>e B(Rn, W
p% it follows that R(&) is closed. 

7. Fredholm-Stieltjes integral equations with linear constraints 

This section is devoted to the system of equations for xeBVn 

(7,1) x(r) - x(0) - [\\P(t9 s) - P(0,5)] x(s) = f(t) - f(0) on [0,1] , 
Jo 

(7Д) d[K(s)]x(s) = 

The following hypotheses are pertinent. 

7.1. Assumptions. P: [0,1] x [0,1] -> L(Rn) and there are t0, s0 e [0,1] such that 

(7,3) v[o, i ] x [o. I ](p) + var0 P(t0, .) + var0 P(., s0) < GO , 

K: [0,1] -> L(R„, .Rm) is of bounded variation on [0,1], feBV„ and reRm. 

7.2. Definition. Any function P: [0,1] x [0,1] -» L(R„) fulfilling (7,3) is called an 
SBV-kmn?/. 

7.3. Remark. If P: [0,1] x [0,1] -> L(R„) is an SBV-kernel and 

(141 Oft s) = i P ( t ' S ) ~ P ( ° ' S ) f ° r f 6 -°'1] a n d S £ ( ° ' 1 ] ' 
[ , ) V l ' ; | P ( j , 0 ) - P ( 0 , 0 ) - / for t e [ 0 , l ] and s = 0, 

then obviously Q(t,s) is an SBV-kernel and 

f1 f1 

(7,5) x(0) + ds[P(t, s) - P(0, s)] x(s) = ds[Q(t, s)] x(s) for any x e BV„ 
Jo J 0 
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(cf. 1.4.23). It means that the equation (7,1) is a special case of Fredholm-Stieltjes 
integral equations studied in Chapter II. Let us denote by Q the linear operator 

(7,6) Q: x e BV„ - x(0) + \ ds[P(t, s) - P(0, s)] x(s). 
Jo 

By (7,5) and II.1.5 R(Q) a BVn and QeL(BVn) is compact. 
The following assertion follows analogously as 1.8 from 1.3.20 and 1.9. 

7.4. Proposition. If P: [0,1] x [0,1] -> L(Rn) is an SBV-kernel and the operator Q 
is given by (7,6), then n < dim N(l — Q) < oo, while dimN(/ — Q) = n if and only 
if the equation (7,1) has a solution x e BVn for any feBVn. 

Let us mention that the following additional hypotheses do not mean any loss 
of generality (cf. II. 1.4). 

7.5. Assumptions. P(t, .) is right-continuous on (0,1) and P(t, 1) —. 0 for any t e [0,1] 
and P(0, s) = 0 for any se [0,1]; K is right-continuous on (0,1) and K(l) = 0. 

Analogously as in the case of BVP (2,1), (2,2) for Fredholm-Stieltjes integro-
differential operators we rewrite the system (7,1), (7,2) of equations for xeBVn 

as the system of operator equations for £ = I \eBVn x Rm 

where QeK(BVn) is defined by (7,6), 

(7.8) S:xeBV„^ f d ^ s ) ] x(s)€Rm , 

(7.9) T: (*) e BVn x Rm -> (^ ***\ e BV„ x Rm 

and 9* is now given by 

(7,10) V:feBVn^f(t)-f(0)eBVn. 

7.6. Proposition. If xeBVn is a solution to (7,1), (7,2), then £ = I J is a solution 

to (7,7) for any d e Rm. If xeBVn and there exists deRm such that t; = ( I verifies 
(7,7), then x is a solution of (7,1), (7,2). 

7.7. Proposition. Under the assumptions 7.1 the operator TeL(BVn x Rm) defined 
by (7,6), (7,8) and (7,9) is compact. 
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Proof. As obviously SeB(BVfVRm) = K(BV„Rm) (cf. 1.3.21) and QeK(BVn), it is 
easy to see that TeK(BVn x Rm). 

Our wish is now to establish the duality theory for problems of the form (7,1), 
(7,2). To this end it is necessary to choose a space BVn of functions [0,1] -* R* 
and an operator TeL(BVn

y x R*) in such a way that (BVn x Kw, BV; x R*) is 
a dual pair with respect to some bilinear form [., .] (cf. 1.3.1) and 

(7.H) T['d), (z*,X*) , Г(z*, X*) 

for all (j e BVn x Rm and (z*, A*) e BV; x R* . 

According to 1.5.9 the spaces BVn and NBVn form a dual pair with respect to the 
bilinear form 

xeBVn, <peNBVn d[ę*(t)] x(t) є R . 

For the purposes of this section a slightly different choice of the space BVn is more 
suitable. 

7.8. Definition. BVn denotes the space of all functions z*: [0,1] -> R* of bounded 
variation on [0,1], right-continuous on (0,1) and such that z*(l) = 0. 

7.9. Proposition. The space BVn defined in 7.8 becomes a Banach space if it is endowed 
with the norm z*eBVn -> \\z*\\BV> = |z*(0)| + var0 z*. Moreover, (BVn x Rm, BVn x R*) 
is a dual pair with respect to the bilinear form 

(7,12) eBVnxRm, (z*,X*)eBV;xR*„ 

, (**, X*) d[z*(í)]x(í) + X*dєR. 

(For the proofs of analogous assertions for NBVn see 1.5.2 and I.5.9.] 
In the following the bilinear form [., .] is defined by (7,12). 

7.10. Proposition. If the hypotheses 7.1 are fulfilled, Q: [0,1] x [0,1] -» L(Rn) is 
defined by (7,4) and 

(7,13) T:(z*,X*)єBV;xR% 
d[z*(t)]Q(t,s)-X*K(s) 

V X* J 

then (7,11) holds. If 7.5 is also assumed, then R(T') c BVn x Rm and TeK(BVn

y x Rm). 
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Proof. Let us denote 

Q:zeBVH Q(t,s)d[z(t)]. 

As Q(t,s) is an SBK-kernel, Q e K(BV„) (cf. II.1.9). Moreover, by 1.6.20 

£d[z*(t)] (£d,[Q(t, s)] x(s)) + A* (d - £d[K(s)] x(s)) 

d[z*(t)]Q(t,s)-A*K(s) x(s) + A*d 

for any x e BV„, de JRm, z* e BVn and A* e R*. If P(t, .) is right-continuous on (0,1), 
then according to 1.6.16 and 1.4.17 also QzeBVn is right-continuous on (0,1) for 
any zeBVn. Consequently, R(T') a BVn x R* provided that 7.5 is satisfied. The 
compactness of TyeL(BVn x R*) follows readily from the compactness of Q\ 

The operators T and "T being compact, 

(7,14) ind (I - T) = ind (/ - T) = 0 

(cf. 1.3.20) and we may apply Theorem 1.3.2. 

7.11. Theorem. If the hypotheses 7.1 and 7.5 are satisfied, then the system (7,1), (7,2) 
has a solution x e BVn if and only if 

•I 

(7,15) d[z*(s)](f(s)-f(0)) + A*r = 0 

for any z* e BVn and k* e R* such that 

(7.16) z*(s) - d[z*(t)] P(t, s) + k* K(s) = 0 on [0,1] , z*(0) = 0. 

Proof. By 1.3.2 the system (7,1), (7,2) has a solution if and only if (7,15) holds for 
any z* e BVn and k* e R* fulfilling the equation 

^i 

(7.17) z*(s) - d[z*(t)] Q(t, s) + k* K(s) = 0 on [0,1] , 
Jo 

i.e. (I - F ) (z*, k*) = 0 (cf. 7.9, 7.10 and (7,14)). Given z* e BVn\ 

fz*(l) - z*(0) if s = 0 
(7,18) I d[z*(t)]Q(t,s) = 
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(cf. (7,4) and 1.4.23). After the substitution (7,18), the equation (7,17) becomes 

(7,19) z*(s) - d[z*(t)] P(u s) + k* K(0) = 0 on (0,1] , 

- d[z*(t)]P(*,0) + k*K(s) = 0. 
Jo 

According to 7.5 P(0, s) = 0 on [0,1]. Thus the value of each of the integrals 

V«](fW-f(o)) d[z*(t)] P{t,s) ( S G [ 0 , 1 ] ) , 
Jo 

does not depend on the value z*(0) (cf. 1.4.23). Consequently (z*, k*)eBVn x R* 
is a solution to (7,19) if and only if (z*, k*) with z*,(s) = z*(s) on (0,1] and z*(0) = 0 
is also its solution. The proof is complete. 

The following assertion is also a consequence of 1,3.2. 

7.12. Proposition. Let 7.1 and 7.5 be satisfied and let heBVn. Then there exist 
z* e BVn and k* e R* such that 

(7.20) z*(s) - d[z*(t)] Q(t, s) + k* K(s) = h*(s) on [0,1] 

((I - F)(z*, k*) = (h*,0)) if and only if 
I 

d[h*(t)] x(t) = 0 
o 

holds for every x e N(=S?), where 

(7.21) ^ : x e B F ^ ( X " S x
Q X j e W „ x R M . 

7.13. Theorem. Let us assume 7.1 and 7.5 and let ££ eB(BVn, BVn x Rm) be given by 
(7,6), (7,8) and (7,21). Then k = dimN(if) < oo and the system (7,16) has exactly 
k* = k + m — n linearly independent solutions in BVn x R*. 

Proof. By 7.4 k = dim N(i?) < oo. Obviously dim N(l - T) = k + m. Since (7,14), 
it is by 1.3.2 dim N(l - T) = dim N(l - T) = k + m. The set Nr of all solutions 
to (7,16) consists of all (z*, k*) e N(l - T) for which z*(0) = 0. So dim Nv 

= dim N(\ — TN) — n = k + m — n. The proof is complete. 

In addition to 7.1 and 7.5 we shall assume henceforth that 

(7,22) P(t - , s) = P(r, s) for a// (*, s) e (0,1] x [0,1] , 

P(0 + ,s) = P(0,s) for all se [0,1]. 

In this case we may formulate the adjoint problem to (7,1), (7,2) in a form more similar 
to (7,1), (7,2). 
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Integrating by parts (1.4.33) we transfer the system (7,16) of equations for (z*, A*) 
eBV: x R* to the form т n -^m 

(7,23) *(-) + z*(t) d,[P(t, s)] + A* K{s) = 0 on [0,1] , 

z*(0) = z*(l) = 0. 

As by (7,22) P(0 +, s) = P(0, s) and P(l - , s) = P(l, s) for every s e [0,1], the value 
of each of the integrals 

| z*(t)df[P(;,s)], s e [ 0 , l ] 
Jo 

does not depend on the value z*(0) and z*(l). In particular, if z* e BVn\ z*(0) = 0, 
A*eR* and 

(7,24) y*(s) = z*(s) on (0,1), y*(0) = z*(0+), y*(l) = z*(l - ) , 

then the couple (z*, A*) solves (7,23) (i.e. (7,16)) if and only if 

(7,25) y*(s) + 

0 = 

y*(í) d,[P(t, s)] + A* K(s) = 0 on (0,1), 
) 
1 

y*(í) d[P(í, 0)] + A* K(0) (= z*(0)). 

