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Chapter 1

Preliminaries

We start with a brief overview of mathematical logic as covered in this course.
Next we review some basic notions from elementary set theory, which provides
a medium for communicating mathematics in a precise and clear way. In this
course we develop mathematical logic using elementary set theory as given,
just as one would do with other branches of mathematics, like group theory or
probability theory.

For more on the course material, see

Shoenfield, J. R., Mathematical Logic, Reading, Addison-Wesley, 1967.

For additional material in Model Theory we refer the reader to

Chang, C. C. and Keisler, H. J., Model Theory, New York, North-

Holland, 1990,

Poizat, B., A Course in Model Theory, Springer, 2000,

and for additional material on Computability, to

Rogers, H., Theory of Recursive Functions and Effective Com-

putability, McGraw-Hill, 1967.

1.1 Mathematical Logic: a brief overview

Aristotle identified some simple patterns in human reasoning, and Leibniz dreamt
of reducing reasoning to calculation. As a mathematical subject, however, logic
is relatively recent: the 19th century pioneers were Bolzano, Boole, Cantor,
Dedekind, Frege, Peano, C.S. Peirce, and E. Schröder. From our perspective
we see their work as leading to boolean algebra, set theory, propositional logic,
predicate logic, as clarifying the foundations of the natural and real number
systems, and as introducing suggestive symbolic notation for logical operations.
Also, their activity led to the view that logic + set theory can serve as a basis for
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2 CHAPTER 1. PRELIMINARIES

all of mathematics. This era did not produce theorems in mathematical logic
of any real depth, 1 but it did bring crucial progress of a conceptual nature,
and the recognition that logic as used in mathematics obeys mathematical rules
that can be made fully explicit.

In the period 1900-1950 important new ideas came from Russell, Zermelo,
Hausdorff, Hilbert, Löwenheim, Ramsey, Skolem, Lusin, Post, Herbrand, Gödel,
Tarski, Church, Kleene, Turing, and Gentzen. They discovered the first real
theorems in mathematical logic, with those of Gödel having a dramatic impact.
Hilbert (in Göttingen), Lusin (in Moscow), Tarski (in Warsaw and Berkeley),
and Church (in Princeton) had many students and collaborators, who made up
a large part of that generation and the next in mathematical logic. Most of
these names will be encountered again during the course.

The early part of the 20th century was also marked by the so-called

foundational crisis in mathematics.

A strong impulse for developing mathematical logic came from the attempts
during these times to provide solid foundations for mathematics. Mathematical
logic has now taken on a life of its own, and also thrives on many interactions
with other areas of mathematics and computer science.

In the second half of the last century, logic as pursued by mathematicians
gradually branched into four main areas: model theory, computability theory (or
recursion theory), set theory, and proof theory. The topics in this course are
part of the common background of mathematicians active in any of these areas.

What distinguishes mathematical logic within mathematics is that

statements about mathematical objects

are taken seriously as mathematical objects in their own right. More generally,
in mathematical logic we formalize (formulate in a precise mathematical way)
notions used informally by mathematicians such as:

• property

• statement (in a given language)

• structure

• truth (what it means for a given statement to be true in a given structure)

• proof (from a given set of axioms)

• algorithm

1In the case of set theory one could dispute this. Even so, the main influence of set theory
on the rest of mathematics was to enable simple constructions of great generality, like cartesian
products, quotient sets and power sets, and this involves only very elementary set theory.
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Once we have mathematical definitions of these notions, we can try to prove
theorems about these formalized notions. If done with imagination, this process
can lead to unexpected rewards. Of course, formalization tends to caricature
the informal concepts it aims to capture, but no harm is done if this is kept
firmly in mind.

Example. The notorious Goldbach Conjecture asserts that every even integer
greater than 2 is a sum of two prime numbers. With the understanding that
the variables range over N = {0, 1, 2, . . .}, and that 0, 1,+, ·, < denote the
usual arithmetic operations and relations on N, this assertion can be expressed
formally as

(GC) ∀x[(1+1 < x∧even(x))→ ∃p∃q(prime(p)∧prime(q)∧x = p+q)]

where even(x) abbreviates ∃y(x = y + y) and prime(p) abbreviates

1 < p ∧ ∀r∀s(p = r · s→ (r = 1 ∨ s = 1)).

The expression GC is an example of a formal statement (also called a sentence)
in the language of arithmetic, which has symbols 0, 1,+, ·, < to denote arithmetic
operations and relations, in addition to logical symbols like =,∧,∨,¬,→, ∀, ∃,
and variables x, y, z, p, q, r, s.

The Goldbach Conjecture asserts that this particular sentence GC is true in
the structure (N; 0, 1,+, ·, <). (No proof of the Goldbach Conjecture is known.)
It also makes sense to ask whether the sentence GC is true in the structure

(R; 0, 1,+, ·, <)

(It’s not, as is easily verified. That the question makes sense does not mean
that it is of any interest.)

A century of experience gives us confidence that all classical number-theoretic
results—old or new, proved by elementary methods or by sophisticated algebra
and analysis—can be proved from the Peano axioms for arithmetic. 2 However,
in our present state of knowledge, GC might be true in (N; 0, 1,+, ·, <), but not
provable from those axioms. (On the other hand, once you know what exactly
we mean by

provable from the Peano axioms,

you will see that if GC is provable from those axioms, then GC is true in
(N; 0, 1,+, ·, <), and that if GC is false in (N; 0, 1,+, ·, <), then its negation
¬GC is provable from those axioms.)

The point of this example is simply to make the reader aware of the notions
“true in a given structure” and “provable from a given set of axioms,” and their
difference. One objective of this course is to figure out the connections (and
disconnections) between these notions.

2Here we do not count as part of classical number theory some results like Ramsey’s
Theorem that can be stated in the language of arithmetic, but are arguably more in the spirit
of logic and combinatorics.
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Some highlights (1900–1950)

The results below are among the most frequently used facts of mathematical
logic. The terminology used in stating these results might be unfamiliar, but
that should change during the course. What matters is to get some preliminary
idea of what we are aiming for. As will become clear during the course, each of
these results has stronger versions, on which applications often depend, but in
this overview we prefer simple statements over strength and applicability.

We begin with two results that are fundamental in model theory. They
concern the notion of model of Σ where Σ is a set of sentences in a language
L. At this stage we only say by way of explanation that a model of Σ is a
mathematical structure in which all sentences of Σ are true. For example, if Σ
is the (infinite) set of axioms for fields of characteristic zero in the language of
rings, then a model of Σ is just a field of characteristic zero.

Theorem of Löwenheim and Skolem. If Σ is a countable set of sentences
in some language and Σ has a model, then Σ has a countable model.

Compactness Theorem (Gödel, Mal’cev). Let Σ be a set of sentences in some
language. Then Σ has a model if and only if each finite subset of Σ has a model.

The next result goes a little beyond model theory by relating the notion of
“model of Σ” to that of “provability from Σ”:

Completeness Theorem (Gödel, 1930). Let Σ be a set of sentences in some
language L, and let σ be a sentence in L. Then σ is provable from Σ if and only
if σ is true in all models of Σ.

In our treatment we shall obtain the first two theorems as byproducts of the
Completeness Theorem and its proof. In the case of the Compactness Theorem
this reflects history, but the theorem of Löwenheim and Skolem predates the
Completeness Theorem. The Löwenheim-Skolem and Compactness theorems
do not mention the notion of provability, and thus model theorists often prefer
to bypass Completeness in establishing these results; see for example Poizat’s
book.

Here is an important early result on a specific arithmetic structure:

Theorem of Presburger and Skolem. Each sentence in the language of the
structure (Z; 0, 1,+,−, <) that is true in this structure is provable from the
axioms for ordered abelian groups with least positive element 1, augmented, for
each n = 2, 3, 4, ..., by an axiom that says that for every a there is a b such that
a = nb or a = nb+ 1 or . . . or a = nb+ 1 + · · ·+ 1 (with n disjuncts in total).
Moreover, there is an algorithm that, given any sentence in this language as
input, decides whether this sentence is true in (Z; 0, 1,+,−, <).

Note that in (Z; 0, 1,+,−, <) we have not included multiplication among the
primitives; accordingly, nb stands for b+ · · ·+ b (with n summands).

When we do include multiplication, the situation changes dramatically:
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Incompleteness and undecidability of arithmetic. (Gödel-Church, 1930’s).
One can construct a sentence in the language of arithmetic that is true in the
structure (N; 0, 1,+, ·, <), but not provable from the Peano axioms.

There is no algorithm that, given any sentence in this language as input,
decides whether this sentence is true in (N; 0, 1,+, ·, <).

Here “there is no algorithm” is used in the mathematical sense of

there cannot exist an algorithm,

not in the weaker colloquial sense of “no algorithm is known.” This theorem
is intimately connected with the clarification of notions like computability and
algorithm in which Turing played a key role.

In contrast to these incompleteness and undecidability results on (sufficiently
rich) arithmetic, we have

Tarski’s theorem on the field of real numbers (1930-1950). Every sentence
in the language of arithmetic that is true in the structure

(R; 0, 1,+, ·, <)

is provable from the axioms for ordered fields augmented by the axioms
- every positive element is a square,
- every odd degree polynomial has a zero.

There is also an algorithm that decides for any given sentence in this language
as input, whether this sentence is true in (R; 0, 1,+, ·, <).

1.2 Sets and Maps

We shall use this section as an opportunity to fix notations and terminologies
that are used throughout these notes, and throughout mathematics. In a few
places we shall need more set theory than we introduce here, for example, or-
dinals and cardinals. The following little book is a good place to read about
these matters. (It also contains an axiomatic treatment of set theory starting
from scratch.)

Halmos, P. R., Naive set theory, New York, Springer, 1974

In an axiomatic treatment of set theory as in the book by Halmos all assertions
about sets below are proved from a few simple axioms. In such a treatment the
notion of set itself is left undefined, but the axioms about sets are suggested
by thinking of a set as a collection of mathematical objects, called its elements
or members. To indicate that an object x is an element of the set A we write
x ∈ A, in words: x is in A (or: x belongs to A). To indicate that x is not in A we
write x /∈ A. We consider the sets A and B as the same set (notation: A = B)
if and only if they have exactly the same elements. We often introduce a set
via the bracket notation, listing or indicating inside the brackets its elements.
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For example, {1, 2, 7} is the set with 1, 2, and 7 as its only elements. Note that
{1, 2, 7} = {2, 7, 1}, and {3, 3} = {3}: the same set can be described in many
different ways. Don’t confuse an object x with the set {x} that has x as its
only element: for example, the object x = {0, 1} is a set that has exactly two
elements, namely 0 and 1, but the set {x} = {{0, 1}} has only one element,
namely x.

Here are some important sets that the reader has probably encountered
previously.

Examples.
(1) The empty set: ∅ (it has no elements).
(2) The set of natural numbers: N = {0, 1, 2, 3, . . .}.
(3) The set of integers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
(4) The set of rational numbers: Q.
(5) The set of real numbers: R.
(6) The set of complex numbers: C.

Remark. Throughout these notes m and n always denote natural numbers.
For example, “for all m ...” will mean “for all m ∈ N...”.

If all elements of the set A are in the set B, then we say that A is a subset of
B (and write A ⊆ B). Thus the empty set ∅ is a subset of every set, and each
set is a subset of itself. We often introduce a set A in our discussions by defining
A to be the set of all elements of a given set B that satisfy some property P .
Notation:

A := {x ∈ B : x satisfies P} (hence A ⊆ B).

Let A and B be sets. Then we can form the following sets:

(a) A ∪ B := {x : x ∈ A or x ∈ B} (union of A and B);
(b) A ∩ B := {x : x ∈ A and x ∈ B} (intersection of A and B);
(c) ArB := {x : x ∈ A and x /∈ B} (difference of A and B);
(d) A×B := {(a, b) : a ∈ A and b ∈ B} (cartesian product of A and B).

Thus the elements of A × B are the so-called ordered pairs (a, b) with a ∈ A
and b ∈ B. The key property of ordered pairs is that we have (a, b) = (c, d) if
and only if a = c and b = d. For example, you may think of R×R as the set
of points (a, b) in the xy-plane of coordinate geometry.

We say that A and B are disjoint if A∩B = ∅, that is, they have no element
in common.

Remark. In a definition such as we just gave: “We say that · · · if —,” the
meaning of “if” is actually “if and only if.” We committed a similar abuse
of language earlier in defining set inclusion by the phrase “If —, then we say
that · · · .” We shall continue such abuse, in accordance with tradition, but
only in similarly worded definitions. Also, we shall often write “iff” or “⇔” to
abbreviate “if and only if.”
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Maps

Definition. A map is a triple f = (A,B,Γ) of sets A,B,Γ such that Γ ⊆ A×B
and for each a ∈ A there is exactly one b ∈ B with (a, b) ∈ Γ; we write f(a) for
this unique b, and call it the value of f at a (or the image of a under f).3 We
call A the domain of f , and B the codomain of f , and Γ the graph of f .4 We
write f : A → B to indicate that f is a map with domain A and codomain B,
and in this situation we also say that f is a map from A to B.

Among the many synonyms of map are

mapping, assignment, function, operator, transformation.

Typically, “function” is used when the codomain is a set of numbers of some
kind, “operator” when the elements of domain and codomain are themselves
functions, and “transformation” is used in geometric situations where domain
and codomain are equal. (We use equal as synonym for the same or identical;
also coincide is a synonym for being the same.)

Examples.
(1) Given any set A we have the identity map 1A : A→ A defined by 1A(a) = a

for all a ∈ A.
(2) Any polynomial f(X) = a0 + a1X + · · · + anX

n with real coefficients
a0, . . . , an gives rise to a function x 7→ f(x) : R → R. We often use the
“maps to” symbol 7→ in this way to indicate the rule by which to each x
in the domain we associate its value f(x).

Definition. Given f : A → B and g : B → C we have a map g ◦ f : A → C
defined by (g ◦ f)(a) = g(f(a)) for all a ∈ A. It is called the composition of g
and f .

Definition. Let f : A→ B be a map. It is said to be injective if for all a1 6= a2

in A we have f(a1) 6= f(a2). It is said to be surjective if for each b ∈ B there
exists a ∈ A such that f(a) = b. It is said to be bijective (or a bijection) if it is
both injective and surjective. For X ⊆ A we put

f(X) := {f(x) : x ∈ X} ⊆ B (direct image of X under f).

(There is a notational conflict here when X is both a subset of A and an element
of A, but it will always be clear from the context when f(X) is meant to be the
the direct image of X under f ; some authors resolve the conflict by denoting this
direct image by f [X ] or in some other way.) We also call f(A) = {f(a) : a ∈ A}
the image of f . For Y ⊆ B we put

f−1(Y ) := {x ∈ A : f(x) ∈ Y } ⊆ A (inverse image of Y under f).

Thus surjectivity of our map f is equivalent to f(A) = B.

3Sometimes we shall write fa instead of f(a) in order to cut down on parentheses.
4Other words for “domain” and “codomain” are “source” and “target”, respectively.
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If f : A→ B is a bijection then we have an inverse map f−1 : B → A given by

f−1(b) := the unique a ∈ A such that f(a) = b.

Note that then f−1 ◦ f = 1A and f ◦ f−1 = 1B. Conversely, if f : A → B and
g : B → A satisfy g ◦ f = 1A and f ◦ g = 1B , then f is a bijection with f−1 = g.
(The attentive reader will notice that we just introduced a potential conflict of
notation: for bijective f : A → B and Y ⊆ B, both the inverse image of Y
under f and the direct image of Y under f−1 are denoted by f−1(Y ); no harm
is done, since these two subsets of A coincide.)

It follows from the definition of “map” that f : A→ B and g : C → D are
equal (f = g) if and only if A = C, B = D, and f(x) = g(x) for all x ∈ A. We
say that g : C → D extends f : A→ B if A ⊆ C, B ⊆ D, and f(x) = g(x) for
all x ∈ A. 5

Definition. A set A is said to be finite if there exists n and a bijection

f : {1, . . . , n} → A.

Here we use {1, . . . , n} as a suggestive notation for the set {m : 1 ≤ m ≤ n}.
For n = 0 this is just ∅. If A is finite there is exactly one such n (although if
n > 1 there will be more than one bijection f : {1, . . . , n} → A); we call this
unique n the number of elements of A or the cardinality of A, and denote it by
|A|. A set which is not finite is said to be infinite.

Definition. A set A is said to be countably infinite if there is a bijection N→ A.
It is said to be countable if it is either finite or countably infinite.

Example. The sets N, Z and Q are countably infinite, but the infinite set R
is not countably infinite. Every infinite set has a countably infinite subset.

One of the standard axioms of set theory, the Power Set Axiom says:

For any set A, there is a set whose elements are exactly the subsets of A.

Such a set of subsets of A is clearly uniquely determined by A, is denoted
by P(A), and is called the power set of A. If A is finite, so is P(A) and
|P(A)| = 2|A|. Note that a 7→ {a} : A → P(A) is an injective map. However,
there is no surjective map A→ P(A):

Cantor’s Theorem. Let S : A→ P(A) be a map. Then the set

{a ∈ A : a /∈ S(a)} (a subset of A)

is not an element of S(A).

Proof. Suppose otherwise. Then {a ∈ A : a /∈ S(a)} = S(b) where b ∈ A.
Assuming b ∈ S(b) yields b /∈ S(b), a contradiction. Thus b /∈ S(b); but then
b ∈ S(b), again a contradiction. This concludes the proof.

5We also say “g : C → D is an extension of f : A → B” or “f : A → B is a restriction of
g : C → D.”
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Let I and A be sets. Then there is a set whose elements are exactly the maps
f : I → A, and this set is denoted by AI . For I = {1, . . . , n} we also write An

instead of AI . Thus an element of An is a map a : {1, . . . , n} → A; we usually
think of such an a as the n-tuple (a(1), . . . , a(n)), and we often write ai instead
of a(i). So An can be thought of as the set of n-tuples (a1, . . . , an) with each
ai ∈ A. For n = 0 the set An has just one element — the empty tuple.

An n-ary relation on A is just a subset of An, and an n-ary operation on
A is a map from An into A. Instead of “1-ary” we usually say “unary”, and
instead of “2-ary” we can say “binary”. For example, {(a, b) ∈ Z2 : a < b} is a
binary relation on Z, and integer addition is the binary operation (a, b) 7→ a+ b
on Z.

Definition. {ai}i∈I or (ai)i∈I denotes a family of objects ai indexed by the set
I , and is just a suggestive notation for a set {(i, ai) : i ∈ I}, not to be confused
with the set {ai : i ∈ I}. (There may be repetitions in the family, that is, it
may happen that ai = aj for distinct indices i, j ∈ I , but such repetition is not
reflected in the set {ai : i ∈ I}. For example, if I = N and an = a for all n, then
{(i, ai) : i ∈ I} = {(i, a) : i ∈ N} is countably infinite, but {ai : i ∈ I} = {a}
has just one element.) For I = N we usually say “sequence” instead of “family”.

Given any family (Ai)i∈I of sets (that is, each Ai is a set) we have a set

⋃

i∈I

Ai := {x : x ∈ Ai for some i ∈ I},

the union of the family. If I is finite and each Ai is finite, then so is the union
above and

|
⋃

i∈I

Ai| ≤
∑

i∈I

|Ai|.

If I is countable and each Ai is countable then
⋃

i∈I Ai is countable.

Given any family (Ai)i∈I of sets we have a set

∏

i∈I

Ai := {(ai)i∈I : ai ∈ Ai for all i ∈ I},

the product of the family. One axiom of set theory, the Axiom of Choice, is a
bit special, but we shall use it a few times. It says that for any family (Ai)i∈I

of nonempty sets there is a family (ai)i∈I such that ai ∈ Ai for all i ∈ I , that
is,
∏

i∈I Ai 6= ∅.

Words

Definition. Let A be a set. Think of A as an alphabet of letters. A word of
length n on A is an n-tuple (a1, . . . , an) of letters ai ∈ A; because we think
of it as a word (string of letters) we shall write this tuple instead as a1 . . . an

(without parentheses or commas). There is a unique word of length 0 on A, the
empty word and written ε. Given a word a = a1 . . . an of length n ≥ 1 on A,
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the first letter (or first symbol) of a is by definition a1, and the last letter (or
last symbol) of a is an. The set of all words on A is denoted A∗:

A∗ =
⋃

n

An (disjoint union).

Logical expressions like formulas and terms will be introduced later as words of
a special form on suitable alphabets. When A ⊆ B we can identify A∗ with a
subset of B∗, and this will be done whenever convenient.

Definition. Given words a = a1 . . . am and b = b1 . . . bn on A of length m and
n respectively, we define their concatenation ab ∈ A∗:

ab = a1 . . . amb1 . . . bn.

Thus ab is a word on A of length m + n. Concatenation is a binary operation
on A∗ that is associative: (ab)c = a(bc) for all a, b, c ∈ A∗, with ε as two-sided
identity: εa = a = aε for all a ∈ A∗, and with two-sided cancellation: for all
a, b, c ∈ A∗, if ab = ac, then b = c, and if ac = bc, then a = b.

Equivalence Relations and Quotient Sets

Given a binary relation R on a set A it is often more suggestive to write aRb
instead of (a, b) ∈ R.

Definition. An equivalence relation on a set A is a binary relation ∼ on A such
that for all a, b, c ∈ A:
(i) a ∼ a (reflexivity);
(ii) a ∼ b implies b ∼ a (symmetry);
(iii) (a ∼ b and b ∼ c) implies a ∼ c (transitivity).

Example. Given any n we have the equivalence relation “congruence modulo
n” on Z defined as follows: for any a, b ∈ Z we have

a ≡ b mod n ⇐⇒ a− b = nc for some c ∈ Z.

For n = 0 this is just equality on Z.

Let ∼ be an equivalence relation on the set A. The equivalence class a∼ of an
element a ∈ A is defined by a∼ = {b ∈ A : a ∼ b} (a subset of A). For a, b ∈ A
we have a∼ = b∼ if and only if a ∼ b, and a∼ ∩ b∼ = ∅ if and only if a � b. The
quotient set of A by ∼ is by definition the set of equivalence classes:

A/∼ = {a∼ : a ∈ A}.

This quotient set is a partition of A, that is, it is a collection of pairwise disjoint
nonempty subsets of A whose union is A. (Collection is a synonym for set; we
use it here because we don’t like to say “set of ... subsets ...”.) Every partition
of A is the quotient set A/∼ for a unique equivalence relation ∼ on A. Thus
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equivalence relations on A and partitions of A are just different ways to describe
the same situation.

In the previous example (congruence modulo n) the equivalence classes are
called congruence classes modulo n (or residue classes modulo n) and the cor-
responding quotient set is often denoted Z/nZ.

Remark. Readers familiar with some abstract algebra will note that the con-
struction in the example above is a special case of a more general construction—
that of a quotient of a group with respect to a normal subgroup.

Posets

A partially ordered set (short: poset) is a pair (P,≤) consisting of a set P and
a partial ordering ≤ on P , that is, ≤ is a binary relation on P such that for all
p, q, r ∈ P :

(i) p ≤ p (reflexivity);

(ii) if p ≤ q and q ≤ p, then p = q (antisymmetry);

(iii) if p ≤ q and q ≤ r, then p ≤ r (transitivity).

If in addition we have for all p, q ∈ P ,

(iv) p ≤ q or q ≤ p,

then we say that ≤ is a linear order on P , or that (P,≤) is a linearly ordered
set.6 Each of the sets N,Z,Q,R comes with its familiar linear order on it.

As an example, take any set A and its collection P(A) of subsets. Then

X ≤ Y :⇐⇒ X ⊆ Y (for subsets X,Y of A)

defines a poset (P(A),≤), also referred to as the power set of A ordered by
inclusion. This is not a linearly ordered set if A has more than one element.

Finite linearly ordered sets are determined “up to unique isomorphism” by their
size: if (P,≤) is a linearly ordered set and |P | = n, then there is a unique map
ι : P → {1, . . . , n} such that for all p, q ∈ P we have: p ≤ q ⇐⇒ ι(p) ≤ ι(q).
This map ι is a bijection.

Let (P,≤) be a poset. Here is some useful notation. For x, y ∈ P we set

x ≥ y :⇐⇒ y ≤ x,
x < y :⇐⇒ y > x :⇐⇒ x ≤ y and x 6= y.

Note that (P,≥) is also a poset. A least element of P is a p ∈ P such that p ≤ x
for all x ∈ P ; a largest element of P is defined likewise, with ≥ instead of ≤.
Of course, P can have at most one least element; therefore we can refer to the

6One also uses the term total order instead of linear order.
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least element of P , if P has a least element; likewise, we can refer to the largest
element of P , if P has a largest element.

A minimal element of P is a p ∈ P such that there is no x ∈ P with x < p;
a maximal element of P is defined likewise, with > instead of <. If P has a
least element, then this element is also the unique minimal element of P ; some
posets, however, have more than one minimal element. The reader might want
to prove the following result to get a feeling for these notions:

If P is finite and nonempty, then P has a maximal element, and there is a linear
order ≤′ on P that extends ≤ in the sense that

p ≤ q =⇒ p ≤′ q, for all p, q ∈ P.

(Hint: use induction on |P |.)
LetX ⊆ P . A lowerbound (respectively, upperbound) ofX in P is an element l ∈
P (respectively, an element u ∈ P ), such that l ≤ x for all x ∈ X (respectively,
x ≤ u for all x ∈ X).

We often tacitly consider X as a poset in its own right, by restricting the
given partial ordering of P to X . More precisely this means that we consider
the poset (X,≤X) where the partial ordering ≤X on X is defined by

x ≤X y ⇐⇒ x ≤ y (x, y ∈ X).

Thus we can speak of least, largest, minimal, and maximal elements of a set
X ⊆ P , when the ambient poset (P,≤) is clear from the context. For example,
when X is the collection of nonempty subsets of a set A and X is ordered by
inclusion, then the minimal elements of X are the singletons {a} with a ∈ A.
We call X a chain in P if (X,≤X) is linearly ordered.

Occasionally we shall use the following fact about posets (P,≤).

Zorn’s Lemma. Suppose P is nonempty and every nonempty chain in P has
an upperbound in P . Then P has a maximal element.

For a further discussion of Zorn’s Lemma and its proof using the Axiom of
Choice we refer the reader to Halmos’s book on set theory.



Chapter 2

Basic Concepts of Logic

2.1 Propositional Logic

Propositional logic is the fragment of logic where we construct new statements
from given statements using so-called connectives like “not”, “or” and “and”.
The truth value of such a new statement is then completely determined by the
truth values of the given statements. Thus, given any statements p and q, we
can form the three statements

¬p (the negation of p, pronounced as “not p”),

p ∨ q (the disjunction of p and q, pronounced as “p or q”),

p ∧ q (the conjunction of p and q, pronounced as “p and q”).

This leads to more complicated combinations like ¬
(

p∧ (¬q)
)

. We shall regard
¬p as true if and only if p is not true; also, p ∨ q is defined to be true if and
only if p is true or q is true (including the possibility that both are true), and
p ∧ q is deemed to be true if and only if p is true and q is true. Instead of “not
true” we also say “false”. We now introduce a formalism that makes this into
mathematics.

We start with the five distinct symbols

> ⊥ ¬ ∨ ∧

to be thought of as true, false, not, or, and and, respectively. These symbols are
fixed throughout the course, and are called propositional connectives. In this
section we also fix a set A whose elements will be called propositional atoms (or
just atoms), such that no propositional connective is an atom. It may help the
reader to think of an atom a as a variable for which we can substitute arbitrary
statements, assumed to be either true or false.

A proposition on A is a word on the alphabet A ∪ {>,⊥,¬,∨,∧} that can
be obtained by applying the following rules:

13
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(i) each atom a ∈ A (viewed as a word of length 1) is a proposition on A;
(ii) > and ⊥ (viewed as words of length 1) are propositions on A;
(iii) if p and q are propositions on A, then the concatenations ¬p, ∨pq and ∧pq

are propositions on A.

For the rest of this section “proposition” means “proposition on A”, and p, q, r
(sometimes with subscripts) will denote propositions.

Example. Suppose a, b, c are atoms. Then ∧ ∨ ¬ab¬c is a proposition. This
follows from the rules above: a is a proposition, so ¬a is a proposition, hence
∨¬ab as well; also ¬c is a proposition, and thus ∧ ∨ ¬ab¬c is a proposition.

We defined “proposition” using the suggestive but vague phrase “can be ob-
tained by applying the following rules”. The reader should take such an infor-
mal description as shorthand for a completely explicit definition, which in the
case at hand is as follows:

A proposition is a word w on the alphabet A ∪ {>,⊥,¬,∨,∧} for which there
is a sequence w1, . . . , wn of words on that same alphabet, with n ≥ 1, such that
w = wn and for each k ∈ {1, . . . , n}, either wk ∈ A∪{>,⊥} (where each element
in the last set is viewed as a word of length 1), or there are i, j ∈ {1, . . . , k− 1}
such that wk is one of the concatenations ¬wi, ∨wiwj , ∧wiwj .

We let Prop(A) denote the set of propositions.

Remark. Having the connectives ∨ and ∧ in front of the propositions they
“connect” rather than in between, is called prefix notation or Polish notation.
This is theoretically elegant, but for the sake of readability we usually write p∨q
and p ∧ q to denote ∨pq and ∧pq respectively, and we also use parentheses and
brackets if this helps to clarify the structure of a proposition. So the proposition
in the example above could be denoted by [(¬a)∨b]∧(¬c), or even by (¬a∨b)∧¬c
since we shall agree that ¬ binds stronger than ∨ and ∧ in this informal way
of indicating propositions. Because of the informal nature of these conventions,
we don’t have to give precise rules for their use; it’s enough that each actual
use is clear to the reader.

The intended structure of a proposition—how we think of it as built up
from atoms via connectives—is best exhibited in the form of a tree, a two-
dimensional array, rather than as a one-dimensional string. Such trees, however,
occupy valuable space on the printed page, and are typographically demanding.
Fortunately, our “official” prefix notation does uniquely determine the intended
structure of a proposition: that is what the next lemma amounts to.

Lemma 2.1.1 (Unique Readability). If p has length 1, then either p = >,
or p = ⊥, or p is an atom. If p has length > 1, then its first symbol is either ¬,
or ∨, or ∧. If the first symbol of p is ¬, then p = ¬q for a unique q. If the first
symbol of p is ∨, then p = ∨qr for a unique pair (q, r). If the first symbol of p
is ∧, then p = ∧qr for a unique pair (q, r).

(Note that we used here our convention that p, q, r denote propositions.) Only
the last two claims are worth proving in print, the others should require only a
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moment’s thought. For now we shall assume this lemma without proof. At the
end of this section we establish more general results which are needed also later
in the course.

Remark. Rather than thinking of a proposition as a statement, it’s better
viewed as a function whose arguments and values are statements: replacing the
atoms in a proposition by specific mathematical statements like “2 × 2 = 4”,
“π2 < 7”, and “every even integer > 2 is the sum of two prime numbers”, we
obtain again a mathematical statement.

We shall use the following notational conventions: p → q denotes ¬p ∨ q, and
p↔ q denotes (p→ q) ∧ (q → p). By recursion on n we define

p1 ∨ . . . ∨ pn =















⊥ if n = 0
p1 if n = 1
p1 ∨ p2 if n = 2
(p1 ∨ . . . ∨ pn−1) ∨ pn if n > 2

Thus p ∨ q ∨ r stands for (p ∨ q) ∨ r. We call p1 ∨ . . . ∨ pn the disjunction of
p1, . . . , pn. The reason that for n = 0 we take this disjunction to be ⊥ is that
we want a disjunction to be true if and only if (at least) one of the disjuncts is
true.

Similarly, the conjunction p1 ∧ . . . ∧ pn of p1, . . . , pn is defined by replacing
everywhere ∨ by ∧ and ⊥ by > in the definition of p1 ∨ . . . ∨ pn.

Definition. A truth assignment is a map t : A → {0, 1}. We extend such a t
to t̂ : Prop(A)→ {0, 1} by requiring
(i) t̂(>) = 1
(ii) t̂(⊥) = 0
(iii) t̂(¬p) = 1− t̂(p)
(iv) t̂(p ∨ q) = max(t̂(p), t̂(q))
(v) t̂(p ∧ q) = min(t̂(p), t̂(q))

Note that there is exactly one such extension t̂ by unique readability. To simplify
notation we often write t instead of t̂. The array below is called a truth table.
It shows on each row below the top row how the two leftmost entries t(p) and
t(q) determine t(¬p), t(p ∨ q), t(p ∧ q), t(p→ q) and t(p↔ q).

p q ¬p p ∨ q p ∧ q p→ q p↔ q
0 0 1 0 0 1 1
0 1 1 1 0 1 0
1 0 0 1 0 0 0
1 1 0 1 1 1 1

Let t : A → {0, 1}. Note that t(p → q) = 1 if and only if t(p) ≤ t(q), and that
t(p↔ q) = 1 if and only if t(p) = t(q).

