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Abstract

We extend results of A. Haken to give an exponential lower bound

on the size of resolution proofs for propositional formulas encoding a

generalized pigeonhole principle. These propositional formulas express

the fact that there is no one-one mapping from c ·n objects to n objects

when c > 1. As a corollary, resolution proof systems do not p -simulate

constant formula depth Frege proof systems.

1. Introduction

S. Cook and R. Reckhow [2] introduced propositional formulas encoding the
pigeonhole principle. These propositional formulas have polynomial size proofs
in extended resolution proof systems (S. Cook, Reckhow [2]), in Frege proof
systems (Buss [1]) and in cutting plane proof systems (W. Cook, Coullard,
Turán [3]); however, A. Haken [4] showed they require exponential size proofs
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in a resolution proof system. The purpose of this paper is to extend Haken’s
exponential lower bound; in particular, we address the question of lower bounds
on the size of resolution proofs of generalized pigeonhole principles which state
that for m > n , if m pigeons sit in n holes then some hole contains more than
one pigeon. For m > n + 1 the generalized pigeonhole principle is “more true”
than the usual pigeonhole principle (where m = n + 1), and hence might have
shorter resolution proofs.

We show below that any resolution proof of the generalized pigeonhole
principle with m = cn must be exponential size in n (for constant c > 1).
This implies (using results of Paris and Wilkie [5] and Paris, Wilkie and
Woods [6]) that resolution does not p-simulate constant formula depth Frege
proof systems.

2. Resolution and the Pigeonhole Principle

We begin by recalling the basic facts about resolution (see Haken [4] for
a more detailed exposition). A propositional variable ranges over the truth
values True and False. A literal is either a variable x or the negation x of a
variable x . A clause is a finite set of literals; the meaning of a clause is the
disjunction of the variables in the clause. Hence a truth assignment satisfies a
clause if it assigns the value True to some variable in the clause or the value
False to a variable whose negation appears in the clause. The meaning of a
set of clauses is the conjunction of the clauses, so any conjunctive normal form
formula can be viewed as a set of clauses. The resolution rule is a form of
modus ponens: if C1 is a clause containing x and C2 contains x then the
clause (C1 \ {x}) ∪ (C2 \ {x}) is inferred by resolving on the variable x .

Resolution is a refutation proof system. Given a formula φ in disjunctive
normal form, its negation can be expressed in conjunctive normal form and
then as a set of clauses. A resolution proof of φ is by definition a resolution
proof of the empty clause (a contradiction) from the set of clauses expressing
the negation of φ . The completeness theorem for resolution guarantees that
every tautology in disjunction normal form has a resolution proof; i.e., from
any set of clauses such that no truth assignment can simultaneously satisfy all
of them there is a derivation of the empty clause using only the resolution rule.

A resolution proof can be viewed as a sequence of clauses; each clause in the
sequence is either an initial clause (an assumption) or is obtained by resolution
from two earlier clauses. Alternatively a resolution proof can be viewed as a
directed acyclic graph with an edge from one clause to another if the second is
obtained by resolution from the first together with some other clause.

We shall use the following fact: given a resolution proof and a truth
assignment α , there is a unique path C1, C2, . . . , Ct through the proof (viewed
as a directed acyclic graph) such that C1 is an initial clause and Ct is the
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empty clause and each Ci+1 is inferred by resolution from Ci and one other
clause. This is proved by working backwards starting at the root of the tree
and by noting that if α does not satisfy a clause then α also does not satisfy
exactly one of the two clauses from which it derived by resolution.

Since we are working in a resolution proof system the generalized pigeonhole
principle PHPm

n needs to be expressed as an unsatisfiable propositional formula
in conjunctive normal form. The variables of PHPm

n are xi,j with 1 ≤ i ≤ m ,
1 ≤ j ≤ n ; the variable xi,j is intended to denote the condition that pigeon i
is sitting in hole j . The formula PHPm

n is defined to be

 m∧

i=1

n∨
j=1

xi,j


 ∧


 n∧

j=1

∧
1≤i1<i2≤m

(xi1,j ∨ xi2,j)




where xi,j denotes the negation of xi,j . The first part of PHPm
n expresses the

condition that every pigeon sits in one or more holes; the second part that no
hole is occupied by more than one pigeon. It is easy to see that the generalized
pigeonhole principle for m pigeons and n holes is equivalent to PHPm

n being
unsatisfiable. Note that the size of PHPm

n is O(nm2).