Applying 1.6.16 and 1.4.17 we obtain 

y*(0) = y*(0+) = - y*(t)dt[P(î,0+) - P(t,0)] - A*[K(0+) - K(0)] 

and 

y*(l) = y*( l - ) = y*( t )d , [P( î , l - ) ] -A*K( l - ) 

for every y 6 BV„ and A e Rm fulfilling (7,25). If for t e [0,1] we put 

K(0+) if s = 0, 

K(s) if 0 < s < 1, 

[K( l - ) if s = l , 

P(t,0 + ) if s = 0, 

(7,26) P0{t, s) = P{t, s) if 0 < s < 1, K0{s) = 

P ( t , l - ) if s = l , 

C(t) = P(t,0+) - P(t,0), D{t) = -P(t, 1 - ) , 

M = K(0 + ) - K ( 0 ) , N = - K ( l - ) , 

then system (7,25) becomes 

(7,27) 

y*(s) = y*(l) - j V ( t ) d,[P0(t, s) - P0{t, 1)] - A*[K0(s) - K0(l)] on [0,1] . 
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(7,28) y*(0) + X*M + \ y*(t) d[C(í)] = O, 
Jo 

(7,29) y*(l) - Л*N - y*(í)d[D(í)] = 0. 

Given zeBVn with z(0) = z(l) = 0 and yeBVn such that (7,24) holds, we have 
in virtue of 1.4.23 

W-l-)] (f(s) - f(0)) = f 1d[y*(s)] f(s) - y*(l) f(l) - y*(0) f(0). 
Jo Jo 

This completes the proof of the following 

7.14. Theorem. If the hypotheses 7.1, 7.5 and (7,22) are satisfied, then the problem 
(7,1), (7,2) possesses a solution xeBVn if and only if 

(7,30) y*(l) f(l') - y*(0) f(0) - fd[y*(s)] f(s) = A*r 

for any solution y e BVn, keRm of (7,27) —(7,29), where P0, C, D, K0, M and N are 
defined in (7,26). 

7.15. Remark. If (7,22) holds and f(t~) = f(t) on (0,1], f(0 + ) = f(0), then by 
1.6.16 and 1.4.17 any solution xeBVn of (7,1), (7,2) is left-continuous on (0,1] and 
right-continuous at 0. On the other hand, if y e BVn and k e Rm satisfy (7,27) — (7,29), 
then provided that 7.5 holds, y is right-continuous on [0,1) and left-continuous 
at 1 (cf. 7.24). 

7.16. Remark. Let geBVn be right-continuous on (0,1), p ,qeR n . It is easy to 
see that ye£V„ arid keRm satisfy (7,27), (7,28), (7,29) with the right-hand sides 
g*(s) — g*(l), p* and q*, respectively, if and only if y is right-continuous on (0,1) 
and the couple (z*,k*\ z*(s) = y*(s) on (0,1), z*(0) = z*(l) = 0, fulfils (7,20), 
where h*(s) = g*(s) - g*(l) + %*(s) on [0,1], **(0) = q* - p*, z*(s) = q* on 
(0,1) and x*(l) = 0. It follows immediately from 7.12 that the system (7,27), (7,28), 
(7,29) with the right-hand sides g*(s) — g*(l), p* and q*, respectively, has a solution 
y e BVn, keRm\i and only if (cf. (7,21)) 

Í d[g*(t)]x(t) = q*x(l)-f>*x(0) for each xeN(^). 

7.17. Remark. If P: [0,1] x [0,1]-+L(R„) is an D[BV]-kernel (|P(t,0)| + var£ P(t, .) 
= g(t) < oo a.e. on [0,1] and geL1) and f&h\, then x: [0,1] -> iR„ is a solution 
to (2,1) on [0,1] if and only if 

x(t) - x(0) - \ds[R(t, s)] x(s) = f f(t) dr on [0,1] , 
J 0 
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where 

R(ř, s) P(т,s)dт on [0,1] x [0,1] 

Given a subdivision {0 = t0 < t1 < ... < tk = 1; 0 = s0 < sx < ... < sk = 1} of 
[0,1] x [0,1], we have 

I Ě lR(řp sj) - *(*«- i, -v) - R(ř„ s,-_ 0 + R(řř-_ l 9 s,._ ,)| 
І = I j=i 

к к 

= 1 I 
i = l j = l 

(l.т,_,)-P(т,_7_1))dт < |J(lK*.-;)-^.s.-i)Ddт 

* < °° • 
Consequently v[0 1 ] x [ 0 X](R) < oo. Clearly var0 R(., 1) < oo. (We may assume 
P(t, 1) = 0 a.e. on [0,1].) As R(0, .) = 0 on [0,1], this implies that R is an SJ5V-kernel 
and the Fredholm-Stieltjes integro-differential equation (2,1) is a special case of 
the equation (7,1). 

7.18. Remark. Let A: [0,1] -» L(Rn), var£ A < oo, M and NeL(R„Rm) and 

íA(0) - A(t) if 0 = s < f < 1 , -M- - N if s = 0, 
P(ř, s) = | A(.+ ) - A(t) if 0 < s < í < 1, щ = . -N if 0 < s < 1 , 

lO if 0 < í < s _ 1 , 0 if s = 1 . 

It can be shown that v[0 1]x[04](P) < var0 A. Furthermore, P(0, .) = 0 on [0,1], 
var£ P(., 0) = varj A and varj K = |M| + |N|. Since for any t e [0,1] P(t, .) and K 
are right-continuous on (0,1), K(l) = 0 and P(t, 1) = 0, the assumptions 7.1 and 7.5 
are satisfied in this case. If, moreover, A is left-continuous on (0,1] and right-con
tinuous at 0, then P(t- ,0) = A(0) - A(t-) = A(0) - A(t) for 0 < t < 1, P(t-,s) 
= A(s + ) - A(t-) = A(s + ) - A(t) for 0 < s < t < 1 and P( t - , s) = 0 for 
0 < f _____ 1. Finally, P(0 + , s) = 0 for any se [0,1]. Thus P fulfils also (7,22). 
By 7.14 the system (7,1), (7,2) which is now reduced to BVP dx = d[A] x + df, 
M x(0) + Nx(l) = r has a solution if and only if (7,30) holds for all y eBVn and 
A e Rm satisfying (7,27), (7,29). In our case P0(t, s) = P(t, s), C(t) = D(t) = 0 and 
K0(s) = — N. Moreover, 

J y*(t) dt[P(t, s)] = J y*(t) d[B(r)] for any y G BVn and s e [0,1] , 

where B(s) = A(s + ) on (0,1), B(0) = A(0) and B(l) = A(l). It follows that under 
the assumptions of this remark the adjoint system (7,27) —(7,29) to (7,1), (7,2) reduces 
to BVP (111.5,12), (HI.5,13). Let us notice that now no assumptions on the regularity 
of the matrices (/ + A+A(t)) are needed. 
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7,19. Remark. Let the matrix valued functions A: [0,1] -> L(Rn), ^- . [0 ,1] 
- L(Rp, Rn), P2: [0,1] - L(Rn, Rp)9 C: [0,1] - L(Rn), D: [0,1] - Lfo) and 
K: [0,1] -> L(Kn, #m) be of bounded variation on [0,1], M, N e L(Rn, Rm), feBVn 

and reRm and let us consider the system of equations for xeBVn 

(7.31) x(t) = x(0) + fd[A(s)] x(s) + (C(t) - C(0))x(0) + (D(t) - D(0))x(l) 
Jo 

+ (P.(t) - P,(0)) J d[P2(s)] x(s) + f(t) - f(0) on [0,1] , 
Jo 

•1 

(7.32) M x(0) + N x(l) + d[K(_)] x(s) = r . 
Jo 

Introducing new unknowns a, /J, y, 5, / by the relations 

«(*) = f d[K(s)] x(s), flt) = f d[P2(s)] x(s), 
Jo Jo 

y(t) = x(0), 8{t) = x(l), Z(f) = /f(l), 

we reduce the given problem to the form 

dx = d[A] x + d[Px] p + d[C] y + d[D] 8 + df, 

da = d[K]x, d0 = d[P 2]x, dy = 0, d<5 = 0, d* = 0, 

M x(0) + N x(l) + a(l) = r , a(0) = 0, x(0) - y(0) = 0, 

x(l)-<5(0) = 0, 0(0) = 0, /!(1) - X(0) =-- 0 

which may be expressed in the matrix version 

d£ = d[8l] { + d<p, 9Jl<p(0) + 91 £(1) = Q, 

where {* = (x*, a*, /f*, y*, <5*, **) and 91: [0,1] -» L(KV) and Wl. 91 e L(RX, Rj 
are appropriately defined matrices, \i = 2m + 2n + 2p, v = m + 3rc + 2p, 

<p = ( J and Q = ( ). By this var0 91 < oo. The complicated problem 
Wv - «/ V J I - m/ 

(7,31), (7,32) was transferred to the two-point boundary value problem for a linear 
generalized differential equation. 

Notes 
In the case p = 1 the compactness of the operator P and hence also the closedness of R(L) (V.L4 

and V.1.7) were proved by Maksimov [1] and independently by Tvrdy [4], Theorem V.L8 is due to 
Maksimov and Rahmatullina [2]. Our proof follows a different idea. The proofs of the main theorems 
of Section V.2 (V.2.5, V.2.6 and V.2.12) are carried out in a similar way as the proofs of analogous results 
for ordinary differential operators in Wexler [1] (cf. also Tvrdy, Vejvoda [1], Tvrdy [3], Maksimov [l]). 
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For more detail concerning Green's couples see Tvrdy [6]. Systems of the form (4,27), (4,28) were treated 
in Tvrdy, Vejvoda [1]. Theorem V.6.4 follows also from the variation of constants formula for functional 
differential equations of the retarded type due to Banks [1]. Equations of the form (V.6,13) were introduced 
in Delfour, Mitter [1], [2]. Section V.7 is based on the paper Tvrdy [5]. The transformation similar to 
(7,33) was for the first time used in a simpler situation by Jones [1] and Taufer [ l ] . For more detail 
concerning the systems of the form (7,31), (7,32) (Green's function, Jones transformation, selfadjoint 
problems etc.) see Vejvoda, Tvrdy [1], Tvrdy [ l] and Zimmerberg [ l], [2]. 

The oldest papers on the subject seem to be Duhamel [ l], Lichtenstein [1] and Tamarkin [ l] . Further 
related references to particular sections are 

V.1 
V.2 
V.З 
V.6 
V.7 

Catchpole [1], [2]; 
Parhimovič [ l ] - [ 3 ] , Lando [ l ] - [ 4 ] , Krall [2], [5], Tvrdý [1]; 
Maksimov, Rahmatullina [1], [2]; 
Hale [1], Maksimov, Rahmatullina [ l], Rahmatullina [ l], Tvrdý [4]; 
Krall [6]-[8], Honig [ l ] , Tvrdý [2]. 

Related results may be found also in the papers by N. V. Azbelev and the members of his group 
(L. F Rahrnatullina, V. P. Maksimov, A. G. Terent'ev, T. S. Sulavko, S. M. Labovskij, G. G. Islamov a.o.) 
which have appeared mainly in Differencial'nye uravnenija and in the collections of papers published 
by the Moscow and Tambov institutes of the chemical machines construction. 

In Lando [3], [4] and Kultysev [ l ] the controllability of integro-differential operators is studied. 
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VI. Nonlinear boundary value problems 
(perturbation theory) 

1. Preliminaries 

In this chapter we shall prove some theorems on the existence of solutions to non
linear boundary value problems for nonlinear ordinary differential equations of 
the form 

x' = f(t, x) + s g(u x9e), S(x) + e R(x, e) = 0 

under the assumption that the existence of a solution to the corresponding shortened 
boundary value problem 

x' = f M , S(x) = 0 

is guaranteed. (S and R are n-vector valued functional; xeRn, f: <2) czRx Rn-+Rm 

g: T) cz R x R n x R -+ Rn and e > 0 is a small parameter.) 
The present section provides the survey of the basic theory for the equation 

(u) x' = f M . 
The proofs may be found in many textbooks on ordinary differential equations 
(e.g. Coddington, Levinson [1] or Reid [1]). 