Suppose a1, . . . , an are the distinct atoms that occur in p, and we know how
p is built up from those atoms. Then we can compute in a finite number of steps
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t(p) from t(a1), . . . , t(an). In particular, t(p) = t′(p) for any t′ : A→ {0, 1} such
that t(ai) = t′(ai) for i = 1, . . . , n.

Definition. We say that p is a tautology (notation: |= p) if t(p) = 1 for all
t : A→ {0, 1}. We say that p is satisfiable if t(p) = 1 for some t : A→ {0, 1}.
Thus > is a tautology, and p ∨ ¬p, p → (p ∨ q) are tautologies for all p and
q. By the remark preceding the definition one can verify whether any given p
with exactly n distinct atoms in it is a tautology by computing 2n numbers and
checking that these numbers all come out 1. (To do this accurately by hand is
already cumbersome for n = 5, but computers can handle somewhat larger n.
Fortunately, other methods are often efficient for special cases.)

Remark. Note that |= p ↔ q iff t(p) = t(q) for all t : A → {0, 1}. We call p
equivalent to q if |= p ↔ q. Note that “equivalent to” defines an equivalence
relation on Prop(A). The lemma below gives a useful list of equivalences. We
leave it to the reader to verify them.

Lemma 2.1.2. For all p, q, r we have the following equivalences:
(1) |= (p ∨ p)↔ p, |= (p ∧ p)↔ p
(2) |= (p ∨ q)↔ (q ∨ p), |= (p ∧ q)↔ (q ∧ p)
(3) |= (p ∨ (q ∨ r)) ↔ ((p ∨ q) ∨ r), |= (p ∧ (q ∧ r)) ↔ ((p ∧ q) ∧ r)
(4) |= (p ∨ (q ∧ r)) ↔ (p ∨ q) ∧ (p ∨ r), |= (p ∧ (q ∨ r)) ↔ (p ∧ q) ∨ (p ∧ r)
(5) |= (p ∨ (p ∧ q))↔ p, |= (p ∧ (p ∨ q))↔ p
(6) |= (¬(p ∨ q))↔ (¬p ∧ ¬q), |= (¬(p ∧ q))↔ (¬p ∨ ¬q)
(7) |= (p ∨ ¬p)↔ >, |= (p ∧ ¬p)↔ ⊥
(8) |= ¬¬p↔ p

Items (1), (2), (3), (4), (5), and (6) are often referred to as the idempotent
law , commutativity , associativity , distributivity , the absorption law , and the De
Morgan law , respectively. Note the left-right symmetry in (1)–(7) : the so-called
duality of propositional logic. We shall return to this issue in the more algebraic
setting of boolean algebras .

Some notation: let (pi)i∈I be a family of propositions with finite index set
I , choose a bijection k 7→ i(k) : {1, . . . , n} → I and set

∨

i∈I

pi := pi(1) ∨ · · · ∨ pi(n),
∧

i∈I

pi := pi(1) ∧ · · · ∧ pi(n).

If I is clear from context we just write
∨

i pi and
∧

i pi instead. Of course, the
notations

∨

i∈I pi and
∧

i∈I pi can only be used when the particular choice of
bijection of {1, . . . , n} with I does not matter; this is usually the case, because
the equivalence class of pi(1) ∨ · · · ∨ pi(n) does not depend on this choice, and
the same is true for the equivalence class of pi(1) ∧ · · · ∧ pi(n).

Next we define “model of Σ” and “tautological consequence of Σ”.

Definition. Let Σ ⊆ Prop(A). A model of Σ is a truth assignment t : A →
{0, 1} such that t(σ) = 1 for all σ ∈ Σ. We say p is a tautological consequence
of Σ (written Σ |= p) if t(p) = 1 for every model t of Σ. Note that |= p is the
same as ∅ |= p.)
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Lemma 2.1.3. Let Σ ⊆ Prop(A) and p, q ∈ Prop(A). Then
(1) Σ |= p ∧ q ⇐⇒ Σ |= p and Σ |= q.
(2) Σ |= p =⇒ Σ |= p ∨ q.
(3) Σ ∪ {p} |= q ⇐⇒ Σ |= p→ q.
(4) If Σ |= p and Σ |= p→ q, then Σ |= q. (Modus Ponens.)

Proof. We will prove (3) here and leave the rest as exercise.
(⇒) Assume Σ ∪ {p} |= q. To derive Σ |= p → q we consider any model
t : A −→ {0, 1} of Σ, and need only show that then t(p → q) = 1. If t(p) = 1
then t(Σ ∪ {p}) ⊆ {1}, hence t(q) = 1 and thus t(p → q) = 1. If t(p) = 0 then
t(p→ q) = 1 by definition.
(⇐) Assume Σ |= p → q. To derive Σ ∪ {p} |= q we consider any model
t : A −→ {0, 1} of Σ ∪ {p}, and need only derive that t(q) = 1. By assumption
t(p→ q) = 1 and in view of t(p) = 1, this gives t(q) = 1 as required.

We finish this section with the promised general result on unique readability.
We also establish facts of similar nature that are needed later.

Definition. Let F be a set of symbols with a function a : F → N (called the
arity function). A symbol f ∈ F is said to have arity n if a(f) = n. A word on
F is said to be admissible if it can be obtained by applying the following rules:
(i) If f ∈ F has arity 0, then f viewed as a word of length 1 is admissible.
(ii) If f ∈ F has arity m > 0 and t1, . . . , tm are admissible words on F , then

the concatenation ft1 . . . tm is admissible.

Below we just write “admissible word” instead of “admissible word on F”. Note
that the empty word is not admissible, and that the last symbol of an admissible
word cannot be of arity > 0.

Example. Take F = A ∪ {>,⊥,¬,∨,∧} and define arity : F → N by

arity(x) = 0 for x ∈ A ∪ {>,⊥}, arity(¬) = 1, arity(∨) = arity(∧) = 2.

Then the set of admissible words is just Prop(A).

Lemma 2.1.4. Let t1, . . . , tm and u1, . . . , un be admissible words and w any
word on F such that t1 . . . tmw = u1 . . . un. Then m ≤ n, ti = ui for i =
1, . . . ,m, and w = um+1 · · ·un.

Proof. By induction on the length of u1 . . . un. If this length is 0, then m = n =
0 and w is the empty word. Suppose the length is > 0, and assume the lemma
holds for smaller lengths. Note that n > 0. If m = 0, then the conclusion of the
lemma holds, so suppose m > 0. The first symbol of t1 equals the first symbol
of u1. Say this first symbol is h ∈ F with arity k. Then t1 = ha1 . . . ak and
u1 = hb1 . . . bk where a1, . . . , ak and b1, . . . , bk are admissible words. Cancelling
the first symbol h gives

a1 . . . akt2 . . . tmw = b1 . . . bku2 . . . un.
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(Caution: any of k,m−1, n−1 could be 0.) We have length(b1 . . . bku2 . . . un) =
length(u1 . . . un)− 1, so the induction hypothesis applies. It yields k+m− 1 ≤
k + n− 1 (so m ≤ n), a1 = b1, . . . , ak = bk (so t1 = u1), t2 = u2, . . . , tm = um,
and w = um+1 · · ·un.

Here are two immediate consequences that we shall use:

1. Let t1, . . . , tm and u1, . . . , un be admissible words such that t1 . . . tm =
u1 . . . un. Then m = n and ti = ui for i = 1, . . . ,m.

2. Let t and u be admissible words and w a word on F such that tw = u.
Then t = u and w is the empty word.

Lemma 2.1.5 (Unique Readability).
Each admissible word equals ft1 . . . tm for a unique tuple (f, t1, . . . , tm) where
f ∈ F has arity m and t1, . . . , tm are admissible words.

Proof. Suppose ft1 . . . tm = gu1 . . . un where f, g ∈ F have arity m and n
respectively, and t1, . . . , tm, u1, . . . , un are admissible words on F . We have to
show that then f = g, m = n and ti = ui for i = 1, . . . ,m. Observe first that
f = g since f and g are the first symbols of two equal words. After cancelling
the first symbol of both words, the first consequence of the previous lemma leads
to the desired conclusion.

Given words v, w ∈ F ∗ and i ∈ {1, . . . , length(w)}, we say that v occurs in
w at starting position i if w = w1vw2 where w1, w2 ∈ F ∗ and w1 has length
i − 1. (For example, if f, g ∈ F are distinct, then the word fgf has exactly
two occurrences in the word fgfgf , one at starting position 1, and the other
at starting position 3; these two occurrences overlap, but such overlapping is
impossible with admissible words, see exercise 5 at the end of this section.)
Given w = w1vw2 as above, and given v′ ∈ F ∗, the result of replacing v in w at
starting position i by v′ is by definition the word w1v

′w2.

Lemma 2.1.6. Let w be an admissible word and 1 ≤ i ≤ length(w). Then there
is a unique admissible word that occurs in w at starting position i.

Proof. We prove existence by induction on length(w). Uniqueness then follows
from the fact stated just before Lemma 2.1.5. Clearly w is an admissible word
occurring in w at starting position 1. Suppose i > 1. Then we write w =
ft1 . . . tn where f ∈ F has arity n > 0, and t1, . . . , tn are admissible words, and
we take j ∈ {1, . . . , n} such that

1 + length(t1) + · · ·+ length(tj−1) < i ≤ 1 + length(t1) + · · ·+ length(tj).

Now apply the inductive assumption to tj .

Remark. Let w = ft1 . . . tn where f ∈ F has arity n > 0, and t1, . . . , tn are
admissible words. Put lj := 1 + length(t1) + · · ·+ length(tj) for j = 0, . . . , n (so
l0 = 1). Suppose lj−1 < i ≤ lj , 1 ≤ j ≤ n, and let v be the admissible word
that occurs in w at starting position i. Then the proof of the last lemma shows
that this occurrence is entirely inside tj , that is, i− 1 + length(v) ≤ lj .



2.2. COMPLETENESS FOR PROPOSITIONAL LOGIC 19

Corollary 2.1.7. Let w be an admissible word and 1 ≤ i ≤ length(w). Then
the result of replacing the admissible word v in w at starting position i by an
admissible word v′ is again an admissible word.

This follows by a routine induction on length(w), using the last remark.

Exercises. In the exercises below, A = {a1, . . . , an}, |A| = n.

(1) (Disjunctive Normal Form) Each p is equivalent to a disjunction

p1 ∨ · · · ∨ pk

where each disjunct pi is a conjunction aε1
1 ∧ . . . ∧ a

εn
n with all εj ∈ {−1, 1} and

where for an atom a we put a1 := a and a−1 := ¬a.

(2) (Conjunctive Normal Form) Same as last problem, except that the signs ∨ and ∧
are interchanged, as well as the words “disjunction” and “conjunction,” and also
the words “disjunct” and “conjunct.”

(3) To each p associate the function fp : {0, 1}A → {0, 1} defined by fp(t) = t(p).
(Think of a truth table for p where the 2n rows correspond to the 2n truth
assignments t : A → {0, 1}, and the column under p records the values t(p).)
Then for every function f : {0, 1}A → {0, 1} there is a p such that f = fp.

(4) Let ∼ be the equivalence relation on Prop(A) given by

p ∼ q :⇐⇒ |= p↔ q.

Then the quotient set Prop(A)/∼ is finite; determine its cardinality as a function
of n = |A|.

(5) Let w be an admissible word and 1 ≤ i < i′ ≤ length(w). Let v and v′ be the
admissible words that occur at starting positions i and i′ respectively in w. Then
these occurrences are either nonoverlapping, that is, i− 1+ length(v) < i′, or the
occurrence of v′ is entirely inside that of v, that is,

i′ − 1 + length(v′) ≤ i− 1 + length(v).

2.2 Completeness for Propositional Logic

In this section we introduce a proof system for propositional logic, state the
completeness of this proof system, and then prove this completeness.

As in the previous section we fix a set A of atoms, and the conventions of
that section remain in force.

A propositional axiom is by definition a proposition that occurs in the list below,
for some choice of p, q, r:

1. >

2. p→ (p ∨ q); p→ (q ∨ p)

3. ¬p→
(

¬q → ¬(p ∨ q)
)
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4. (p ∧ q)→ p; (p ∧ q)→ q

5. p→
(

q → (p ∧ q)
)

6.
(

p→ (q → r)
)

→
(

(p→ q)→ (p→ r)
)

7. p→ (¬p→ ⊥)

8. (¬p→ ⊥)→ p

Each of items 2–8 describes infinitely many propositional axioms. That is why
we do not call these items axioms, but axiom schemes. For example, if a, b ∈ A,
then a → (a ∨ ⊥) and b → (b ∨ (¬a ∧ ¬b)) are distinct propositional axioms,
and both instances of axiom scheme 2. It is easy to check that all propositional
axioms are tautologies.

Here is our single rule of inference for propositional logic:

Modus Ponens (MP): from p and p→ q, infer q.

In the rest of this section Σ denotes a set of propositions, that is, Σ ⊆ Prop(A).

Definition. A formal proof , or just proof, of p from Σ is a sequence p1, . . . , pn

with n ≥ 1 and pn = p, such that for k = 1, . . . , n:
(i) either pk ∈ Σ,
(ii) or pk is a propositional axiom,
(iii) or there are i, j ∈ {1, . . . , k − 1} such that pk can be inferred from pi and

pj by MP.
If there exists a proof of p from Σ, then we write Σ ` p, and say Σ proves p.
For Σ = ∅ we also write ` p instead of Σ ` p.
Lemma 2.2.1. ` p→ p.

Proof. The proposition p →
(

(p → p) → p
)

is a propositional axiom by axiom
scheme 2. By axiom scheme 6,

{p→
(

(p→ p)→ p
)

} → {
(

p→ (p→ p)
)

→ (p→ p)}

is a propositional axiom. Applying MP to these two axioms yields

`
(

p→ (p→ p)
)

→ (p→ p).

Since p→ (p→ p) is also a propositional axiom by scheme 2, we can apply MP
again to obtain ` p→ p.

Proposition 2.2.2. If Σ ` p, then Σ |= p.

This should be clear from earlier facts that we stated and which the reader
was asked to verify. The converse is true but less obvious:

Theorem 2.2.3 (Completeness - first form).

Σ ` p ⇐⇒ Σ |= p
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Remark. There is some arbitrariness in our choice of axioms and rule, and thus
in our notion of formal proof. This is in contrast to the definition of |=, which
merely formalizes the basic underlying idea of propositional logic as stated in
the introduction to the previous section. However, the equivalence of ` and
|= (Completeness Theorem) shows that our choice of axioms and rule yields a
complete proof system. Moreover, this equivalence has consequences which can
be stated in terms of |= alone. An example is the Compactness Theorem.

Theorem 2.2.4 (Compactness of Propositional Logic). If Σ |= p then
there is a finite subset Σ0 of Σ such that Σ0 |= p.

It is convenient to prove first a variant of the Completeness Theorem.

Definition. We say that Σ is inconsistent if Σ ` ⊥, and otherwise (that is, if
Σ 0 ⊥) we call Σ consistent .

Theorem 2.2.5 (Completeness - second form).
Σ is consistent if and only if Σ has a model.

From this second form of the Completenenes Theorem we obtain easily an al-
ternative form of the Compactness of Propositional Logic:

Corollary 2.2.6. Σ has a model ⇐⇒ every finite subset of Σ has a model.

We first show that the second form of the Completeness Theorem implies the
first form. For this we need a technical lemma that will also be useful later in
the course.

Lemma 2.2.7 (Deduction Lemma). Suppose Σ∪ {p} ` q. Then Σ ` p→ q.

Proof. By induction on proofs.
If q is a propositional axiom, then Σ ` q, and since q → (p → q) is a

propositional axiom, MP yields Σ ` p → q. If q ∈ Σ ∪ {p}, then either q ∈ Σ
in which case the same argument as before gives Σ ` p→ q, or q = p and then
Σ ` p→ q since ` p→ p by the lemma above.

Now assume that q is obtained by MP from r and r → q, where Σ∪ {p} ` r
and Σ ∪ {p} ` r → q and where we assume inductively that Σ ` p → r and
Σ ` p→ (r → q). Then we obtain Σ ` p→ q from the propositional axiom

(

p→ (r → q)
)

→
(

(p→ r)→ (p→ q)
)

by applying MP twice.

Corollary 2.2.8. Σ ` p if and only if Σ ∪ {¬p} is inconsistent.

Proof. (⇒) Assume Σ ` p. Since p → (¬p → ⊥) is a propositional axiom, we
can apply MP twice to get Σ ∪ {¬p} ` ⊥. Hence Σ ∪ {¬p} is inconsistent.
(⇐) Assume Σ ∪ {¬p} is inconsistent. Then Σ ∪ {¬p} ` ⊥, and so by the
Deduction Lemma we have Σ ` ¬p→ ⊥. Since (¬p→ ⊥)→ p is a propositional
axiom, MP yields Σ ` p.
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Corollary 2.2.9. The second form of Completeness (Theorem 2.2.5) implies
the first form (Theorem 2.2.3).

Proof. Assume the second form of Completeness holds, and that Σ |= p. We
want to show that then Σ ` p. From Σ |= p it follows that Σ ∪ {¬p} has
no model. Hence by the second form of Completeness, the set Σ ∪ {¬p} is
inconsistent. Then by Corollary 2.2.8 we have Σ ` p.

Definition. We say that Σ is complete if Σ is consistent, and for each p either
Σ ` p or Σ ` ¬p.

Completeness as a property of a set of propositions should not be confused
with the completeness of our proof system as expressed by the Completeness
Theorem. (It is just a historical accident that we use the same word.)

Below we use Zorn’s Lemma to show that any consistent set of propositions
can be extended to a complete set of propositions.

Lemma 2.2.10 (Lindenbaum). Suppose Σ is consistent. Then Σ ⊆ Σ′ for
some complete Σ′ ⊆ Prop(A).

Proof. Let P be the collection of all consistent subsets of Prop(A) that contain
Σ. In particular Σ ∈ P . We consider P as partially ordered by inclusion. Any
totally ordered subcollection {Σi : i ∈ I} of P with I 6= ∅ has an upper bound
in P , namely

⋃{Σi : i ∈ I}. (To see this it suffices to check that
⋃{Σi : i ∈ I}

is consistent. Suppose otherwise, that is, suppose
⋃{Σi : i ∈ I} ` ⊥. Since a

proof can use only finitely many of the axioms in
⋃{Σi : i ∈ I}, there exists

i ∈ I such that Σi ` ⊥, contradicting the consistency of Σi.)
Thus by Zorn’s lemma P has a maximal element Σ′. We claim that then Σ′

is complete. For any p, if Σ′
0 p, then by Corollary 2.2.8 the set Σ′ ∪ {¬p} is

consistent, hence ¬p ∈ Σ′ by maximality of Σ′, and thus Σ′ ` ¬p.

Suppose A is countable. For this case we can give a proof of Lindenbaum’s
Lemma without using Zorn’s Lemma as follows.

Proof. Because A is countable, Prop(A) is countable. Take an enumeration
(pn)n∈N of Prop(A). We construct an increasing sequence Σ = Σ0 ⊆ Σ1 ⊆ . . .
of consistent subsets of Prop(A) as follows. Given a consistent Σn ⊆ Prop(A)
we define

Σn+1 =

{

Σn ∪ {pn} if Σn ` pn,

Σn ∪ {¬pn} if Σn 0 pn,

so Σn+1 remains consistent by earlier results. Thus Σ∞ :=
⋃{Σn : n ∈ N}

is consistent and also complete: for any n either pn ∈ Σn+1 ⊆ Σ∞ or ¬pn ∈
Σn+1 ⊆ Σ∞.

Define the truth assignment tΣ : A→ {0, 1} by

tΣ(a) = 1 if Σ ` a, and tΣ(a) = 0 otherwise.
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Lemma 2.2.11. Suppose Σ is complete. Then for each p we have

Σ ` p ⇐⇒ tΣ(p) = 1.

In particular, tΣ is a model of Σ.

Proof. We proceed by induction on the number of connectives in p. If p is an
atom or p = > or p = ⊥, then the equivalence follows immediately from the
definitions. It remains to consider the three cases below.

Case 1 : p = ¬q, and (inductive assumption) Σ ` q ⇐⇒ tΣ(q) = 1.
(⇒) Suppose Σ ` p. Then tΣ(p) = 1: Otherwise, tΣ(q) = 1, so Σ ` q by the
inductive assumption; since q → (p→ ⊥) is a propositional axiom, we can apply
MP twice to get Σ ` ⊥, which contradicts the consistency of Σ.
(⇐) Suppose tΣ(p) = 1. Then tΣ(q) = 0, so Σ 0 q, and thus Σ ` p by
completeness of Σ.

Case 2 : p = q ∨ r, Σ ` q ⇐⇒ tΣ(q) = 1, and Σ ` r ⇐⇒ tΣ(r) = 1.
(⇒) Suppose that Σ ` p. Then tΣ(p) = 1: Otherwise, tΣ(p) = 0, so tΣ(q) = 0
and tΣ(r) = 0, hence Σ 0 q and Σ 0 r, and thus Σ ` ¬q and Σ ` ¬r by
completeness of Σ; since ¬q → (¬r → ¬p) is a propositional axiom, we can apply
MP twice to get Σ ` ¬p, which in view of the propositional axiom p→ (¬p→ ⊥)
and MP yields Σ ` ⊥, which contradicts the consistency of Σ.
(⇐) Suppose tΣ(p) = 1. Then tΣ(q) = 1 or tΣ(r) = 1. Hence Σ ` q or Σ ` r.
Using MP and the propositional axioms q → p and r → p we obtain Σ ` p.

Case 3 : p = q ∧ r, Σ ` q ⇐⇒ tΣ(q) = 1, and Σ ` r ⇐⇒ tΣ(r) = 1.
We leave this case as an exercise.

We can now finish the proof of Completeness (second form):
Suppose Σ is consistent. Then by Lindenbaum’s Lemma Σ is a subset of a
complete set Σ′ of propositions. By the previous lemma, such a Σ′ has a model,
and such a model is also a model of Σ.

The converse—if Σ has a model, then Σ is consistent—is left to the reader.

Application to coloring infinite graphs. What follows is a standard use
of compactness of propositional logic, one of many. Let (V,E) be a graph, by
which we mean here that V is a set (of vertices) and E (the set of edges) is a
binary relation on V that is irreflexive and symmetric, that is, for all v, w ∈ V
we have (v, v) /∈ E, and if (v, w) ∈ E, then (w, v) ∈ E. Let some n ≥ 1 be
given. Then an n-coloring of (V,E) is a function c : V → {1, . . . , n} such that
c(v) 6= c(w) for all (v, w) ∈ E: neighboring vertices should have different colors.

Suppose for every finite V0 ⊆ V there is an n-coloring of (V0, E0), where
E0 := E ∩ (V0 × V0). We claim that there exists an n-coloring of (V,E).

Proof. Take A := V ×{1, . . . , n} as the set of atoms, and think of an atom (v, i)
as representing the statement that v has color i. Thus for (V,E) to have an
n-coloring means that the following set Σ ⊆ PropA has a model:

Σ := {(v, 1) ∨ · · · ∨ (v, n) : v ∈ V } ∪ {¬
(

(v, i) ∧ (v, j)
)

: v ∈ V, 1 ≤ i < j ≤ n}
∪ {¬

(

(v, i) ∧ (w, i)
)

: (v, w) ∈ E, 1 ≤ i ≤ n}.
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The assumption that all finite subgraphs of (V,E) are n-colorable yields that
every finite subset of Σ has a model. Hence by compactness Σ has a model.

Exercises.
(1) Suppose Σ ⊆ Prop(A) is such that for each truth assignment t : A→ {0, 1} there

is p ∈ Σ with t(p) = 1. Then there are p1, . . . , pn ∈ Σ such that p1 ∨ · · · ∨ pn is a
tautology. (The interesting case is when A is infinite.)

2.3 Languages and Structures

Propositional Logic captures only one aspect of mathematical reasoning. We
also need the capability to deal with predicates (also called relations), variables,
and the quantifiers “for all” and “there exists.” We now begin setting up a
framework for Predicate Logic (or First-Order Logic), which has these additional
features and has a claim on being a complete logic for mathematical reasoning.

Definition. A language1 L is a disjoint union of:
(i) a set Lr of relation symbols ; each R ∈ Lr has associated arity a(R) ∈ N;
(ii) a set Lf of function symbols ; each F ∈ Lf has associated arity a(F ) ∈ N.
An m-ary relation or function symbol is one that has arity m. Instead of “0-
ary”, “1-ary”, “2-ary” we say “nullary”, “unary”, “binary”. A constant symbol
is a function symbol of arity 0.

Examples.
(1) The language LGr = {1,−1, ·} of groups has constant symbol 1, unary

function symbol −1, and binary function symbol ·.
(2) The language LAb = {0,−,+} of (additive) abelian groups has constant

symbol 0, unary function symbol −, and binary function symbol +.
(3) The language LO = {<} has just one binary relation symbol <.
(4) The language LOAb = {<, 0,−,+} of ordered abelian groups.
(5) The language LRig = {0, 1,+, ·} of rigs (or semirings) has constant symbols

0 and 1, and binary function symbols + and ·.
(6) The language LRi = {0, 1,−,+, ·} of rings. The symbols are those of the

previous example, plus the unary function symbol −.

From now on, let L denote a language.

Definition. A structure A for L (or L-structure) is a triple

(

A; (RA)R∈Lr , (FA)F∈Lf

)

consisting of:
(i) a nonempty set A, the underlying set of A;2

(ii) for each m-ary R ∈ Lr a set RA ⊆ Am (an m-ary relation on A), the
interpretation of R in A;

1What we call here a language is also known as a signature, or a vocabulary.
2It is also called the universe of A; we prefer less grandiose terminology.
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(iii) for each n-ary F ∈ Lf an operation FA : An −→ A (an n-ary operation
on A), the interpretation of F in A.

Remark. The interpretation of a constant symbol c of L is a function

cA : A0 −→ A.

Since A0 has just one element, cA is uniquely determined by its value at this
element; we shall identify cA with this value, so cA ∈ A.

Given an L-structure A, the relations RA on A (for R ∈ Lr), and operations FA

on A (for F ∈ Lf ) are called the primitives of A. When A is clear from context
we often omit the superscript A in denoting the interpretation of a symbol of L
in A. The reader is supposed to keep in mind the distinction between symbols
of L and their interpretation in an L-structure, even if we use the same notation
for both.

Examples.
(1) Each group is considered as an LGr-structure by interpreting the symbols

1, −1, and · as the identity element of the group, its group inverse, and its
group multiplication, respectively.

(2) Let A = (A; 0,−,+) be an abelian group; here 0 ∈ A is the zero element
of the group, and − : A→ A and + : A2 → A denote the group operations
of A. We consider A as an LAb-structure by taking as interpretations of
the symbols 0,− and + of LAb the group operations 0, − and + on A.
(We took here the liberty of using the same notation for possibly entirely
different things: + is an element of the set LAb, but also denotes in this
context its interpretation as a binary operation on the set A. Similarly
with 0 and −.) In fact, any set A in which we single out an element, a
unary operation on A, and a binary operation on A, can be construed as
an LAb-structure if we choose to do so.

(3) (N; <) is an LO-structure where we interpret < as the usual ordering
relation on N. Similarly for (Z; <), (Q; <) and (R; <). (Here we take
even more notational liberties, by letting < denote five different things: a
symbol of LO, and the usual orderings of N, Z, Q, and R respectively.)
Again, any nonempty set A equipped with a binary relation on it can be
viewed as an LO-structure.

(4) (Z; <, 0,−,+) and (Q, <, 0,−,+) are both LOAb-structures.
(5) (N; 0, 1,+, ·) is an LRig-structure.
(6) (Z; 0, 1,−,+, ·) is an LRi-structure.

Let B be an L-structure with underlying set B, and let A be a nonempty subset
of B such that FB(An) ⊆ A for every n-ary function symbol F of L. Then A is
the underlying set of an L-structure A defined by letting

FA := FB |An : An → A, for n-ary F ∈ Lf ,

RA := RB ∩ Am for m-ary R ∈ Lr.
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Definition. Such an L-structure A is said to be a substructure of B, notation:
A ⊆ B. We also say in this case that B is an extension of A, or extends A.

Examples.
(1) (Z; 0, 1,−,+, ·) ⊆ (Q; 0, 1,−,+, ·) ⊆ (R; 0, 1,−,+, ·)
(2) (N; <, 0, 1,+, ·) ⊆ (Z; <, 0, 1,+, ·)
Definition. Let A = (A; . . .) and B = (B; . . .) be L-structures.
A homomorphism h : A → B is a map h : A→ B such that
(i) for each m-ary R ∈ Lr and each (a1, . . . , am) ∈ Am we have

(a1, . . . , am) ∈ RA =⇒ (ha1, . . . , ham) ∈ RB;

(ii) for each n-ary F ∈ Lf and each (a1, . . . , an) ∈ An we have

h(FA(a1, . . . , an)) = FB(ha1, . . . , han).

Replacing =⇒ in (i) by ⇐⇒ yields the notion of a strong homomorphism. An
embedding is an injective strong homomorphism; an isomorphism is a bijective
strong homomorphism. An automorphism of A is an isomorphism A → A.

If A ⊆ B, then the inclusion a 7→ a : A → B is an embedding A → B.
Conversely, a homomorphism h : A → B yields a substructure h(A) of B with
underlying set h(A), and if h is an embedding we have an isomorphism a 7→
h(a) : A → h(A).

If i : A → B and j : B → C are homomorphisms (strong homomorphisms,
embeddings, isomorphisms, respectively), then so is j ◦ i : A → C. The identity
map 1A on A is an automorphism of A. If i : A → B is an isomorphism then so
is the map i−1 : B → A. Thus the automorphisms of A form a group Aut(A)
under composition with identity 1A.

Examples.

1. Let A = (Z; 0,−,+). Then k 7→ −k is an automorphism of A.

2. Let A = (Z; <). The map k 7→ k + 1 is an automorphism of A with
inverse given by k 7−→ k − 1.

If A and B are groups (viewed as structures for the language LGr), then a
homomorphism h : A → B is exactly what in algebra is called a homomorphism
from the group A to the group B. Likewise with rings, and other kinds of
algebraic structures.

A congruence on the L-structureA is an equivalence relation∼ on its underlying
set A such that
(i) if R ∈ Lr is m-ary and a1 ∼ b1, . . . , am ∼ bm, then

(a1, . . . , am) ∈ RA ⇐⇒ (b1, . . . , bm) ∈ RA;

(ii) if F ∈ Lf is n-ary and a1 ∼ b1, . . . , an ∼ bn, then

FA(a1, . . . , an) ∼ FA(b1, . . . , bn).
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Note that a strong homomorphism h : A → B yields a congruence ∼h on A as
follows: for a1, a2 ∈ A we put

a1 ∼h a2 ⇐⇒ h(a1) = h(a2).

Given a congruence ∼ on the L-structure A we obtain an L-structure A/∼ (the
quotient of A by ∼) as follows:
(i) the underlying set of A/∼ is the quotient set A/∼;
(ii) the interpretation of an m-ary R ∈ Lr in A/∼ is the m-ary relation

{(a∼1 , . . . , a∼m) : (a1, . . . , am) ∈ RA}

on A/∼;
(iii) the interpretation of an n-ary F ∈ Lf in A/ ∼ is the n-ary operation

(a∼1 , . . . , a
∼
n ) 7→ FA(a1, . . . , an)∼

on A/∼.

Note that then we have a strong homomorphism a 7→ a∼ : A → A/∼.

Products. Let
(

Bi

)

i∈I
be a family of L-structures, Bi = (Bi; . . . ) for i ∈ I .