3. A Lower Bound for Resolution

In this section we prove the main result:

Theorem 1 Every resolution proof of the unsatisfiability of PHPm
n has length

at least

1
2
·
(

3
2

) 1
50 · n2

m

Thus, in particular, PHPcn
n requires exponential length resolution proofs for

any constant c > 1. The lower bound is superpolynomial for m = o(n2/ log n).
We do not know whether PHPn2

n has polynomial length proofs. (By the length
of resolution proof we mean the number of lines in the proof; however, this is
polynomially related to the number of symbols in the proof since each clause in
the proof will contain at most one instance of each variable.)

The proof follows A. Haken’s argument. Although in his proof (and in the
subsequent work of Urquhart [7]) the existence of critical truth assignments,
which satisfy all but one clause, seems to play a central role, it turns out that
by suitably modifying Haken’s definitions his ideas carry over to our case as
well — although here there are no critical truth assignments.

We shall picture the variables xi,j arranged in an n × m matrix with i
(the pigeon) specifying the column and j (the hole) the row. Each clause
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in the resolution proof is described by an n × m matrix partially filled with
+’s and − ’s, where a + (respectively, −) in a position (i, j) means that
xi,j (respectively, xi,j ) occurs in the clause. A truth assignment is pictured
as an n × m matrix of 0’s and 1’s which indicate assigning False or True
(respectively) to the corresponding variable.

Definition A truth assignment α is maximal if it contains exactly n 1’s, all
in different rows and columns. The m − n columns which contain no 1’s (and
hence only 0’s) are called the 0-columns of α .

Note that a maximal truth assignment assigns n of the pigeons to distinct
holes and leaves the other m − n pigeons unassigned.

Now suppose we are given an arbitrary resolution proof of the unsatisfiability
of PHPm

n . Recall that such a proof may be viewed either as a sequence of
clauses ending with ∅ or as a directed acyclic graph with ∅ at the root. (The
empty clause ∅ is not satisfiable.) Each clause in the proof must either be a
clause from PHPm

n or be deduced from prior clauses by resolution. The initial
clauses from PHPm

n consist either of one column filled with n +’s or of two
− ’s in one row.

Lemma 2 For every maximal truth assignment α there is a clause C in the
resolution proof such that

(1) α makes C false,

(2) C contains at most
⌊

n
2

⌋
+ ’s in every 0-column of α ,

(3) C contains
⌊

n
2

⌋
+ ’s in exactly one 0-column of α .

Proof In the resolution proof there is a unique path of clauses C1, . . . , Ct such
that α makes each Ci false, C1 is an initial clause and Ct = ∅ . Because α is
maximal C1 must consist of one column filled with +’s; this will be a 0-column
of α . Let C be the last among these clauses which contains at least

⌊
n
2

⌋
+’s

in some 0-column of α . Then C satisfies (1) by definition, and it also satisfies
(2) and (3) as +’s can disappear from a clause only one at a time. 2

If α is a maximal truth assignment, let Cα denote the first clause in the
resolution proof satisfying the conditions of Lemma 2. Define FS1 to be the
set {S : S is a set of

⌊
n
4

⌋
variables, all in different rows and columns} . For

S ∈ FS1, CS is the first clause in the proof sequence which is of the form Cα

for some maximal truth assignment α which assigns 1’s to each variable in S .
Any such CS is called a complex clause.