1.1. Notation. Let Q) a Rp+q, u0eRp and v0eRq. Then 

@iUtvm) = {veRq; (u0,v)e®} and @(.>Vn) = {ueRp; (u,v0)e@}. 

If f maps ® into Rn, then f(•, v0) and f (ti0, .) denote the mappings given by 

f( . ,v0): ue@{.,v)^f(u,v0)eRn 

and 
f(ii0, ): ve®iu,^)->f(u0,v)eRn. 

1.2. Definition. Let & c. Rn+i be open and let the n-vector valued function f(^x) 
be defined for (t, x)e<2). 
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(a) We shall say that f fulfils the Caratheodory conditions on 2) and write 
feCar (^ ) if 

(i) for a.e. teR such that ®(£j.) + 0, f(t, .) is continuous; 
(ii) given xeRn such that S>{.jX) + 0, f(.,x) is measurable; 

(iii) given (t0, x0)e3), there exist <5- > 0, <52 > 0 and m e L 1 ^ — <5l9 t0 + <5X] 
such that [t0-Su to + 5-] x 93(x0,<52; #„) cz g> and |f(t,x)| < m(t) for a.e. 
te[t0-5l9 to + <5-] and any xe93(x0,<52; Rn); 

(b) We shall write f ELip(^) if 

(iv) given (t0,x0)e$), there exist b1 > 0, <52 > 0 and w£l}[t0 —bx, t0 + b^\ 
such that [t0-6ut0 + d1\xS&(x0,d2\Rn)a3} and |f(t, x-) - f(r, x2)| 
<cO(t)|x! — x2| for a.e. t e [ t 0 — o\, to + <5i] and all x1?x2 e<B(x0,52; Rn). 

1.3. Definition. An n-vector function x(t) is said to be a solution to the equation (1,1) 
on the interval A cz R if it is absolutely continuous on A and such that (t, x(t)) e Q) 
for a.e. t e A and 

x'(t) = f(t, x(t)) a.e. on A . 

1.4. Theorem (Caratheodory). Let ®cz,Rn + 1 be open and feCar(S>). Given 
(t0, c)e®, there exists <5 > 0 such that the equation (1,1) possesses a solution x(t) 
on (t0 — <5, t0 + <5) such that x(t0) = c. 

1.5. Remark. Obviously, if feC(2#), then f eCar(®) and the equation (3,1) pos
sesses for any (t0,c0)e<3) a solution x(t) on a neighbourhood A of t0 such that 
x(t0) = c0. Since the function teA -> f(t,x(t))e-R„ is continuous on A, it follows 
immediately that x' is continuous on A (xe Cn(A)). 

1.6. Definition. The equation (1,1) has the property (°ll) (local uniqueness) on @eRn + l, 
if for any couple of its solutions xx(t) on Ax and x2(t) on A2 such that x^to) = x2(t0) 
for some t0eA1 n A2, xx(t) = x2(t) on Axr\ A2. 

1.7. Theorem. Let ®c=jR„+1 and feLip(^) . Then the equation (1,1) has the 
property (^l) on 3). 

1.8. Definition. The solution x(t) of (1,1) on A is said to be maximal if for any 
solution xx(t) of (1,1) on A1 such that A cz Ax and x(t) = xx(t) on A we have 
A=Ar 

1.9. Lemma, /fthe definition domain 9> of f(t, x) is open and the solution x(t) of (1,1) 
on A is maximal then A is open. 
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1.10. Notation. Given (t0,c)e@, <p(.\ t0,c) denotes the corresponding maximal 
solution of (1,1), A(t0,c) its definition interval and 

Q= {(r,t0,c)eK x R x Rn; (t0,c)e®, t e A(t09 c)}. 

1.11. Theorem. Let 9 a Rn+l be open, f eCar(^) and let the equation (1,1) have 
the property ^U). Then for any (t0i c)eQ) there exists a unique maximal solution 
x(t) = <p(t\ t0, c) of (1,1) on A = A(t0, c) a R such that x(t0) = c. The set Q 
(cf 1.10) is open and the mapping <p: (t,t0,c)eQ-+<p(t; t0,c)eRn is continuous 
(<peC(Q)). 

1.12. Corollary. Let 9 cz Rn+U f eCar(^) and (1,1) have the property (°ll). Let 
(t0,c0)e3), —co<a<b< oo and let [a, b] cz A(t0, c0). Then there exists 8 > 0 
such that |c — c0| < d implies (t0, c) e Q) and A(t0i c) => [a, b], i.e. for any 
CG93(C0, 3; Rn) the corresponding maximal solution <p(t,t0,c) of (1,1) is defined on 
Va,b\ 

1.13. Remark. Let us recall that if f: Q) -> Rn possesses on Q) partial derivatives 
with respect to the components Xj of x, then dfjdx denotes the Jacobi matrix of f 
with respect to x which is formed by the rows (dfjdxj) (j = 1,2,..., n). If the nxn-
matrix valued function (t, x) e 3) -• (dfjdx) (t, x) e L(Rn) fulfils the Caratheodory 
condition (iii) in 1.2, then making use of the Mean Value Theorem 1.7.4 we obtain 
easily that f eLip(^). 

1.14. Theorem. Let 2 cz Rn+U f e C a r ( ^ ) and (dfjdx) e Car (9). Then the 
equation (1,1) has the property (°tt) and hence there exist Q a Rn + 2 and the con
tinuous mapping <p: Q -» Rn defined in 1.11. Furthermore (d<pjdc) (t, t0, c) exists 
and is continuous in (t, t0, c) on Q. For any (t0, c) e 9 the n x n-matrix valued 
function A(t) = (dfjdx) (t, <p(t, t0, c)) is L-integrable on each compact subinterval of 
Q{ toc) = A(t0,c) and U(t) = (d<pjdc)(t,t0,c) is the maximal solution of the linear 
matrix differential equation U' = A(t) U such that U(t0) = ln. 

1.15. Remark. It follows from 1.14 that (d<pjdc)(t,t0,c) is for any (t0, c)e9 the 
fundamental matrix solution of the variational equation 

U' = (ðx^'<Kí'í°'C)))U 

on A(t0, c). Consequently for any (t, t0, c)eQ it possesses an inverse matrix 
(d<pjdt)(t,t0,c))-\ 

1.16. Theorem. Let @ cz RH+l9 feCar(^) , (dfjdx)eCar(QJ) and d2fj(dxidx^) 
GCar(^) for any ij= 1,2,..., n. Then the n-vector valued function <p from 1.11 
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possesses on Q all the partial derivatives d2<pl(dCidCj) (j,j = 1,2, ...,n) and they 
are continuous in (f, f0, c) on Q (<pe C2(Q)\ 

1.17. Remark. Let D cz jRt x Rn x Rp be open and let the n-vector valued function 

h(t, u, v) map D into Rn. The differential equation 

(1.2) x' = h(t,x,v) 

is said to be an equation with a parameter v e Rp. Let us put 

^ = (x, v) for xeRn and veRp, 

h(t, £) = h(t, x, v) for (t, £) = (u (x, v)) 6 £ 

and 

Now, applying the above theorems to the equation 

we can easily obtain theorems on the existence, uniqueness, continuous dependence 
of a solution x(t) = <p(t; t0,c,v) of (1,2) on the initial data (t0,c) and on the pa
rameter v as well as theorems on the differentiability of <p with respect to t, c and v. 
The formulation of the general statements may be left to the reader. For our purposes 
only the following lemma is needed. 

1.18. Lemma. Let 3) cz Rn+i and D c jRn+2 be open, x > 0, 3f x [0, x] cz D, 
f: Q)-+Rn and g: D -* Rn. Let us put g(t, y) = g(t, x, e) for (t, x, e) e D and y = (x, e). 
Let f eCar(^), f eCar(D) and let for any ee[0, x] the equation 

(1.3) x' = f(t,x) + sg(t,x,e) 

possess the property ^U) on D. Then 

(i) given (t0,c,s)eS> x [0, x], there exists a unique maximal solution x(t) 
= ^(t; t0, c, e) of (1,3) on the interval A = A(t0, c, e) such that x(t0) = c; 

(ii) the set Q = {(t, t0, c,e); (t0, c,e)e@ x [0, x], teA(t0, c, e)} cz Kw+3 is open 
and the mapping i/f: Q -> Rn is continuous; 

(iii) if — OO < a < b < 00, (a, c0)eS> and [a,b] cz J(a, c0,0), then there exist 
g0 > 0 and x0 > 0, x0 < x swe/i that [a, b] cz A(a, c, s) for any ce93(c0, Q0; JR„) 
and ee[0,xo]. 

The following theorem provides an example of conditions which assure the 
existence of a solution to the equation on the given compact interval [a, b] cz R. 
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1.19. Theorem. Let — oo < a < b < oo, [a, b] x Rn cz Q) cz Rn+1, 3) open and let 
the n-vector valued function f:9>-*Rn fulfil the assumptions 

(i) f (t, .) is continuous on Rn for a.e. t e [a, b]; 
(ii) f(., x) is measurable on [a, b] for any xeRn; 
(iii) there exist a e JR, 0 < a < 1, and L-integrable on [a, b] scalar functions p(t) 

and q(t) such that 

\f(t, x)| < p(t) + q(t) |x|a for any xeRn and a.e. t e [a, b] . 

Let the n x n-matrix valued function A: [a, b] -* L(Rn) be L-integrable on [a,b]. 
Then for any t0e[a, b] and ceRn there exists a solution x(t) of the equation 

x' = A(t) x + f (t, x) 

on [a, b] such that x(t0) = c. 

This auxiliary section will be completed by proving the following lemmas which 
illustrate the assumptions on the functions f and g employed in this chapter. 

1.20. Lemma. Let 2 cz Rn+1 and D c Rn + 2 be open, x > 0, [0,1] x Rn cz & 
and 3) x [0, x] cz X). Furthermore, let us assume that the functions f: 9) -* Rn and 
g: D -• Rn are such that f eCar(^) and gGCar(D), where g(t,y) = g(t,x,e) for 
(t,x,g)el and ye(x,e). Let us put 

(F(x))(t) = f(t,x(t)) and (G(x, e)) (t) = g(t, x(t), e) 

for xeC„, ee [0, x] and t e [0,1]. Then F(x) e Ln and 6(x, e) e Ln for any xeCn 

and e e [0, x\. The operators F: x e Cn -• F(x) e Ln and G: (x, e)eCn x [0, x] 
-> G(x, e) e Ln are continuous. 

Proof. It is sufficient to show only the assertions concerning G. 

(a) Let Q > 0. Since g e Car (I)) (g(t, y) = g(t, x, e), where y = (x, e)), applying 
the Borel Covering Theorem it is easy to find a function meL1 such that 

(1.4) \g(t,x,e)| < m(t) for any xe<B(0,Q; Rn), ee [0, x] 

and a.e. t e [0,1] . 

Let the functions xk: [0,1] -• Rn and the numbers eke [0, x] (k = 0,1,2,...) be 
such that lim xk(t) = x0(t) on [0, l ] and lim ek = 20. Under our assumptions 

k-*ao k-*oo 

on g this implies that 

(1.5) lim g(t, xk(t), sk) = g(U x0(t), e0) a.e. on [0,1] . 
k-*oo 

If each of the functions n(t) = g(t, xk(t), ek) (k = 0,1,2,...) is measurable on [0,1] 
and |xk(t)| < Q on [0, l ] for any fc =-= 0,1,2,..., then by the Lebesgue Dominated 
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Convergence Theorem 
•1 

lim 
k-*co 

g(í,xk(t),e( t)-g(í,x0(f),2o)|dt = 0. 