The product
∏

i∈I

Bi

is defined to be the L-structure B whose underlying set is the product set
∏

i∈I Bi, and where the basic relations and functions are defined coordinate-
wise: for m-ary R ∈ Lr and elements b1 = (b1i), . . . , bm = (bmi) ∈

∏

i∈I Bi,

(b1, . . . , bm) ∈ RB ⇐⇒ (b1i, . . . , bmi) ∈ RBi for all i ∈ I,

and for n-ary F ∈ Lf and b1 = (b1i), . . . , bn = (bni) ∈
∏

i∈I Bi,

FB(b1, . . . , bn) :=
(

FBi(b1i, . . . , bni)
)

i∈I
.

For j ∈ I the projection map to the jth factor is the homomorphism

∏

i∈I

Bi → Bj , (bi) 7→ bj .

This product construction makes it possible to combine several homomorphisms
with a common domain into a single one: if for each i ∈ I we have a homomor-
phism hi : A → Bi we obtain a homomorphism

h = (hi) : A →
∏

i∈I

Bi, h(a) :=
(

hi(ai)
)

.
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2.4 Variables and Terms

Throughout this course
Var = {v0, v1, v2, . . . }

is a countably infinite set of symbols whose elements will be called variables ;
we assume that vm 6= vn for m 6= n, and that no variable is a function or
relation symbol in any language. We let x, y, z (sometimes with subscripts or
superscripts) denote variables, unless indicated otherwise.

Remark. Chapters 2–4 go through if we take as our set Var of variables any
infinite (possibly uncountable) set; in model theory this can even be convenient.
For this more general Var we still insist that no variable is a function or relation
symbol in any language. In the few cases in chapters 2–4 that this more general
set-up requires changes in proofs, this will be pointed out.

The results in Chapter 5 on undecidability presuppose a numbering of the
variables; our Var = {v0, v1, v2, . . . } comes equipped with such a numbering.

Definition. An L-term is a word on the alphabet Lf ∪Var obtained as follows:
(i) each variable (viewed as a word of length 1) is an L-term;
(ii) whenever F ∈ Lf is n-ary and t1, . . . , tn are L-terms, then the concatena-

tion Ft1 . . . tn is an L-term.

Note: constant symbols of L are L-terms of length 1, by clause (ii) for n = 0.
The L-terms are the admissible words on the alphabet Lf ∪ Var where each
variable has arity 0. Thus “unique readability” is available.

We often write t(x1, . . . , xn) to indicate an L-term t in which no variables
other than x1, . . . , xn occur. When using this notation we always assume that
x1, . . . , xn are distinct. Note that we do not require that each of x1, . . . , xn

actually occurs in t(x1, . . . , xn).

If a term is written as an admissible word, then it may be hard to see how
it is built up from subterms. In practice we shall therefore use parentheses
and brackets in denoting terms, and avoid prefix notation if tradition dictates
otherwise.

Example. The word ·+ x− yz is an LRi-term. For easier reading we indicate
this term instead by (x+ (−y)) · z or even (x− y)z.
Definition. Let A be an L-structure and t = t(~x) be an L-term where ~x =
(x1, . . . , xm). Then we associate to the ordered pair (t, ~x) a function tA : Am → A
as follows
(i) If t is the variable xi then tA(a) = ai for a = (a1, . . . , am) ∈ Am.
(ii) If t = Ft1 . . . tn where F ∈ Lf is n-ary and t1, . . . , tn are L-terms, then

tA(a) = FA(tA1 (a), . . . , tAn (a)) for a ∈ Am.
This inductive definition is justified by unique readability. Note that if B is a
second L-structure and A ⊆ B, then tA(a) = tB(a) for t as above and a ∈ Am.

Example. Consider R as a ring in the usual way, and let t(x, y, z) be the LRi-
term (x−y)z. Then the function tR : R3 → R is given by tR(a, b, c) = (a− b)c.
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A term is said to be variable-free if no variables occur in it. Let t be a variable-
free L-term and A an L-structure. Then the above gives a nullary function
tA : A0 → A, identified as usual with its value at the unique element of A0, so
tA ∈ A. In other words, if t is a constant symbol c, then tA = cA ∈ A, where
cA is as in the previous section, and if t = Ft1 . . . tn with n-ary F ∈ Lf and
variable-free L-terms t1, . . . , tn, then tA = FA(tA1 , . . . , t

A
n ).

Generators. Let B be an L-structure and let (ai)i∈I be a family of elements
of B, and assume also that L has a constant symbol or that I 6= ∅. Then the
set of all elements of the form tB(ai1 , . . . , aim

) where t(x1, . . . , xm) is an L-term
and i1, . . . , im ∈ I is the underlying set of some A ⊆ B, and this A is clearly a
substructure of any B that has all ai in its underlying set. We call this A the
substructure of B generated by (ai); if A = B, then we say that B is generated
by (ai).

Exercises.
(1) For every LAb-term t(x1, . . . , xn) there are integers k1, . . . , kn such that for every

abelian group A = (A; 0,−,+),

tA(a1, . . . , an) = k1a1 + . . .+ knan, for all (a1, . . . , an) ∈ An.

Conversely, for any integers k1, . . . , kn there is an LAb-term t(x1, . . . , xn) such
that in every abelian group A = (A; 0,−,+) the above displayed identity holds.

(2) For every LRi-term t(x1, . . . , xn) there is a polynomial

P (x1, . . . , xn) ∈ Z[x1, . . . , xn]

such that for every commutative ring R = (R; 0, 1,−,+, ·),

tR(r1, . . . , rn) = P (r1, . . . , rn), for all (r1, . . . , rn) ∈ Rn.

Conversely, for any polynomial P (x1, . . . , xn) ∈ Z[x1, . . . , xn] there is an LRi-
term t(x1, . . . , xn) such that in every commutative ring R = (R; 0, 1,−,+, ·) the
above displayed identity holds.

(3) Let A and B be L-structures, h : A → B a homomorphism, and t = t(x1, . . . , xn)
an L-term. Then

h
`

tA(a1, . . . , an)
´

= tB(ha1, . . . , han), for all (a1, . . . , an) ∈ An.

(IfA ⊆ B and h : A → B is the inclusion, this gives tA(a1, . . . , an) = tB(a1, . . . , an)
for all (a1, . . . , an) ∈ An.)

(4) Consider the L-structure A = (N; 0, 1,+, ·) where L = LRig.
(a) Is there an L-term t(x) such that tA(0) = 1 and tA(1) = 0?
(b) Is there an L-term t(x) such that tA(n) = 2n for all n ∈ N?
(c) Find all the substructures of A.
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2.5 Formulas and Sentences

Besides variables we also introduce the eight distinct logical symbols

> ⊥ ¬ ∨ ∧ = ∃ ∀

The first five of these we already met when discussing propositional logic. None
of these eight symbols is a variable, or a function or relation symbol of any
language. Below L denotes a language. To distinguish the logical symbols from
those in L, the latter are often referred to as the non-logical symbols.

Definition. The atomic L-formulas are the following words on the alphabet
L ∪ Var ∪ {>,⊥, =}:
(i) > and ⊥,
(ii) Rt1 . . . tm, where R ∈ Lr is m-ary and t1, . . . , tm are L-terms,
(iii) = t1t2, where t1 and t2 are L-terms.

The L-formulas are the words on the larger alphabet

L ∪ Var ∪ {>,⊥,¬,∨,∧,=, ∃, ∀}

obtained as follows:
(i) every atomic L-formula is an L-formula;
(ii) if ϕ, ψ are L-formulas, then so are ¬ϕ, ∨ϕψ and ∧ϕψ;
(iii) if ϕ is a L-formula and x is a variable, then ∃xϕ and ∀xϕ are L-formulas.

Note that all L-formulas are admissible words on the alphabet

L ∪Var ∪ {>,⊥,¬,∨,∧,=, ∃, ∀},

where =, ∃ and ∀ are given arity 2 and the other symbols have the arities
assigned to them earlier. This fact makes the results on unique readability
applicable to L-formulas. (However, not all admissible words on this alphabet
are L-formulas: the word ∃xx is admissible but not an L-formula.)

The notational conventions introduced in the section on propositional logic
go through, with the role of propositions there taken over by formulas here. (For
example, given L-formulas ϕ and ψ we shall write ϕ ∨ ψ to indicate ∨ϕψ, and
ϕ→ ψ to indicate ¬ϕ ∨ ψ.)

The reader should distinguish between different ways of using the symbol =.
Sometimes it denotes one of the eight formal logical symbols, but we also use it
to indicate equality of mathematical objects in the way we have done already
many times. The context should always make it clear what our intention is in
this respect without having to spell it out. To increase readability we usually
write an atomic formula = t1t2 as t1 = t2 and its negation ¬ = t1t2 as t1 6= t2,
where t1, t2 are L-terms. The logical symbol = is treated just as a binary relation
symbol, but its interpretation in a structure will always be the equality relation
on its underlying set. This will become clear later.
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Definition. Let ϕ be a formula of L. Written as a word on the alphabet above
we have ϕ = s1 . . . sm. A subformula of ϕ is a subword of the form si . . . sk

where 1 ≤ i ≤ k ≤ m which also happens to be a formula of L.
An occurrence of a variable x in ϕ at the j-th place (that is, sj = x) is said

to be a bound occurrence if ϕ has a subformula sisi+1 . . . sk with i ≤ j ≤ k that
is of the form ∃xψ or ∀xψ. If an occurrence is not bound then it is said to be a
free occurrence.

At this point the reader is invited to do the first exercise at the end of this
section, which gives another useful characterization of subformulas.

Example. In the formula
(

∃x(x = y)
)

∧ x = 0, where x and y are distinct, the
first two occurrences of x are bound, the third is free, and the only occurrence
of y is free. (Note: the formula is actually the string ∧∃x = xy = x0, and the
occurrences of x and y are really the occurrences in this string.)

Definition. A sentence is a formula in which all occurrences of variables are
bound occurrences.

We write ϕ(x1, . . . , xn) to indicate a formula ϕ such that all variables that occur
free in ϕ are among x1, . . . , xn. In using this notation it is understood that
x1, . . . , xn are distinct variables, but it is not required that each of x1, . . . , xn

occurs free in ϕ. (This is like indicating a polynomial in the indeterminates
x1, . . . , xn by p(x1, . . . , xn), where one allows that some of these indeterminates
do not actually occur in p.)

Definition. Let ϕ be an L-formula, let x1, . . . , xn be distinct variables, and
let t1, . . . , tn be L-terms. Then ϕ(t1/x1, . . . , tn/xn) is the word obtained by
replacing all the free occurences of xi in ϕ by ti, simultaneously for i = 1, . . . , n.
If ϕ is given in the form ϕ(x1, . . . , xn), then we write ϕ(t1, . . . , tn) as a shorthand
for ϕ(t1/x1, . . . , tn/xn).

We have the following lemma whose routine proof is left to the reader.

Lemma 2.5.1. Suppose ϕ is an L-formula, x1, . . . , xn are distinct variables,
and t1, . . . , tn are L-terms. Then ϕ(t1/x1, . . . , tn/xn) is an L-formula. If
t1, . . . , tn are variable-free and ϕ = ϕ(x1, . . . , xn), then ϕ(t1, . . . , tn) is an L-
sentence.

In the definition of ϕ(t1/x1, . . . , tn/xn) the “replacing” should be simultaneous,
because it can happen that ϕ(t1/x1)(t2/x2) 6= ϕ(t1/x1, t2/x2).

Let A be an L-structure with underlying set A, and let C ⊆ A. We extend L to
a language LC by adding a constant symbol c for each c ∈ C, called the name
of c. These names are symbols not in L. We make A into an LC-structure
by keeping the same underlying set and interpretations of symbols of L, and
by interpreting each name c as the element c ∈ C. The LC-structure thus
obtained is indicated by AC . Hence for each variable-free LC-term t we have
a corresponding element tAC of A, which for simplicity of notation we denote
instead by tA. All this applies in particular to the case C = A, where in LA we
have a name a for each a ∈ A.
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Definition. We can now define what it means for an LA-sentence σ to be true
in the L-structure A (notation: A |= σ, also read as A satisfies σ or σ holds in
A, or σ is valid in A). First we consider atomic LA-sentences:

(i) A |= >, and A 6|= ⊥;
(ii) A |= Rt1 . . . tm if and only if (tA1 , . . . , t

A
m) ∈ RA, for m-ary R ∈ Lr, and

variable free LA-terms t1, . . . , tm;
(iii) A |= t1 = t2 if and only if tA1 = tA2 , for variable free LA-terms t1, t2.

We extend the definition inductively to arbitrary LA-sentences as follows:

(i) Suppose σ = ¬σ1. Then A |= σ if and only if A 2 σ1.
(ii) Suppose σ = σ1 ∨ σ2. Then A |= σ if and only if A |= σ1 or A |= σ2.
(iii) Suppose σ = σ1 ∧ σ2. Then A |= σ if and only if A |= σ1 and A |= σ2.
(iv) Suppose σ = ∃xϕ(x). Then A |= σ if and only if A |= ϕ(a) for some a ∈ A.
(v) Suppose σ = ∀xϕ(x). Then A |= σ if and only if A |= ϕ(a) for all a ∈ A.

Even if we just want to define A |= σ for L-sentences σ, one can see that if
σ has the form ∃xϕ(x) or ∀xϕ(x), the inductive definition above forces us to
consider LA-sentences ϕ(a). This is why we introduced names. We didn’t say so
explicitly, but “inductive” refers here to induction with respect to the number of
logical symbols in σ. For example, the fact that ϕ(a) has fewer logical symbols
than ∃xϕ(x) is crucial for the above to count as a definition.

It is easy to check that for an LA-sentence σ = ∃x1 . . . ∃xnϕ(x1, . . . , xn),

A |= σ ⇐⇒ A |= ϕ(a1, . . . , an) for some (a1, . . . , an) ∈ An,

and that for an LA-sentence σ = ∀x1 . . . ∀xnϕ(x1, . . . , xn),

A |= σ ⇐⇒ A |= ϕ(a1, . . . , an) for all (a1, . . . , an) ∈ An.

Definition. Given an LA-formula ϕ(x1, . . . , xn) we let ϕA be the following
subset of An:

ϕA = {(a1, . . . , an) : A |= ϕ(a1, . . . , an)}
The formula ϕ(x1, . . . , xn) is said to define the set ϕA in A. A set S ⊆ An

is said to be definable in A if S = ϕA for some LA-formula ϕ(x1, . . . , xn). If
moreover ϕ can be chosen to be an L-formula then S is said to be 0-definable
in A.

Examples.
(1) The set {r ∈ R : r <

√
2} is 0-definable in (R; <, 0, 1,+,−, ·): it is defined

by the formula (x2 < 1+1)∨ (x < 0). (Here x2 abbreviates the term x ·x.)
(2) The set {r ∈ R : r < π} is definable in (R; <, 0, 1,+,−, ·): it is defined by

the formula x < π.

We now single out formulas by certain syntactical conditions. These conditions
have semantic counterparts in terms of the behaviour of these formulas under
various kinds of homomorphisms, as shown in some exercises below.

An L-formula is said to be quantifier-free if it has no occurrences of ∃ and
no occurrences of ∀. An L-formula is said to be existential if it has the form
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∃x1 . . . ∃xmϕ with distinct x1, . . . , xm and a quantifier-free L-formula ϕ. An
L-formula is said to be universal if it has the form ∀x1 . . . ∀xmϕ with distinct
x1, . . . , xm and a quantifier-free LL-formula ϕ. An L-formula is said to be
positive if it has no occurrences of ¬ (but it can have occurrences of ⊥).

Exercises.
(1) Let ϕ and ψ be L-formulas; put sf(ϕ) := set of subformulas of ϕ.

(a) If ϕ is atomic, then sf(ϕ) = {ϕ}.
(b) sf(¬ϕ) = {¬ϕ} ∪ sf(ϕ).
(c) sf(ϕ∨ ψ) = {ϕ ∨ ψ} ∪ sf(ϕ)∪ sf(ψ), and sf(ϕ∧ ψ) = {ϕ ∧ ψ} ∪ sf(ϕ)∪ sf(ψ).
(d) sf(∃xϕ) = {∃xϕ} ∪ sf(ϕ), and sf(∀xϕ) = {∀xϕ} ∪ sf(ϕ).

(2) If t(x1, . . . , xn) is an LA-term and a1, . . . , an ∈ A, then

t(a1, . . . , an)A = tA(a1, . . . , an).

(3) Suppose that S1 ⊆ An and S2 ⊆ An are defined in A by the LA-formulas
ϕ1(x1, . . . , xn) and ϕ2(x1, . . . , xn) respectively. Then:

(a) S1 ∪ S2 is defined in A by (ϕ1 ∨ ϕ2)(x1, . . . , xn).
(b) S1 ∩ S2 is defined in A by (ϕ1 ∧ ϕ2)(x1, . . . , xn).
(c) An

r S1 is defined in A by ¬ϕ1(x1, . . . , xn).
(d) S1 ⊆ S2 ⇐⇒ A |= ∀x1 . . . ∀xn

`

ϕ1 → ϕ2).

(4) Let π : Am+n → Am be the projection map given by

π(a1, . . . , am+n) = (a1, . . . , am),

and for S ⊆ Am+n and a ∈ Am, put

S(a) := {b ∈ An : (a, b) ∈ S} (a section of S).

Suppose that S ⊆ Am+n is defined in A by the LA-formula ϕ(x, y) where x =
(x1, . . . , xm) and y = (y1, . . . , yn). Then ∃y1 . . . ∃ynϕ(x, y) defines in A the subset
π(S) of Am, and ∀y1 . . . ∀ynϕ(x, y) defines in A the set

{a ∈ Am : S(a) = An}.

(5) The following sets are 0-definable in the corresponding structures:

(a) The ordering relation {(m,n) ∈ N2 : m < n} in (N; 0,+).
(b) The set {2, 3, 5, 7, . . .} of prime numbers in the semiring N = (N; 0, 1,+, ·).
(c) The set {2n : n ∈ N} in the semiring N .
(d) The set {a ∈ R : f is continuous at a} in (R;<, f) where f : R→ R is any

function.

(6) Let A ⊆ B. Then we consider LA to be a sublanguage of LB in such a way
that each a ∈ A has the same name in LA as in LB . This convention is in force
throughout these notes.

(a) For each variable free LA-term t we have tA = tB.
(b) If the LA-sentence σ is quantifier-free, then A |= σ ⇔ B |= σ.
(c) If σ is an existential LA-sentence, then A |= σ ⇒ B |= σ
(d) If σ is a universal LA-sentence, then B |= σ ⇒ A |= σ.
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(7) Suppose h : A −→ B is a homomorphism of L-structures. For each LA-term t,
let th be the LB-term obtained from t by replacing each occurrence of a name
a of an element a ∈ A by the name ha of the corresponding element ha ∈ B.
Similarly, for each LA-formula ϕ, let ϕh be the LB-formula obtained from ϕ by
replacing each occurrence of a name a of an element a ∈ A by the name ha of
the corresponding element ha ∈ B. Note that if ϕ is a sentence, so is ϕh. Then:
(a) if t is a variable-free LA-term, then h(tA) = tBh ;
(b) if σ is an LA-sentence containing no negation symbol and no ∀-symbol, then

A |= σ ⇒ B |= σh;
(c) if σ is a positive LA-sentence and h is surjective, then A |= σ ⇒ B |= σh;
(d) if σ is an LA-sentence and h is an isomorphism, then A |= σ ⇔ B |= σh;

In particular, isomorphic L-structures satisfy exactly the same L-sentences.

2.6 Models

In the rest of this chapter L is a language, A is an L-structure (with underlying
set A), and, unless indicated otherwise, t is an L-term, ϕ, ψ, and θ are L-
formulas, σ is an L-sentence, and Σ is a set of L-sentences. We drop the prefix
L in “L-term” and “L-formula” and so on, unless this would cause confusion.

Definition. We say that A is a model of Σ or Σ holds in A (denoted A |= Σ)
if A |= σ for each σ ∈ Σ.

To discuss examples it is convenient to introduce some notation. Suppose L
contains (at least) the constant symbol 0 and the binary function symbol +.
Given any terms t1, . . . , tn we define the term t1 + · · ·+ tn inductively as follows:
it is the term 0 if n = 0, the term t1 if n = 1, and the term (t1 + · · ·+ tn−1)+ tn
for n > 1. We write nt for the term t+ · · ·+t with n summands, in particular, 0t
and 1t denote the terms 0 and t respectively. Suppose L contains the constant
symbol 1 and the binary function symbol · (the multiplication sign). Then we
have similar notational conventions for t1 · . . . · tn and tn; in particular, for n = 0
both stand for the term 1, and t1 is just t.

Examples. Fix three distinct variables x, y, z.
(1) Groups are the LGr-structures that are models of

Gr := {∀x(x · 1 = x ∧ 1 · x = x), ∀x(x · x−1 = 1 ∧ x−1 · x = 1),

∀x∀y∀z((x · y) · z = x · (y · z))}

(2) Abelian groups are the LAb-structures that are models of

Ab := {∀x(x+ 0 = x), ∀x(x + (−x) = 0), ∀x∀y(x+ y = y + x),

∀x∀y∀z((x+ y) + z = x+ (y + z))}

(3) Torsion-free abelian groups are the LAb-structures that are models of

Ab ∪ {∀x(nx = 0→ x = 0) : n = 1, 2, 3, . . .}
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(4) Rings are the LRi-structures that are models of

Ri := Ab ∪ {∀x∀y∀z
(

(x · y) · z = x · (y · z)
)

, ∀x
(

x · 1 = x ∧ 1 · x = x
)

,

∀x∀y∀z
(

(x · (y + z) = x · y + x · z ∧ (x+ y) · z = x · z + y · z)
)

}

(5) Fields are the LRi-structures that are models of

Fl = Ri ∪ {∀x∀y(x · y = y · x), 1 6= 0, ∀x
(

x 6= 0→ ∃y (x · y = 1)
)

}

(6) Fields of characteristic 0 are the LRi-structures that are models of

Fl(0) := Fl ∪ {n1 6= 0 : n = 2, 3, 5, 7, 11, . . .}

(7) Algebraically closed fields are the LRi-structures that are models of

ACF := Fl∪{∀u1 . . .∀un∃x(xn +u1x
n−1+. . .+un = 0) : n = 2, 3, 4, 5, . . .}

Here u1, u2, u3, . . . is some fixed infinite sequence of distinct variables, dis-
tinct also from x, and uix

n−i abbreviates ui · xn−i, for i = 1, . . . , n.
(8) Algebraically closed fields of characteristic 0 are the LRi-structures that are

models of ACF(0) := ACF ∪ {n1 6= 0 : n = 2, 3, 5, 7, 11, . . .}.

Definition. We say that σ is a logical consequence of Σ (written Σ |= σ) if σ
is true in every model of Σ.

Example. It is well-known that in any ring R we have x · 0 = 0 for all x ∈ R.
This can now be expressed as Ri |= ∀x(x · 0 = 0).

We defined what it means for a sentence σ to hold in a given structure A. We
now extend this to arbitrary formulas .

First define an A-instance of a formula ϕ = ϕ(x1, . . . , xm) to be an LA-
sentence of the form ϕ(a1, . . . , am) with a1, . . . , am ∈ A. Of course ϕ can also
be written as ϕ(y1, . . . , yn) for another sequence of variables y1, . . . , yn, for ex-
ample, y1, . . . , yn could be obtained by permuting x1, . . . , xm, or it could be
x1, . . . , xm, xm+1, obtained by adding a variable xm+1. Thus for the above to
count as a definition of “A-instance,” the reader should check that these differ-
ent ways of specifying variables (including at least the variables occurring free
in ϕ) give the same A-instances.

Definition. A formula ϕ is said to be valid in A (notation: A |= ϕ) if all its
A-instances are true in A.

The reader should check that if ϕ = ϕ(x1, . . . , xm), then

A |= ϕ ⇐⇒ A |= ∀x1 . . . ∀xmϕ.

We also extend the notion of “logical consequence of Σ” to formulas.

Definition. We say that ϕ is a logical consequence of Σ (notation: Σ |= ϕ) if
A |= ϕ for all models A of Σ.
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One should not confuse the notion of “logical consequence of Σ” with that of
“provable from Σ.” We shall give a definition of provable from Σ in the next
section. The two notions will turn out to be equivalent, but that is hardly
obvious from their definitions: we shall need much of the next chapter to prove
this equivalence, which is called the Completeness Theorem for Predicate Logic.
We finish this section with two basic facts:

Lemma 2.6.1. Let α(x1, . . . , xm) be an LA-term, and recall that α defines a
map αA : Am → A. Let t1, . . . , tm be variable-free LA-terms, with tAi = ai ∈ A
for i = 1, . . . ,m. Then α(t1, . . . , tm) is a variable-free LA-term, and

α(t1, . . . , tm)A = α(a1, . . . am)A = αA(tA1 , . . . , t
A
m).

This follows by a straightforward induction on α.

Lemma 2.6.2. Let t1, . . . , tm be variable-free LA-terms with tAi = ai ∈ A
for i = 1, . . . ,m. Let ϕ(x1, . . . , xm) be an LA-formula. Then the LA-formula
ϕ(t1, . . . , tm) is a sentence and

A |= ϕ(t1, . . . , tm) ⇐⇒ A |= ϕ(a1, . . . , am).

Proof. To keep notations simple we give the proof only for m = 1 with t = t1
and x = x1. We proceed by induction on the number of logical symbols in ϕ(x).

Suppose that ϕ is atomic. The case where ϕ is > or ⊥ is obvious. Assume ϕ
is Rα1 . . . αm where R ∈ Lr is m-ary and α1(x), . . . , αm(x) are LA-terms. Then
ϕ(t) = Rα1(t) . . . αm(t) and ϕ(a) = Rα1(a) . . . αm(a). We have A |= ϕ(t) iff
(α1(t)

A, . . . , αm(t)A) ∈ RA and also A |= ϕ(a) iff (α1(a)
A, . . . , αm(a)A) ∈ RA.

As αi(t)
A = αi(a)

A for all i by the previous lemma, we have A |= ϕ(t) iff
A |= ϕ(a). The case that ϕ(x) is α(x) = β(x) is handled the same way.

It is also clear that the desired property is inherited by disjunctions, con-
junctions and negations of formulas ϕ(x) that have the property. Suppose now
that ϕ(x) = ∃y ψ.

Case y 6= x: Then ψ = ψ(x, y), ϕ(t) = ∃yψ(t, y) and ϕ(a) = ∃yψ(a, y). As
ϕ(t) = ∃yψ(t, y), we have A |= ϕ(t) iff A |= ψ(t, b) for some b ∈ A. By the
inductive hypothesis the latter is equivalent to A |= ψ(a, b) for some b ∈ A,
hence equivalent to A |= ∃yψ(a, y). As ϕ(a) = ∃yψ(a, y), we conclude that
A |= ϕ(t) iff A |= ϕ(a).

Case y = x: Then x does not occur free in ϕ(x) = ∃xψ. So ϕ(t) = ϕ(a) = ϕ
is an LA-sentence, and A |= ϕ(t)⇔ A |= ϕ(a) is obvious.

When ϕ(x) = ∀y ψ then one can proceed exactly as above by distinguishing
two cases.

2.7 Logical Axioms and Rules; Formal Proofs

In this section we introduce a proof system for predicate logic and state its
completeness. We then derive as a consequence the compactness theorem and
some of its corollaries. The completeness is proved in the next chapter.
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A propositional axiom of L is by definition a formula that for some ϕ, ψ, θ occurs
in the list below:

1. >
2. ϕ→ (ϕ ∨ ψ); ϕ→ (ψ ∨ ϕ)

3. ¬ϕ→
(

¬ψ → ¬(ϕ ∨ ψ)
)

4. (ϕ ∧ ψ)→ ϕ; (ϕ ∧ ψ)→ ψ

5. ϕ→
(

ψ → (ϕ ∧ ψ)
)

6.
(

ϕ→ (ψ → θ)
)

→
(

(ϕ→ ψ)→ (ϕ→ θ)
)

7. ϕ→ (¬ϕ→ ⊥)

8. (¬ϕ→ ⊥)→ ϕ

Each of items 2–8 is a scheme describing infinitely many axioms. Note that
this list is the same as the list in Section 2.2 except that instead of propositions
p, q, r we have formulas ϕ, ψ, θ.

The logical axioms of L are the propositional axioms of L and the equality
and quantifier axioms of L as defined below.

Definition. The equality axioms of L are the following formulas:
(i) x = x,
(ii) x = y → y = x,
(iii) (x = y ∧ y = z)→ x = z,
(iv) (x1 = y1 ∧ . . . ∧ xm = ym ∧Rx1 . . . xm)→ Ry1 . . . ym,
(v) (x1 = y1 ∧ . . . ∧ xn = yn)→ Fx1 . . . xn = Fy1 . . . yn,
with the following restrictions on the variables and symbols of L: x, y, z are
distinct in (ii) and (iii); in (iv), x1, . . . , xm, y1, . . . , ym are distinct and R ∈ Lr

is m-ary; in (v), x1, . . . , xn, y1, . . . , yn are distinct, and F ∈ Lf is n-ary. Note
that (i) represents an axiom scheme rather than a single axiom, since different
variables x give different formulas x = x. Likewise with (ii)–(v).

Let x and y be distinct variables, and let ϕ(y) be the formula ∃x(x 6= y).
Then ϕ(y) is valid in all A with |A| > 1, but ϕ(x/y) is invalid in all A. Thus
substituting x for the free occurrences of y does not always preserve validity. To
get rid of this anomaly, we introduce the following restriction on substitutions
of a term t for free occurrences of y.

Definition. We say that t is free for y in ϕ, if no variable in t can become bound
upon replacing the free occurrences of y in ϕ by t, more precisely: whenever x
is a variable in t, then there are no occurrences of subformulas in ϕ of the form
∃xψ or ∀xψ that contain an occurrence of y that is free in ϕ.

Note that if t is variable-free, then t is free for y in ϕ. We remark that “free
for” abbreviates “free to be substituted for.” In exercise 2 the reader is asked to
show that, with this restriction, substitution of a term for the free occurrences
of a variable does preserve validity.
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Definition. The quantifier axioms of L are the formulas ϕ(t/y) → ∃yϕ and
∀yϕ→ ϕ(t/y) where t is free for y in ϕ.

These axioms have been chosen to have the following property.

Proposition 2.7.1. The logical axioms of L are valid in every L-structure.

We first prove this for the propositional axioms of L. Let α1, . . . , αn be distinct
propositional atoms not in L. Let p = p(α1, . . . , αn) ∈ Prop{α1, . . . , αn}. Let
ϕ1, . . . , ϕn be formulas and let p(ϕ1, . . . , ϕn) be the word obtained by replac-
ing each occurrence of αi in p by ϕi for i = 1, . . . , n. One checks easily that
p(ϕ1, . . . , ϕn) is a formula.

Lemma 2.7.2. Suppose ϕi = ϕi(x1, . . . , xm) for 1 ≤ i ≤ n and let a1, . . . , am ∈
A. Define a truth assignment t : {α1, . . . , αn} −→ {0, 1} by t(αi) = 1 iff
A |= ϕi(a1, . . . , am). Then p(ϕ1, . . . , ϕn) is an L-formula and

p(ϕ1, . . . , ϕn)(a1/x1, . . . , am/xm) = p(ϕ1(a1, . . . , am), . . . , ϕn(a1, . . . , am)),

t(p(α1, . . . , αn)) = 1 ⇐⇒ A |=p(ϕ1(a1, . . . , am), . . . , ϕn(a1, . . . , am)).

In particular, if p is a tautology, then A |= p(ϕ1, . . . , ϕn).

Proof. Easy induction on p. We leave the details to the reader.

Definition. An L-tautology is a formula of the form p(ϕ1, . . . , ϕn) for some
tautology p(α1, . . . , αn) ∈ Prop{α1, . . . , αn} and some formulas ϕ1, . . . , ϕn.

By Lemma 2.7.2 all L-tautologies are valid in all L-structures. The propositional
axioms of L are L-tautologies, so all propositional axioms of L are valid in all
L-structures. It is easy to check that all equality axioms of L are valid in all
L-structures. In exercise 3 below the reader is asked to show that all quantifier
axioms of L are valid in all L-structures. This finishes the proof of Proposition
2.7.1.

Next we introduce rules for deriving new formulas from given formulas.

Definition. The logical rules of L are the following:
(i) Modus Ponens (MP): From ϕ and ϕ→ ψ, infer ψ.
(ii) Generalization Rule (G): If the variable x does not occur free in ϕ, then

(a) from ϕ→ ψ, infer ϕ→ ∀xψ;
(b) from ψ → ϕ, infer ∃xψ → ϕ.