Lemma 3 Every complex clause has at least
⌊

n
4

⌋
+ 1 columns which contain

either a − or at least
⌊

n
2

⌋
+ ’s.
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Proof Let CS be a complex clause for S ∈ FS1 and α be a maximal truth
assignment assigning 1’s to the variables in S such that Cα = CS . Let

COL−={` : column ` of CS contains a −},
COL+={` : column ` of CS contains at least

⌊
n
2

⌋
+’s and no −’s

and is not a 0-column of α},
`0=the 0-column of α which contains exactly

⌊
n
2

⌋
+’s in CS ,

A={xi,j /∈ S : αi,j = 1}.

Since α makes CS false, COL− cannot contain any 0-column of α ; thus
COL− , COL+ and {`0} are pairwise disjoint. By definition every 0-column
of α other than `0 contains fewer than

⌊
n
2

⌋
+’s in CS . As `0 satisfies the

conditions of the lemma, we have to show that |COL−| + |COL+| ≥ ⌊
n
4

⌋
.

Claim 1: If |COL−| + |COL+| <
⌊

n
4

⌋
, then there exists an xi,j ∈ A such that

(1) neither x`0,j nor x`0,j occurs in CS and (2) i /∈ COL− ∪ COL+ .

Indeed, as (1) excludes
⌊

n
2

⌋
elements of A (in fact column `0 contains only

+’s) and (2) excludes <
⌊

n
4

⌋
elements, the condition |A| =

⌈
3n
4

⌉
implies the

existence of such a variable.
To prove Lemma 3, suppose for the sake of a contradiction that the

conditions of Claim 1 hold and let α∗ be the maximal truth assignment
constructed from α by changing the value of αi,j to 0 and α`0,j to 1.

Claim 2: (1) α∗ assigns 1’s to all members of S and makes CS false.

(2) All 0-columns of α∗ contain less than
⌊

n
2

⌋
+’s in CS .

(1) follows by construction. The 0-columns of α∗ are the 0-columns of α ,
except `0 being replaced by i , but as i /∈ COL+ , it contains less than

⌊
n
2

⌋
+’s

in CS , proving (2).
By the method of proof of Lemma 2, it is clear that Cα∗ is a clause preceding

CS in the proof sequence which contradicts the the definition of CS . 2

Proof of Theorem 1. Put g(n) = maxC

{|{S ∈ FS1 : CS = C}|} and
h(n) = |FS1| . Then as in [4], h(n)/g(n) is a lower bound to the length of a
resolution proof, since it is clearly a lower bound on the number of distinct
complex clauses in the resolution proof. Let k =

⌊
n
4

⌋
. To compute h(n) and

g(n) suppose we have a particular complex clause C . By Lemma 3 we can
choose k + 1 columns which contain a − or at least

⌊
n
2

⌋
+’s. To count the

total number of S ∈ FS1 we let the variable i denote the number of variables
in S in the chosen k + 1 columns. Then we have:

h(n) =
k∑

i=0

(
k + 1

i

)(
m − k − 1

k − i

)
n!

(n − k)!
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Similarly, to get the upper bound g(n) on the number of S ∈ FS1 such
that CS = C we let i be the number of variables of S in one of the
k + 1 columns. In each of these k + 1 columns there are at most

⌈
n
2

⌉
variables

which can be in such an S ; this is because a + in C excludes the corresponding
variable from S and a − in C implies that if S has a variable from that column
it must be the variable corresponding to the − . Thus,

g(n) ≤
k∑

i=0

(
k + 1

i

)(
m − k − 1

k − i

)⌈n

2

⌉i (n − i)!
(n − k)!

So,

h(n)
g(n)

≥

k∑
i=0

(
k + 1

i

)(
m − k − 1

k − i

)

k∑
i=0

(
k + 1

i

)(
m − k − 1

k − i

)⌈n

2

⌉i (n − i)!
n!

≥

k∑
i=0

(
k + 1

i

)(
m − k − 1

k − i

)

k∑
i=0

(
k + 1

i

)(
m − k − 1

k − i

)(
2
3

)i

since for i ≤ ⌊
n
4

⌋
, ⌈n

2

⌉i (n − i)!
n!