(b) Let X0GC„ and Q = | | x 0 | c + 1. It is well-known that there exist functions 
xk: [0,1] -> Rn (k = 1,2,...) piecewise constant on [0,1] and such that |xk(f)| < Q 
(k=l,2 , . . . ) and lim xk(t) = x0(t) on [0,1]. In particular, (1,5) with sk = s 

k-+oo 

(k = 0,1,...) holds and since any function yk: t e [0,1] -> g(t,xk(t)9 s) (SG[0, x], 
k = 1,2,...) is obviously measurable, y0: t e [0,1] -> g(t, x0(t), s) is measurable for 
any e G [0, x] and hence according to (1,4) y0 e Ln. 

The continuity of the operator G follows easily from the first part of the proof. 

1.21. Lemma. Let 3> a Rn+l and f: Q} -> Rn satisfy the corresponding assumptions 
of 1.20. In addition, let dfjdxeCdir(S>). Then F defined in 1.20 possesses on Cn the 
Gateaux derivative F(x) continuous in x on Cn. Given x, u e C„, 

( F (*>]«)<<)- 1 •'•'"» u(ř) fora.e. ře[0,1] . 

Proof, (a) Let us put for xeCn and t e [0,1] 

[/.(x)](t) = g(t,x(t)). 

By 1A4 the n x n-matrix valued function A(x) is L-integrable on [0,1] for any 
x G Cn. If f (j = 1,2,..., n) are the components of f, then 

[^W]W = | ( ^ ( t ) ) (/=l,2,...,n) 

are columns of [-A(x)] (t). By 1.20 the mappings 

(1,6) x e C„ -> A,.(x) G Li (j = 1,2,..., n) 

are continuous. Obviously, for any xeCn 

J(X):ueC„->[A(x)](t)u(t)€Li 

is a linear bounded operator. Moreover, 

||7(x)|= sup | |y(x)u||Ll<||A(x)|L1=. max ||.-Ux)||L1 
| | u | | c < l j - l , 2 , . . . , w 

and consequently the operator xeCn-^ J(x) e B(Cn, Ln) is continuous. 
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(b) By the Mean Value Theorem 1.7.4 

(F(x0 + 9u)) (t) - (F(x0)) (t) _ f(t, x0(t) + & u(t)) - f(t, x0(t)) 

9 
lдf 

(f,x0(í) + /lЗu(t))dЛu(f) 

and 

o дx 

F(x0 + č>u) - F(x0) 
9 J(*o) u 

Jo VJo 
^(t,x0(t) + Жu(t))-^(t,x0(t)) dЯ dtllull 

By the Tonelli-Hobson Theorem 1.4.36 we may change the order of the integration 
in the last integral. The continuity of the mappings (1,6) yields 

lim 
£ - 0 + 

^(Ux0(t) + X9u(t))-^(t,x0(t)) dí = 0 

uniformly with respect to Xe [0,1]. Consequently, 

lim 
S-0 + 

Ғ(x0 + Su) - Ғ(x0) 
ì(x)u = 0 

for any x0 e Cn and u e Cn. This completes the proof. 

1.22. Remark. Given xeACn and LeB(Cn,L
l
n), \\x\\c < \\x\\AC9 LeB(AC„Ln) and 

ii--iiB(Ac,LM= s u p \\Luy^ S U P I M I L I = iiLiiB(cM,Li
1)-

11 " K "' n> IMUc<i ' l!»llc<i 

It follows readily that 1.20 and 1.21 remain valid also if in their formulations Cn is 
replaced everywhere by ACn. 

1.23. Remark. If moreover d2f/(3x£ dxj) e Car (S) (ij = 1,2,..., n), it may be 
shown that for any x e Cn, F possesses the second order Gateaux derivative F'(x) 
such that the mapping x e C„ -> F"(x) e B(Cn, B(Cn, Lj,)) is continuous. Given 
x, u, v e C„, the components of the n-vector ([F"(x) u] v) (t) are given by 

I , C s ^ j { t ' x { t ) ) U i { t ) ) v j { t h k=i'2'-'n-
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Let [0,1] x {0} x R , c f i . Let us put for y e C„ 

(1.7) <P(Y)(t) = <p(t,0,Y(t)) on [0,1], 

# , (y)( t )=^( t ,0 ,y( t ) ) a.e. on [0,1], 

*cM(t) = ^( t ,0 ,y( t)) on [0,1]. 

It is easy to verify that <P and F# are continuous mappings of Cn into Cn and Ln9 

respectively, and # c is a continuous mapping of C„ into the space of n x rc-matrix 
valued function which are continuous on [0,1] (cf. 1.14 and 1.20). Since \\Y\\AC 

= |y(0)| -F ||y'||Li for any y e ACn9 it follows readily that # is a continuous mapping 
of ACn into ACn. Analogously # c is a continuous mapping of ACn into the space 
of n x rc-matrix valued functions absolutely continuous on [0,1], i.e. if *c(y) 
denotes also the linear operator h e ACn -+ #c(y) (t) h(t\ then y e .4C,. ~> #c(y) is 
a continuous mapping of ACn into B(ACn). Let us notice that for any y e Cn 

(1.8) ^( t ,0,y(t)) = f(t, <p(t,0,Y(t))) = F(<f»(y))(t) a.e. on [0,1] 

õx 
(t,<p(t,0,ү(t)) 

and by 1.14 

m |(^MH.») 

= (W*(y))] *.(«))(<) « • on [0,1] 

Moreover, for any y e ̂ 4C„ 

«l>((y)(t) = F(<I»(y))(t) + <Pc(y)(t)y'(t) 

and thus 4>t is a continuous operator ACn -* L*. 

Let y, h e ACM and 3 e (0,1). Then 

|#(y + JUi) - <f>(y) 

£(*.M-)) 

(1,10) 
3 

Фc(y)h 
Ac 

y(0,0,y(0) + gh(0))-y(0,0,y(0)) _ ð_ ą Q ) 

17 С/С 

^ ( t , ą y ( t ) + í H i ( t ) ) - - ^ ( t , M - ) ) ^ 

s dtdc 
;.o,y(í))h(t) dt 
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-f-

д^(tЛy(t) + ЭҺ(t))9h'(t) ^ 
__ 

+ í 
9 

(t,0,Y(t))h'(t) dř 

(^ (t, 0, ү(t) + 8 h(t)) - g (t, 0, y(t)) J y'(r) ђ2<? 

. __ 
9 

2(t,0,y(t))y'(t)h(í) dt. 

Obviously, the first and the third terms on the right-hand side of (1,10) tend to 0 
as & -> 0 + . Furthermore, by (1,8), (1,9) and the Mean Value Theorem the second 
one becomes 

\f(t, <p(t, 0, Y(t) + 9 h(t))) - f(t, <p(t, 0, Y(t))) 

9 

-[ _ 
ÕX 

(t,<Ąt,o,ү(t))) Õ£(t,0,ү(t)))h(t) àt 

< r( ío[S ( t , i p ( t ' a y ( t ) + M h ( t ) ) ) ^( í ,0 ,y ( t ) + ӘAҺ(t)) 

[ ^(í,«>(t,0,y(í))) 
д<p 

дč 
(tЛү(t)) \h(t)\ dX)át. 

It is easy to verify that this last expression tends to 0 as 3 -+ 0 + . (Obviously, F_»e 

is a continuous operator Cn -» _ (C„, Lj,).) Analogously, the Mean Value Theorem 
yields that also the fourth term of the right-hand side of (1,10) tends to 0 as 3 -> 0+ . 

1.24. Lemma. Under the assumptions of1.16, the operator _£ given by (1,7) is a con-
tinuous mapping of ACn into ACn which is Gateaux differentiable at any x e ACn. 
Given y,heACn, -- -, 

([*'(/)] h)(t) = [£(t,0,y(t))Jh(t). 

The mapping y e ACn -* <&'(y) e B(ACn) is continuous. 

1.25. Definition. Let 35 - Rn+2 be open, x > 0, [0,1] x Rn x [0,x] <= D and 
g: D -> Rn. Let eoe[0, K] and let for given te[0,1] and x0e.R„ there exist 
<50 = <50(£,x0) > 0, o0 = o0(t,x0) > 0> *o = *<>(*> *o) > 0 and cOeL^.-c^, t + d0) 
such that |T - t| < <50, \xx - x0 | < £0, |x2 - x0| < Q0, e>0 and |e - £0| < x0 

implies (x,x1,s)eT), (x,x2,s)eT> and 

|g(T, x2 , e) - g(T, xu e)\ < co(x) |x2 - x-J. 

Then g is said to be locally lipschitzian in x near e = e0 and we shall write 
geLip(X),e0). 
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1.26. Lemma. Let T) a Rn+2 and g'. 35 -> Rn satisfy the corresponding assumptions 
of 1.20. In addition, let g e Lip (X), ^0). Then G defined in 1.20 is locally lipschitzian 
in x near s = ^0. 

Proof follows from Definition 1.25 applying the Borel Covering Theorem. 

1.27. Remark. In order that the operators F and G might possess the properties 
from 1.20—1.26 locally, it is sufficient to require that the assumptions of the cor
responding lemmas are fulfilled only locally. 

2. Nonlinear boundary value problems 
for functional-differential equations 

Let x > 0 and let F: Cn -• Ll

n, G: ACn x [0, x] -* Lj,, S: Cn -* Rn and 
R: ACn x [0, x] -> Rn be continuous operators. To a given ee [0, K] we want to 
find a solution x of the functional-differential equation 

(2.1) x' = F(x) + £G(x,£) 

on the interval [0,1] which verifies the side condition 

(2.2) S(x) + eR(x,fi)-=0. 

This boundary value problem will be referred to as BVP (^). The limit problem 
for e = 0 

(2.3) x' = F(x), 

(2.4) S(x) = 0 

is denoted by (2?0). 

2.1. Definition. Let £e[0,x]. An rc-vector valued function x is a solution to (2,1) 
on [0,1] if x G ACn and 

x'(t) = (F(x)) (t) + e(G(x, fi)) (t) a.e. on [0,1] . 

2.2. Remark. Let x0GCn, coeL1, Q > 0 and 

(2.5) ^ ^ ^ - ( ^ x ^ W l ^ c o W l l x . - x . H c 

for any x 1 ; x 2 e S(x 0,^; C„) and a.e. t e [0,1]. Then 

\F{xo + 9u)(t) - F(x0)(t) 
< oĄt) \\u\\ 
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for any 9 > 0 , ueC„ and a.e. te [0,1]. If F possesses the Gateaux derivative F(x0) 
at x0, then 

|F(x0 + 3u)(/)-F(x0)(t) 
lim 

£ - • 0 + 
([1-.)]«)W = 0 a.e. on [0,1] . 

It follows easily that 

\([F(x0)]u)(t)\ <co(t)\\u\\c for any ueCn and a.e. re [0,1]. 

In particular, there exists a function P: [0,1] x [0,1] -• L(Rn) such that P(.,s) 
is measurable on [0,1] for any 5 6 [0,1], Q(t) = |P(t,0)|+ var0 P(r, .) < oo for a.e. 
te [0,1], 0eL1 (P is an L^Vj-kernel) and 

([F(x0)] u) (t) = ds[P(f, s)] u(s) for any ueCn and a.e. t e [0,1] 

(cf. Kantorovic, Pinsker, Vulich [1]). 