A key property of the logical rules is that if the hypotheses of a logical rule are
valid in the L-structure A, then so is its conclusion. Ihe reader should verify
this.

Definition. A formal proof , or just proof , of ϕ from Σ is a sequence ϕ1, . . . , ϕn

of formulas with n ≥ 1 and ϕn = ϕ, such that for k = 1, . . . , n:
(i) either ϕk ∈ Σ,
(ii) or ϕk is a logical axiom,



2.7. LOGICAL AXIOMS AND RULES; FORMAL PROOFS 39

(iii) or there are i, j ∈ {1, . . . , k − 1} such that ϕk can be inferred from ϕi and
ϕj by MP, or from ϕi by G.

If there exists a proof of ϕ from Σ, then we write Σ ` ϕ and say Σ proves ϕ.

Proposition 2.7.3. If Σ ` ϕ, then Σ |= ϕ.

This follows easily from earlier facts that we stated and which the reader was
asked to verify. The converse is more interesting, and due to Gödel (1930):

Theorem 2.7.4 (Completeness Theorem of Predicate Logic).

Σ ` ϕ ⇐⇒ Σ |= ϕ

Remark. Our choice of proof system, and thus our notion of formal proof
is somewhat arbitrary. However the equivalence of ` and |= (Completeness
Theorem) justifies our choice of logical axioms and rules and shows in particular
that no further logical axioms and rules are needed. Moreover, this equivalence
has consequences that can be stated in terms of |= alone. An example is the
important Compactness Theorem.

Theorem 2.7.5 (Compactness Theorem). If Σ |= σ then there is a finite
subset Σ0 of Σ such that Σ0 |= σ.

The Compactness Theorem has many consequences. Here is one.

Corollary 2.7.6. Suppose σ is an LRi-sentence that holds in all fields of char-
acteristic 0. Then there exists a natural number N such that σ is true in all
fields of characteristic p > N .

Proof. By assumption we have Fl ∪ {n1 6= 0 : n = 1, 2, 3, . . .} |= σ. Then by
Compactness, there is N ∈ N such that Fl ∪ {n1 6= 0 : n = 1, . . . , N} |= σ. It
follows that σ is true in all fields of characteristic p > N .

The converse of this proposition fails, see exercise 8 below. Note that Fl(0) is
infinite. Could there be an alternative finite set of axioms whose models are
exactly the fields of characteristic 0?

Corollary 2.7.7. There is no finite set of LRi-sentences whose models are
exactly the fields of characteristic 0.

Proof. Suppose there is such a finite set of sentences {σ1, . . . , σN}. Let σ :=
σ1∧· · ·∧σN . Then the models of σ are just the fields of characteristic 0. By the
previous result σ holds in some field of characteristic p > 0. Contradiction!

Exercises. All but the last one to be done without using Theorem 2.7.4 or
2.7.5. Actually, Exercise (4) will be used in proving Theorem 2.7.4.

(1) Let L = {R} where R is a binary relation symbol, and let A = (A; R) be a finite
L-structure (i. e. the set A is finite). Then there exists an L-sentence σ such that
the models of σ are exactly the L-structures isomorphic to A. (In fact, for an
arbitrary language L, two finite L-structures are isomorphic iff they satisfy the
same L-sentences.)
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(2) If t is free for y in ϕ and ϕ is valid in A, then ϕ(t/y) is valid in A.

(3) Suppose t is free for y in ϕ = ϕ(x1, . . . , xn, y). Then:

(i) Each A-instance of the quantifier axiom ϕ(t/y)→ ∃yϕ has the form

ϕ(a1, . . . , an, τ )→ ∃yϕ(a1, . . . , an, y)

with a1, . . . , an ∈ A and τ a variable-free LA-term.

(ii) The quantifier axiom ϕ(t/y)→ ∃yϕ is valid in A. (Hint: use Lemma 2.6.2.)

(iii) The quantifier axiom ∀yϕ→ ϕ(t/y) is valid in A.

(4) If ϕ is an L-tautology, then ` ϕ.

(5) Σ ` ϕi for i = 1, . . . , n⇐⇒ Σ ` ϕ1 ∧ · · · ∧ ϕn.

(6) If Σ ` ϕ→ ψ and Σ ` ψ → ϕ, then Σ ` ϕ↔ ψ.

(7) ` ¬∃xϕ↔ ∀x¬ϕ and ` ¬∀xϕ↔ ∃x¬ϕ.

(8) Indicate an LRi-sentence that is true in the field of real numbers, but false in all
fields of positive characteristic.

(9) Let σ be an LAb-sentence which holds in all non-trivial torsion free abelian groups.
Then there exists N ∈ N such that σ is true in all groups Z/pZ where p is a
prime number and p > N .



Chapter 3

The Completeness Theorem

The main aim of this chapter is to prove the Completeness Theorem. As a
byproduct we also derive some more elementary facts about predicate logic.
The last section contains some of the basics of universal algebra, which we can
treat here rather efficiently using our construction of a so-called term-model in
the proof of the Completeness Theorem.

Conventions on the use of L, A, t, ϕ, ψ, θ, σ and Σ are as in the beginning
of Section 2.6.

3.1 Another Form of Completeness

It is convenient to prove first a variant of the Completeness Theorem.

Definition. We say that Σ is consistent if Σ 0 ⊥, and otherwise (that is, if
Σ ` ⊥), we call Σ inconsistent .

Theorem 3.1.1 (Completeness Theorem - second form).
Σ is consistent if and only if Σ has a model.

We first show that this second form of the Completeness Theorem implies the
first form. This will be done through a series of technical lemmas, which are
also useful later in this Chapter.

Lemma 3.1.2. Suppose Σ ` ϕ. Then Σ ` ∀xϕ.

Proof. From Σ ` ϕ and the L-tautology ϕ → (¬∀xϕ → ϕ) we obtain Σ `
¬∀xϕ → ϕ by MP. Then by G we have Σ ` ¬∀xϕ → ∀xϕ. Using the L-
tautology (¬∀xϕ→ ∀xϕ)→ ∀xϕ and MP we get Σ ` ∀xϕ.

Lemma 3.1.3 (Deduction Lemma). Suppose Σ∪{σ} ` ϕ. Then Σ ` σ → ϕ.

Proof. By induction on the length of a proof of ϕ from Σ ∪ {σ}.
The cases where ϕ is a logical axiom, or ϕ ∈ Σ ∪ {σ} or ϕ is obtained by

MP are treated just as in the proof of the Deduction Lemma of Propositional
Logic.

41
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Suppose that ϕ is obtained by part (a) of G, so ϕ is ϕ1 → ∀xψ where x does
not occur free in ϕ1 and Σ ∪ {σ} ` ϕ1 → ψ, and where we assume inductively
that Σ ` σ → (ϕ1 → ψ). We have to argue that then Σ ` σ → (ϕ1 → ∀xψ).
From the L-tautology

(

σ → (ϕ1 → ψ)
)

→
(

(σ ∧ ϕ1) → ψ
)

and MP we get Σ `
(σ∧ϕ1)→ ψ. Since x does not occur free in σ∧ϕ1 this gives Σ ` (σ∧ϕ1)→ ∀xψ,
by G. Using the L-tautology

(

(σ ∧ ϕ1)→ ∀xψ
)

→
(

σ → (ϕ1 → ∀xψ)
)

and MP this gives Σ ` σ → (ϕ1 → ∀xψ).
The case that ϕ is obtained by part (b) of G is left to the reader.

Corollary 3.1.4. Suppose Σ ∪ {σ1, . . . , σn} ` ϕ. Then Σ ` σ1 ∧ . . . ∧ σn → ϕ.

We leave the proof as an exercise.

Corollary 3.1.5. Σ ` σ if and only if Σ ∪ {¬σ} is inconsistent.

The proof is just like that of the corresponding fact of Propositional Logic.

Lemma 3.1.6. Σ ` ∀yϕ if and only if Σ ` ϕ.

Proof. (⇐) This is Lemma 3.1.2. For (⇒), assume Σ ` ∀yϕ. We have the
quantifier axiom ∀yϕ→ ϕ, so by MP we get Σ ` ϕ.

Corollary 3.1.7. Σ ` ∀y1 . . . ∀ynϕ if and only if Σ ` ϕ.

Corollary 3.1.8. The second form of the Completeness Theorem implies the
first form (Theorem 2.7.4).

Proof. Assume the second form of the Completeness Theorem holds, and that
Σ |= ϕ. It suffices to show that then Σ ` ϕ. From Σ |= ϕ we obtain Σ |=
∀y1 . . . ∀ynϕ where ϕ = ϕ(y1, . . . , yn), and so Σ ∪ {¬σ} has no model where
σ is the sentence ∀y1 . . . ∀ynϕ. But then by the 2nd form of the Completeness
Theorem Σ ∪ {¬σ} is inconsistent. Then by Corollary 3.1.5 we have Σ ` σ and
thus by Corollary 3.1.7 we get Σ ` ϕ.

We finish this section with another form of the Compactness Theorem:

Theorem 3.1.9 (Compactness Theorem - second form).
If each finite subset of Σ has a model, then Σ has a model.

This follows from the second form of the Completeness Theorem.

3.2 Proof of the Completeness Theorem

We are now going to prove Theorem 3.1.1. Since (⇐) is clear, we focus our
attention on (⇒), that is, given a consistent set of sentences Σ we must show
that Σ has a model. This job will be done in a series of lemmas. Unless we say
so, we do not assume in those lemmas that Σ is consistent.
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Lemma 3.2.1. Suppose Σ ` ϕ and t is free for x in ϕ. Then Σ ` ϕ(t/x).

Proof. From Σ ` ϕ we get Σ ` ∀xϕ by Lemma 3.1.2. Then MP together with
the quantifier axiom ∀xϕ→ ϕ(t/x) gives Σ ` ϕ(t/x) as required.

Lemma 3.2.2. Suppose Σ ` ϕ, and t1, . . . , tn are terms whose variables do not
occur bound in ϕ. Then Σ ` ϕ(t1/x1, . . . , tn/xn).

Proof. Take distinct variables y1, . . . , yn that do not occur in ϕ or t1, . . . , tn
and that are distinct from x1, . . . , xn. Use Lemma 3.2.1 n times in succession to
obtain Σ ` ψ where ψ = ϕ(y1/x1, . . . , yn/xn). Apply Lemma 3.2.1 again n times
to get Σ ` ψ(t1/y1, . . . , tn/yn). To finish, observe that ψ(t1/y1, . . . , tn/yn) =
ϕ(t1/x1, . . . , tn/xn).

Lemma 3.2.3.
(1) For each L-term t we have ` t = t.
(2) Let t, t′ be L-terms and Σ ` t = t′. Then Σ ` t′ = t.
(3) Let t1, t2, t3 be L-terms and Σ ` t1 = t2 and Σ ` t2 = t3. Then Σ ` t1 = t3.
(4) Let R ∈ Lr be m-ary and let t1, t

′
1, . . . , tm, t

′
m be L-terms such that Σ `

ti = t′i for i = 1, . . . ,m and Σ ` Rt1 . . . tm. Then Σ ` Rt′1 . . . t′m.
(5) Let F ∈ Lf be n-ary, and let t1, t

′
1, . . . , tn, t

′
n be L-terms such that Σ ` ti =

t′i for i = 1, . . . , n. Then Σ ` Ft1 . . . tn = Ft′1 . . . t
′
n.

Proof. For (1), use the equality axiom x = x and apply Lemma 3.2.2. For
(2), take an equality axiom x = y → y = x and apply Lemma 3.2.2 to get
` t = t′ → t′ = t. Then MP gives Σ ` t′ = t.
For (3), take an equality axiom (x = y ∧ y = z) → (x = z) and apply Lemma
3.2.2 to get ` (t1 = t2 ∧ t2 = t3)→ t1 = t3. By the assumptions and Exercise 5
in Section ?? we have Σ ` t1 = t2 ∧ t2 = t3. Then MP yields Σ ` t1 = t3.
To prove (4) we first use Exercise 5 to get

Σ ` t1 = t′1 ∧ . . . ∧ tm = t′m ∧ Rt1 . . . tm.

Take an equality axiom x1 = y1 ∧ . . .∧ xm = ym ∧Rx1 . . . xm → Ry1 . . . ym and
apply Lemma 3.2.2 to obtain

Σ ` t1 = t′1 ∧ . . . ∧ tm = t′m ∧ Rt1 . . . tm → Rt′1 . . . t
′
m.

Then MP gives Σ ` Rt′1 . . . t′m. Part (5) is obtained in a similar way by using
an equality axiom x1 = y1 ∧ . . . ∧ xn = yn → Fx1 . . . xn = Fy1 . . . yn.

Definition. Let TL be the set of variable free L-terms. We define a binary
relation ∼Σ on TL by

t1 ∼Σ t2 ⇐⇒ Σ ` t1 = t2.

Parts (1), (2) and (3) of the last lemma yield the following.

Lemma 3.2.4. The relation ∼Σ is an equivalence relation on TL.
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Definition. Suppose L has at least one constant symbol. Then TL is non-
empty. We define the L-structure AΣ as follows:
(i) Its underlying set is AΣ := TL/ ∼Σ. Let [t] denote the equivalence class of

t ∈ TL with respect to ∼Σ.
(ii) If R ∈ Lr is m-ary, then RAΣ ⊆ Am

Σ is given by

([t1], . . . , [tm]) ∈ RAΣ :⇐⇒ Σ ` Rt1 . . . tm (t1, . . . , tm ∈ TL).

(iii) If F ∈ Lf is n-ary, then FAΣ : An
Σ → AΣ is given by

FAΣ([t1], . . . , [tn]) = [Ft1 . . . tn] (t1, . . . , tn ∈ TL).

Remark. The reader should verify that this counts as a definition, i.e., does
not introduce ambiguity. (Use parts (4) and (5) of Lemma 3.2.3.)

Corollary 3.2.5. Suppose L has a constant symbol, and Σ is consistent. Then
(1) for each t ∈ TL we have tAΣ = [t];
(2) for each atomic σ we have: Σ ` σ ⇐⇒ AΣ |= σ.

Proof. Part (1) follows by an easy induction. Let σ be Rt1 . . . tm where R ∈ Lr

is m-ary and t1, . . . , tm ∈ TL. Then

Σ ` Rt1 . . . tm ⇔ ([t1], . . . , [tm]) ∈ RAΣ ⇔ AΣ |= Rt1 . . . tm,

where the last “⇔” follows from the definition of |= together with part (1). Now
suppose that σ is t1 = t2 where t1, t2 ∈ TL. Then

Σ ` t1 = t2 ⇔ [t1] = [t2]⇔ tAΣ

1 = tAΣ

2 ⇔ AΣ |= t1 = t2.

We also have Σ ` > ⇔ AΣ |= >. So far we haven’t used the assumption that Σ
is consistent, but now we do. The consistency of Σ means that Σ 0 ⊥. We also
have AΣ 6|= ⊥ by definition of |=. Thus Σ ` ⊥ ⇔ AΣ |= ⊥.

If the equivalence in part (2) of this corollary holds for all σ (not only for atomic
σ), then AΣ |= Σ, so we would have found a model of Σ, and be done. But
clearly this equivalence can only hold for all σ if Σ has the property that for
each σ, either Σ ` σ or Σ ` ¬σ. This property is of interest for other reasons
as well, and deserves a name:

Definition. We say that Σ is complete if Σ is consistent, and for each σ either
Σ ` σ or Σ ` ¬σ.

Example. Let L = LAb, Σ := Ab (the set of axioms for abelian groups), and
σ the sentence ∃x(x 6= 0). Then Σ 0 σ since the trivial group doesn’t satisfy
σ. Also Σ 0 ¬σ, since there are non-trivial abelian groups and σ holds in such
groups. Thus Σ is not complete.

Completeness is a strong property and it can be hard to show that a given
set of axioms is complete. The set of axioms for algebraically closed fields of
characteristic 0 is complete (see the end of Section 4.3).

A key fact about completeness needed in this chapter is that any consistent
set of sentences extends to a complete set of sentences:
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Lemma 3.2.6 (Lindenbaum). Suppose Σ is consistent. Then Σ ⊆ Σ′ for
some complete set of L-sentences Σ′.

The proof uses Zorn’s Lemma, and is just like that of the corresponding fact of
Propositional Logic in Section 1.2.

Completeness of Σ does not guarantee that the equivalence of part (2) of
Corollary 3.2.5 holds for all σ. Completeness is only a necessary condition
for this equivalence to hold for all σ; another necessary condition is “to have
witnesses”:

Definition. A Σ-witness for the sentence ∃xϕ(x) is a term t ∈ TL such that
Σ ` ϕ(t). We say that Σ has witnesses if there is a Σ-witness for every sentence
∃xϕ(x) proved by Σ.

Theorem 3.2.7. Let L have a constant symbol, and suppose Σ is consistent.
Then the following two conditions are equivalent:
(i) For each σ we have: Σ ` σ ⇔ AΣ |= σ.
(ii) Σ is complete and has witnesses.
In particular, if Σ is complete and has witnesses, then AΣ is a model of Σ.

Proof. It should be clear that (i) implies (ii). For the converse, assume (ii). We
use induction on the number of logical symbols in σ to obtain (i). We already
know that (i) holds for atomic sentences. The cases that σ = ¬σ1, σ = σ1 ∨ σ2,
and σ = σ1 ∧ σ2 are treated just as in the proof of the corresponding Lemma
2.2.11 for Propositional Logic. It remains to consider two cases:
Case σ = ∃xϕ(x):
(⇒) Suppose that Σ ` σ. Because we are assuming that Σ has witnesses we
have a t ∈ TL such that Σ ` ϕ(t). Then by the inductive hypothesis AΣ |= ϕ(t).
So by Lemma 2.6.2 we have an a ∈ AΣ such that AΣ |= ϕ(a). Therefore
AΣ |= ∃xϕ(x), hence AΣ |= σ.
(⇐) Assume AΣ |= σ. Then there is an a ∈ AΣ such that AΣ |= ϕ(a). Choose
t ∈ TL such that [t] = a. Then tAΣ = a, hence AΣ |= ϕ(t) by Lemma 2.6.2.
Applying the inductive hypothesis we get Σ ` ϕ(t). This yields Σ ` ∃xϕ(x) by
MP and the quantifier axiom ϕ(t)→ ∃xϕ(x).
Case σ = ∀xϕ(x): This is similar to the previous case but we also need the
result from Exercise 7 in Section 2.7 that ` ¬∀xϕ ↔ ∃x¬ϕ.

We call attention to some new notation in the next lemmas: the symbol `L is
used to emphasize that we are dealing with formal provability within L.

Lemma 3.2.8. Let Σ be a set of L-sentences, c a constant symbol not in L,
and Lc := L ∪ {c}. Let ϕ(y) be an L-formula and suppose Σ `Lc

ϕ(c). Then
Σ `L ϕ(y).

Proof. (Sketch) Take a proof of ϕ(c) from Σ in the language Lc, and take a
variable z different from all variables occurring in that proof, and also such that
z 6= y. Replace in every formula in this proof each occurrence of c by z. Check
that one obtains in this way a proof of ϕ(z/y) in the language L from Σ. So
Σ `L ϕ(z/y) and hence by Lemma 3.2.1 we have Σ `L ϕ(z/y)(y/z), that is,
Σ `L ϕ(y).
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Lemma 3.2.9. Assume Σ is consistent and Σ ` ∃yϕ(y). Let c be a constant
symbol not in L. Put Lc := L ∪ {c}. Then Σ ∪ {ϕ(c)} is a consistent set of
Lc-sentences.

Proof. Suppose not. Then Σ∪ {ϕ(c)} `Lc
⊥. By the Deduction Lemma (3.1.3)

Σ `Lc
ϕ(c)→ ⊥. Then by Lemma 3.2.8 we have Σ `L ϕ(y)→ ⊥. By G we have

Σ `L ∃yϕ(y) → ⊥. Applying MP yields Σ ` ⊥, contradicting the consistency
of Σ.

Lemma 3.2.10. Suppose Σ is consistent. Let σ1 = ∃x1ϕ1(x1), . . ., σn =
∃xnϕn(xn) be such that Σ ` σi for every i = 1, . . . , n. Let c1, . . . , cn be
distinct constant symbols not in L. Put L′ := L ∪ {c1, . . . , cn} and Σ′ =
Σ ∪ {ϕ1(c1), . . . , ϕn(cn)}. Then Σ′ is a consistent set of L′-sentences.

Proof. The previous lemma covers the case n = 1. The general case follows by
induction on n.

In the next lemma we use a superscript “w” for “witness.”

Lemma 3.2.11. Suppose Σ is consistent. For each L-sentence σ = ∃xϕ(x) such
that Σ ` σ, let cσ be a constant symbol not in L such that if σ′ is a different
L-sentence of the form ∃x′ϕ′(x′) provable from Σ, then cσ 6= cσ′ . Put

Lw := L ∪ {cσ : σ = ∃xϕ(x) is an L-sentence such that Σ ` σ}
Σw := Σ ∪ {ϕ(cσ) : σ = ∃xϕ(x) is an L-sentence such that Σ ` σ}

Then Σw is a consistent set of Lw-sentences.

Proof. Suppose not. Then Σw ` ⊥. Take a proof of ⊥ from Σw and let
cσ1

, . . . , cσn
be constant symbols in Lw

r L such that this proof is a proof
of ⊥ in the language L∪{cσ1

, . . . , cσn
} from Σ∪{ϕ1(cσ1

), . . . , ϕn(cσn
)}, where

σi = ∃xiϕi(xi) for 1 ≤ i ≤ n. So Σ ∪ {ϕ1(cσ1
), . . . , ϕn(cσn

)} is an inconsistent
set of L ∪ {cσ1

, . . . , cσn
}-sentences. This contradicts Lemma 3.2.10.

Lemma 3.2.12. Let (Ln) be an increasing sequence of languages: L0 ⊆ L1 ⊆
L2 ⊆ . . ., and denote their union by L∞. Let Σn be a consistent set of Ln-
sentences, for each n, such that Σ0 ⊆ Σ1 ⊆ Σ2 . . .. Then the union Σ∞ :=
⋃

n Σn is a consistent set of L∞-sentences.

Proof. Suppose that Σ∞ ` ⊥. Take a proof of ⊥ from Σ∞. Then we can choose
n so large that this is actually a proof of ⊥ from Σn in Ln. This contradicts the
consistency of Σn.

Suppose the language L∗ extends L, let A be an L-structure, and let A∗ be an
L∗-structure. Then A is said to be a reduct of A∗ (and A∗ an expansion of A)
if A and A∗ have the same underlying set and the same interpretations of the
symbols of L. For example, (N; 0,+) is a reduct of (N; <, 0, 1,+, ·). Note that
any L∗-structure A∗ has a unique reduct to an L-structure, which we indicate
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by A∗ |L. A key fact (to be verified by the reader) is that if A is a reduct of
A∗, then tA = tA

∗

for all variable-free LA-terms t, and

A |= σ ⇐⇒ A∗ |= σ

for all LA-sentences σ.
We can now prove Theorem 3.1.1.

Proof. Let Σ be a consistent set of L-sentences. We construct a sequence (Ln)
of languages and a sequence (Σn) where each Σn is a consistent set of Ln-
sentences. We begin by setting L0 = L and Σ0 = Σ. Given the language Ln

and the consistent set of Ln-sentences Σn, put

Ln+1 :=

{

Ln if n is even,

Lw
n if n is odd,

choose a complete set of Ln-sentences Σ′
n ⊇ Σn, and put

Σn+1 :=

{

Σ′
n if n is even,

Σw
n if n is odd.

Here Lw
n and Σw

n are obtained from Ln and Σn in the same way that Lw and
Σw are obtained from L and Σ in Lemma 3.2.11. Note that Ln ⊆ Ln+1, and
Σn ⊆ Σn+1.

By the previous lemma the set Σ∞ of L∞-sentences is consistent. It is also
complete. To see this, let σ be an L∞-sentence. Take n even and so large that σ
is an Ln-sentence. Then Σn+1 ` σ or Σn+1 ` ¬σ and thus Σ∞ ` σ or Σ∞ ` ¬σ.

We claim that Σ∞ has witnesses. To see this, let σ = ∃xϕ(x) be an L∞-
sentence such that Σ∞ ` σ. Now take n to be odd and so large that σ is
an Ln-sentence and Σn ` σ. Then by construction of Σn+1 = Σw

n we have
Σn+1 ` ϕ(cσ), so Σ∞ ` ϕ(cσ).

It follows from Theorem 3.2.7 that Σ∞ has a model, namely AΣ∞
. Put

A := AΣ∞
|L. Then A |= Σ. This concludes the proof of the Completeness

Theorem (second form).

Exercises.
(1) Suppose Σ is consistent. Then Σ is complete if and only if every two models of

Σ satisfy the same sentences.

(2) Let L have just a constant symbol c, a unary relation symbol U and a unary
function symbol f , and suppose that Σ ` Ufc, and that f does not occur in the
sentences of Σ. Then Σ ` ∀xUx.

3.3 Some Elementary Results of Predicate Logic

Here we obtain some generalities of predicate logic: Equivalence and Equality
Theorems, Variants, and Prenex Form. In some proofs we shall take advantage
of the fact that the Completeness Theorem is now available.



48 CHAPTER 3. THE COMPLETENESS THEOREM

Lemma 3.3.1 (Distribution Rule).

(i) Suppose Σ ` ϕ→ ψ. Then Σ ` ∃xϕ→ ∃xψ and Σ ` ∀xϕ→ ∀xψ.

(ii) Suppose Σ ` ϕ↔ ψ. Then Σ ` ∃xϕ↔ ∃xψ and Σ ` ∀xϕ↔ ∀xψ.

Proof. We only do (i), since (ii) then follows easily. Let A be a model of Σ. By
the Completeness Theorem it suffices to show that then A |= ∃xϕ → ∃xψ and
A |= ∀xϕ → ∀xψ. We shall prove A |= ∃xϕ → ∃xψ and leave the other part
to the reader. We have A |= ϕ → ψ. Choose variables y1, . . . , yn such that
ϕ = ϕ(x, y1, . . . , yn) and ψ = ψ(x, y1, . . . , yn). We need only show that then
for all a1, . . . , an ∈ A

A |= ∃xϕ(x, a1, . . . , an)→ ∃xψ(x, a1, . . . , an)

Suppose A |= ∃xϕ(x, a1, . . . , an). Then A |= ϕ(a0, a1, . . . , an) for some a0 ∈ A.
From A |= ϕ → ψ we obtain A |= ϕ(a0, . . . , an) → ψ(a0, . . . , an), hence A |=
ψ(a0, . . . , an), and thus A |= ∃xψ(x, a1, . . . , an).

Theorem 3.3.2 (Equivalence Theorem). Suppose Σ ` ϕ ↔ ϕ′, and let ψ′

be obtained from ψ by replacing some occurrence of ϕ as a subformula of ψ by
ϕ′. Then ψ′ is again a formula and Σ ` ψ ↔ ψ′.

Proof. By induction on the number of logical symbols in ψ. If ψ is atomic, then
necessarily ψ = ϕ and ψ′ = ϕ′ and the desired result holds trivially.
Suppose that ψ = ¬θ. Then either ψ = ϕ and ψ′ = ϕ′, and the desired
result holds trivially, or the occurrence of ϕ we are replacing is an occurrence
in θ. Then the inductive hypothesis gives Σ ` θ ↔ θ′, where θ′ is obtained by
replacing that occurrence (of ϕ) by ϕ′. Then ψ′ = ¬θ′ and the desired result
follows easily. The cases ψ = ψ1 ∨ ψ2 and ψ = ψ1 ∧ ψ2 are left as exercises.
Suppose that ψ = ∃xθ. The case ψ = ϕ (and thus ψ′ = ϕ′) is trivial. Suppose
ψ 6= ϕ. Then the occurrence of ϕ we are replacing is an occurrence inside θ.
So by inductive hypothesis we have Σ ` θ ↔ θ′. Then by the distribution rule
Σ ` ∃xθ ↔ ∃xθ′. The proof is similar if ψ = ∀xθ.

Definition. We say ϕ1 and ϕ2 are Σ-equivalent if Σ ` ϕ1 ↔ ϕ2. (In case Σ = ∅,
we just say equivalent .) One verifies easily that Σ-equivalence is an equivalence
relation on the set of L-formulas.

Given a family (ϕ)i∈I of formulas with finite index set I we choose a bijection
k 7→ i(k) : {1, . . . , n} → I and set

∨

i∈I

ϕi := ϕi(1) ∨ · · · ∨ ϕi(n),
∧

i∈I

ϕi := ϕi(1) ∧ · · · ∧ ϕi(n).

If I is clear from context we just write
∨

i ϕi and
∧

i ϕi instead. Of course, these
notations

∨

i∈I ϕi and
∧

i∈I ϕi can only be used when the particular choice of
bijection of {1, . . . , n} with I does not matter; this is usually the case because
the equivalence class of ϕi(1) ∨ · · · ∨ ϕi(n) does not depend on this choice, and
the same is true with “∧” instead of ∨”.
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Definition. A variant of a formula is obtained by successive replacements of
the following type:
(i) replace an occurrence of a subformula ∃xϕ by ∃yϕ(y/x).
(ii) replace an occurrence of a subformula ∀xϕ by ∀yϕ(y/x).
where y is free for x in ϕ and y does not occur free in ϕ.

Lemma 3.3.3. A formula is equivalent to any of its variants.

Proof. By the Equivalence Theorem (3.3.2) it suffices to show ` ∃xϕ↔ ∃yϕ(y/x)
and ` ∀xϕ↔ ∀yϕ(y/x) where y is free for x in ϕ and does not occur free in ϕ.
We prove the first equivalence, leaving the second as an exercise. Applying G
to the quantifier axiom ϕ(y/x) → ∃xϕ gives ` ∃yϕ(y/x) → ∃xϕ. Similarly we
get ` ∃xϕ → ∃yϕ(y/x) (use that ϕ = ϕ(y/x)(x/y) by the assumption on y).
An application of Exercise 6 finishes the proof.

Definition. A formula in prenex form is a formula Q1x1 . . . Qnxnϕ where
x1, . . . , xn are distinct variables, each Qi ∈ {∃, ∀} and ϕ is quantifier free.
We call Q1x1 . . . Qnxn the prefix , and ϕ the matrix of the formula. Note that
a quantifier-free formula is in prenex form; this is the case n = 0.

We leave the proof of the next lemma as an exercise. Instead of “occurrence of
... as a subformula” we say “part ...”. In this lemma Q denotes a quantifier,
that is, Q ∈ {∃, ∀}, and Q′ denotes the other quantifier: ∃′ = ∀ and ∀′ = ∃.
Lemma 3.3.4. The following prenex transformations always change a formula
into an equivalent formula.
(1) Replace the formula by one of its variants.
(2) Replace a part ¬Qxψ by Q′x¬ψ.
(3) Replace a part (Qxψ) ∨ θ by Qx(ψ ∨ θ) where x is not free in θ.
(4) Replace a part ψ ∨Qxθ by Qx(ψ ∨ θ) where x is not free in ψ.
(5) Replace a part (Qxψ) ∧ θ by Qx(ψ ∧ θ) where x is not free in θ.
(6) Replace a part ψ ∧Qxθ by Qx(ψ ∧ θ) where x is not free in ψ.

Remark. Note that the free variables of a formula (those that occur free in the
formula) do not change under prenex transformations.

Theorem 3.3.5 (Prenex Form). Every formula can be changed into one in
prenex form by a finite sequence of prenex transformations. In particular, each
formula is equivalent to one in prenex form.

Proof. By induction on the number of logical symbols. Atomic formulas are
already in prenex form. To simplify notation, write ϕ =⇒pr ψ to indicate
that ψ can be obtained from ϕ by a finite sequence of prenex transformations.
Assume inductively that

ϕ1 =⇒pr Q1x1 . . . Qmxmψ1

ϕ2 =⇒pr Qm+1y1 . . . Qm+nynψ2,

where Q1, . . . , Qm, . . . , Qm+n ∈ {∃, ∀}, x1, . . . , xm are distinct, y1, . . . , yn are
distinct, and ψ1 and ψ2 are quantifier-free.
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Then for ϕ := ¬ϕ1, we have

ϕ =⇒pr ¬Q1x1 . . . Qmxmψ1.