≤
(

2
3

)i

The ratio of the (i − 1)-st term over the i-th term in the summation in the
denominator is

i(m − 2k + i − 1)
2
3 (k − i + 1)(k − i + 2)

It is easily verified that this is less than 1 for i ≤ 1
25 · n2

m , and hence the terms
in the denominator are increasing while i ≤ 1

25 · n2

m . Thus we can give a weaker
lower bound (with smaller numerator and larger denominator):

h(n)
g(n)

≥

k∑
i= 1

50
n2
m

(
k + 1

i

)(
m − k − 1

k − i

)

2 ·
k∑

i= 1
50

n2
m

(
k + 1

i

)(
m − k − 1

k − i

)(
2
3

)i

≥ 1
2

(
3
2

) 1
50

n2

m
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which completes the proof of Theorem 1. 2

4. Resolution versus Constant Formula Depth Frege Sys-
tems

The notion of the depth of a formula is defined in terms of the alternation
of ∧ ’s and ∨ ’s in the formula. A formula is of depth k iff it is in one of the
classes Σk or Πk :

Definition Σk and Πk are the smallest sets of propositional formulas which
satisfy the following inductive definition:

1. A propositional variable is in Σ0 and in Π0 ,

2. If A and B are in Σk (respectively, in Πk ) then ¬A is in Πk (resp.,
Σk ), A is in Σk+1 ∩ Πk+1 , A ∨ B is in Σk (resp., Σk+1 ), A ∧ B is in
Πk+1 (resp., Πk ).

For instance, PHPm
n is in Π2 .

A formula-depth k Frege proof system is a usual Frege proof system (see
S. Cook, Reckhow [2]) with the additional restriction that every formula
appearing in a proof be of depth k . Paris and Wilkie [5] established the
following connection between provability in Bounded Arithmetic and provability
in constant formula depth Frege proof systems. Let WPHP(f) be the sentence

∀x[x 6= 0 ∧ (∀y < x)(f(y) < bx
2 c) → (∃y)(∃z)(y 6= z ∧ f(y) = f(z))].

Let I∆0(f)+Ω1 be the theory of arithmetic with induction on bounded formulas
with f an additional function symbol allowed in induction formulas and with
an axiom asserting that xlog x is a total function; then a slight strengthening of
Theorem 26 of Paris-Wilkie [5] gives:

Proposition 4 If I∆0(f) + Ω1 ` WPHP(f) then there are constants k1 and
k2 such that for all n , PHP2n

n has Frege proofs of size O(n(log n)k1 ) in which
every formula is of depth k2 .

Recently, Paris, Wilkie and Woods [6] established that I∆0(f) + Ω1 does
indeed prove WPHP(f). Combining our Theorem 1 with these results gives:

Theorem 5 There is a constant k such that resolution does not polynomially
simulate formula depth k Frege proof systems.

To the best of the authors’ knowledge, Theorem 5 is the only known
separation result applying to constant formula depth Frege proof systems.

7



References

[1] S. R. Buss, Polynomial size proofs of the propositional pigeonhole principle,
Journal of Symbolic Logic, 52 (1987), pp. 916–927.

[2] S. A. Cook and R. A. Reckhow, The relative efficiency of propositional
proof systems, Journal of Symbolic Logic, 44 (1979), pp. 36–50.

[3] W. Cook, C. R. Coullard, and G. Turán, On the complexity of cutting
plane proofs, Discrete Applied Mathematics, 18 (1987), pp. 25–38.

[4] A. Haken, The intractability of resolution, Theoretical Computer Science,
39 (1985), pp. 297–308.

[5] J. B. Paris and A. J. Wilkie, Counting problems in bounded arithmetic,
in Methods in Mathematical Logic, Lecture Notes in Mathematics #1130,
Springer-Verlag, 1985, pp. 317–340.

[6] J. B. Paris, A. J. Wilkie, and A. R. Woods, Provability of the pigeonhole
principle and the existence of infinitely many primes, Journal of Symbolic
Logic, 53 (1988), pp. 1235–1244.

[7] A. Urquhart, Hard examples for resolution, J. Assoc. Comput. Mach., 34
(1987), pp. 209–219.

8