2.3. Theorem. Let x0eACn be a solution to BVP (SP0\ where F: Cn-+Ln and 
S: Cn-^ Rn are continuous operators. Furthermore, let us assume that (2,5) holds 
and F, S£C1(93(x0, Q; Cn)) for some Q > 0. If the linear BVP for ue ACn 

(2.6) ti' = [F(x0)]u, 

(2.7) [S'(x0)] u = 0 

possesses only the trivial solution, then there exists Q0 > 0 such that there is no other 
solution x of BVP (£P0) such that ||x — x0\\AC < Q0. 

Proof. Let us put 

(2.8) j r . x e ACn - (X ' " ^ e D„ x R„. 

By the assumption ^ ( x 0 ) = 0 and J^ 6 C ^ X o , e; Ac„)), 

(2.9) ^ ' (x ) : ueAC„^ ("' " ^ ° )eD„ x K. 

for any x e 93(x0, g; 4̂C„). 
Let tF(x) = 0 for some x e 93(x0, g; ACn), x 4= x0. By the Mean Value Theorem 

1.7.4 we have 

0 = 2F(x) - <F(x0) = J [iF'(x0 + 9{x - x0))] (x - x0) dS. 

By 2.2 and V.3.12 F'(x0) possesses a bounded inverse 

r = [ ^ ( x o ) ] " 1 : LnxRn-+ACn. 
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Hence 

x — x 0 = 

and 

(2,10) ||x - Xo|Uc < \\r\\ ( sup ||«F'(x0) - F ( x 0 + 9(x - x0))||) ||x - x 0 | U -
£e[0,l] 

Since the mapping 

x e 93(x0, Q; ACn) - &'(x) e B(AC„ L\) 

is continuous, there is £0 > 0 such that Q0 < Q and 

\\3F'(x0) - <F'(x0 + S(x - x0))|| < Hrll"1 

for any XG93(X 0 , ^ 0 ; ^C„) and #e[0,1] . Consequently for xe93(x0,g0; ACn\ 
x + x0 (2,10) becomes a contradiction ||x — x0\\AC < ||x — x0||>lc. This proves that 
x = x0 if ^(x) = 0 and xe93(x0,£0; ACn). 

2.4. Definition. Let x0 e ACn be a solution of BVP (^0) and let the operators F and S 
fulfil the assumptions of 2.3. The problem of determining a solution u e ACn of (2,6) 
which verifies the side condition (2,7) is called the variational boundary value problem 
corresponding to x0 and is denoted by (^(xo)). 

2.5. Remark. BVP 

x' = x + 1, S(x) = (x(0))2 + (x(l) + 1 - exp (l))2 = 0 

indicates that in general the converse statement to 2.3 is not true. In fact, the solutions 
to x' = x + 1 are of the form x(t) = c exp (t) — 1, where ceR. The only solution to 

(2,H) S(x) = (c - l)2 + (c- l)2(exp(l))2 = 0 

is c = 1. Hence x0(t) = exp(t) — 1 is the only solution to (2,11). The corresponding 
variational BVP is given by 

(2,12) u' = u, [x0(0)] u(0) + [x0(l) + 1 - exp (1)] u(l) = 0. 

Since x0(0) = 0, x0(l) = exp(l) — 1, u(t) = dexp(f) is a solution to (2,12) for any 
deR. 

2.6. Definition. A solution x0 of BVP (SP0) is said to be isolated if there is £0 > 0 
such that there is no solution x to (0*o) such that x + x0 and x e 93(x0, g0; ACn). 
It is regular if the corresponding variational BVP (f(x0)) is defined and possesses 
only the trivial solution. 

2.7. Theorem. Let x0eACn be a solution to BV?(0>
o) where F: Cn-+Ln and 

S: Cn-+ Rn are continuous operators such that (2,5) holds and F, Se C1(93(x0, Q; Cn)) 
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for some Q > 0. Furthermore, x > 0 and G: ACn x [0, x] -> Lj, and R: ^Cn x [0, x] 
-> Rn are continuous operators which are locally lipschitzian in x near s = 0. 

If x0 is a regular solution of (3P0\ then there exist e0 > 0 and Q0 > 0 such that 
for any se[0,so] BVP(3PE) possesses a unique solution x(s) in 93(x0, Q0; ACn). 
The mapping s e [0, s0] -> x(s) eACn (x(0) = x0) is continuous. 

Proof follows by applying 1.7.8 to the operator equation 

^(x) + s &(x, s) = 0, 

where ^: ACn -• Ln x K„ is given by (2,8) and 

» : (x, s) e ACn x [0, x] - Q * ' * J e LJ, x RB. 

(Under our assumptions there exists a bounded inverse of 3F'(x0), cf. the proof 
of 2.3.) 

2.8. Remark. The conclusion of Theorem 2.7 may be reformulated as follows. 
If x0 is a regular solution of (&0\ then there exists for any s > 0 sufficiently small 

a unique solution x(s) of BVP (0>E) which is continuous in s and tends to x0 as 
e - • 0 . 

Theorem 2.7 assures the existence of an isolated solution to BVP (0>E) which is 
close to the regular solution x0 of the limit problem (3P0). If also the perturbations 
G and R are differentiable with respect to x, then we can prove that for any s > 0 
sufficiently small this solution is regular, too. 

2.9. Theorem. Let the assumptions of 2.7 hold. In addition, let us assume that G 
and R possess the Gateaux derivatives G' (x, s) and R' (x, s) with respect to x for any 
(x, £)e93(x0, Q; ACn) x [0, x] continuous in (x,s) on 93(x0, Q; ACn) x [0,%]. 

Then there exists su 0 < st < s0 such that for any ^e[0,6X] the corresponding 
solution x(s) of BVP (0>E) is regular. 

Proof. Given ee[0,£o], the variational BVP (VE(x(s))) corresponding to the solu
tion x(fi) of BVP (0>E) is given by 

u '= [F(x(a)) + sG'(x(s\s)]u, 

[S'(x(e)) + eR'(x(e),£)]u = 0. 

Let u be its solution, i.e. 

/ (e) u = l&'(x(s)) + s <$' (x(e), s)]u = 0. 

Let T = [^'(xo)]-1 . Then u = T[/(0) - /(c)] u and 

H|^^||r|||/(o)-/(«)|||u||^. 
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Since the operators e e [0, e0] -> x(e) e ^C„ and (x, e) e 33(x0, #; ,4C„) x [0, x] 
-» ^ ' (x) + e <&' (x, e) e B(ACn, Ln x Kn) are continuous, their composition e e [0, e0] 
-• j(s) G B(ACn, Ln x î „) is also continuous. 

Choosing e l 9 0 < e x < e 0 in such a way that ee[0, ex] implies \\f(0) — ,/(e)|| 
< llrl"'1 we derive a contradiction \\u\\AC < \\u\\AC whenever u + 0. 

2.10. Remark. The case when x 0 is a regular solution of BVP (2P0) has appeared 
to be simple. It is said to be noncritical. The case when x 0 is not a regular solution 
of (0>o) is more complicated and said to be critical. 

2.11. The critical case. Let x 0 eAC n be a solution to BVP (SP0), where F: Cn-+Ln 

and S: Cn -* Rn are continuous operators such that (2,5) holds and F, S 
eC2(B(x0, Q; Cn) for some Q > 0. Furthermore, x > 0 and 6 : AC„ x [0, x]-»L). 
and R: ACn x [0, x] -> Rn are continuous operators such that G, R 
eC1>1(©(x0, r;; ACn) x [0, x]). In general, we do not assume that x 0 is a regular 
solution of BVP (SP0). Let us try to find a solution to (0>E) in the form 

(2,13) x(t) = x0(t) + eX(t). 

Inserting (2,13) into (2,1) we obtain 

x'o + *i = - W + (F(x0 + ex) ~ F(x0)) + e G(x0 + ex, e), 

i.e. 

[F(x0) + (F(x0 + є%) - F(x0))] X d5 

+ G(x0,0) + (G(x0 + ex, e) - G(xo,0)) 

= [ ' г Ы ] z + G(xo,0) + єH(Z,є), 

where 

*r{x0 + e919z)d91\9d9z)z н м = ( Ш 
G'я(x0 + єðZ, Sє) d£> I x + I G'e(x0 + є%, ðe) d9 . 

1 \ /•! 

+ 

Thus (2,13) is a solution to (2,1) on [0,1] if and only if 

(2.14) i = [F(x0)] X + G(x0,0) + e H(X, e). 

Analogously, (2,13) verifies (2,2) if and only if 

(2.15) [S'(x0)] X + R(x0,0) + e Q(X, e) = 0, 
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where 

Q(И = (T (£S>o + eMz)dð.) 9d5Z)Z 

+ Kx(x0 + e9i,9e)d9)i + R;(x0 + eSZ, Se) d3 . 

It follows that the given BVP (2PE) possesses a solution of the form (2,13) for any 
e > 0 sufficiently small if and only if the weakly nonlinear problem (2,14), (2,15) 
possesses a solution for any s > 0 sufficiently small. In particular, a necessary con
dition for the existence of a solution of the form (2,13) to BVP (0>E) is that the linear 
nonhomogeneous problem 

t = [F(x0)] 1 + G(x0,0), [S'(x0)] i = R(x0,0) 

has a solution. Applying the procedure from 1.7.10 to BVP (2,14), (2,15) we should 
obtain furthermore that BVP (3PE) may possess a solution of the form (2,13) for 
any e > 0 sufficiently small only if there exists a solution y0 of a certain (determining) 
equation T0(y) = 0 for a finite dimensional vector y and if, moreover, F and S e C3, 
G and ReC 2 , 1 and det ((dT0jdy) (y0)) 4= 0, then such a solution exists (cf. 1.7.11). 

The critical case will be treated in more detail in the following paragraph con
cerning ordinary differential equations with arbitrary side conditions. 

2.12. Remark. If P: [0,1] x [0,1] ̂ L(Rn) is an L1 [BVJ-kernel, f 6D„, S<=B(AC„, Rm), 

F: xeACn ds[P(t,s)-]x(s) + f(t), 

G: ACn x [0,%] ->Lj., R: v4C„ x [0,%] -> Rm, then the weakly nonlinear BVP 

becomes a special case of BVP (SPZ) studied in this section. In particular, if R and G 
are sufficiently smooth and the limit problem (0>o) possesses a unique solution for 

any ( \eLPnx Rm, then by 2.9 BVP (2,16) possesses a unique solution for e > 0 

sufficiently small. 

Since according to V.1.8, V.2.5 and V.2.8 £: ACn-*L\ x Rm verifies (1.7,5), 
the procedure from 1.7.10 may be applied to BVP (2,16). Let us mention that in the 
special case when P is an L2[£V] -kernel, feL2

n and R(G) a L2 the transformation 
of BVP (0>o) to an algebraic equation exhibited in section V.4 may also be used 
(cf. Tvrdy, Vejvoda [1]). 
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3. Nonlinear boundary value problems 
for ordinary differential equations 

In this section we shall treat special cases of the problems (0*e) from the previous 
section, namely the problems of the form (I7£) 

(3.1) x' = f(t,x) + eg(t,x,e), 

(3.2) S(x) + eR(x,e) = 0 

and (770) 

(3.3) x' = f ( t , x ) , 

(3.4) S(x) = 0. 

Our aim is again to obtain conditions for the existence of a solution to the perturbed 
problem (IIE) under the assumption that the limit problem (i70) possesses a solution. 
In doing this only such solutions of BVP (IIe) are sought which tend to some 
solution of BVP (]70) as e -» 0 +. 

The following assumptions are pertinent. 