Applying m prenex transformations of type (2) we get

¬Q1x1 . . .Qmxmψ1 =⇒pr Q1
′x1 . . . Qm

′xm¬ψ1,

hence ϕ =⇒pr Q1
′x1 . . . Qm

′xm¬ψ1.
Next, let ϕ := ϕ1 ∨ ϕ2. The assumptions above yield

ϕ =⇒pr (Q1x1 . . . Qmxmψ1) ∨ (Qm+1y1 . . .Qm+nynψ2).

Replacing here the RHS (righthand side) by a variant we may assume that
{x1, . . . , xm} ∩ {y1, . . . , yn} = ∅, and also that no xi occurs free in ψ2 and no
yj occurs free in ψ1. Applying m+ n times prenex transformation of types (3)
and (4) we obtain

(Q1x1 . . .Qmxmψ1) ∨ (Qm+1y1 . . . Qm+nynψ2) =⇒pr

Q1x1 . . .QmxmQm+1y1 . . . Qm+nyn(ψ1 ∨ ψ2).

Hence ϕ =⇒pr Q1x1 . . .QmxmQm+1y1 . . . Qm+nyn(ψ1 ∨ ψ2). Likewise, to deal
with ϕ1 ∧ ϕ2, we apply prenex transformations of types (5) and (6).

Next, let ϕ := ∃xϕ1. Applying prenex transformations of type (1) we can
assume x1, . . . , xm are different from x. Then ϕ =⇒pr ∃xQ1x1 . . . Qmxnψ1, and
the RHS is in prenex form. The case ϕ := ∀xϕ1 is similar.

We finish this section with a result on equalities. Note that by Corollary 2.1.7,
the result of replacing an occurrence of an L-term τ in t by an L-term τ ′ is an
L-term t′. An occurrence of an L-term τ in ϕ is said to be outside quantifier
scope if

Proposition 3.3.6. Let τ and τ ′ be L-terms such that Σ ` τ = τ ′, let t′ be
obtained from t by replacing an occurrence of τ in t by τ ′, and let ϕ′ be obtained
from ϕ by replacing an occurrence of τ in ϕ outside quantifier scope by τ ′. Then
Σ ` t = t′ and Σ ` ϕ↔ ϕ′.

Proof. We shall obtain Σ ` t = t′ by induction on t. If t is a variable, then
necessarily t = τ , so t′ = τ ′, and we are done. Suppose t = Ft1 . . . tn where
F ∈ Lf is n-ary and t1, . . . , tn are L-terms. Using the facts on admissible words
at the end of Section 2.1, including exercise 5, we see that t′ = Ft′1 . . . t

′
n where

for some i ∈ {1, . . . , n} we have tj = t′j for all j 6= i, j ∈ {1, . . . , n}, and t′i
is obtained from ti by replacing an occurrence of τ in ti by τ ′. Inductively we
can assume that Σ ` t1 = t′1, . . . ,Σ ` tn = t′n, so by part (5) of Lemma 3.2.3
we have Σ ` t = t′. To get Σ ` ϕ ↔ ϕ′, first take care of the case that ϕ is
atomic by a similar argument as for terms, and then proceed by the usual kind
of induction on formulas.
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Exercises.
(1) Let (ϕi)i∈I be a family of formulas with finite index set I. Then

` ∃x
_

i

ϕi ←→
_

i

∃xϕi, ` ∀x
^

i

ϕi ←→
^

i

∀xϕi.

(2) A formula is said to be unnested if each atomic subformula has the form Rx1 . . . xm

with m-ary R ∈ Lr ∪ {>,⊥,=} and distinct variables x1, . . . , xm, or the form
fx1 . . . xn = xn+1 with n-ary f ∈ Lf and distinct variables x1, . . . , xn+1. (This
allows > and ⊥ as atomic subformulas of unnested formulas.) Then:
(i) each atomic formula ϕ(y1, . . . , yn) is equivalent to an unnested existential
formula ϕ1(y1, . . . , yn), and also to an unnested universal formula ϕ2(y1, . . . , yn).
(ii) each formula ϕ(y1, . . . , yn) is equivalent to an unnested formula ϕu(y1, . . . , yn).

(3) Let P be a unary relation symbol, Q be a binary relation symbol, and x, y distinct
variables. Use prenex transformations to put

∀x∃y(P (x)∧Q(x, y))→ ∃x∀y(Q(x, y)→ P (y))

into prenex form.

3.4 Equational Classes and Universal Algebra

The term-structure AΣ introduced in the proof of the Completeness Theorem
also plays a role in what is called universal algebra. This is a general setting
for constructing mathematical objects by generators and relations. Free groups,
tensor products of various kinds, polynomial rings, and so on, are all special
cases of a single construction in universal algebra.

In this section we fix a language L that has only function symbols, including
at least one constant symbol. So L has no relation symbols. Instead of “L-
structure” we say “L-algebra”, and A, B denote L-algebras. A substructure of
A is also called a subalgebra of A, and a quotient algebra of A is an L-algebra
A/ ∼ where ∼ is a congruence on A. We call A trivial if |A| = 1. There is up
to isomorphism exactly one trivial L-algebra.

An L-identity is an L-sentence

∀~x
(

s1(~x) = t1(~x) ∧ · · · ∧ sn(~x) = tn(~x)
)

, ~x = (x1, . . . , xm)

where x1, . . . , xm are distinct variables and ∀~x abbreviates ∀x1 . . .∀xm, and
where s1, t1, . . . , sn, tn are L-terms.

Given a set Σ of L-identities we define a Σ-algebra to be an L-algebra that
satisfies all identities in Σ, in other words, a Σ-algebra is the same as a model
of Σ. To such a Σ we associate the class Mod(Σ) of all Σ-algebras. A class C of
L-algebras is said to be equational if there is a set Σ of L-identities such that
C = Mod(Σ).

Examples. With L = LGr, Gr is a set of L-identities, and Mod(Gr), the class
of groups, is the corresponding equational class of L-algebras. With L = LRi,
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Ri is a set of L-identities, and Mod(Ri), the class of rings, is the corresponding
equational class of L-algebras. If one adds to Ri the identity ∀x∀y(xy = yx)
expressing the commutative law, then the corresponding class is the class of
commutative rings.

Theorem 3.4.1. (G.Birkhoff) Let C be a class of L-algebras. Then the class C
is equational if and only if the following conditions are satisfied:

(1) closure under isomorphism: if A ∈ C and A ∼= B, then B ∈ C.

(2) the trivial L-algebra belongs to C;

(3) every subalgebra of any algebra in C belongs to C;

(4) every quotient algebra of any algebra in C belongs to C;

(5) the product of any family (Ai) of algebras in C belongs to C.
It is easy to see that if C is equational, then conditions (1)–(5) are satisfied. (For
(3) and (4) one can also appeal to the Exercises 6 and 7 of section 2.5) Towards
a proof of the converse, we need some universal-algebraic considerations that
are of interest beyond the connection to Birkhoff’s theorem.
For the rest of this section we fix a set Σ of L-identities. Associated to Σ is the
term algebra AΣ whose elements are the equivalence classes [t] of variable-free
L-terms t, where two such terms s and t are equivalent iff Σ ` s = t.

Lemma 3.4.2. AΣ is a Σ-algebra.

Proof. Consider an identity

∀~x
(

s1(~x) = t1(~x) ∧ · · · ∧ sn(~x) = tn(~x)
)

, ~x = (x1, . . . , xm)

in Σ, let j ∈ {1, . . . , n} and put s = sj and t = tj . Let a1, . . . , am ∈ AΣ and put
A = AΣ. It suffices to show that then s(a1, . . . , am)A = t(a1, . . . , am)A. Take
variable-free L-terms α1, . . . , αm such that a1 = [α1], . . . , am = [αm]. Then by
part (1) of Corollary 3.2.5 we have a1 = αA

1 , . . . , am = αA
m, so

s(a1, . . . , am)A = s(α1, . . . , αm)A, t(a1, . . . , am)A = t(α1, . . . , αm)A

by Lemma 2.6.1. Also, by part (1) of Corollary 3.2.5,

s(α1, . . . , αm)A = [s(α1, . . . , αm)], t(α1, . . . , αm)A = [t(α1, . . . , αm)].

Now Σ ` s(α1, . . . , αm) = t(α1, . . . , αm), so [s(α1, . . . , αm)] = [t(α1, . . . , αm)],
and thus s(a1, . . . , am)A = t(a1, . . . , am)A, as desired.

Actually, we are going to show that AΣ is a so-called initial Σ-algebra.

An initial Σ-algebra is a Σ-algebra A such that for any Σ-algebra B there is a
unique homomorphism A → B.

For example, the trivial group is an initial Gr-algebra, and the ring of integers
is an initial Ri-algebra.
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Suppose A and B are both initial Σ-algebras. Then there is a unique iso-
morphism A → B. To see this, let i and j be the unique homomorphisms
A → B and B → A, respectively. Then we have homomorphisms j ◦ i : A → A
and i ◦ j : B → B, respectively, so necessarily j ◦ i = idA and i ◦ j = idB ,
so i and j are isomorphisms. So if there is an initial Σ-algebra, it is unique
up-to-unique-isomorphism.

Lemma 3.4.3. AΣ is an initial Σ-algebra.

Proof. Let B be any Σ-algebra. Note that if s, t ∈ TL and [s] = [t], then
Σ ` s = t, so sB = tB. Thus we have a map

AΣ → B, [t] 7→ tB.

It is easy to check that this map is a homomorphism AΣ → B. By Exercise 3
in Section 2.4 it is the only such homomorphism.

Free algebras. Let I be an index set in what follows. Let A be a Σ-algebra
and (ai)i∈I an I-indexed family of elements of A. Then A is said to be a free
Σ-algebra on (ai) if for every Σ-algebra B and I-indexed family (bi) of elements
of B there is exactly one homomorphism h : A → B such that h(ai) = bi for all
i ∈ I . We also express this by “

(

A, (ai)
)

is a free Σ-algebra”. Finally, A itself is
sometimes referred to as a free Σ-algebra if there is a family (aj)j∈J in A such
that

(

A, (aj)
)

is a free Σ-algebra.

As an example, take L = LRi and cRi := Ri ∪ {∀x∀y xy = yz}, where x, y
are distinct variables. So the cRi-algebras are just the commutative rings. Let
Z[X1, . . . , Xn] be the ring of polynomials in distinct indeterminates X1, . . . , Xn

over Z. For any commutative ring R and elements b1, . . . , bn ∈ R we have a
unique ring homomorphism Z[X1, . . . , Xn] → R that sends Xi to bi for i =
1, . . . , n, namely the evaluation map (or substitution map)

Z[X1, . . . , Xn]→ R, f(X1, . . . , Xn) 7→ f(b1, . . . , bn).

Thus Z[X1, . . . , Xn] is a free commutative ring on (Xi)1≤i≤n.

For a simpler example, let L = LMo := {1, ·} ⊆ LGr be the language of monoids,
and consider

Mo := {∀x(1 · x = x ∧ x · 1 = x), ∀x∀y∀z
(

(xy)z = x(yz)
)

},

where x, y, z are distinct variables. A monoid , or semigroup with identity , is a
model A = (A; 1, ·) of Mo, and we call 1 ∈ A the identity of the monoid A, and
· its product operation.

Let E∗ be the set of words on an alphabet E, and consider E∗ as a monoid by
taking the empty word as its identity and the concatenation operation (v, w) 7→
vw as its product operation. Then E∗ is a free monoid on the family (e)e∈E of
words of length 1, because for any monoid B and elements be ∈ B (for e ∈ E)
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we have a unique monoid homomorphism E∗ → B that sends each e ∈ E to be,
namely,

e1 . . . en 7→ be1
· · · ben

.

Remark. If A and B are both free Σ-algebras on (ai) and (bi) respectively, with
same index set I , and g : A → B and h : B → A are the unique homomorphisms
such that g(ai) = bi and h(bi) = ai for all i, then (h ◦ g)(ai) = ai for all i, so
h ◦ g = idA, and likewise g ◦ h = idB , so g is an isomorphism with inverse h.
Thus, given I , there is, up to unique isomorphism preserving I-indexed families,
at most one free Σ-algebra on an I-indexed family of its elements.

We shall now construct free Σ-algebras as initial algebras by working in an
extended language. Let LI := L ∪ {ci : i ∈ I} be the language L augmented by
new constant symbols ci for i ∈ I , where new means that ci /∈ L for i ∈ I and
ci 6= cj for distinct i, j ∈ I . So an LI -algebra

(

B, (bi)
)

is just an L-algebra B
equipped with an I-indexed family (bi) of elements of B. Let ΣI be Σ viewed
as a set of LI -identities. Then a free Σ-algebra on an I-indexed family of its
elements is just an initial ΣI -algebra. In particular, the ΣI -algebra AΣI

is a
free Σ-algebra on ([ci]). Thus, up to unique isomorphism of ΣI -algebras, there
is a unique free Σ-algebra on an I-indexed family of its elements.

Let (A, (ai)i∈I ) be a free Σ-algebra. Then A is generated by (ai). To see
why, let B be the subalgebra of A generated by (ai). Then we have a unique
homomorphism h : A → B such that h(ai) = ai for all i ∈ I , and then the
composition

A → B → A
is necessarily idA, so B = A.

Let B be any Σ-algebra, and take any family (bj)j∈J in B that generates B.
Take a free Σ-algebra

(

A, (aj)j∈J

)

, and take the unique homomorphism h :
(

A, (aj)
)

→
(

B, (bj)
)

. Then h(tA(aj1 , . . . , ajn
) = tB(bj1 , . . . , bjn

) for all L-
term t(x1, . . . , xn) and j1, . . . , jn ∈ J , so h(A) = B, and thus h induces an
isomorphism A/∼h

∼= B. We have shown:

Every Σ-algebra is isomorphic to a quotient of a free Σ-algebra.

This fact can sometimes be used to reduce problems on Σ-algebras to the case
of free Σ-algebras; see the next subsection for an example.

Proof of Birkhoff’s theorem. Let us say that a class C of L-algebras is closed
if it has properties (1)–(5) listed in Theorem 3.4.1. Assume C is closed; we have
to show that then C is equational. Indeed, let Σ(C) be the set of L-identities

∀~x
(

s(~x) = t(~x)
)

that are true in all algebras of C. It is clear that each algebra in C is a Σ(C)-
algebra, and it remains to show that every Σ(C)-algebra belongs to C. Here is
the key fact from which this will follow:
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Claim. If A is an initial Σ(C)-algebra, then A ∈ C.
To prove this claim we take A := AΣ(C). For s, t ∈ TL such that s = t does not
belong to Σ(C) we pick Bs,t ∈ C such that Bs,t |= s 6= t, and we let hs,t : A → Bs,t

be the unique homomorphism, so hs,t([s]) 6= hs,t([t]). Let B :=
∏Bs,t where the

product is over all pairs (s, t) as above, and let h : A → B be the homomorphism
given by h(a) =

(

hs,t(a)
)

. Note that B ∈ C. Then h is injective. To see why,
let s, t ∈ TL be such that [s] 6= [t] in A = AΣ(C). Then s = t does not belong
to Σ(C), so hs,t([s]) 6= hs,t([t]), and thus h([s]) 6= h([t]). This injectivity gives
A ∼= h(A) ⊆ B, so A ∈ C. This finishes the proof of the claim.

Now, every Σ(C)-algebra is isomorphic to a quotient of a free Σ(C)-algebra, so
it remains to show that free Σ(C)-algebras belong to C. Let A be a free Σ(C)-
algebra on (ai)i∈I . Let CI be the class of all LI -algebras

(

B, (bi)
)

with B ∈ C.
It is clear that CI is closed as a class of LI -algebras. Now,

(

A, (ai)
)

is easily
seen to be an initial Σ(CI)-algebra. By the claim above, applied to CE in place
of C, we obtain

(

A, (ai)
)

∈ CI , and thus A ∈ C.

Generators and relations. Let G be any set. Then we have a Σ-algebra A
with a map ι : G → A such that for any Σ-algebra B and any map j : G → B
there is a unique homomorphism h : A → B such that h◦ι = j; in other words, A
is a free as a Σ-algebra on (ιg)g∈G. Note that if (A′, ι′) (with ι′ : G→ A′) has the
same universal property as (A, ι), then the unique homomorphism h : A → A′

such that h◦ ι = ι′ is an isomorphism, so this universal property determines the
pair (A, ι) up-to-unique-isomorphism. So there is no harm in calling (A, ι) the
free Σ-algebra on G. Note that A is generated as an L-algebra by ιG.

Here is a particular way of constructing the free Σ-algebra on G. Take the
language LG := L ∪ G (disjoint union) with the elements of G as constant
symbols. Let Σ(G) be Σ considered as a set of LG-identities. Then A := AΣ(G)

as a Σ-algebra with the map g 7→ [g] : G→ AΣ(G) is the free Σ-algebra on G.
Next, let R be a set of sentences s(~g) = t(~g) where s(x1, . . . , xn) and

t(x1, . . . , xn) are L-terms and ~g = (g1, . . . , gn) ∈ Gn (with n depending on
the sentence). We wish to construct the Σ-algebra generated by G with R as set
of relations.1 This object is described up-to-isomorphism in the next lemma.

Lemma 3.4.4. There is a Σ-algebra A(G,R) with a map i : G→ A(G,R) such
that:

(1) A(G,R) |= s(i~g) = t(i~g) for all s(~g) = t(~g) in R;

(2) for any Σ-algebra B and map j : G → B with B |= s(j~g) = t(j~g) for all
s(~g) = t(~g) in R, there is a unique homomorphism h : A(G,R)→ B such
that h ◦ i = j.

Proof. Let Σ(R) := Σ ∪ R, viewed as a set of LG-sentences, let A(G,R) :=
AΣ(R), and define i : G → A(G,R) by i(g) = [g]. As before one sees that the
universal property of the lemma is satisfied.

1The use of the term “relations” here has nothing to do with n-ary relations on sets.





Chapter 4

Some Model Theory

In this chapter we first derive the Löwenheim-Skolem Theorem. Next we develop
some basic methods related to proving completeness of a given set of axioms:
Vaught’s Test, back-and-forth, quantifier elimination. Each of these methods,
when applicable, achieves a lot more than just establishing completeness.

4.1 Löwenheim-Skolem; Vaught’s Test

Below, the cardinality of a structure is defined to be the cardinality of its un-
derlying set. In this section we have the same conventions concerning L, A, t,
ϕ, ψ, θ, σ and Σ as in the beginning of Section 2.6, unless specified otherwise.

Theorem 4.1.1 (Countable Löwenheim-Skolem Theorem).
Suppose L is countable and Σ has a model. Then Σ has a countable model.

Proof. Since Var is countable, the hypothesis that L is countable yields that the
set of L-sentences is countable. Hence the language

L ∪ {cσ : Σ ` σ where σ is an L-sentence of the form ∃xϕ(x)}

is countable, that is, adding witnesses keeps the language countable. The union
of countably many countable sets is countable, hence the set L∞ constructed
in the proof of the Completeness Theorem is countable. It follows that there
are only countably many variable-free L∞-terms, hence AΣ∞

is countable, and
thus its reduct AΣ∞

|L is a countable model of Σ.

Remark. The above proof is the first time that we used the countability of
Var = {v0, v1, v2, . . . }. As promised in Section 2.4, we shall now indicate why the
Downward Löwenheim-Skolem Theorem goes through without assuming that
Var is countable.

Suppose that Var is uncountable. Take a countably infinite subset Var′ ⊆
Var. Then each sentence is equivalent to one whose variables are all from Var′.
By replacing each sentence in Σ by an equivalent one all whose variables are

57
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from Var′, we obtain a countable set Σ′ of sentences such that Σ and Σ′ have
the same models. As in the proof above, we obtain a countable model of Σ′

working throughout in the setting where only variables from Var′ are used in
terms and formulas. This model is a countable model of Σ.

The following test can be useful in showing that a set of axioms Σ is complete.

Proposition 4.1.2 (Vaught’s Test). Let L be countable, and suppose Σ has a
model, and that all countable models of Σ are isomorphic. Then Σ is complete.

Proof. Suppose Σ is not complete. Then there is σ such that Σ 0 σ and Σ 0 ¬σ.
Hence by the Löwenheim-Skolem Theorem there is a countable model A of Σ
such that A 2 σ, and there is a countable model B of Σ such that B 2 ¬σ. We
have A ∼= B, A |= ¬σ and B |= σ, contradiction.

Example. Let L = ∅, so the L-structures are just the non-empty sets. Let
Σ = {σ1, σ2, . . .} where

σn = ∃x1 . . . ∃xn

∧

1≤i<j≤n

xi 6= xj

The models of Σ are exactly the infinite sets. All countable models of Σ are
countably infinite and hence isomorphic to N. Thus by Vaught’s Test Σ is
complete.

In this example the hypothesis of Vaught’s Test is trivially satisfied. In other
cases it may require work to check this hypothesis. One general method in
model theory, Back-and-Forth, is often used to verify the hypothesis of Vaught’s
Test. The proof of the next theorem shows Back-and-Forth in action. To
formulate that theorem we define a totally ordered set to be a structure (A; <)
for the language LO that satisfies the following axioms (where x, y, z are distinct
variables):

∀x(x 6< x), ∀x∀y∀z
(

(x < y∧ y < z)→ x < z
)

, ∀x∀y(x < y∨x = y∨ y < x).

Such a totally ordered set is said to be dense if it satisfies in addition the axiom
∀x∀y(x < y → ∃z(x < z ∧ z < y)), and it is said to have no endpoints if it
satisfies the axiom ∀x∃y∃z(y < x ∧ x < z). For example, (Q; <) and (R; <)
are dense totally ordered sets without endpoints.

Theorem 4.1.3 (Cantor). Any two countable dense totally ordered sets with-
out endpoints are isomorphic.

Proof. Let (A; <) and (B; <) be countable dense totally ordered sets without
endpoints. So A = {an : n ∈ N} and B = {bn : n ∈ N}. We define by recursion
a sequence (αn) in A and a sequence (βn) in B as follows: put α0 := a0 and
β0 := b0. Let n > 0, and suppose we have distinct α0, . . . , αn−1 in A and distinct
β0, . . . , βn−1 in B such that for all i, j < n we have αi < αj ⇐⇒ βi < βj . Then
we define αn ∈ A and βn ∈ B as follows:
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Case 1: n is even. (Here we go forth.) First take k ∈ N minimal such that
ak /∈ {α0, . . . , αn−1}; then take l ∈ N minimal such that bl is situated with
respect to β0, . . . , βn−1 as ak is situated with respect to α0, . . . , αn−1, that is, l
is minimal such that for i = 0, . . . , n − 1 we have: αi < ak ⇐⇒ βi < bl, and
αi > ak ⇐⇒ βi > bl. (The reader should check that such an l exists: that is
where density and “no endpoints” come in); put αn := ak and βn := bl.

Case 2: n is odd. (Here we go back.) First take l ∈ N minimal such that
bl /∈ {β0, . . . , βn−1}; next take k ∈ N minimal such that ak is situated with
respect to α0, . . . , αn−1 as bl is situated with respect to β0, . . . , βn−1, that is, k
is minimal such that for i = 0, . . . , n − 1 we have: αi < ak ⇐⇒ βi < bl, and
αi > ak ⇐⇒ βi > bl. Put βn := bl and αn := ak.

One proves easily by induction on n that then an ∈ {α0, . . . , α2n} and bn ∈
{β0, . . . , β2n}. Thus we have a bijection αn 7→ βn : A → B, and this bijection
is an isomorphism (A; <)→ (B; <).

In combination with Vaught’s Test this gives

Corollary 4.1.4. The set of axioms defining dense totally ordered sets without
endpoints is complete.

In the results below we let κ denote an infinite cardinal. Recall that the set of
ordinals λ < κ has cardinality κ. We have the following generalization of the
Löwenheim-Skolem theorem.

Theorem 4.1.5 (Generalized Löwenheim-Skolem Theorem). Suppose
L has size at most κ and Σ has an infinite model. Then Σ has a model of
cardinality κ.

Proof. Let {cλ}λ<κ be a family of κ new constant symbols that are not in L and
are pairwise distinct (that is, cλ 6= cµ for λ < µ < κ). Let L′ = L∪{cλ : λ < κ}
and let Σ′ = Σ ∪ {cλ 6= cµ : λ < µ < κ}. We claim that Σ′ is consistent. To see
this it suffices to show that, given any finite set Λ ⊆ κ, the set of L′-sentences

ΣΛ := Σ ∪ {cλ 6= cµ : λ, µ ∈ Λ, λ 6= µ}

has a model. Take an infinite model A of Σ. We make an L′-expansion AΛ

of A by interpreting distinct cλ’s with λ ∈ Λ by distinct elements of A, and
interpreting the cλ’s with λ /∈ Λ arbitrarily. Then AΛ is a model of ΣΛ, which
establishes the claim.
Note that L′ also has size at most κ. The same arguments we used in proving
the countable version of the Löwenheim-Skolem Theorem show that then Σ′

has a model B′ = (B, (bλ)λ<κ) of cardinality at most κ. We have bλ 6= bµ for
λ < µ < κ, hence B is a model of Σ of cardinality κ.

The next proposition is Vaught’s Test for arbitrary languages and cardinalities.

Proposition 4.1.6. Suppose L has size at most κ, Σ has a model and all models
of Σ are infinite. Suppose also that any two models of Σ of cardinality κ are
isomorphic. Then Σ is complete.
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Proof. Let σ be an L-sentence and suppose that Σ 0 σ and Σ 0 ¬σ. We
will derive a contradiction. First Σ 0 σ means that Σ ∪ {¬σ} has a model.
Similarly Σ 0 ¬σ means that Σ ∪ {σ} has a model. These models must be
infinite since they are models of Σ, so by the Generalized Löwenheim-Skolem
Theorem Σ ∪ {¬σ} has a model A of cardinality κ, and Σ ∪ {σ} has a model
B of cardinality κ. By assumption A ∼= B, contradicting that A |= ¬σ and
B |= σ.

We now discuss in detail one particular application of this generalized Vaught
Test. Fix a field F . A vector space over F is an abelian (additively written)
group V equipped with a scalar multiplication operation

F × V −→ V : (λ, v) 7−→ λv

such that for all λ, µ ∈ F and all v, w ∈ V we have
(i) (λ+ µ)v = λv + µv
(ii) λ(v + w) = λv + λw
(iii) 1v = v
(iv) (λµ)v = λ(µv).

Let LF be the language of vector spaces over F : it extends the language
LAb = {0,−,+} of abelian groups with unary function symbols fλ, one for each
λ ∈ F ; a vector space over F is viewed as an LF -structure by interpreting each
fλ as the function v 7−→ λv. One easily specifies a set ΣF of sentences whose
models are exactly the vector spaces over F . Note that ΣF is not complete since
the trivial vector space satisfies ∀x(x = 0) but F viewed as vector space over
F does not. Moreover, if F is finite, then we have both non-trivial finite vector
spaces and non-trivial infinite vector spaces; to avoid these special cases we are
going to restrict attention to infinite vector spaces over F . Let v1, v2, . . . be a
sequence of distinct variables and put

Σ∞
F := ΣF ∪ {∃v1 . . . ∃vn

∧

1≤i<j≤n

vi 6= vj : n > 0}

So the models of Σ∞
F are exactly the infinite vector spaces over F . Note that if

F itself is infinite then each non-trivial vector space over F is infinite.
We will need the following facts about vector spaces V and W over F .

(Proofs can be found in various texts.)

Fact.
(a) V has a basis B, that is, B ⊆ V , and for each vector v ∈ V there is a

unique family (λb)b∈B of scalars (elements of F ) such that {b ∈ B : λb 6= 0}
is finite and v = Σb∈Bλbb.

(b) Any two bases B and C of V have the same cardinality.
(c) If V has basis B and W has basis C, then any bijection B → C extends

uniquely to an isomorphism V →W .
(d) Let B be a basis of V . Then |V | = |B| · |F | provided either |F | or |B| is

infinite. If both are finite then |V | = |F ||B|
.
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Theorem 4.1.7. Σ∞
F is complete.

Proof. Take a κ > |F |. In particular LF has size at most κ. Let V be a vector
space over F of cardinality κ. Then a basis of V must also have size κ by
property (d) above. Thus any two vector spaces over F of cardinality κ have
bases of cardinality κ and thus are isomorphic. It follows by the Generalized
Vaught Test that Σ∞

F is complete.

Remark. Theorem 4.1.7 and Exercise 1 imply for instance that if F = R then
all non-trivial vector spaces over F satisfy exactly the same sentences in LF .

Using the generalized Vaught Test one can also prove that ACF(0) (whose
models are the algebraically closed fields of characteristic 0) is complete. The
proof is similar except that you need to work with transcendence bases and be
familiar with the notion algebraic closure of a field.

If the hypothesis of Vaught’s Test (or its generalization) is satisfied, then
many things follow of which completeness is only one; it goes beyond the scope
of these notes to develop this large chapter of model theory, which goes under
the name of “categoricity in power”.

Exercises.
(1) Let L = {U} where U is a unary relation symbol. Consider the L-structure

(Z; N). Give an informative description of a complete set of L-sentences true in
(Z; N). (A description like {σ : (Z; N) |= σ} is not informative. An explicit,
possibly infinite, list of axioms is required. Hint: Make an educated guess and
try to verify it using Vaught’s Test or one of its variants.)

(2) Let Σ1 and Σ2 be sets of L-sentences such that no symbol of L occurs in both Σ1

and Σ2. Suppose Σ1 and Σ2 have infinite models. Then Σ1 ∪ Σ2 has a model.

(3) Let L = {S} where S is a unary function symbol. Consider the L-structure (Z; S)
where S(a) = a+ 1 for a ∈ Z. Give an informative description of a complete set
of L-sentences true in (Z; S).

4.2 Elementary Equivalence and Back-and-Forth

In the rest of this chapter we relax notation, and just write ϕ(a1, . . . , an) for an
LA-formula ϕ(a1, . . . , an), where A = (A; . . . ) is an L-structure, ϕ(x1, . . . , xn)
an LA-formula, and (a1, . . . , an) ∈ An.

In this section A and B denote L-structures. We say that A and B are elemen-
tarily equivalent (notation: A ≡ B) if they satisfy the same L-sentences. Thus
by the previous section (Q; <) ≡ (R; <), and any two infinite vector spaces
over a given field F are elementarily equivalent.

A partial isomorphism from A to B is a bijection γ : X → Y with X ⊆ A and
Y ⊆ B such that

(i) for each m-ary R ∈ Lr and a1, . . . , am ∈ X

(a1, . . . , am) ∈ RA ⇐⇒ (γa1, . . . , γam) ∈ RB.
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(ii) for each n-ary f ∈ Lf and a1, . . . , an, an+1 ∈ X

fA(a1, . . . , an) = an+1 ⇐⇒ fB(γa1, . . . , γan) = γ(an+1).

Example: suppose A = (A; <) and B = (B; <) are totally ordered sets, and
a1, . . . , aN ∈ A and b1, . . . , bN ∈ B are such that a1 < a2 < · · · < aN and
b1 < b2 < · · · < bN ; then the map ai 7→ bi : {a1, . . . , aN} → {b1, . . . , bN} is a
partial isomorphism from A to B.

A back-and-forth system from A to B is a nonempty collection Γ of partial
isomorphisms from A to B such that

(i) (“Forth”) for each γ ∈ Γ and a ∈ A there is a γ ′ ∈ Γ such that γ′ extends
γ and a ∈ domain(γ′);

(ii) (“Back”) for each γ ∈ Γ and b ∈ B there is a γ ′ ∈ Γ such that γ′ extends
γ and b ∈ codomain(γ′).

We say that A and B are back-and-forth equivalent (notation: A ≡bf B) if there
exists a back-and-forth system from A to B.

Cantor’s proof in the previous section generalizes as follows:

Proposition 4.2.1. Suppose A and B are countable and A ≡bf B. Then A ∼= B.

Proof. Let Γ be a back-and-forth system from A to B. We proceed as in the
proof of Cantor’s theorem, and construct a sequence (γn) of partial isomor-
phisms from A to B such that each γn+1 extends γn, A =

⋃

n domain(γn) and
B =

⋃

n codomain(γn). Then the map A → B that extends each γn is an
isomorphism A → B.

In applying this proposition and the next one in a concrete situation, the
key is to guess a back-and-forth system. That is where insight and imagination
(and experience) come in. In the following result we do not need to assume
countability.

Proposition 4.2.2. If A ≡bf B, then A ≡ B.