3.1. Assumptions. 

(i) 3>czRn+1 and T>czRn+2 are open, x>0 and [0,1] xRncz@, 2x [0,x]czT); 
(iij f: @->Rn, feCar(^) , dffdx exists on 9 and dfjdx e Car (2) (cf 1.2); 

(iii) g: £> -> Rn, geLip(@; 0) (i.e. g is locally lipschitzian in x near e — 0, 
cf. 1.25)and if g(t, y) = g(t,x,e) for (t,x,g)el) and y = (x, e), then geCar (X)); 

(iv) S is a continuous mapping of ACn into Rn, SeC1(ACn), R is a continuous 
mapping of ACn x [0, x] into Rn which is locally lipschitzian in x near e = 0 
(cf 1.7.1). 

3.2. Remark. Under the assumptions 3.1 for any (c,e)eRn x [0,x] there exists 
a unique maximal solution x(t) = i//(t; 0, c, 2) of (3,1) on A = A(c, e) such that 
OGZI and x(0) = c (cf. 1.4, 1.7, 1.11 and 1.13). The set 

fi(.fof.,.) = Qo = {(^0,c,c);(c,£)e .R f lx [ 0 , x ] , teA(c,e)} 

is open and the mapping 

£: (t,c,e)efi0-> ij/(t; 0, c,^)eRn 

is continuous. 

3.3. Notation. In the sequel §(t; c,e) = ^(t; 0,c,2) for (t,c,e)eQ0. In particular, 
n(t; c) = $(t; 0,c,0) = (p(t; 0,c) for ceRn and teA(c,0). 

224 



VI.З 

3.4. Remark. Given x e ACn, the corresponding variational BVP (fo(x)) t 0 v^o) l s 

given by the linear ordinary differential equation 

(3-5) u'-^(t,x(t)) 

and by the side condition 

(3,6) [S'(x)]u = 0. 

According to 1.14, given a solution x(t) = tj(t; c) to (3,3) on [0,1], the n x rc-matrix 
valued function 

A(t) = [^(t,n(t;c)) 

is L-integrable on [0,1], Moreover, the n x n-matrix valued function 

U(t) = 
дc 

(f.c) 

is the fundamental matrix solution to (3,5) on [0,1] such that U(0) = ln. 

3.5. Remark. Let us notice (cf. 1.20—1.27) that under our assumptions 3.1 the 
operators F: ACn -> Ln and G: ACn x [0,%] -> Ln defined as in 1.21 fulfil all the 
corresponding assumptions of theorems 2.3 and 2.7 (with ACn in place of Cn). 
Moreover, if x(t) = q(t; c) and the variational BVP (iT0(x)) given now by (3,5), 
(3,6) has only the trivial solution, then according to V.3.12 the linear operator 

&'{x): uєЖľ.-Ҷ 
u'-[(dfldx)(t,x(t)j]u 

[S'(x)] u 
єLi x Я„ 

possesses a bounded inverse. Thus applying the same argument as in the proofs 
of Theorems 2.3 and 2.7 we can prove the following assertion. 

3.6. Theorem. Let 3,1 hold. Let x0 be a solution to BVP (II0) and let the corresponding 
variational BVP (^(xo)) possess only the trivial solution. Then x0 is an isolated 
solution of (U0) and for e > 0 sufficiently small BVP (IIE) has a solution x(e) which 
is continuous in e and tends to x 0 as e -> 0 +. 

To obtain some results also for the critical case we shall strengthen our hypotheses. 

3.7. Assumptions. For any ij— 1,2, ...,n f possesses on 3) the partial derivatives 
d2fl(dXi dXj) with respect to the components Xj of x and d2fj(dXi dx3) e Car (S>) 
(ij = 1,2,..., n). Furthermore, dgjdx exists on D and if h(t, y) = (dgjdx)(t, x, e) 
for (t, x, e) e X) and y = (x, e), then h e Car (X)). 

SeC2(ACn) and ReCu°(ACn x [0,%]) (i.e. given (x,e)eACn x [0,x], R'x(x,e) 
exists and the mapping (x, e) e ACn x [0, x] -> Ri(x, e) e B(ACn, Rn) is continuous). 
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The following lemma provides the principal tool for proving theorems on the 
existence of solutions to BVP (IJe) in the critical case. It establishes the variation-
of-constants method for nonlinear equations. 

3,8. Lemma. Let 3.1 and 3.7 hold. Let the equation (3,3) possess a solution x0(t) 
= tj(t; c0) on [0, 1]. Then there exist Q0 > 0 and x0 > 0 such that for any (c, e) 
e93(c0, £0; Rn) x [0, x0] the equation (3,1) possesses a unique solution x(t) on [0,1] 
such that x(0) = c. This solution is given by 

(3,7) x(t) = $(t; c, e) = i/(t; fi(t; c, e)) on [0,1] , 

where for any (c, e) e 93(c0, Q0 ; Rn) x [0, x0] b(t) = P(t, c, e) is a unique solution to 

(3,8) Ь' = є 
őc 

g(í, I/(Í; b), e) 

on [0,1] such that b(0) = c. The mapping (t,c,e)e93 = [0,1] x 93(c0,Q0; Rn) 
x [0, %0] —> /J(t; c, £)ei?n is continuous and possesses the Jacobi matrix (dfljdc) (t; c, e) 
continuous in (t, c, e) on 9?. 

Proof, (a) According to 1.12 there exist an open subset QeRn+i and S > 0 such 
that i/(t; c) is defined for any (t, c)eQ and [0,1] x 93(c0, <5; Rn) cz £2. Furthermore, 
in virtue of 1.16 the Jacobi matrix U(t, c) = (dt]jdc)(t; c) and its partial derivatives 
dU(t,c)ldCj (j = 1,2,..., n) with respect to the components c, of c exist and are 
continuous on Q. Since by 1.15 U~x(t, c) exists on Q and for any j = 1,2,..., n 
and (£, c)e:Q 

0 = A (Ufc c) U % e)) = ( A U(f, e)) U" -(r, c) + U(t, c) (jj- U~ % c)), 

U_1(t, c) possesses on Q all the partial derivatives 

^U-%c)=-U-%c)(^U(t,c)ju-%c) (;= 1,2,...,„). 

It is easy to see now that the right-hand side 

(3,9) h(r, b, e) = e U" ^t, b) g(t, t,(t; b), e) 

of (3,8) possesses the Jacobi matrix (dhjdb) (t, b, e) on some open subset Q of Rn+2 

such that Q x [0, ̂ ] cz (2 and if we put x(t, ft) = (dhjdb) (t, b, e) for fi = (b, e) and 
(t, /i) G .Q, then x e Car ((2). By 1.14 (cf. also 1.17) this implies that for any (c, e) e Rn 

x [0, x] sufficiently close to (c0,0) the equation (3,8) possesses a unique solution 
b(t) = fi(t; c, e) on [0,1] such that b(0) = c. Moreover, since for e = 0, b(t) = c0 

is a solution to (3,8) on [0,1], there exist £0 > 0 and x0 > 0 such that fi(t; c, e) 
is defined and possesses the required properties on © = [0,1] x ^B(C0,Q0; Rn) 
x [0, XQ] and in addition |/J(r, c, e)| < S for any (t, c, e) e 23. 

226 



V1.3 

(b) Let (c, e) e 93(c0, g0; Rn) x [0, x]. By the first part of the proof (3,7) is defined 
on [0,1] and according to the definitions of tj(t, c) and fi(t; c, z) 

x'W = ^(r;/J(r;c,a)) + g ( t ; ^ ; c , e ) ) ^ ( t ; c , e ) 

= f(t, tj(t; p(t; c, e))) + eg(t; 0(t; c, e)), e) for a.e. t e [0,1] , 

while x(0) = iy(0; /f(0; c, s)) = tj(0; c) = c. Since (3,1) possesses obviously the 
property (%), it means that 

x(t) = tl(t;P(t;c,s)) = $(t;c,s) on [0,1]. 

3.9. Notation. ,yV denotes the naturally ordered set {1,2,..., n}. If J is a naturally 
ordered subset of .yV, then Jf\f denotes the naturally ordered complement of J 
with respect to Jf. The number of elements of a set J> a Jf is denoted by v(J). 
Let C = ( c u ) u = l f 2 neL(KM) and let . / = {il9 i2,.., ip} and / = {juj2, ...Jq} 
be naturally ordered subsets of .yV, then C^ ^ denotes the p x a-matrix 
(̂ k,i)fc=i.2 P;I=I,2 9'

 w h e r e dk,i = cik,h
 f o r k = i»2,...,p and / = l ,2, . . ,q . In 

particular, if b e Rn (b = (bu b2,.., b„)*), then b^ denotes the p-vector (dx,&2,.., dp)*, 
where dk = b£k for k = 1,2,.., p. (Analogously for matrix or vector valued functions 
and operators.) 

3.10. Remark. Let x0(t) = i/(r; c0) be a solution to the limit problem (170) and let 
the corresponding variational BVP (i^0(x0)) possess exactly k linearly independent 
solutions on [0,1] (dim N(^f(x0)) = k). This means that rank (A(c0)) = n - k, 
where 

4co) = [S'(x0)]g(.;c0) 

denotes the n x n-matrix formed by the columns [S'(x0)] u, (uj(t) = (dtijdc^(t; c0) 
on [0,1]; j= 1,2, ...,n). Hence there exist naturally ordered subsets «/, / of 
«yV = {1,2,.., n} with k elements such that 

det (A(c0))jr\j,jr\# * 0. 

Let us denote (c0)̂ r = y0 and (c0)jr\# = <?o- Since for any ceRn sufficiently close 
to c0 the value of the Jacobi matrix of the function d£Rn-* S(tj( .;d))e Rn is 
given by [S'(ti(.; c))] (dt\\dc) (.; c), the Implicit Function Theorem yields that there 
exist o > 0 and a function p0: 93(y0, o; Rk) = T -> Rn_k such that p0(y0) = 50, 
(dpo\dy) (y) exists and is continuous on F (p0 e CX(F)) and if the function q0: r~+Rn 

is defined by (q0(y))^ = y and (q0(y)V\j? = Po(y), then 

S^U-»(.;q0(y))) = 0 for any yeF . 

If also S^(iy(.; q0(y))) = 0 for any y e F, then x(t) = iy(t; q0(y)) is a solution to (270) 
for any yeT. 
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3.11. Theorem. Let the assumptions 3.1 and 3.7 hold. In addition, let us assume 

(i) there exist an integer k, 0 < k < n, a naturally ordered subset $ of Jf with k 
elements (v(f) = k), an open set F c= Rk and a function p0: F -• Rn-k such 
that (dpojdy)(y) exists and is continuous on F and if q0: F -> Rn is defined by 
(<lo(v))j? = V and (q0(v))jr\j? = p0(v), then the function te [0,1] -• ij(t; q0(y))eRn 

is a solution to BVP (i70) for any y e F; 
(ii) rank([S'(tj(.; g0(y)))] (dqjdc) (.; q0(y)) = n - k for any yeF. 

Let J be a naturally ordered subset of Jf with k elements such that 

(3,10) rank ([S'(i,(.; q0(y)))] ̂  (.; q 0 (y))W,^ = n-k 

and let 0: F -> L(Rn_k, Rk) be a matrix valued function such that 

(341) ([s'W.;qo(y)))]^(.;qoW)^ 

= 0(y)(s>(n(.;qo(y))A.-,qo(y))) 
\ cc Jjr\9^ 

for any yeT. 
Then the mapping 

(3,12) T0: y e r c : i ? ^ ( [ S ' ( i / ( . ; q o ( y ) ) ) ] ^ ( . ; q o W ) C y + R(>;(.;qo(y)),o)^ 

- 0(y) ([S 'W.; q0(y)))] f- (.; q0(y)) Cr + «(*(•; q0(y)), 0)) 6 Rk 

where 

Jfjr 

ш'í ^ ( т ; q o ( y ) ) g(T, «í(t; qo(y)), 0) di on [0,1], 

possesses the Jacobi matrix (dT0jdy) (y) on F. 

If moreover, the equation 

(3.13) T0(y) = 0 

possesses a solution y0eT such that 

(3.14) det(-J(7 o))*0, 

then f/iere exists for any s > 0 sufficiently small a unique solution xe(t) = £(t; c(s), s) 
of BVP (LIE) which is continuous in s and tends to tj(t; q0(y0)) uniformly on [0,1] 
as s —> 0 + . 
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Proof, (a) Let us put 

Mv) = [SU'^o(v)))]^(.;q0(y)) for yeF . 

We shall show that 

(3.15) det((_io(y)W.-r\^)*0 for any yeF . 

In fact, if there were det(/i0(yi))^\^,^\^ = 0, then he J and fieR„-k-1 should 
exist such that 

(3.16) (MVIKJTW = P*{MVi))*.jr\, 

where Jf = (Jr\J)\{h). On the other hand, according to our assumptions and 
the definition of i/(t, c) 

(3.17) S(j/(.;qo(y)) = 0 for any y e F . 

Differentiating the identity (3,17) with respect to y, we obtain 

MV) ~ (V) = (Mv)lr.jrv ^ (7) + (Mv))^ = 0 

for any yeF. By (3,16) 

(^0(vi)W=-(-i0(yi)k^^(yi) 

= -t**(Mvi))*,jr\s ~ (yx) = P*(MVI))*J 

i.e. 

(MVI)KJT = P*(MVi))*,jr 

and rank(J0(yi)V\^,^r < n — k — \. This being a contradiction to (3,10), (3,15) 
has to hold. 

(b) Since (3,10) is assumed, for any yeF there exist a k x (n — fc)-matrix &(y) 
such that (3,11) holds on F, i.e. 

(Mv%^ = 0(v)(Mv)V\9,jr on F. 
In particular, 

{Mv))r.jr\f = &(v)(Mv)\r\s,jr\f 
and 

(3.18) <9(y) = (A0(y))&^(A0(y)Xr\s,w on F. 

It is easy to verify that under our assumptions all the partial derivatives (dA0jdyj) (y) 
(j = 1,2,...,k) exist and are continuous on F. Clearly, for any j — 1,2,..., w 

Õyj (MУ))'1 - -(Чr))-1
 (^(MУ^MУ))'1 on г 
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and in virtue of (3,18) also the k x (n — k)-matrix function 0(y) possesses all the 
partial derivatives (d0\dy^)(y) (j = 1,2,..., n) on F and they are continuous on F. 
This implies that the function T0: f c Rk^> Rk defined by (3,12) possesses the 
Jacobi matrix (dT0\dy)(y) on F and it is continuous on F. 

(c) According to the definition of £(t, c, e) an n-vector valued function x(t) is 
a solution to BVP (i7£) if and only if x(t) = £(r; c, e) on [0,1] and ceRn fulfils the 
equation 

(3.19) W(c, e) = S({(.; c, e)) + e R({(.; c, e), e) = 0. 

The mappings W: Rn x [0, x] -> Rn and dW\dc: Rn x [0, x] -• L(Rn) are clearly 
continuous. 

Let y0 e F be such that T0(y0) = 0. Then W(q0(y0), 0) = 0. Furthermore, since 

^(<?o(y),0) = ,do(y) on F, 

(3,15) means 

det — (qo(y),0) + 0 o n F . 
\ ^ c Jjr\^,jr\? 

It follows that there are 0X > 0 and ^ > 0 such that 

J (dVt, A 

\ c ; c Jjr\9,jr\# 

for all (c, e)e33x = 2?(c0, £x;-RM) x [0, xx\ By the Implicit Function Theorem 
there exist Q2 > 0, x2> 0, %2 < %l9 and a unique function p: 332 = ®(Vo>£2; ̂ *) 
x [0, x2] -> Rn-h pe C1'°(©2) such that if (q(y, e% = y and (q(y, e))^^ = p(y, e), 
then q(y,e)e-B(c0,^;P,,) and 

(3.20) VV^(q(y,e),e) = 0 for any (y,e)e932 

and q(y,0) = q0(y) on 93(y0,02; Rk). 

(d) By 3.8 for any te[0,1] and (c, e) sufficiently close to (c0,0) the function 
£(t; c,e) = t\(t; fi(t; c,e)), where b(t) = p(t; c,e), is the solution of (3,8) on [0,1] 
such that b(0) = c We may assume that this is true for (c, s)e^Bx. Let us nut 

Гt Гђ^ 

^ ř ; c ? в ) " J 0 l ^ : ( т ; c ' e ) ) g(т, ц(т; ß(т; c,e)),e)dт 
JO LdC 

for ( f ;c , £ )e[0 , l ] x « . . Then 

P(t; c, s) = c + e£(t; c, e) on [0,1] x 951 . 

and (cf. (3,12)) 

lim;{t;q{y,s),e) = ^t;q0{ylO) = Ut) for any re [0,1] and y e T . 
£->0 + / y\ / u 
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By (3,17) and 1.7.4 we have for any (y, e) e 932, e > 0, 

(3,21) ^VV(q(y,£),£) 

= ^[%(-;q(r.£) + ^))-%(.;q(y,fi)))] 

+ \ [%( •; <i(y,«))) - *(*( •; q0(y)))] + *(«/( •; q(y, «*) + efl, e) 

= £[S'(i,(.; q(y, e) + e8fl)] ^ (.; q(y, e) + 8#C) d9C 

£ [ % ( • ; q0(y) + 9[q(y, e) - q0(y)]))] ^ (.; q0(y) + %(y, e) - q0(v)]) d9 

+ R(i/(.;q(y,e) + eC),£) 

+ 
VJo"" 

q(ľ, e) - q0(ľ) 

= [%(.; q(ľ,є)))]g(.; q(ľ,є))Ç + Rfø.; q(y,є)),є) 

+ ( £ {[S'Ц.; q(y,є) + єðC))]^(.; q(y,є) + єЭÇ) 

- [%(.; q(y,є)))]^(.; q(y,є))jdð)c + (Л(y,г))w

p{ЪE) ~ Po{y) 

where 

d \ • 7 T\# 7 / / I I -" \ \# 7 //«/" .«/» \«Ĵ  

c v J / e 
+ R(i/(.; q(y, e) + eC, s) - R(»/( •; q(y, e)), e), 

A(y, e) = £ [ S ' M - ; q0(y) + 9[q(y, a) - q0(y)]))] ^ (•; q0(y) + %(y, a) - q0(y)])d». 

Since for any y e 93(y0, £2; #*) 

lim J(y,e) = [S'(i/(.; q0(y)))]|?(.; q0(v)) = Mv)> 
E-+0 + <7C 

(3,10) implies that also 

(3,22) d e t ( z * ( y , e ) ) ^ ^ + ° 

for all e > 0 sufficiently small. Without any loss of generality we may assume that 
(3.22) holds for all (y,e)e»2 . 

By (3,20)-(3,22) we have for any y e93(y0, Q2\ Rk) 

to ̂ \ v «Kr»fi)-f»o(r) 

(3.23) hm 

= (My))i\wA(My))w^ty + *W(*(-; <Jo(y)),o)]. 
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Differentiating (3,21) with respect to y and making use of (3,22) we may analogously 
prove that also 

dp ( v s P o / v 
, , TyM~ly-{y) 

3,24 lim — 

exists. 
According to (3,20) for e > 0 the equation (3,19) is near c = qo(7o) equivalent to 

(3,25) ^, e) = ^wMi> 4£) - &(y) W*\Mt> 4 «)] = ° • 

Moreover, if for any ^ > 0 sufficiently small yr e F is the solution to (3,25) which 
tend to y0

 a s e ~* 0+ , then 

x£(t) = ^ ; q ( y £ , 4 £ ) 

are solutions of BVP (i7£) such that 

lim\\xe-t,{.;qo{yo))\\c = 0. 
£-*0 + 

Let r(y, e) denote the n-vector 

/ v / . / u p(y,e)-Po{y) 
r(y, e) = (A(y, ^)U^ . 

In virtue of (3,11) and (3,23) for any y e 93(y0, Q2; Rk) 

lim [r,(y, e) - <9(y) r ^ y , e)] = 0. 
e-*0 + 

Furthermore, (3,11) implies 

Jjr\f.jr fy (jî{У)), ж" Ö ( ľ ) ( ^ ( У ) l " ^ ľ ) ( Л ( y ) W ^ = в °ПІ 

}iz^y>£) - a(») |>^8)- =
ElT+ [(f ( y ' e )) , 

" * K * M L ^ - ¥(V) (J(y '£))—-J S 
fV)-^(y) 

+ [(% e ) k ^ - &(y) (A(7, £ ) W ^ ] — - — - — = © 

Thus if we put for ye23(y0,e2; Rk) %<>) = To(y), then T: 932 -• R t becomes 
a continuous operator which possesses the Jacobi matrix (dT/dy)(y,e) for any 
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(y, s) e ©2, while the mapping 

(y,e)e<B2^j-(y,s)eL(Rk) 

is continuous. 

Applying the Implicit Function Theorem to (3,25) we complete the proof of the 
theorem. 

Now, let y 0 e f and let us assume that given e > 0 sufficiently small (e.g. 
£G(0, x0]), there exists a solution xe(t) = £(t; c£, e) of BVP(i7£) such that xe(t) 
tends uniformly on [0,1] to the solution x0(t) = ^t; q0(y0)) of the limit problem 
(770) as £->0+. Then, in particular, c£ = xe(0) tends to q0(y0) and ye = (C£)JF 

tends to y0 as e -» 0+ . Hence |y8 - y0| < Q2 for any e > 0 sufficiently small and 
analogously as in the proof of Theorem 3.11 we may show that 

lim - [VV„(q(y£, e)) - 0(ye) W^(q(yE, s))] =- T0(y0). 
£-+0+ £ 

Since by the assumption W(q(ye, s)) = 0 for all s e (0, x0], this completes the proof 
of the following theorem. 

3.12. Theorem. Let in addition to 3.1 and 3.7 (i) and (ii) from 3.11 hold. Then there 
exists 80 > 0 such that given £G(0, 80], BFP(1T£) possesses a solution xe(t) tending 
uniformly on [0,1] to some solution x0(t) = ff(t; q0(y)) of BVP(TI0) as 6-+0-F 
only if the equation (3,13) has a solution y0 e F. 

The next theorem supplements the theorems 3.11 and 3.12. 

3.13. Theorem. Let 3.1 and 3.7 hold and let T a Rn be such an open subset that 
xy(t) = if(t; y) is a solution to BVP(TI0)for any ysT. 

Let y0 e T. Then a necessary condition for the existence of an e0 > 0 such that 
for a given s e (0, g0] there exists a solution xe(t) of BVP (IIe) and xe(t) tends uniformly 
on [0,1] to xyo(r) is that y0 is a solution to 

(3,26) To(y) = [S'(»,(.;y))]^(.;y)Cv = 0, 

where 

(ť) = í Yc(
x>y)\ V^;v)5o)dt. 

If, moreover, det ((dT0jdy) (y0)) 4= 0, then such an s0 > 0 exists. 

Proof follows readily by an appropriate modification of the proofs of 3.11 and 3.12. 