Proof. Suppose Γ is a back-and-forth system from A to B. By induction on the
number of logical symbols in unnested formulas ϕ(y1, . . . , yn) one shows that
for each γ ∈ Γ and a1, . . . , an ∈ domain(γ) we have

A |= ϕ(a1, . . . , an)⇐⇒ B |= ϕ(γa1, . . . , γan).

For n = 0 and using the result of Exercise 2 this yields A ≡ B.

4.3 Quantifier Elimination

In this section x = (x1, . . . , xn) is a tuple of distinct variables and y is a single
variable distinct from x1, . . . , xn.
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Definition. Σ has quantifier elimination (QE) if every L-formula ϕ(x) is Σ-
equivalent to a quantifier free (short: q-free) L-formula ϕqf(x).

In particular, if Σ has QE, then every L-sentence is Σ-equivalent to a q-free
L-sentence. (Take n = 0 in the above definition.)

Remark. Suppose Σ has QE. Let L′ be a language such that L′ ⊇ L and all
symbols of L′

rL are constant symbols. (This includes the case L′ = L.) Then
every set Σ′ of L′-sentences with Σ′ ⊇ Σ has QE. (To see this, check first that
each L′-formula ϕ′(x) has the form ϕ(c, x) for some L-formula ϕ(u, x), where
u = (u1, . . . , um) is a tuple of distinct variables distinct from x1, . . . , xn, and
c = (c1, . . . , cm) is a tuple of constant symbols in L′

r L.)

A basic conjunction in L is by definition a conjunction of finitely many atomic
and negated atomic L-formulas. Each q-free L-formula ϕ(x) is equivalent to a
disjunction ϕ1(x) ∨ · · · ∨ ϕk(x) of basic conjunctions ϕi(x) in L (“disjunctive
normal form”).

Lemma 4.3.1. Suppose that for every basic conjunction θ(x, y) in L there is a
q-free L-formula θqf(x) such that

Σ ` ∃yθ(x, y)↔ θqf(x).

Then Σ has QE.

Proof. Let us say that an L-formula ϕ(x) has Σ-QE if it is Σ-equivalent to a q-
free L-formula ϕqf(x). Note that if the L-formulas ϕ1(x) and ϕ2(x) have Σ-QE,
then ¬ϕ1(x), (ϕ1 ∨ ϕ2)(x), and (ϕ1 ∧ ϕ2)(x) have Σ-QE.

Next, let ϕ(x) = ∃yψ(x, y), and suppose inductively that the L-formula
ψ(x, y) has Σ-QE. Hence ψ(x, y) is Σ-equivalent to a disjunction

∨

i ψi(x, y) of
basic conjunctions ψi(x, y) in L, with i ranging over some finite index set. In
view of the equivalence of ∃y∨i ψi(x, y) with

∨

i ∃yψi(x, y) we obtain

Σ ` ϕ(x) ←→
∨

i

∃yψi(x, y).

Each ∃yψi(x, y) has Σ-QE, by hypothesis, so ϕ(x) has Σ-QE.
Finally, let ϕ(x) = ∀yψ(x, y), and suppose inductively that the L-formula

ψ(x, y) has Σ-QE. This case reduces to the previous case since ϕ(x) is equivalent
to ¬∃y¬ψ(x, y).

Remark. In the structure (R; <, 0, 1,+,−, ·) the formula

ϕ(a, b, c) := ∃y(ay2 + by + c = 0)

is equivalent to the q-free formula

(b2 − 4ac ≥ 0 ∧ a 6= 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a = 0 ∧ b = 0 ∧ c = 0).

Note that this equivalence gives an effective test for the existence of a y with a
certain property, which avoids in particular having to check an infinite number
of values of y (even uncountably many in the case above). This illustrates the
kind of property QE is.
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Lemma 4.3.2. Suppose Σ has QE and B and C are models of Σ with a common
substructure A (we do not assume A |= Σ). Then B and C satisfy the same LA-
sentences.

Proof. Let σ be an LA-sentence. We have to show B |= σ ⇔ C |= σ. Write σ
as ϕ(a) with ϕ(x) an L-formula and a ∈ An. Take a q-free L-formula ϕqf (x)
that is Σ-equivalent to ϕ(x). Then B |= σ iff B |= ϕqf (a) iff A |= ϕqf (a) (by
Exercise 6) iff C |= ϕqf (a) (by the same exercise) iff C |= σ.

Corollary 4.3.3. Suppose Σ has a model, has QE, and there exists an L-
structure that can be embedded into every model of Σ. Then Σ is complete.

Proof. Take an L-structure A that can be embedded into every model of Σ. Let
B and C be any two models of Σ. So A is isomorphic to a substructure of B and
of C. Then by a slight rewording of the proof of Lemma 4.3.2 (considering only
L-sentences), we see that B and C satisfy the same L-sentences. It follows that
Σ is complete.

Remark. We have seen that Vaught’s test can be used to prove completeness.
The above corollary gives another way of establishing completeness, and is often
applicable when the hypothesis of Vaught’s Test is not satisfied. Completeness
is only one of the nice consequences of QE, and the easiest one to explain at this
stage. The main impact of QE is rather that it gives access to the structural
properties of definable sets. This will be reflected in exercises at the end of
this section. Applications of model theory to other areas of mathematics often
involve QE as a key step.

We mention without proof two examples of QE, and give a complete proof for a
third example in the next section. The following theorem is due to Tarski and
(independently) to Chevalley. It dates from around 1950.

Theorem 4.3.4. ACF has QE.

It is clear that ACF is not complete, since it says nothing about the char-
acteristic: it doesn’t prove 1 + 1 = 0, nor does it prove 1 + 1 6= 0. However,
ACF(0), which contains additional axioms forcing the characteristic to be 0, is
complete by 4.3.3 and the fact that the ring of integers embeds in every alge-
braically closed field of characteristic 0. Tarski also established the following
more difficult theorem, which is one of the key results in real algebraic geometry.
(His original proof is rather long; there is a shorter one due to A. Seidenberg,
and a very elegant short proof by A. Robinson based elementary model theoretic
results.)

Definition. RCF is a set of axioms true in the ordered field (R; <, 0, 1,−,+, ·)
of real numbers. In addition to the ordered field axioms, it has the axiom
∀x (x > 0 → ∃y (x = y2)) (x, y distinct variables) and for each odd n > 1 the
axiom

∀x1 . . . ∀xn∃y (yn + x1y
n−1 + · · ·+ xn = 0)

where x1, . . . , xn, y are distinct variables.
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Theorem 4.3.5. RCF admits QE and is complete.

Exercises. In (5) and (6), an L-theory is a set T of L-sentences such that for all
L-sentences σ, if T ` σ, then σ ∈ T . An axiomatization of an L-theory T is a set Σ of
L-sentences such that T = {σ : σ is an L-sentence and Σ ` σ}.

(1) The subsets of C definable in (C; 0, 1,−,+, ·) are exactly the finite subsets of C

and their complements in C. (Hint: use the fact that ACF has QE.)

(2) The subsets of R definable in the model (R; <, 0, 1,−,+, ·) of RCF are exactly
the finite unions of intervals of all kinds (including degenerate intervals with just
one point) (Hint: use the fact that RCF has QE.)

(3) Let Eq∞ be a set of axioms in the language {∼} (where ∼ is a binary relation
symbol) that say:
(i) ∼ is an equivalence relation;
(ii) every equivalence class is infinite;
(iii) there are infinitely many equivalence classes.
Then Eq∞ admits QE and is complete. (It is also possible to use Vaught’s test
to prove completeness.)

(4) Suppose that a set Σ of L-sentences has QE. Let the language L′ extend L by
new symbols of arity 0, and let Σ′ ⊇ Σ be a set of L′-sentences. Then Σ′ (as a
set of L′-sentences) also has QE.

(5) Suppose the L-theory T has QE. Then T has an axiomatization consisting of
sentences ∀x∃yϕ(x, y) and ∀xψ(x) where ϕ(x, y) and ψ(x) are q-free. (Hint: let
Σ be the set of L-sentences provable from T that have the indicated form; show
that Σ has QE, and is an axiomatization of T .)

(6) Assume the L-theory T has built-in Skolem functions, that is, for each basic
conjunction ϕ(x, y) there are L-terms t1(x), . . . , tk(x) such that

Σ ` ∃yϕ(x, y)→ ϕ(x, t1x)) ∨ ϕ(x, tk(x)).

Then T has QE, for every ϕ(x, y) there are L-terms t1(x), . . . , tk(x) such that
Σ ` ∃yϕ(x, y)→ ϕ(x, t1x))∨ϕ(x, tk(x)), and T has an axiomatization consisting
of sentences ∀xψ(x) where ψ(x) is q-free.

4.4 Presburger Arithmetic

In this section we consider in some detail one example of a set of axioms that
has QE, namely “Presburger Arithmetic.” Essentially, this is a complete set
of axioms for ordinary arithmetic of integers without multiplication, that is,
the axioms are true in (Z; 0, 1,+,−, <), and prove every sentence true in this
structure. There is a mild complication in trying to obtain this completeness
via QE: one can show (exercise) that for any q-free formula ϕ(x) in the language
{0, 1,+,−, <} there is an N ∈ N such that either (Z; 0, 1,+,−, <) |= ϕ(n) for
all n > N or (Z; 0, 1,+,−, <) |= ¬ϕ(n) for all n > N . In particular, formulas
such as ∃y(x = y + y) or ∃y(x = y + y + y) are not Σ-equivalent to any q-free
formula in this language, for any set Σ of axioms true in (Z; 0, 1,+,−, <).
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To overcome this obstacle to QE we augment the language {0, 1,+,−, <}
by new unary relation symbols P1, P2, P3, P4, . . . to obtain the language LPrA

of Presburger Arithmetic (named after the Polish logician Presburger who was
a student of Tarski). We expand (Z; 0, 1,+,−, <) to the LPrA-structure

Z̃ = (Z; 0, 1,+,−, <,Z, 2Z, 3Z, 4Z, . . . )

that is, Pn is interpreted as the set nZ. This structure satisfies the set PrA of
Presburger Axioms which consists of the following sentences:

(i) the axioms of Ab for abelian groups;
(ii) the axioms expressing that < is a total order;
(iii) ∀x∀y∀z(x < y → x+ z < y + z) (translation invariance of <);
(iv) 0 < 1 ∧ ¬∃y(0 < y < 1) (discreteness axiom);
(v) ∀x∃y∨0≤r<n x = ny + r1, n = 1, 2, 3, . . . (division with remainder);
(vi) ∀x(Pnx↔ ∃y x = ny), n = 1, 2, 3, . . . (defining axioms for P1, P2, . . . ).

Here we have fixed distinct variables x, y, z for definiteness. In (v) and in the
rest of this section r ranges over integers. Note that (v) and (vi) are infinite
lists of axioms. Here are some elementary facts about models of PrA:

Proposition 4.4.1. Let A = (A; 0, 1,+,−, <, PA
1 , P

A
2 , P

A
3 , . . . ) |= PrA. Then

(1) There is a unique embedding Z̃ −→ A; it sends k ∈ Z to k1 ∈ A.
(2) Given any n > 0 we have PA

n = nA, where we regard A as an abelian group,
and A/nA has exactly n elements, namely 0 + nA, . . . , (n− 1)1 + nA.

(3) For any n > 0 and a ∈ A, exactly one of the a, a+ 1, . . . , a+ (n− 1)1 lies
in nA;

(4) A is torsion-free as an abelian group.

Theorem 4.4.2. PrA admits QE.

Proof. Let (x, y) = (x1, . . . , xn, y) be a tuple of n + 1 distinct variables, and
consider a basic conjunction ϕ(x, y) in LPrA. By Lemma 4.3.1 it suffices to show
that ∃yϕ(x, y) is PrA-equivalent to a q-free formula ψ(x). We may assume that
each conjunct of ϕ is of one of the following types, for some integer m ≥ 1 and
LPrA-term t(x):

my = t(x), my < t(x), t(x) < my, Pn(my + t(x)).

To justify this assumption observe that if we had instead a conjunct my 6= t(x)
then we could replace it by (my < t(x)) ∨ (t(x) < my) and use the fact that
∃y(ϕ1(x, y) ∨ ϕ2(x, y)) is equivalent to ∃yϕ1(x, y) ∨ ∃yϕ2(x, y). Similarly a
negation ¬Pn(my + t(x)) can be replaced by the disjunction

Pn(my + t(x) + 1) ∨ . . . ∨ Pn(my + t(x) + (n− 1)1)

Also conjuncts in which y does not appear can be eliminated because

` ∃y(ψ(x) ∧ θ(x, y)) ←→ ψ(x) ∧ ∃yθ(x, y).
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Since PrA ` Pn(z) ↔ Prn(rz) for r > 0 we can replace Pn(my + t(x)) by
Prn(rmy + rt(x)). Also, for r > 0 we can replace my = t(x) by rmy = rt(x),
and likewise with my < t(x) and t(x) < my. We can therefore assume that
all conjuncts have the same “coefficient” m in front of the variable y. After all
these reductions, and after rearranging conjuncts, ϕ(x, y) has the form

∧

h∈H

my = th(x) ∧
∧

i∈I

ti(x) < my ∧
∧

j∈J

my < tj(x) ∧
∧

k∈K

Pn(k)(my + tk(x))

where m > 0 and H, I, J,K are disjoint finite index sets. We allow some of
these index sets to be empty in which case the corresponding conjunction can
be left out.

Suppose that H 6= ∅, say h′ ∈ H . Then the formula ∃yϕ(x, y) is PrA-
equivalent to

Pm(th′(x)) ∧
∧

h∈H

th(x) = th′(x) ∧
∧

i∈I

ti(x) < th′(x) ∧
∧

j∈J

th′(x) < tj(x)

∧
∧

k∈K

Pn(k)(th′(x) + tk(x))

For the rest of the proof we assume that H = ∅.
To understand what follows, it may help to focus on the model Z̃, although

the arguments go through for arbitrary models of PrA. Fix any value a ∈ Zn

of x. Consider the system of linear congruences (with “unknown” y)

Pn(k)(my + tk(a)), (k ∈ K),

which in more familar notation would be written as

my + tk(a) ≡ 0 mod n(k), (k ∈ K).

The solutions in Z of this system form a union of congruence classes modulo
N :=

∏

k∈K n(k), where as usual we put N = 1 for K = ∅. This suggests
replacing y successively by Nz, 1 +Nz,. . . ,(N − 1)1 +Nz. Our precise claim is
that ∃yϕ(x, y) is PrA-equivalent to the formula θ(x) given by

N−1
∨

r=0

(

∧

k∈K

Pn(k)((mr)1 + tk(x)) ∧ ∃z
(

∧

i∈I

ti(x) < m(r1 +Nz)

∧
∧

j∈J

m(r1 +Nz) < tj(x)

))

We prove this equivalence with θ(x) as follows. Suppose

A = (A, . . .) |= PrA, a = (a1, . . . , an) ∈ An.
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We have to show that A |= ∃yϕ(a, y) if and only if A |= θ(a). So let b ∈ A be
such that A |= ϕ(a, b). Division with remainder yields a c ∈ A and an r such
that b = r1 +Nc and 0 ≤ r ≤ N − 1. Note that then for k ∈ K,

mb+ tk(a) = m(r1 +Nc) + tk(a) = (mr)1 + (mN)c+ tk(a) ∈ n(k)A

and so A |= Pn(k)((mr)1 + tk(a)). Also,

ti(a) < m(r1 +Nc) for every i ∈ I,
m(r1 +Nc) < tj(a) for every j ∈ J.

Therefore A |= θ(a) with ∃z witnessed by c. For the converse, suppose that the
disjunct of θ(a) indexed by a certain r ∈ {0, . . . , N − 1} is true in A, with ∃z
witnessed by c ∈ A. Then put b = r1+Nc and we get A |= ϕ(a, b). This proves
the claimed equivalence.

Now that we have proved the claim we have reduced to the situation (after
changing notation) where H = K = ∅ (i. e. no equations and no congruences).
So ϕ(x, y) now has the form

∧

i∈I

ti(x) < my ∧
∧

j∈J

my < tj(x)

If J = ∅ or I = ∅ then PrA ` ∃yϕ(x, y) ↔ >. This leaves the case where
both I and J are nonempty. So suppose A |= PrA and that A is the underlying
set of A. For each value a ∈ An of x there is i0 ∈ I such that ti0(a) is maximal
among the ti(a) with i ∈ I , and a j0 ∈ J such that tj0(a) is minimal among the
tj(a) with j ∈ J . Moreover each interval of m successive elements of A contains
a multiple of m. Therefore ∃yϕ(x, y) is equivalent in A to the disjunction over
all pairs (i0, j0) ∈ I × J of the q-free formula

∧

i∈I

ti(x) ≤ ti0(x) ∧
∧

j∈J

tj0(x) ≤ tj(x)

∧
m
∨

r=1

(

Pm(ti0(x) + r1) ∧ (ti0 (x) + r1 < tj0(x))
)

This completes the proof. Note that LPrA does not contain the relation symbol
≤; we just write t ≤ t′ to abbreviate (t < t′) ∨ (t = t′).

Remark. It now follows from Corollary 4.3.3 that PrA is complete: it has QE
and Z̃ can be embedded in every model.

Discussion. The careful reader will have noticed that the elimination procedure
in the proof above is constructive: it describes an algorithm that, given any basic
conjunction ϕ(x, y) in LPrA as input, constructs a q-free formula ψ(x) of LPrA

such that PrA ` ∃yϕ(x, y) ↔ ψ(x). In view of the equally constructive proof
of Lemma 4.3.1 this yields an algorithm that, given any LPrA-formula ϕ(x) as
input, constructs a q-free LPrA-formula ϕqf(x) such that PrA ` ϕ(x)↔ ϕqf(x).
(Thus PrA has effective QE.)
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In particular, this last algorithm constructs for any LPrA-sentence σ a q-free
LPrA-sentence σqf such that PrA ` σ ↔ σqf. Since we also have an obvious
algorithm that, given any q-free LPrA-sentence σqf, checks whether σqf is true
in Z̃, this yields an algorithm that, given any LPrA-sentence σ, checks whether
σ is true in Z̃. Thus the structure Z̃ is decidable. (A precise definition of
decidability will be given in the next Chapter.) The algorithms above can
easily be implemented by computer programs.

Let some L-structure A be given, and suppose we have an algorithm for
deciding whether any given L-sentence is true in A. Even if this algorithm can
be implemented by a computer program, it does not guarantee that the program
is of practical use, or feasible: on some moderately small inputs it might have
to run for 10100 years before producing an output. This bad behaviour is not
at all unusual: no (classical, sequential) algorithm for deciding the truth of
LPrA-sentences in Z̃ is feasible in a precise technical sense. Results of this kind
belong to complexity theory ; this is an area where mathematics (logic, number
theory,. . . ) and computer science interact.

There do exist feasible integer linear programming algorithms that decide
the truth in Z̃ of sentences of a special form, and this shows another (very
practical) side of complexity theory.

A positive impact of QE is that it yields structural properties of definable
sets, as we discuss next for Z̃.

Definition. Let d be a positive integer. An arithmetic progression of modulus
d is a set of the form

{k ∈ Z : k ≡ r mod d, α < k < β},

where r ∈ {0, . . . , d− 1}, α, β ∈ Z ∪ {−∞,+∞}, α < β.

We leave the proof of the next lemma to the reader.

Lemma 4.4.3. Arithmetic progressions have the following properties.
(1) If P,Q ⊆ Z are arithmetic progressions of moduli d and e respectively, then

P ∩Q is an arithmetic progression of modulus lcm(d, e).
(2) If P ⊆ Z is an arithmetic progression, then Z r P is a finite union of

arithmetic progressions.
(3) Let P be the collection of all finite unions of arithmetic progressions. Then

P contains with any two sets X,Y also X ∪ Y , X ∩ Y , X r Y .

Corollary 4.4.4. Let S ⊆ Z. Then

S is definable in Z̃ ⇐⇒ S is a finite union of arithmetic progressions.

Proof. (⇐) It suffices to show that each arithmetic progression is definable in Z̃;
this is straightforward and left to the reader. (⇒) By QE and Lemma 4.4.3 it
suffices to show that each atomic LPrA-formula ϕ(x) defines in Z̃ a finite union of
arithmetic progressions. Every atomic formula ϕ(x) is of the form t1(x) < t2(x)
or t1(x) = t2(x) or Pd(t(x)), where t1(x), t2(x) and t(x) are LPrA-terms. The
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first two kinds reduce to t(x) > 0 and t(x) = 0 respectively (by subtraction).
It follows that we may assume that ϕ(x) has the form kx + l1 > 0, or the
form kx + l1 = 0 , or the form Pd(kx + l1), where k, l ∈ Z. Considering cases
(k = 0, k 6= 0 and k ≡ 0 mod d, and so on), we see that such a ϕ(x) defines an
arithmetic progression.

Exercises.
(1) Prove that 2Z cannot be defined in the structure (Z; 0, 1,+,−, <) by a q-free

formula of the language {0, 1,+,−, <}.

4.5 Skolemization and Extension by Definition

In this section L is a sublanguage of L′, Σ a set of L-sentences, and Σ′ a set of
L′-sentences with Σ ⊆ Σ′.

Definition. Σ′ is said to be conservative over Σ (or a conservative extension
of Σ) if for every L-sentence σ

Σ′ `L′ σ ⇐⇒ Σ `L σ.

Here (=⇒) is the significant direction, (⇐=) is automatic.

Remarks
(1) Suppose Σ′ conservative over Σ. Then Σ is consistent if and only if Σ′ is
consistent.
(2) If each model of Σ has an L′-expansion to a model of Σ′, then Σ′ is conser-
vative over Σ. (This follows easily from the Completeness Theorem.)

Proposition 4.5.1. Let ϕ(x1, . . . , xn, y) be an L-formula. Let fϕ be an n-ary
function symbol not in L, and put L′ := L ∪ {fϕ} and

Σ′ := Σ ∪ {∀x1 . . .∀xn(∃yϕ(x1, . . . , xn, y)→ ϕ(x1, . . . , xn, fϕ(x1, . . . , xn)))}

Then Σ′ is conservative over Σ.

Proof. Let A be any model of Σ. By remark (2) it suffices to obtain an L′-
expansion A′ of A that makes the new axiom about fϕ true. We choose a

function fA′

ϕ : An −→ A as follows. For any (a1, . . . , an) ∈ An, if there is a

b ∈ A such that A |= ϕ(a1, . . . , an, b) then we let fA′

ϕ (a1, . . . , an) be such an

element b, and if no such b exists, we let fA′

ϕ (a1, . . . , an) be an arbitrary element
of A. Thus

A′ |= ∀x1 . . .∀xn(∃yϕ(x1, . . . , xn, y)→ ϕ(x1, . . . , xn, fϕ(x1, . . . , xn)))

as desired.

Remark. A function fA′

ϕ as in the proof is called a Skolem function in A for
the formula ϕ(x1, . . . , xn, y). It yields a “witness” for each relevant n-tuple.
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Definition. Given an L-formula ϕ(x1, . . . , xm), let Rϕ be an m-ary relation
symbol not in L, and put Lϕ := L ∪ {Rϕ} and Σϕ := Σ ∪ {ρϕ} where ρϕ is

∀x1 . . . ∀xm(ϕ(x1, . . . , xm)↔ Rϕ(x1, . . . , xm)).

The sentence ρϕ is called the defining axiom for Rϕ. We call Σϕ an extension
of Σ by a definition for the relation symbol Rϕ.

Remark. Each model A of Σ expands uniquely to a model of Σϕ. We denote
this expansion by Aϕ. Every model of Σϕ is of the form Aϕ for a unique model
A of Σ.

Proposition 4.5.2. Let ϕ = ϕ(x1, . . . , xm) be as above. Then we have:
(1) Σϕ is conservative over Σ.
(2) For each Lϕ-formula ψ(y) where y = (y1, . . . , yn) there is an L-formula

ψ∗(y), called a translation of ψ(y), such that Σϕ ` ψ(y)↔ ψ∗(y).
(3) Suppose A |= Σ and S ⊆ Am. Then S is 0-definable in A if and only if S

is 0-definable in Aϕ, and the same with definable instead of 0-definable.

Proof. (1) is clear from the remark preceding the proposition, and (3) is im-
mediate from (2). To prove (2) we observe that by the Equivalence Theorem
(3.3.2) it suffices to prove it for formulas ψ(y) = Rϕt1(y) . . . tm(y) where the ti
are L-terms. In this case we can take

∃u1 . . . ∃um(u1 = t1(y) ∧ . . . ∧ um = tm(y) ∧ ϕ(u1/x1, . . . , un/xn))

as ψ∗(y) where the variables u1, . . . , um do not appear in ϕ and are not among
y1, . . . , yn.

Definition. Suppose ϕ(x, y) is an L-formula where (x, y) = (x1, . . . , xm, y) is
a tuple of m + 1 distinct variables, such that Σ ` ∀x1 . . . ∀xm∃!yϕ(x, y), where
∃!yϕ(x, y) abbreviates ∃y

(

ϕ(x, y) ∧ ∀z(ϕ(x, z) → y = z)
)

, with z a variable
not occurring in ϕ and not among x1, . . . , xm, y. Let fϕ be an m-ary function
symbol not in L and put L′ := L ∪ {fϕ} and Σ′ := Σ ∪ {γϕ} where γϕ is

∀x1 . . .∀xmϕ(x, fϕ(x))

The sentence γϕ is called the defining axiom for fϕ. We call Σ′ an extension of
Σ by a definition of the function symbol fϕ.

Remark. Each model A of Σ expands uniquely to a model of Σ′. We denote
this expansion by A′. Every model of Σ′ is of the form A′ for a unique model
A of Σ. Proposition 4.5.2 goes through when Lϕ, Σϕ, and A are replaced by
L′, Σ′, and A′, respectively.

In the next definition we use the following notation and terminology. Let X,Y
be sets, f : X → Y a map, and S ⊆ Xn. Then the f -image of S is the subset

f(S) := {(f(x1), . . . , f(xn)) : (x1, . . . , xn) ∈ S}



72 CHAPTER 4. SOME MODEL THEORY

of Y n. Also, given k ∈ N, we use the bijection

((y11, . . . , y1k), . . . , (yn1, . . . , ynk)) 7→ (y11, . . . , y1k, . . . , yn1, . . . , ynk)

from (Y k)n to Y nk to identify these two sets.

Definition. A definition of an L-structure A in a structure B is an injective
map δ : A→ Bk, with k ∈ N, such that
(i) δ(A) ⊆ Bk is definable in B.
(ii) For each m-ary R ∈ Lr the set δ(RA) ⊆ (Bk)m = Bmk is definable in B.
(iii) For each n-ary f ∈ Lf the set δ

(

graph of fA
)

⊆ (Bk)n+1 = B(n+1)k is
definable in B.

Remark. Here B is a structure for a language L∗ that may have nothing to
do with the language L. Replacing everywhere “definable” by “0-definable”, we
get the notion of a 0-definition of A in B.

A more general way of viewing a structure A as in some sense living inside
a structure B is to allow δ to be an injective map from A into Bk/E for some
equivalence relation E on Bk that is definable in B, and imposing suitable
conditions. Our special case corresponds to E = equality on Bk. (We do not
develop this idea here further: the right setting for it would be many-sorted
structures, rather than our one-sorted structures.)

Recall that by Lagrange’s “four squares” theorem we have

N = {a2 + b2 + c2 + d2 : a, b, c, d ∈ Z}.

It follows that the inclusion map N → Z is a 0-definition of (N; 0,+, ·, <) in
(Z; 0, 1,+,−, ·). The bijection

a+ bi 7→ (a, b) : C→ R2 (a, b ∈ R)

is a 0-definition of the field (C; 0, 1,+,−, ·) of complex numbers in the field
(R; 0, 1,+,−, ·) of real numbers.

There is no definition of the field of real numbers in the field of complex
numbers, but the proof of this fact is somewhat beyond the scope of these
notes. (A special case says that R, considered as a subset of C, is not definable
in the field of complex numbers; this follows easily from the fact that ACF
admits QE, see exercise 1.) Indeed, the only fields that can be defined in the
field of complex numbers are finite fields and fields isomorphic to the field of
complex numbers.

Proposition 4.5.3. Let δ : A→ Bk be a 0-definition of the L-structure A in the
L∗-structure B. Let x1, . . . , xn be distinct variables (viewed as ranging over A ),
and let x11, . . . , x1k, . . . , xn1, . . . , xnk be nk distinct variables (viewed as ranging
over B). Then we have a map that assigns to each L-formula ϕ(x1, . . . , xn) an
L∗-formula δϕ(x11, . . . , x1k, . . . , xn1, . . . , xnk) such that

δ(ϕA) = (δϕ)B ⊆ Bnk.
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In particular, for n = 0 the map above assigns to each L-sentence σ an
L∗-sentence δσ such that A |= σ ⇐⇒ B |= δσ.

Exercises.
(1) Prove the version of Proposition 4.5.2 for an extension of Σ by a definition of a

function symbol.
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Chapter 5

Computability, Decidability,
and Incompleteness

In this chapter we prove Gödel’s famous Incompleteness Theorem. Consider the
structure N := (N; 0, S,+, ·, <), where S : N→ N is the successor function. A
simple form of the incompleteness theorem is as follows.

Let Σ be a computable set of sentences in the language of N and true in N.
Then there exists a sentence σ in that language such that N |= σ, but Σ 6` σ.

In other words, no computable set of axioms in the language of N and true
in N can be complete, hence the name Incompleteness Theorem. The only
unexplained terminology here is “computable.” Intuitively, “Σ is computable”
means that there is an algorithm to recognize whether any given sentence in
the language of N belongs to Σ. (It seems reasonable to require this of an
axiom system for N.) Thus we begin this chapter with developing the notion of
computability . The interest of this notion is tied to the Church-Turing Thesis
as explained in Section 5.2, and goes far beyond incompleteness. For example,
computability plays a role in combinatorial group theory (Higman’s Theorem)
and in certain diophantine questions (Hilbert’s 10th problem), not to mention
its role in the ideological underpinnings of computer science.

5.1 Computable Functions

First some notation. We let µx(..x..) denote the least x ∈ N for which ..x.. holds.
Here ..x.. is some condition on natural numbers x. For example µx(x2 > 7) = 3.
We will only use this notation when the meaning of ..x.. is clear, and the set
{x ∈ N : ..x..} is non-empty. For a ∈ N we also let µx<a(..x..) be the least
x < a in N such that ..x.. holds if there is such an x, and if there is no such x
we put µx<a(..x..) := a. For example, µx<4(x

2 > 3) = 2 and µx<2(x > 5) = 2.

75
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Definition. For R ⊆Nn, we define χR : Nn → N by χR(a) =

{

1 if a ∈ R,
0 if a /∈ R.

Think of such R as an n-ary relation on N. We call χR the characteristic
function of R, and often write R(a1, . . . , an) instead of (a1, . . . , an) ∈ R.

Example. χ<(m,n) = 1 iff m < n, and χ<(m,n) = 0 iff m ≥ n.

Definition. For i = 1, . . . , n we define In
i : Nn → N by In

i (a1, . . . , an) = ai.
These functions are called coordinate functions .

Definition. The computable functions (or recursive functions) are the functions
from Nn to N (for n = 0, 1, 2, . . .) obtained by inductively applying the following
rules:
(R1) + : N2 → N, · : N2 → N, χ≤ : N2 → N, and the coordinate functions In

i

(for each n and i = 1, . . . , n) are computable.
(R2) If G : Nk → N is computable and H1, . . . , Hk : Nt → N are computable,

then so is the function F = G(H1, . . . , Hk) : Nt → N defined by

F (a) = G(H1(a), . . . , Hk(a)).

(R3) If G : Nn+1 → N is computable, and for all a ∈ Nn there exists x ∈ N
such that G(a, x) = 0, then the function F : Nn → N given by

F (a) = µx(G(a, x) = 0)

is computable.
A relation R ⊆ Nn is said to be computable (or recursive) if its characteristic
function χR : Nn −→ N is computable.

Example. If F : N3 → N and G : N2 → N are computable, then so is the
function H : N4 → N defined by H(x1, x2, x3, x4) = F (G(x1, x4), x2, x4). This
follows from (R2) by noting that H(x) = F (G(I4

1 (x), I4
4 (x)), I4

2 (x), I4
4 (x)) where

x = (x1, x2, x3, x4). We shall use this device from now on in many proofs, but
only tacitly. (The reader should of course notice when we do so.)