3.14. Remark. Let us notice that the condition (3,10) of 3.11 holds if and only if 
any variational problem (^oM*; 9o(y)))) possesses exactly k linearly independent 
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solutions (cf. IV.2.7). In the next lemma we shall show that the determining equation 
(3,13) may also be expressed by means of the variational problem. 

3.15. Lemma. Let in addition to 3.1 and 3.7 (i) and (ii) from 3.11 hold. Given yeF, 
T0(y) = 0 if and only if the nonhomogeneous variational BVP 

(3.27) u' - | J £ (t, 4t; qo(y)))]u = g(t, t,(t; q0(y)),0), 

(3.28) [S'(«,(.; q0(y)))]u = - R(>/(.; q0(y)), 0) 

possesses a solution. 

Proof. Let S be an n x ^-matrix such that for a given reRn 

Then the assumption (3,10) means that there exists a k x (n — /c)-matrix valued 
function 0(y) defined on F and such that 

(3.29) /l(y)[S'(i,(.;q0(y)))]^(.,q0(y)) = 0 for any y e T , 

where 

(3.30) A(y)= ~[-0(y), lk] S. 

Analogously as in IV.2.2, we may show that to a given yeF there exists a n n x w -
matrix valued function F(t, y) defined on [0,1] x F and such that 

T0(y) = A(y) M F(t,y) g(u n(t; q0(y)),0) dt + R(iy(.; q0(y)),0)J for any yeF 

and the couple (S* A(y) F(t, y), 8* A(y)) verifies for any S e Rn and yeF the adjoint 
BVP to BVP (3,27), (3,28). Obviously rank/l(y) = k for any yeF. Thus, given 
yeF, the rows of A(y) F(t, y), A(y) form a basis in the space of all solutions of the 
adjoint BVP to BVP (3,27), (3,28) (cf. V.2.9). Hence by V.2.6 and V.2.12 our assertion 
follows. 

3.16. Remark. Let us assume that BVP(77£) has the property (ST) (translation): 
%(t; c, s) being a solution to BVP (77e), £(t + S; c, a) is also a solution to BVP (J7£) 

for any 5 e R such that §(f 4- <5; c, £) is defined on [0,1]. 

Then, if BVP(/7e) has a nonconstant solution f(t; c,e), it has at least a one-
parametric family of solutions §(t; £(<5; c,e),fi) for all 8eR such that |<5| is suf
ficiently small. Consequently, Theorem 3.11 cannot be used for proving the existence 
of a solution xe(t) of BVP (77) which tends to some solution x0(t) of the shortened 
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BVP(i70) as 8-+0 + . This is clear from the fact that this theorem ensures the 
existence of an isolated solution. In some cases one component of the initial vector 
c = c^) of the sought solution £(t; c, e) may be chosen arbitrary (in a certain range) 
and another parameter has to be taken as a new unknown instead. Theorems on 
the existence of solutions to such problems can be then formulated and proved 
analogously as Theorem 3.11 (cf. Vejvoda [2] — [4]). 

The most important problems with the property (ST) are those of determining 
a periodic solution to the autonomous differential equation x' = f(x) + s g(x, ̂ ). 
Solving such problems, the period T = T\e) of the sought solution is usually 
chosen as a new unknown. In general, two principal cases have to be distinguished. 
Either the limit BVP (770) associated to the given BVP (IJe) has a fc-parametric 
family of aperiodic solutions iy(t; c(y)), yeF, with T independent of y or their 
periods depend on y. The former case occurs e.g. if the equation x' = f(x) may 
be rewritten as the equation z' = iz + z2 for a complex valued function z. (All 
the solutions of this equation with the initial value sufficiently close to the origin 
are 27t-periodic, cf. Vejvoda [1], Lemma 5.1.) An example of the latter case is treated 
in the following section. 

4. Froud-Zukovskij pendulum 

Let us consider the second order autonomous differential equation of the Froud-
Zukovskij pendulum 

(4.1) x" + sin x = e g(x, x'), 

where g is a sufficiently smooth scalar function and e > 0 is a small parameter. 
Given ^ > 0, we are looking for a real number T > 0 and for a solution x(t) to (4,1) 
on R such that 

(4.2) x(T) = x(0) and x'(T) = x'(0). 

The limit equation (for ^ = 0) 

(4.3) / ' + siny = 0 

is known as being equation of the mathematical pendulum. All the solutions y(t) 
to (4,3) with sufficiently small initial values y(0), y'(0) are defined on the whole 
real axis R and may be expressed in the form 

y(t) = ri(t + h;k), 
where 

(4.4) rj(t; k) = 2arcsin(ksn(t; k)), heR and ke(0,1). 

(cf. Kamke [1], 6.17). Moreover, for any heR and fee(0,1) the function y(t) 
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= rj(t + fc; k) fulfils the periodic boundary conditions (4,2) with T = 4 K(fc), where 

/ . fn/2 <*S 
K<*> = 1 T 3 I W S -

In (4,4) sn(t; fc) denotes the value of the Jacobi elliptic sine function with *he 
modulus fc at the point t. For the definition and basic properties of the Jacobi elliptic 
functions sn, en, dn and of the elliptic integrals K(fc), £(fc) see e.g. Whittaker-Watson 
[1], Chapter 22. If no misunderstanding may arise, we write sn, en, dn instead of 
sn(f; fc), cn(r; fc) and dn(t; fc), respectively. 

Solutions of the perturbed equation (4,1) will be sought in the form 

(4.5) x(t) = Z(t; fc, fc, e) = rj(t + a; p), 

where a = a(t) = a(t; fc, fc, e) and /? = p(t) = P(t; fc, fc, e) are properly chosen scalar 
functions such that a(0) = fc and /J(0) = fc (cf. 3.8). Differentiating (4,5) with respect 
to t, we obtain 

At) = jt(t + «('); m)(- + At)) + yk(t + <t); Rt))P'(t)• 

Hence, if 

(4.6) ft(t + «(t); P(t))At) + fk(t + «(t); P(t))P'(t) = 0 , 

^ ( t + a(t); /J(t))a'(t) + ^ | ( t + a(t); /J(t))«'(t) = e ^ t + a(t); /?(t))), 

then 

and 

Since 

where 

we have 

At) = Jt(t + °{t);ß(t)) 

x"(t) - sin(x(t)) = e бr(i7(ř + a(í); ß(t))). 

d S n .2 A T A 8 C T Í M AT 
-—- = -fc . c n . d n . J and — - = fc . s n . d n . J , 
dk dk 

sn 
, , . 2fc.cn, 2 2fc2. cn. J 

H(ř,fc)=( dn 
— 2fc. cn. dn, 2 cn + 2fc2. sn. dn. J 
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VI.4 

for 

Consequently 

Я(íД) = 
dt{t'k)' 8k 

d^(t-k) ^L 
\dt2[' h dkdt 

(t;k) 

dettf(r + a(t);jS(f)) = 4/?(f). 

Provided fl(t) =t= 0, the system (4,6) may be written as follows 

F = s.im(t + a; 0) g(n(t + a; 0)). 

Since for e = 0 the couple (a(t), fi(t)) = (h, fc) is the unique solution of the system 
(4.7) on R such that a(0) = h, /?(0) = k, Lemma 1.18 implies that for any T > 0 
there exists e r > 0 such that for any ee(0,e r) and heR, ke(0,1) the system (4,7) 
possesses a unique solution (oc(t\ P(t)) = (a(t; h,k,e), fi(t; h, k, e)) on [0, T], con
tinuous on [0, T] x R x (0,1) x (0, er) and such that a(0) = h, p(0) = k, while 
p(t) e (0,1) for any t e [0, T]. Let us put a(t; h, k, 0) = h and fi(t; h, k, 0) = k. 

Given a solution x(t) to BVP (4,1), (4,2) and heR, the function z(t) = x(t + h) 
is also a solution to this problem. Hence without any loss of generality we may put 

(4.8) h = 0. 

Let T > 0 and ke(0,1) be for a while fixed. Let oc(t) = a(t; 0, k, e), p(t) = fi(t; 0, k, e) 
be the corresponding solution of (4,7) on [0, T] (e e (0, eT)). Then (4,5) becomes 

(4.9) x(t) = 2 arcsin (j?(r) sn (t + oc(t); P(t))) for t e [0, T] and e e (0, er) 

and x(T) = x(0) if and only if p(T) sn (T + a(T); p(T)) = 0 or equivalently (j8(T) + 0) 

(4.10) T + a(T; 0, k, e) - 4K(P(T; 0, fc, e)) = 0. , 

According to (4,6) and (4,9) 

x'(t) = 2p(t)cn(t + z(t);P(t)) 

and x'(T) = xr(0) if and only if 

P(T) en (T + a(T); fi(T)) = kcn(0;k) = k 

or in virtue of (4,10) 

(4.11) p(T) = ^(T)cn(4K(i8(T)); ft(T)) = k. 

By (4,9) 

j?(t) = k + e. ±x(t, k, e) for t e [0, T] and e e (0, e r ), 
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VIA 

where f* 
x(t,fc,e) = cn(t + a(i); p(T))g(ti{v + a(t); j%)))dT. 

Jo 
This together with (4,11) implies that x'(T) = x'(0) if and only if 

(4.12) x(T,fc,fi) = 0. 

If fi-*0 + , then the equation (4,10) becomes T - 4K(fc) = 0 and the system 
(4,10), (4,12) reduces to the equation 

(4.13) B(fc) = 0, 

where 

cn(t;k)g(ri(t;k))dt. m=£ 
This means that a necessary condition for the existence of a solution to the given 
BVP (4,1), (4,2) for any e > 0 sufficiently small is the existence of a solution fce(0,1) 
of the equation (4,13). 

Taking into account the properties of the Jacobi elliptic functions it can be shown 
that if e.g. 

g(x, x') = x' - 3(x')3 , 

then the equation (4,13) possesses a solution fcoe(0,1) such that (dBjdk)(k0) =# 0. 
By the Implicit Function Theorem there exists e0 > 0 such that for any e e (0, g0] 
the system (4,10), (4,12) possesses a unique solution T = TE > 0 and k = fc£e(0,1) 
such that TB ~* 4 K(k0) and fce -* fc0 as e -» 0 +. Given e e [0, e0], &(t) = a(t; 0, fce, s) 
and P(t) = p(t; 0, fce, s) verify the system (4,7) on [0, Ts~\ and hence xe(t) 
= rf(t + a(r); f}(t)) is a unique 7^-periodic solution of the equation 

x" + sin x = fi(x' — 3(x;)3) 
such that 

xe(t) -> x0(t) = rj(t; fc0) as e -> 0+ . 

Notes 
Chapter VI is a generalization of the work by Vejvoda ([4]). The main tools are the Implicit Function 

Theorem (Newton's method) and the nonlinear variation of constants formula VI.3.8 due to Vejvoda ([4]). 
Theorems VI.2.3, VI.2.7 and VI.2.9 are contained also in Urabe [2], [3]. 

The method of a small parameter (perturbation theory) originated from the celestial mechanics 
(Poincare [1]). Periodic solutions of nonlinear differential equations were dealt with e.g. by Malkin 
([!]> M)> Coddington, Levinson ([!]), Hale [1], Loud ([1], [2]) and others. Further related references 
concerning the application of the Newton method to perturbed nonlinear BVP are e.g. Antosiewicz 
[1], [2], Bernfeld, Lakshmikantham [1], Candless [1], Locker [1], Kwapisz [1], Tvrdy, Vejvoda [1], 
Vejvoda [2], [3] and Urabe [1]. 
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