From (R1), (R2) and (R3) we derive further rules for obtaining computable
functions. This is mostly an exercise in programming.

Lemma 5.1.1. Let H1, . . . , Hk : Nn → N and R ⊆ Nk be computable. Then
R(H1, . . . , Hk) ⊆Nn is computable, where for a ∈ Nn we put

R(H1, . . . , Hk)(a)⇐⇒ R(H1(a), . . . , Hk(a)).

Proof. Observe that χR(H1,...,Hk) = χR(H1, . . . , Hk). Now apply (R2).

Lemma 5.1.2. The functions χ≥ and χ= on N2 are computable, as is the
constant function cn0 : Nn → N where cn0 (a) = 0 for all n and a ∈ Nn.
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Proof. The function χ≥ is computable because

χ≥(m,n) = χ≤(n,m) = χ≤(I2
2 (m,n), I2

1 (m,n))

which enables us to apply (R1) and (R2). Similarly, χ= is computable:

χ=(m,n) = χ≤(m,n) · χ≥(m,n).

To handle cn0 we observe

cn0 (a) = µx(In+1
n+1 (a, x) = 0).

For k ∈ N we define the constant function cnk : Nn → N by cnk (a) = k.

Lemma 5.1.3. Every constant function cnk is computable.

Proof. This is true for k = 0 (and all n) by Lemma 5.1.2. Next, observe that

cnk+1(a) = µx(cnk (a) < x) = µx
(

χ≥(cn+1
k (a, x), In+1

n+1 (a, x)) = 0
)

for a ∈ Nn, so the general result follows by induction on k.

Let P,Q be n-ary relations on N. Then we can form the n-ary relations
¬P := Nn

r P , P ∨ Q := P ∪ Q, P ∧ Q := P ∩ Q, P → Q := (¬P ) ∨ Q and
P ↔ Q := (P → Q) ∧ (Q→ P ) on N.

Lemma 5.1.4. Suppose P,Q are computable. Then ¬P , P ∨Q, P ∧Q, P → Q
and P ↔ Q are also computable.

Proof. Let a ∈ Nn. Then ¬P (a) iff χP (a) = 0 iff χP (a) = cn0 (a), so χ¬P (a) =
χ=(χP (a), cn0 (a)). Hence ¬P is computable by Lemma 5.1.1. Next, P ∧ Q is
computable since χP∩Q = χP ·χQ. By De Morgan’s Law, P ∨Q = ¬(¬P ∧¬Q).
Thus P ∨Q is computable. The rest is clear.

Lemma 5.1.5. The binary relations <,≤,=, >,≥, 6= on N are computable.

Proof. The relations ≥, ≤ and = have already been taken care of by Lemma
5.1.2 and (R1). The remaining relations are complements of these three, so by
Lemma 5.1.4 they are also computable.

Lemma 5.1.6. (Definition by Cases) Let R1, . . . , Rk ⊆ Nn be computable such
that for each a ∈ Nn exactly one of R1(a), . . . , Rk(a) holds, and suppose that
G1, . . . , Gk : Nn → N are computable. Then G : Nn → N given by

G(a) =











G1(a) if R1(a)
...

...
Gk(a) if Rk(a)

is computable.
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Proof. This follows from G = G1 · χR1
+ · · ·+Gk · χRk

.

Lemma 5.1.7. (Definition by Cases) Let R1, . . . , Rk ⊆Nn be computable such
that for each a ∈ Nn exactly one of R1(a), . . . , Rk(a) holds. Let P1, . . . , Pk ⊆Nn

be computable. Then the relation P ⊆ Nn defined by

P (a) ⇐⇒











P1(a) if R1(a)
...

...
Pk(a) if Rk(a)

is computable.

Proof. Use that P = (P1 ∧ R1) ∨ · · · ∨ (Pk ∧ Rk).

Lemma 5.1.8. Let R ⊆ Nn+1 be computable such that for all a ∈ Nn there
exists x ∈ N with (a, x) ∈ R. Then the function F : Nn → N given by

F (a) = µxR(a, x)

is computable.

Proof. Note that

F (a) = µx(χR(a, x) 6= 0) = µx(χ=(χR(a, x), cn+1
0 (a, x)) = 0)

and apply (R3).

Here is a nice consequence of 5.1.5 and 5.1.8.

Lemma 5.1.9. Let F : Nn → N. Then F is computable if and only if its graph
(a subset of Nn+1) is computable.

Proof. Let R ⊆Nn+1 be the graph of F . Then for all a ∈ Nn and b ∈ N,

R(a, b)⇐⇒ F (a) = b, F (a) = µxR(a, x),

from which the lemma follows immediately.

Lemma 5.1.10. If R ⊆ Nn+1 is computable, then the function FR : Nn+1 → N
defined by FR(a, y) = µx<yR(a, x) is computable.

Proof. Use that FR(a, y) = µx(R(a, x) or x = y).

Some notation: below we use the bold symbol ∃∃∃ as shorthand for “there
exists a natural number”; likewise, we use the bold symbol ∀ to abbreviate “for
all natural numbers.” These abbreviation symbols should not be confused with
the logical symbols ∃ and ∀.
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Lemma 5.1.11. Suppose R ⊆ Nn+1 is computable. Let P,Q ⊆ Nn+1 be the
relations defined by

P (a, y) ⇐⇒ ∃∃∃x<y R(a, x)

Q(a, y) ⇐⇒ ∀x<y R(a, x),

for (a, y) = (a1, . . . , an, y) ∈ Nn+1. Then P and Q are computable.

Proof. Using the notation and results from Lemma 5.1.10 we note that P (a, y)
iff FR(a, y) < y. Hence χP (a, y) = χ<(FR(a, y), y). For Q, note that ¬Q(a, y)
iff ∃∃∃x<y¬R(a, x).

Lemma 5.1.12. The function −̇ : N2 → N defined by a−̇b =

{

a− b if a ≥ b,
0 if a < b

is computable.

Proof. Use that a−̇b = µx(b+ x = a or a < b).

The results above imply easily that many familiar functions are computable.
But is the exponential function n 7→ 2n computable? It certainly is in the
intuitive sense: we know how to compute (in principle) its value at any given
argument. It is not that obvious from what we have proved so far that it is
computable in our precise sense. We now develop some coding tricks due to
Gödel that enable us to prove routinely that functions like 2x are computable
according to our definition of “computable function”.

Definition. Define the function Pair : N2 → N by

Pair(x, y) :=
(x+ y)(x+ y + 1)

2
+ x

We call Pair the pairing function.

Lemma 5.1.13. The function Pair is bijective and computable.

Proof. Exercise.

Definition. Since Pair is a bijection we can define functions

Left,Right : N→ N

by

Pair(x, y) = a ⇐⇒ Left(a) = x and Right(a) = y.

The reader should check that Left(a),Right(a) ≤ a for a ∈ N, and Left(a) < a
if 0 < a ∈ N.

Lemma 5.1.14. The functions Left and Right are computable.
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Proof. Use 5.1.9 in combination with

Left(a) = µx
(

∃∃∃y<a+1 Pair(x, y) = a
)

and Right(a) = µy
(

∃∃∃x<a+1 Pair(x, y) = a
)

.

For a, b, c ∈ Z we have (by definition): a ≡ b mod c ⇐⇒ a− b ∈ cZ.

Lemma 5.1.15. The ternary relation a ≡ b mod c on N is computable.

Proof. Use that for a, b, c ∈ N we have
a ≡ b mod c ⇐⇒

(

∃∃∃x<a+1 a = x · c+ b or ∃∃∃x<b+1 b = x · c+ a
)

.

We can now introduce Gödel’s function β : N2 → N.

Definition. For a, i ∈ N we let β(a, i) be the remainder of Left(a) upon division
by 1 + (i+ 1) Right(a), that is,

β(a, i) := µx
(

x ≡ Left(a) mod 1 + (i+ 1) Right(a)
)

.

Proposition 5.1.16. The function β is computable, β(a, i) ≤ a−̇1 for all a, i ∈
N. For any sequence (a0, . . . , an−1) of natural numbers there exists a ∈ N such
that β(a, i) = ai for i < n.

Proof. The computability of β is clear from earlier results. We have β(a, i) ≤
Left(a) ≤ a−̇1.

Let a0, . . . , an−1 be natural numbers. Then we take an N ∈ N such that
ai ≤ N for all i < n and N is a multiple of every prime number less than
n. We claim that then 1 + N , 1 + 2N, . . . , 1 + nN are relatively prime. To
see this, suppose p is a prime number such that p | 1 + iN and p | 1 + jN
(1 ≤ i < j ≤ n); then p divides their difference (j − i)N , but p does not divide
N , hence p | j − i < n, a contradiction.

By the Chinese Remainder Theorem there exists an M such that

M ≡ a0 mod 1 +N

M ≡ a1 mod 1 + 2N

...

M ≡ an−1 mod 1 + nN.

Put a := Pair(M,N); then Left(a) = M and Right(a) = N , and thus β(a, i) =
ai as required.

Remark. Proposition 5.1.16 shows that we can use β to encode a sequence of
numbers a0, . . . , an−1 in terms of a single number a. We use this as follows to
show that the function n 7→ 2n is computable.

If a0, . . . , an are natural numbers such that a0 = 1, and ai+1 = 2ai for
all i < n, then necessarily an = 2n. Hence by Proposition 5.1.16 we have
β(a, n) = 2n where

a := µx(β(x, 0) = 1 and ∀i<nβ(x, i+ 1) = 2β(x, i)),
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that is,

2n = β(a, n) = β(µx(β(x, 0) = 1 and ∀i<nβ(x, i+ 1) = 2β(x, i)), n)

It follows that n 7→ 2n is computable.

The above suggests a general method, which we develop next. To each se-
quence (a1, . . . , an) of natural numbers we assign a sequence number , denoted
〈a1, . . . , an〉, and defined to be the least natural number a such that β(a, 0) = n
(the length of the sequence) and β(a, i) = ai for i = 1, . . . , n. For n = 0 this
gives 〈〉 = 0, where 〈〉 is the sequence number of the empty sequence. We de-
fine the length function lh : N −→ N by lh(a) = β(a, 0), so lh is computable.
Observe that lh(〈a1, . . . , an〉) = n.

Put (a)i := β(a, i+1). The function (a, i) 7→ (a)i : N2 −→ N is computable,
and (〈a1, . . . , an〉)i = ai+1 for i < n. Finally, let Seq ⊆ N denote the set of
sequence numbers. The set Seq is computable since

a ∈ Seq⇐⇒ ∀x<a(lh(x) 6= lh(a) or ∃∃∃i<lh(a)(x)i 6= (a)i)

Lemma 5.1.17. For any n, the function (a1, . . . , an) 7→ 〈a1, . . . , an〉 : Nn → N
is computable, and ai < 〈a1, . . . , an〉 for (a1, . . . , an) ∈ Nn and i = 1, . . . , n.

Proof. Use 〈a1, . . . , an〉 = µa(β(a, 0) = n, β(a, 1) = a1, . . . , β(a, n) = an), and
apply Lemmas 5.1.8, 5.1.4 and 5.1.16.

Lemma 5.1.18.
(1) The function In : N2 → N defined by

In(a, i) = µx(lh(x) = i and ∀j<i(x)j = (a)j)

is computable and In(〈a1, . . . , an〉, i) = 〈a1, . . . , ai〉 for all a1, . . . , an ∈ N
and i ≤ n.

(2) The function ∗ : N2 → N defined by

a ∗ b = µx(lh(x) = lh(a) + lh(b) and ∀i<lh(a)(x)i = (a)i

and ∀j<lh(b)(x)lh(a)+j = (b)j)

is computable and 〈a1, . . . , am〉 ∗ 〈b1, . . . , bn〉 = 〈a1, . . . , am, b1, . . . , bn〉 for
all a1, . . . , am, b1, . . . , bn ∈ N.

Definition. For F : Nn+1 → N , let F̄ : Nn+1 → N be given by

F̄ (a, b) = 〈F (a, 0), . . . , F (a, b− 1)〉 (a ∈ Nn).

Note that F̄ (a, 0) = 〈〉 = 0.

Lemma 5.1.19. Let F : Nn+1 → N. Then F is computable if and only if F̄ is
computable.
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Proof. Suppose F is computable. Then F̄ is computable since

F̄ (a, b) = µx(lh(x) = b and ∀i<b (x)i = F (a, i)).

In the other direction, suppose F̄ is computable. Then F is computable since
F (a, b) = (F̄ (a, b+ 1))b.

Given G : Nn+2 → N there is a unique function F : Nn+1 → N such that

F (a, b) = G(a, b, F̄ (a, b)) (a ∈ Nn).

This will be clear if we express the requirement on F as follows:

F (a, 0) = G(a, 0, 0), F (a, b+ 1) = G(a, b+ 1, 〈F (a, 0), . . . , F (a, b)〉).

The next result is important because it allows us to introduce computable func-
tions by recursion on its values at smaller arguments.

Proposition 5.1.20. Let G and F be as above and suppose G is computable.
Then F is computable.

Proof. Note that

F̄ (a, b) = µx(Seq(x) and lh(x) = b and ∀i<b(x)i = G(a, i, In(x, i)))

for all a ∈ Nn and b ∈ N. It follows that F̄ is computable, and thus by the
previous lemma F is computable.

Definition. Let A : Nn → N and B : Nn+2 → N be given. Let a range over
Nn, and define the function F : Nn+1 → N by

F (a, 0) = A(a),

F (a, b+ 1) = B(a, b, F (a, b)).

We say that F is obtained from A and B by primitive recursion.

Proposition 5.1.21. Suppose A, B, and F are as above, and A and B are
computable. Then F is computable.

Proof. Define G : Nn+2 → N by

G(a, b, c) =

{

A(a) if c = 0,

B(a, b−̇1, (c)b−̇1) if c > 0.

Clearly, G is computable. We claim that

F (a, b) = G(a, b, F̄ (a, b)).

This claim yields the computability of F , by Proposition 5.1.20. We have
F (a, 0) = A(a) = G(a, 0, 0) = G(a, 0, F̄ (a, 0)) and

F (a, b+ 1) = B(a, b, F (a, b)) = B(a, b, (F̄ (a, b+ 1))b) = G(a, b+ 1, F̄ (a, b+ 1)).

The claim follows.
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Proposition 5.1.20 will be applied over and over again in the later section on
Gödel numbering, but in combination with definitions by cases. As a simple
example of such an application, let G : N→ N andH : N2 → N be computable.
There is clearly a unique function F : N2 → N such that for all a, b ∈ N

F (a, b) =

{

F (a,G(b)) if G(b) < b,

H(a, b) otherwise.

In particular F (a, 0) = H(a, 0). We claim that F is computable.
According to Proposition 5.1.20 this claim will follow if we can specify a

computable function K : N3 → N such that F (a, b) = K(a, b, F̄ (a, b)) for all
a, b ∈ N. Such a function K is given by

K(a, b, c) =

{

(c)G(b) if G(b) < b,

H(a, b) otherwise.

Exercises.
(1) The set of prime numbers is computable.

(2) The Fibonacci numbers are the natural numbers Fn defined recursively by F0 = 0,
F1 = 1, and Fn+2 = Fn+1 + Fn. The function n 7→ Fn : N→ N is computable.

(3) If f1, . . . , fn : Nm → N are computable and X ⊆ Nn is computable, then
f−1(X) ⊆ Nm is computable, where f := (f1, . . . , fn) : Nm → Nn.

(4) If f : N→ N is computable and surjective, then there is a computable function
g : N→ N such that f ◦ g = idN.

(5) If f : N → N is computable and strictly increasing, then f(N) ⊆ N is com-
putable.

(6) All computable functions and relations are definable in N.

(7) Let F : Nn → N, and define

〈F 〉 : N→ N, 〈F 〉(a) := F
`

(a)0, . . . , (a)n−1

´

.

Note that then F (a1, . . . , an) = 〈F 〉(〈a1, . . . , an〉) for all a1, . . . , an ∈ N, and show
that F is computable iff 〈F 〉 is computable. (Hence n-variable computability
reduces to 1-variable computability.)

Let F be a collection of functions F : Nm → N for various m. We say that F is
closed under composition if for all G : Nk → N in F and all H1, . . . , Hk : Nt → N

in F , the function F = G(H1, . . . , Hk) : Nt → N is in F . We say that F is
closed under minimalization if for every G : Nn+1 → N in F such that for all
a ∈ Nn there exists x ∈ N with G(a, x) = 0, the function F : Nn → N given by
F (a) = µx(G(a, x) = 0) is in F . We say that a relation R ⊆ Nn is in F if its
characteristic function χR is in F .

(8) Suppose F contains the functions mentioned in (R1), and is closed under compo-
sition and minimalization. Show that all lemmas and propositions of this Section
go through with computable replaced by in F .
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5.2 The Church-Turing Thesis

The computable functions as defined in the last section are also computable
in the informal sense that for each such function F : Nn → N there is an
algorithm that on any input a ∈ Nn stops after a finite number of steps and
produces an output F (a). An algorithm is given by a finite list of instructions,
a computer program, say. These instructions should be deterministic (leave
nothing to chance or choice). We deliberately neglect physical constraints of
space and time: imagine that the program that implements the algorithm has
unlimited access to time and memory to do its work on any given input.

Let us write “calculable” for this intuitive, informal, idealized notion of
computable. The Church-Turing Thesis asserts

each calculable function F : N→ N is computable.

The corresponding assertion for functions Nn → N follows, because the result
of Exercise 7 is clearly also valid for “calculable” instead of “computable.” Call
a set P ⊆N calculable if its characteristic function is calculable.

While the Church-Turing Thesis is not a precise mathematical statement, it
is an important guiding principle, and has never failed in practice: any function
that any competent person has ever recognized as being calculable, has turned
out to be computable, and the informal grounds for calculability have always
translated routinely into an actual proof of computability. Here is a heuristic
(informal) argument that might make the Thesis plausible.

Let an algorithm be given for computing F : N → N. We can assume
that on any input a ∈ N this algorithm consists of a finite sequence of steps,
numbered from 0 to n, say, where at each step i it produces a natural number
ai, with a0 = a as starting number. It stops after step n with an = F (a).
We assume that for each i < n the number ai+1 is calculated by some fixed
procedure from the earlier numbers a0, . . . , ai, that is, we have a calculable
function G : N → N such that ai+1 = G(〈a0, . . . , ai〉) for all i < n. The
algorithm should also tell us when to stop, that is, we should have a calculable
P ⊆ N such that ¬P (〈a0, . . . , ai〉) for i < n and P (〈a0, . . . , an〉). Since G and
P describe only single steps in the algorithm for F it is reasonable to assume
that they at least are computable. Once this is agreed to, one can show easily
that F is computable as well, see the exercise below.

A skeptical reader may find this argument dubious, but Turing gave in 1936
a compelling informal analysis of what functions F : N → N are calculable
in principle, and this has led to general acceptance of the Thesis. In addition,
various alternative formalizations of the informal notion of calculable function
have been proposed, using various kinds of machines, formal systems, and so
on. They all have turned out to be equivalent in the sense of defining the same
class of functions on N, namely the computable functions.

The above is only a rather narrow version of the Church-Turing Thesis, but
it suffices for our purpose. There are various refinements and more ambitious
versions. Also, our Church-Turing Thesis does not characterize mathematically
the intuitive notion of algorithm, only the notion function computable by an
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algorithm (producing for each input from N an output in N).

Exercises.
(1) Let G : N→ N and P ⊆ N be given. Then there is for each a ∈ N at most one

finite sequence a0, . . . , an of natural numbers such that a0 = a, for all i < n we
have ai+1 = G(〈a0, . . . , ai〉) and ¬P (〈a0, . . . , ai〉), and P (〈a0, . . . , an〉). Suppose
that for each a ∈ N there is such a finite sequence a0, . . . , an, and put F (a) := an,
thus defining a function F : N → N. Show that if G and P are computable, so
is F .

5.3 Primitive Recursive Functions

This section is not really needed in the rest of this chapter, but it may throw
light on some issues relating to computability. One such issue is the condition,
in Rule (R3) for generating computable functions, that for all a ∈ Nn there
exists y ∈ N such that G(a, y) = 0. This condition is not constructive: it could
be satisfied for a certain G without us ever finding out. We shall now argue
informally that it is impossible to generate in a fully constructive way exactly the
computable functions. Such a constructive generation process would presumably
enable us to enumerate effectively a sequence of algorithms α0, α1, α2, . . . such
that each αn computes a (computable) function fn : N → N, and such that
every computable function f : N → N occurs in the sequence f0, f1, f2, . . . ,
possibly more than once. Now consider the function fdiag : N→ N defined by

fdiag(n) = fn(n) + 1.

Then fdiag is clearly computable in the intuitive sense, but fdiag 6= fn for all n,
in violation of the Church-Turing Thesis.

This way of producing a new function fdiag from a sequence (fn) is called
diagonalization.1 The same basic idea applies in other cases, and is used in a
more sophisticated form in the proof of Gödel’s incompleteness theorem.

Here is a class of computable functions that can be generated constructively:
The primitive recursive functions are the functions f : Nn → N obtained in-
ductively as follows:

(PR1) The nullary function N0 → N with value 0, the unary successor function
S, and all coordinate functions In

i are primitive recursive.

(PR2) If G : Nk → N is primitive recursive and H1, . . . , Hk : Nt → N are
primitive recursive, then G(H1, . . . , Hk) is primitive recursive.

(PR3) If F : Nn+1 → N is obtained by primitive recursion from primitive re-
cursive functions G : Nn → N and H : Nn+2 → N, then F is primitive
recursive.

1Perhaps antidiagonalization would be a more appropriate term.
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A relation R ⊆ Nn is said to be primitive recursive if its characteristic function
χR is primitive recursive. As the next two lemmas show, the computable func-
tions that one ordinarily meets with are primitive recursive. In the rest of this
section x ranges over Nm with m depending on the context, and y over N.

Lemma 5.3.1. The following functions and relations are primitive recursive:

(i) each constant function cnm;

(ii) the binary operations +, ·, and (x, y) 7→ xy on N;

(iii) the predecessor function Pd : N → N given by Pd(x) = x−̇1, the unary
relation {x ∈ N : x > 0}, the function −̇ : N2 → N;

(iv) the binary relations ≥, ≤ and = on N.

Proof. The function c0m is obtained from c00 by applying (PR2) m times with
G = S. Next, cnm is obtained by applying (PR2) with G = c0m (with k = 0 and
t = n). The functions in (ii) are obtained by the usual primitive recursions. It is
also easy to write down primitive recursions for the functions in (iii), in the order
they are listed. For (iv), note that χ≥(x, y + 1) = χ>0(x) · χ≥(Pd(x), y).

Lemma 5.3.2. With the possible exceptions of Lemmas 4.1.8 and 4.1.9, all
Lemmas and Propositions in Section 4.1 go through with “computable” replaced
by “primitive recursive.”

Proof. To obtain the primitive recursive version of Lemma 4.1.10, note that

FR(a, 0) = 0, FR(a, y+1) = FR(a, y)·χR(a, FR(a, y))+(y+1)·χ¬R(a, FR(a, y)).

A consequence of the primitive recursive version of Lemma 4.1.10 is the following
“restricted minimalization scheme” for primitive recursive functions:

if R ⊆ Nn+1 and H : Nn → N are primitive recursive, and for all a ∈ Nn

there exists x < H(a) such that R(a, x), then the function F : Nn → N given
by F (a) = µxR(a, x) is primitive recursive.

The primitive recursive versions of Lemmas 4.1.11–4.1.16 now follow easily. In
particular, the function β is primitive recursive. Also, the proof of Lemma 4.1.16
yields:

There is a primitive recursive function B : N→ N such that, whenever

n < N, a0 < N, . . . , an−1 < N, (n, a0, . . . , an−1, N ∈ N)

then for some a < B(N) we have β(a, i) = ai for i = 0, . . . , n− 1.

Using this fact and restricted minimalization, it follows that the unary relation
Seq, the unary function lh, and the binary functions (a, i) 7→ (a)i, In and ∗ are
primitive recursive.

Let a function F : Nn+1 → N be given. Then F̄ : Nn+1 → N satisfies the
primitive recursion F̄ (a, 0) = 0 and F̄ (a, b + 1) = F̄ (a, b) ∗ 〈F (a, b)〉. It follows
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that if F is primitive recursive, so is F̄ . The converse is obvious. Suppose also
that G : Nn+2 → N is primitive recursive, and F (a, b) = G(a, b, F̄ (a, b)) for all
(a, b) ∈ Nn+1; then F̄ satisfies the primitive recursion

F̄ (A, 0) = G(a, 0, 0), F̄ (a, b+ 1) = F̄ (a, b) ∗ 〈G(a, b, F̄ (a, b))〉.

so F̄ (and hence F ) is primitive recursive.

The Ackermann Function. By diagonalization we can produce a computable
function that is not primitive recursive, but the so-called Ackermann function
does more, and plays a role in several contexts. First we define inductively a
sequence A0, A1, A2, . . . of primitive recursive functions An : N→ N:

A0(y) = y + 1, An+1(0) = An(1),

An+1(y + 1) = An(An+1(y)).

Thus A0 = S and An+1 ◦A0 = An ◦An+1. One verifies easily that A1(y) = y+2
and A2(y) = 2y + 3 for all y. We define the Ackermann function A : N2 → N
by A(n, y) := An(y).

Lemma 5.3.3. The function A is computable, and strictly increasing in each
variable. Also, for all n and x, y:

(i) An(x+ y) ≥ An(x) + y;

(ii) n ≥ 1 =⇒ An+1(y) > An(y) + y;

(iii) An+1(y) ≥ An(y + 1);

(iv) 2An(y) < An+2(y);

(v) x < y =⇒ An(x+ y) ≤ An+2(y).

Proof. We leave it to the reader to verify that A is computable. Assume induc-
tively that A0, . . . , An are strictly increasing and A0(y) < A1(y) < · · · < An(y)
for all y. Then

An+1(y + 1) = An(An+1(y)) ≥ A0(An+1(y)) > An+1(y),

so An+1 is strictly increasing. Next we show that An+1(y) > An(y) for all y:
An+1(0) = An(1), so An+1(0) > An(0) and An+1(0) > 1, so An+1(y) > y + 1
for all y. Hence An+1(y + 1) = An(An+1(y)) > An(y + 1).

Inequality (i) follows easily by induction on n, and a second induction on y.
For inequality (ii), we proceed again by induction on (n, y): Using A1(y) =

y+ 2 and A2(y) = 2y+ 3, we obtain A2(y) > A1(y) + y. Let n > 1, and assume
inductively that An(y) > An−1(y) + y. Then An+1(0) = An(1) > An(0) + 0,
and

An+1(y + 1) = An(An+1(y)) ≥ An(y + 1 +An(y))

≥ An(y + 1) +An(y) > An(y + 1) + y + 1.
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In (iii) we proceed by induction on y. We have equality for y = 0. Assuming
inductively that (iii) holds for a certain y we obtain

An+1(y + 1) = An(An+1(y)) ≥ An(An(y + 1)) ≥ An(y + 2).

Note that (iv) holds for n = 0. For n > 0 we have by (i), (ii) and (iii):

An(y) +An(y) ≤ An(y +An(y)) < An(An+1(y)) = An+1(y + 1) ≤ An+2(y).

Note that (v) holds for n = 0. Assume (v) holds for a certain n. Let x < y+1.
We can assume inductively that if x < y, then An+1(x+ y) ≤ An+3(y), and we
want to show that

An+1(x + y + 1) ≤ An+3(y + 1).

Case 1. x = y. Then

An+1(x + y + 1) = An+1(2x+ 1) = An(An+1(2x))

≤ An+2(2x) < An+2(An+3(x)) = An+3(y + 1).

Case 2. x < y. Then

An+1(x + y + 1) = An(An+1(x+ y)) ≤ An+2(An+3(y)) = An+3(y + 1).

Below we put |x| := x1 + · · ·+ xm for x = (x1, . . . , xm) ∈ Nm.

Proposition 5.3.4. Given any primitive recursive function F : Nm → N there
is an n = n(F ) such that F (x) ≤ An(|x|) for all x ∈ Nm.

Proof. Call an n = n(F ) with the property above a bound for F . The nullary
constant function with value 0, the successor function S, and each coordinate
function Im

i , (1 ≤ i ≤ m), has bound 0. Next, assume F = G(H1, . . . , Hk) where
G : Nk → N and H1, . . . , Hk : Nm → N are primitive recursive, and assume
inductively that n(G) and n(H1), . . . , n(Hk) are bounds for G and H1, . . . , Hk.
By part (iv) of the previous lemma we can take N ∈ N such that n(G) ≤ N ,
and

∑

iHi(x) ≤ AN+1(|x|) for all x. Then

F (x) = G(H1(x), . . . , Hk(x)) ≤ AN (
∑

i

Hi(x)) ≤ AN (AN+1(|x|)) ≤ AN+2(|x|).

Finally, assume that F : Nm+1 → N is obtained by primitive recursion from
the primitive recursive functions G : Nm → N and H : Nm+2 → N, and assume
inductively that n(G) and n(H) are bounds for G and H . Take N ∈ N such
that n(G) ≤ N + 3 and n(H) ≤ N . We claim that N + 3 is a bound for F :
F (x, 0) = G(x) ≤ AN+3(|x|), and by part (v) of the lemma above,

F (x, y + 1) = H(x, y, F (x, y)) ≤ AN{|x|+ y +AN+3(|x| + y)}
≤ AN+2{AN+3(|x| + y)} = AN+3(|x|+ y + 1).
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Consider the function A∗ : N → N defined by A∗(n) = A(n, n). Then A∗

is computable, and for any primitive recursive function F : N → N we have
F (y) < A∗(y) for all y > n(F ), where n(F ) is a bound for F . In particular, A∗

is not primitive recursive. Hence A is computable but not primitive recursive.

The recursion in “primitive recursion” involves only one variable; the other
variables just act as parameters. The Ackermann function is defined by a re-
cursion involving both variables:

A(0, y) = y + 1, A(x+ 1, 0) = A(x, 1), A(x + 1, y + 1) = A(x,A(x + 1, y)).

This kind of double recursion is therefore more powerful in some ways than what
can be done in terms of primitive recursion and composition.

5.4 Representability

Let L be a numerical language, that is, L contains the constant symbol 0 and
the unary function symbol S. We let Sn0 denote the term S . . . S0 in which S
appears exactly n times. So S00 is the term 0, S10 is the term S0, and so on.
Our key example of a numerical language is

L(N) := {0, S,+, ·, <} (the language of N).

Here N is the following set of nine axioms, where we fix two distinct variables
x and y for the sake of definiteness:

N1 ∀x (Sx 6= 0)
N2 ∀x∀y (Sx = Sy → x = y)
N3 ∀x (x+ 0 = x)
N4 ∀x∀y

(

x+ Sy = S(x+ y)
)

N5 ∀x (x · 0 = 0)
N6 ∀x∀y (x · Sy = x · y + x)
N7 ∀x (x 6< 0)
N8 ∀x∀y (x < Sy ↔ x < y ∨ x = y)
N9 ∀x∀y (x < y ∨ x = y ∨ y < x)

These axioms are clearly true in N. The fact that N is finite will play a role
later. It is a very weak set of axioms, it doesn’t even prove

∀x∀y(x + y = y + x),

but it is strong enough to prove numerical facts such as

SS0 + SSS0 6= SSSSSS0, and ∀x
(

x < SS0→ (x = 0 ∨ x = S0)
)

.

Some models of N.
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(1) We usually refer to N as the standard model of N. Another model of N is
N[x] := (N[x]; . . . ), where 0, S,+, · are interpreted as the zero polynomial,
as the unary operation of adding 1 to a polynomial, and as addition and
multiplication of polynomials in N[x], and where< is interpreted as follows:
f(x) < g(x) iff f(n) < g(n) for all large enough n.

(2) A more bizarre model of N: (R≥0; . . . ) with the usual interpretations of
0, S,+, ·, in particular S(r) := r+ 1, and with < interpreted as the binary
relation <N on R≥0: r <N s⇔ (r, s ∈ N and r < s) or s /∈ N.

The first example shows that N 6` ∀x∃y (x = 2y ∨ x = 2y + S0), since in N[x]
the element x is not in 2N[x]∪2N[x]+1; in other words, N cannot prove “every
element is even or odd.” In the second example <N is not even a total order on
the underlying set of the model. About the only useful fact about models of N
is that they all contain the so-called standard model N in a unique way:

Lemma 5.4.1. Suppose A |= N. Then there is a unique homomorphism

ι : N→ A.

This homomorphism ι is an embedding, and for all a ∈ A and n,
(i) if a <A ι(n), then a = ι(m) for some m < n;
(ii) if a /∈ ι(N), then ι(n) <A a.

As to the proof, note that for any homomorphism ι : N → A and all n we
must have ι(n) = (Sn0)A. Hence there is at most one such homomorphism. It
remains to show that the map n 7→ (Sn0)A : N→ A is an embedding ι : N→ A
with properties (i) and (ii). We leave this as an exercise to the reader.

Definition. Let L be a numerical language, and Σ a set of L-sentences. A rela-
tion R ⊆Nm is said to be Σ-representable, if there is an L-formula ϕ(x1, . . . , xm)
such that for all (a1, . . . , am) ∈ Nm we have
(i) R(a1, . . . , am) =⇒ Σ ` ϕ(Sa10, . . . , Sam0)
(ii) ¬R(a1, . . . , am) =⇒ Σ ` ¬ϕ(Sa10, . . . , Sam0)
Such a ϕ(x1, . . . , xm) is said to represent R in Σ or to Σ-representR. Note that if
ϕ(x1, . . . , xm) Σ-representsR and Σ is consistent, then for all (a1, . . . , am) ∈ Nm

R(a1, . . . , am)⇐⇒ Σ ` ϕ(Sa10, . . . , Sam0),

¬R(a1, . . . , am)⇐⇒ Σ ` ¬ϕ(Sa10, . . . , Sam0).

A function F : Nm → N is Σ-representable if there is a formula ϕ(x1, . . . , xm, y)
of L such that for all (a1, . . . , am) ∈ Nm we have

Σ ` ϕ(Sa10, . . . , Sam0, y)↔ y = SF (a1,...,am)0.

Such a ϕ(x1, . . . , xm, y) is said to represent F in Σ or to Σ-represent F .

An L-term t(x1, . . . , xm) is said to represent the function F : Nm → N in Σ if
Σ ` t(Sa10, . . . , Sam0) = SF (a)0 for all a = (a1, . . . , am) ∈ Nm. Note that then
the function F is Σ-represented by the formula t(x1, . . . , xm) = y.
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Proposition 5.4.2. Let L be a numerical language, Σ a set of L-sentences such
that Σ ` S0 6= 0, and R ⊆Nm a relation. Then

R is Σ-representable ⇐⇒ χR is Σ-representable.

Proof. (⇐) Assume χR is Σ-representable and let ϕ(x1, . . . , xm, y) be an L-
formula Σ-representing it. We show that ψ(x1, . . . , xm) := ϕ(x1, . . . , xm, S0)
Σ-represents R. Let (a1, . . . , am) ∈ R; then χR(a1, . . . , am) = 1. Hence

Σ ` ϕ(Sa10, . . . , Sam0, y)↔ y = S0,

so Σ ` ϕ(Sa10, . . . , Sam0, S0), that is, Σ ` ψ(Sa10, . . . , Sam0).
Similarly, (a1, . . . , am) /∈ R implies Σ ` ¬ϕ(Sa10, . . . , Sam0, S0). (Here we need
Σ ` S0 6= 0.)
(⇒) Conversely, assume R is Σ-representable and let ϕ(x1, . . . , xm) be an L-
formula Σ-representing it. We show that

ψ(x1, . . . , xm, y) := (ϕ(x1, . . . , xm) ∧ y = S0) ∨ (¬ϕ(x1, . . . , xm) ∧ y = 0)

Σ-represents χR.
Let (a1, . . . , am) ∈ R; then Σ ` ϕ(Sa10, . . . , Sam0). Hence,

Σ ` [(ϕ(Sa10, . . . , Sam0) ∧ y = S0) ∨ (¬ϕ(Sa10, . . . , Sam0) ∧ y = 0)]↔ y = S0

i.e. Σ ` ψ(Sa10, . . . , Sam0, y)↔ y = S0.
And similarly for (a1, . . . , am) /∈ R, Σ ` ψ(Sa10, . . . , Sam0, y)↔ y = 0.

Lemma 5.4.3. For each n,

N ` x < Sn+10↔ (x = 0 ∨ · · · ∨ x = Sn0).

Proof. By induction on n. For n = 0, N ` x < S0 ↔ x = 0 by axioms N8 and
N7. Assume n > 0 and N ` x < Sn0 ↔ (x = 0 ∨ · · · ∨ x = Sn−10). Use axiom
N8 to conclude that N ` x < Sn+10↔ (x = 0 ∨ · · · ∨ x = Sn0).

Theorem 5.4.4 (Representability). Each computable function F : Nn → N
is N-representable. Each computable relation R ⊆ Nm is N-representable.

Proof. By Proposition 5.4.2 we need only consider the case of functions. We
make the following three claims:
(R1)′ + : N2 → N, · : N2 → N, χ≤ : N2 → N, and the coordinate function

In
i (for each n and i = 1, . . . , n) are N-representable.

(R2)′ If G : Nk → N and H1, . . . , Hk : Nt → N are N-representable, then so
is F = G(H1, . . . , Hk) : Nt → N defined by

F (a) = G(H1(a), . . . , Hk(a)).

(R3)′ If G : Nn+1 → N is N-representable, and for all a ∈ Nn there exists
x ∈ N such that G(a, x) = 0, then the function F : Nn → N given by

F (a) = µx(G(a, x) = 0)

is N-representable.
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(R1)′ : The proof of this claim has six parts.

(i) The formula x1 = x2 represents {(a, b) ∈ N2 : a = b} in N:
Let a, b ∈ N. If a = b then obviously N ` Sa0 = Sb0. Suppose that
a 6= b. Then for every model A of N we have A |= Sa0 6= Sb0, by
Lemma 5.4.1 and its proof. Hence N ` Sa0 6= Sb0.

(ii) The term x1 + x2 represents + : N2 → N in N:
Let a + b = c where a, b, c ∈ N. By Lemma 5.4.1 and its proof we
have A |= Sa0 + Sb0 = Sc0 for each model A of N. It follows that
N ` Sa0 + Sb0 = Sc0.

(iii) The term x1 · x2 represents · : N2 → N in N:
The proof is similar to that of (ii).

(iv) The formula x1 < x2 represents {(a, b) ∈ N2 : a < b} in N:
The proof is similar to that of (i).

(v) χ≤ : N2 → N is N-representable:
By (i) and (iv), the formula x1 < x2 ∨ x1 = x2 represents the set
{(a, b) ∈ N2 : a ≤ b} in N. So by Proposition 5.4.2, χ≤ : N2 → N is
N-representable.

(vi) For n ≥ 1 and 1 ≤ i ≤ n , the term tni (x1, . . . , xn) := xi , represents
the function In

i : Nn → N in N. This is obvious.

(R2)′ : Let H1, . . . , Hk : Nt → N be N-represented by ϕi(x1, . . . , xt, yi) and let
G : Nk → N be N-represented by ψ(y1, . . . , yk, z) where z is distinct from
x1, . . . , xt and y1, . . . , yk.

Claim : F = G(H1, . . . , Hk) is N-represented by

θ(x1, . . . , xt, z) := ∃y1 . . .∃yk((

k
∧

i=1

ϕi(x1, . . . , xt, yi)) ∧ ψ(y1, . . . , yk, z)).

Put a = (a1, . . . , at) and let c = F (a). We have to show that

N ` θ(Sa0, z)↔ z = Sc0

where Sa0 := (Sa10, . . . , Sat0). Let bi = Hi(a) and put b = (b1, . . . , bk).
Then F (a) = G(b) = c. Therefore, N ` ψ(Sb0, z)↔ z = Sc0 and

N ` ϕi(S
a0, yi)↔ yi = Sbi0, (i = 1, . . . , k)

Argue in models to conclude : N ` θ(Sa0, z)↔ z = Sc0.

(R3)′ : Let G : Nn+1 → N be such that for all a ∈ Nn there exists b ∈ N with
G(a, b) = 0. Define F : Nn → N by F (a) = µb(G(a, b) = 0). Suppose
that G is N-represented by ϕ(x1, . . . , xn, y, z). We claim that the formula

ψ(x1, . . . , xn, y) := ϕ(x1, . . . , xn, y, 0)∧ ∀w(w < y → ¬ϕ(x1, . . . , xn, w, 0))

N-represents F . Let a ∈ Nn and let b = F (a). Then G(a, i) 6= 0 for i < b
and G(a, b) = 0. Therefore, N ` ϕ(Sa0, Sb0, z) ↔ z = 0 and for i < b,
G(a, i) 6= 0 and N ` ϕ(Sa0, Si0, z)↔ z = SG(a,i)0. By arguing in models
using Lemma 5.4.1 we obtain N ` ψ(Sa0, y)↔ y = Sb0, as claimed.
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Remark. The converse of this theorem is also true, and is plausible from the
Church-Turing Thesis. We shall prove the converse in the next section.

Exercises. In the exercises below, L is a numerical language and Σ is a set of
L-sentences.

(1) Suppose Σ ` Sm0 6= Sn0 whenever m 6= n. If a function F : Nm → N is Σ-
represented by the L-formula ϕ(x1, . . . , xm, y), then the graph of F , as a relation
of arity m+1 on N, is Σ-represented by ϕ(x1, . . . , xm, y). (This result applies to
Σ = N, since N ` Sm0 6= Sn0 whenever m 6= n.)

(2) Suppose Σ ⊇ N. Then the set of all Σ-representable functions F : Nm → N,
(m = 0, 1, 2, . . . ) is closed under composition and minimalization.

5.5 Decidability and Gödel Numbering

Definition. An L-theory T is a set of L-sentences closed under provability, that
is, whenever T ` σ, then σ ∈ T .

Examples.
(1) Given a set Σ of L-sentences, the set Th(Σ) := {σ : Σ ` σ} of theorems

of Σ, is an L-theory. If we need to indicate the dependence on L we write
ThL(Σ) for Th(Σ). We say that Σ axiomatizes an L-theory T (or is an
axiomatization of T ) if T = Th(Σ). For Σ = ∅ we also refer to ThL(Σ) as
“predicate logic in L.”

(2) Given an L-structure A, the set Th(A) := {σ : A |= σ} is also an L-
theory, called the theory of A. Note that the theory of A is automatically
complete.

(3) Given any class K of L-structures, the set

Th(K) := {σ : A |= σ for all A ∈ K}

is an L-theory, called the theory of K. For example, for L = LRi, and K
the class of finite fields, Th(K) is the set of L-sentences that are true in all
finite fields.

The decision problem for a given L-theory T is to find an algorithm to
decide for any L-sentence σ whether or not σ belongs to T . Since we have not
(yet) defined the concept of “algorithm,” this is just an informal description at
this stage. One of our goals in this section is to define a formal counterpart,
called “decidability.” In the next section we show that the L(N)-theory Th(N) is
undecidable; by the Church-Turing Thesis, this means that the decision problem
for Th(N) has no solution. (This result is a version of Church’s Theorem, and
is closely related to the Incompleteness Theorem.)

For simplicity, assume from now on that the language L is finite. (We
indicate in ... how this assumption can be relaxed.) We shall number the terms
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and formulas of L in such a way that various statements about these formulas
and about formal proofs in this language can be translated “effectively” into
equivalent statements about natural numbers expressible by sentences in L(N).

Recall that v0, v1, v2, . . . are our variables. We assign to each symbol

s ∈ L t {logical symbols} t {v0, v1, v2, . . . }

a symbol number SN(s) ∈ N as follows: SN(vi) := 2i and to each remaining
symbol (in the finite set Lt{logical symbols}) we assign an odd natural number
as symbol number, subject to the condition that different symbols have different
symbol numbers.

Definition. The Gödel number ptq of an L-term t is defined recursively:

ptq =

{

〈SN(vi)〉 if t = vi,

〈SN(F ), pt1q, . . . , ptnq〉 if t = Ft1, . . . , tn.

The Gödel number pϕq of an L-formula ϕ is given recursively by

pϕq =



































































〈SN(>)〉 if ϕ = >,
〈SN(⊥)〉 if ϕ = ⊥,
〈SN(=), pt1q, pt2q〉 if ϕ = (t1 = t2),

〈SN(R), pt1q, . . . , ptmq〉 if ϕ = Rt1 . . . tm,

〈SN(¬), pψq〉 if ϕ = ¬ψ,
〈SN(∨), pϕ1q, pϕ2q〉 if ϕ = ϕ1 ∨ ϕ2,

〈SN(∧), pϕ1q, pϕ2q〉 if ϕ = ϕ1 ∧ ϕ2,

〈SN(∃), pxq, pψq〉 if ϕ = ∃xψ,
〈SN(∀), pxq, pψq〉 if ϕ = ∀xψ.

Lemma 5.5.1. The following subsets of N are computable:
(1) Vble := {pxq : x is a variable}
(2) Term := {ptq : t is an L-term}
(3) AFor := {pϕq : ϕ is an atomic L-formula}
(4) For := {pϕq : ϕ is an L-formula}
Proof. (1) a ∈ Vble iff a = 〈2b〉 for some b ≤ a.
(2) a ∈ Term iff a ∈ Vble or a = 〈SN(F ), pt1q, . . . , ptnq〉 for some function
symbol F of L of arity n and L-terms t1, . . . , tn with Gödel numbers < a.
We leave (3) to the reader.

(4) We have For(a)⇔







































For((a)1) if a = 〈SN(¬), (a)1〉,
For((a)1) and For((a)2) if a = 〈SN(∨), (a)1, (a)2〉

or a = 〈SN(∧), (a)1, (a)2〉,
Vble((a)1) and For((a)2) if a = 〈SN(∃), (a)1, (a)2〉

or a = 〈SN(∀), (a)1, (a)2〉,
AFor(a) otherwise.

So For is computable.
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In the next two lemmas, x ranges over variables, ϕ and ψ over L-formulas,
and t and τ over L-terms.

Lemma 5.5.2. The function Sub : N3 → N defined by Sub(a, b, c) =







































c if Vble(a) and a = b,

〈(a)0, Sub((a)1, b, c), . . . , Sub((a)n, b, c)〉 if a = 〈(a)0, . . . , (a)n〉 with n > 0 and

(a)0 6= SN(∃), (a)0 6= SN(∀),
〈SN(∃), (a)1, Sub((a)2, b, c)〉 if a = 〈SN(∃), (a)1, (a)2〉 and (a)1 6= b,

〈SN(∀), (a)1, Sub((a)2, b, c)〉 if a = 〈SN(∀), (a)1, (a)2〉 and (a)1 6= b,

a otherwise

is computable, and satisfies

Sub(ptq, pxq, pτq) = pt(τ/x)q and Sub(pϕq, pxq, pτq) = pϕ(τ/x)q.

Proof. Exercise.

Lemma 5.5.3. The following relations on N are computable:
(1) Fr := {(pϕq, pxq) : x occurs free in ϕ} ⊆ N2

(2) FrSub := {(pϕq, pxq, pτq) : τ is free for x in ϕ} ⊆N3

(3) PrAx := {pϕq : ϕ is a propositional axiom} ⊆N
(4) Eq := {pϕq : ϕ is an equality axiom} ⊆N
(5) Quant := {pψq : ψ is a quantifier axiom} ⊆N
(6) MP := {(pϕ1q, pϕ1 → ϕ2q, pϕ2q) : ϕ1, ϕ2 are L-formulas} ⊆ N3

(7) Gen := {(pϕq, pψq) : ψ follows from ϕ by the generalization rule} ⊆ N2

(8) Sent := {pϕq : ϕ is a sentence} ⊆ N

Proof. The usual inductive or explicit description of each of these notions trans-
lates easily into a description of its “Gödel image” that establishes computability
of this image. As an example, note that

Sent(a)⇐⇒ For(a) and ∀i<a¬Fr(a, i),

so (8) follows from (1) and earlier results.

In the rest of this Section Σ is a set of L-sentences. Put

pΣq := {pσq : σ ∈ Σ},

and call Σ computable if pΣq is computable.

Definition. We define PrfΣ to be the “set of all Gödel numbers of proofs from
Σ”, i. e. PrfΣ := {〈pϕ1q, . . . , pϕnq〉 : ϕ1, . . . , ϕn is a proof from Σ}. So every
element of PrfΣ is of the form 〈pϕ1q, . . . , pϕnq〉 where n ≥ 1 and every ϕk is
either in Σ, or a logical axiom, or obtained from some ϕi, ϕj with 1 ≤ i, j < k
by Modus Ponens, or obtained from some ϕi with 1 ≤ i < k by Generalization.

Lemma 5.5.4. If Σ is computable, then PrfΣ is computable.
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Proof. This is because a is in PrfΣ iff Seq(a) and lh(a) 6= 0 and for every k <
lh(a) either (a)k ∈ pΣq ∪ PrAx∪Eq∪Quant or ∃∃∃i, j < k : MP((a)i, (a)j , (a)k)
or ∃∃∃i < k : Gen((a)i, (a)k).

Definition. A relation R ⊆ Nn is said to be computably generated if there is a
computable relation Q ⊆Nn+1 such that for all a ∈ Nn we have

R(a)⇔∃∃∃xQ(a, x)

“Recursively enumerable” is also used for “computably generated.”

Remark. Every computable relation is obviously computably generated. We
leave it as an exercise to check that the union and intersection of two computably
generated n-ary relations on N are computably generated. The complement of
a computably generated subset of N is not always computably generated, as we
shall see later.

Lemma 5.5.5. If Σ is computable, then pTh(Σ)q is computably generated.

Proof. Apply Lemma 5.5.4 and the fact that for all a ∈ N

a ∈ pTh(Σ)q⇐⇒∃∃∃b
(

PrfΣ(b) and a = (b)lh(b)−̇1 and Sent(a)
)

.

Definition. An L-theory T is said to be computably axiomatizable if T has a
computable axiomatization.2

We say that T is decidable if pTq is computable, and undecidable otherwise.
(Thus “T is decidable” means the same thing as “T is computable,” but for
L-theories “decidable” is more widely used than “computable”.)

Proposition 5.5.6 (Negation Theorem). Let A ⊆ Nn and suppose A and
¬A are computably generated. Then A is computable.

Proof. Let P,Q ⊆ Nn+1 be computable such that for all a ∈ Nn we have

A(a)⇐⇒ ∃∃∃xP (a, x), ¬A(a) ⇐⇒∃∃∃xQ(a, x).

Then there is for each a ∈ Nn an x ∈ N such that (P ∨ Q)(a, x). The com-
putability of A follows by noting that for all a ∈ Nn we have

A(a)⇐⇒ P (a, µx(P ∨Q)(a, x)).

Proposition 5.5.7. Every complete and computably axiomatizable L-theory is
decidable.

2Instead of “computably axiomatizable,” also “recursively axiomatizable” and “effectively
axiomatizable” are used.
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Proof. Let T be a complete L-theory with computable axiomatization Σ. Then
pTq = pTh(Σ)q is computably generated. Now observe:

a /∈ pTq⇐⇒ a /∈ Sent or 〈SN(¬), a〉 ∈ pTq

⇐⇒ a /∈ Sent or ∃∃∃b
(

PrfΣ(b) and (b)lh(b)−̇1 = 〈SN(¬), a〉
)

.

Hence the complement of pTq is computably generated. Thus T is decidable by
the Negation Theorem.

Exercises.
(1) Let a and b denote positive real numbers. Call a computable if there are com-

putable functions f, g : N→ N such that for all n > 0,

g(n) 6= 0 and |a− f(n)/g(n)| < 1/n.

Then:

(i) every positive rational number is computable, and e is computable;

(ii) if a and b are computable, so are a + b, ab, and 1/a, and if in addition
a > b, then a− b is also computable;

(iii) a is computable if and only if the binary relation Ra on N defined by

Ra(m,n) ⇐⇒ n > 0 and m/n < a

is computable. (Hint: use the Negation Theorem.)

(2) A nonempty S ⊆ N is computably generated iff there is a computable function
f : N → N such that S = f(N). Moreover, if S is infinite and computably
generated, then f can be chosen injective.

(3) If f : N → N is computable and f(x) > x for all x ∈ N, then f(N) is computable.

(4) Every infinite computably generated subset of N has an infinite computable sub-
set.

(5) A function F : Nn → N is computable iff its graph is computably generated.

(6) Suppose Σ is a computable and consistent set of sentences in the numerical lan-
guage L. Then every Σ-representable relation R ⊆ Nn is computable.

(7) A function F : Nm → N is computable if and only if it is Σ-representable for some
finite, consistent set Σ ⊇ N of sentences in some numerical language L ⊇ L(N).
The last exercise gives an alternative characterization of “computable function.”

5.6 Theorems of Gödel and Church

In this section we assume that the finite language L extends L(N).

Theorem 5.6.1 (Church). No consistent L-theory extending N is decidable.

Before giving the proof we record the following consequence:
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Corollary 5.6.2 (Weak form of Gödel’s Incompleteness Theorem).
Each computably axiomatizable L-theory extending N is incomplete.

Proof. Immediate from 5.5.7 and Church’s Theorem.

We will indicate in the next Section how to construct for any consistent com-
putable set of L-sentences Σ ⊇ N an L-sentence σ such that Σ 6` σ and Σ 6` ¬σ.
(The corollary above only says that such a sentence exists.)

For the proof of Church’s Theorem we need a few lemmas.

Lemma 5.6.3. The function Num : N → N defined by Num(a) = pSa0q is
computable.

Proof. Num(0) = p0q and Num(a+ 1) = 〈SN(S),Num(a)〉.

Let P ⊆ A2 be any binary relation on a set A. For a ∈ A, we let P (a) ⊆ A be
given by the equivalence P (a)(b)⇔ P (a, b).

Lemma 5.6.4 (Cantor). Given any P ⊆ A2, its antidiagonal Q ⊆ A defined
by

Q(b)⇐⇒ ¬P (b, b)

is not of the form P (a) for any a ∈ A.

Proof. Suppose Q = P (a), where a ∈ A. Then Q(a) iff P (a, a). But by defini-
tion, Q(a) iff ¬P (a, a), a contradiction.

This is essentially Cantor’s proof that no f : A→ P(A) can be surjective. (Use
P (a, b) :⇔ b ∈ f(a); then P (a) = f(a).)

Definition. Let Σ be a set of L-sentences. We fix a variable x (e. g. x = v0)
and define the binary relation PΣ ⊆ N2 by

PΣ(a, b)⇐⇒ Sub(a, pxq,Num(b)) ∈ pTh(Σ)q

For an L-formula ϕ(x) and a = pϕ(x)q, we have

Sub(pϕ(x)q, pxq, pSb0q) = pϕ(Sb0)q,

so

PΣ(a, b)⇐⇒ Σ ` ϕ(Sb0).

Lemma 5.6.5. Suppose Σ ⊇ N is consistent. Then each computable set X ⊆N
is of the form X = PΣ(a) for some a ∈ N.

Proof. LetX ⊆ N be computable. ThenX is Σ-representable by Theorem 5.4.4,
say by the formula ϕ(x), i. e. X(b)⇒ Σ ` ϕ(Sb0), and ¬X(b)⇒ Σ ` ¬ϕ(Sb0).
So X(b)⇔ Σ ` ϕ(Sb0) (using consistency to get “⇐”). Take a = pϕ(x)q; then
X(b) iff Σ ` ϕ(Sb0) iff PΣ(a, b), that is, X = PΣ(a).
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Proof of Church’s Theorem. Let Σ ⊇ N be consistent. We have to show that
then Th(Σ) is undecidable, that is, pTh(Σ)q is not computable. Suppose that
pTh(Σ)q is computable. Then the antidiagonal QΣ ⊆N of PΣ is computable:

b ∈ QΣ ⇔ (b, b) /∈ PΣ ⇔ Sub(b, pxq,Num(b)) /∈ pTh(Σ)q.

By Lemma 5.6.4, QΣ is not among the PΣ(a). Therefore by Lemma 5.6.5, QΣ

is not computable, a contradiction. This concludes the proof.

By Lemma 5.5.5 the subset pTh(N)q of N is computably generated. But this
set is not computable:

Corollary 5.6.6. Th(N) and Th(∅) (in the language L(N)) are undecidable.

Proof. The undecidability of Th(N) is a special case of Church’s Theorem. Let
∧N be the sentence N1 ∧ · · · ∧ N9. Then, for any L(N)-sentence σ,

N ` σ ⇐⇒ ∅ ` ∧N→ σ,

that is, for all a ∈ N,

a ∈ pTh(N)q ⇐⇒ a ∈ Sent and 〈SN(∨), 〈SN(¬), p∧Nq〉, a〉 ∈ pTh(∅)q.

Therefore, if Th(∅) were decidable, then Th(N) would be decidable; but Th(N)
is undecidable. So Th(∅) is undecidable.

Discussion. We have seen that N is quite weak. A very strong set of axioms
in the language L(N) is PA (1st order Peano Arithmetic). Its axioms are those
of N together with all induction axioms, that is, all sentences of the form

∀x [
(

ϕ(x, 0) ∧ ∀y (ϕ(x, y) → ϕ(x, Sy))
)

→ ∀y ϕ(x, y)]

where ϕ(x, y) is an L(N)-formula, x = (x1, . . . , xn), and ∀x stands for ∀x1 . . . ∀xn.
Note that PA is consistent, since it has N = (N; <, 0, S,+, ·) as a model.

Also pPAq is computable (exercise). Thus by the theorems above, Th(PA) is
undecidable and incomplete. To appreciate the significance of this result, one
needs a little background knowledge, including some history.

Over a century of experience has shown that number theoretic assertions can
be expressed by sentences of L(N), admittedly in an often contorted way. (That
is, we know how to construct for any number theoretic statement a sentence σ
of L(N) such that the statement is true if and only if N |= σ. In most cases we
just indicate how to construct such a sentence, since an actual sentence would
be too unwieldy without abbreviations.)

What is more important, we know from experience that any established fact
of classical number theory—including results obtained by sophisticated analytic
and algebraic methods—can be proved from PA, in the sense that PA ` σ
for the sentence σ expressing that fact. Thus before Gödel’s Incompleteness
Theorem it seemed natural to conjecture that PA is complete. (Apparently it
was not widely recognized at the time that completeness of PA would have had
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the astonishing consequence that Th(N) is decidable.) Of course, the situation
cannot be remedied by adding new axioms to PA, at least if we insist that the
axioms are true in N and that we have effective means to tell which sentences
are axioms. In this sense, the Incompleteness Theorem is pervasive.

5.7 A more explicit incompleteness theorem

In Section 5.6 we obtained Gödel’s Incompleteness Theorem as an immediate
corollary of Church’s theorem. In this section, we prove the incompleteness
theorem in the more explicit form stated in the introduction to this chapter.

In this section L ⊇ L(N) is a finite language, and Σ is a set of L-sentences.
We also fix two distinct variables x and y.

We shall indicate how to construct, for any computable consistent Σ ⊇ N, a
formula ϕ(x) of L(N) with the following properties:

(i) N ` ϕ(Sm0) for each m;

(ii) Σ 6` ∀xϕ(x).

Note that then the sentence ∀xϕ(x) is true in N but not provable from Σ. Here
is a sketch of how to make such a sentence. Assume for simplicity that L = L(N)
and N |= Σ. The idea is to construct sentences σ and σ′ such that

(1) N |= σ ↔ σ′; and (2) N |= σ′ ⇐⇒ Σ 6` σ.

From (1) and (2) we get N |= σ ⇐⇒ Σ 6` σ. Assuming that N |= ¬σ produces
a contradiction. Hence σ is true in N, and thus(!) not provable from Σ.

How to implement this strange idea? To take care of (2), one might guess
that σ′ = ∀x¬Pr(x, Spσq0) where Pr(x, y) is a formula representing in N the
binary relation Pr ⊆ N2 defined by

Pr(m,n) ⇐⇒ m is the Gödel number of a proof from Σ

of a sentence with Gödel number n.

But how do we arrange (1)? Since σ′ := ∀x¬Pr(x, Spσq0) depends on σ, the
solution is to apply the fixed-point lemma below to ρ(y) := ∀x¬Pr(x, y).

This finishes our sketch. What follows is a rigorous implementation.

Lemma 5.7.1. Suppose Σ ⊇ N. Then there is for every L-formula ρ(y) an
L-sentence σ such that Σ ` σ ↔ ρ(Sn0) where n = pσq.

Proof. The function (a, b) 7→ Sub(a, pxq,Num(b)) : N2 → N is computable by
Lemma 5.5.2. Hence by the representability theorem it is N-representable. Let
sub(x1, x2, y) be an L(N)-formula representing it in N. We can assume that the
variable x does not occur in sub(x1, x2, y). Then for all a, b in N,

N ` sub(Sa0, Sb0, y)↔ y = Sc0, where c = Sub(a, pxq,Num(b)) (1)
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Now let ρ(y) be an L-formula. Define θ(x):= ∃y(sub(x, x, y) ∧ ρ(y)) and let
m = pθ(x)q. Let σ := θ(Sm0), and put n = pσq. We claim that

Σ ` σ ↔ ρ(Sn0).

Indeed,

n = pσq = pθ(Sm0)q = Sub(pθ(x)q, pxq, pSm0q) = Sub(m, pxq,Num(m)).

So by (1),
N ` sub(Sm0, Sm0, y)↔ y = Sn0 (2)

We have
σ = θ(Sm0) = ∃y(sub(Sm0, Sm0, y) ∧ ρ(y)),

so by (2) we get Σ ` σ ↔ ∃y(y = Sn0 ∧ ρ(y)). Hence, Σ ` σ ↔ ρ(Sn0).

Theorem 5.7.2. Suppose Σ is consistent, computable, and proves all axioms
of N. Then there exists an L(N)-formula ϕ(x) such that N ` ϕ(Sm0) for each
m, but Σ 6` ∀xϕ(x).

Proof. Consider the relation PrΣ ⊆N2 defined by

PrΣ(m,n) ⇐⇒ m is the Gödel number of a proof from Σ

of an L-sentence with Gödel number n.

Since Σ is computable, PrΣ is computable. Hence PrΣ is representable in N. Let
PrΣ(x, y) be an L(N)-formula representing PrΣ in N, and hence in Σ. Because
Σ is consistent we have for all m, n:

Σ ` PrΣ(Sm0, Sn0) ⇐⇒ PrΣ(m,n) (1)

Σ ` ¬PrΣ(Sm0, Sn0) ⇐⇒ ¬PrΣ(m,n) (2)

Let ρ(y) be the L(N)-formula ∀x¬PrΣ(x, y). Lemma 5.7.1 (with L = L(N) and
Σ = N) provides an L(N)-sentence σ such that N ` σ ↔ ρ(Spσq0). It follows
that Σ ` σ ↔ ρ(Spσq0), that is

Σ ` σ ↔ ∀x¬PrΣ(x, Spσq0) (3)

Claim: Σ 6` σ. Assume towards a contradiction that Σ ` σ; let m be the
Gödel number of a proof of σ from Σ, so PrΣ(m, pσq). Because of (3) we also
have Σ ` ∀x¬PrΣ(x, Spσq0), so Σ ` ¬PrΣ(Sm0, Spσq0), which by (2) yields
¬PrΣ(m, pσq), a contradiction. This establishes the claim.

Now put ϕ(x) := ¬PrΣ(x, Spσq0). We now show :

(i) N ` ϕ(Sm0) for each m. Because Σ 6` σ, no m is the Gödel number
of a proof of σ from Σ. Hence ¬PrΣ(m, pσq) for each m, which by the
defining property of PrΣ yields N ` ¬PrΣ(Sm0, Spσq0) for each m, that
is, N ` ϕ(Sm0) for each m.
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(ii) Σ 6` ∀xϕ(x). This is because Σ ` σ ↔ ∀xϕ(x) by (3).

Corollary 5.7.3. Suppose that Σ is computable and true in the L-expansion
N∗ of N. Then there exists an L(N)-formula ϕ(x) such that N ` ϕ(Sn0) for
each n, but Σ ∪ N 6` ∀xϕ(x).

(Note that then ∀xϕ(x) is true in N∗ but not provable from Σ.) To obtain
this corollary, apply the theorem above to Σ ∪N in place of Σ.

Exercises.
(1) Let N∗ be an L-expansion of N. Then the set of Gödel numbers of L-sentences

true in N∗ is not definable in N∗.

This result (of Tarski) is known as the undefinability of truth. It strengthens the
special case of Church’s theorem which says that the set of Gödel numbers of
L-sentences true in N∗ is not computable. Tarski’s result follows easily from the
fixed point lemma, as does the more general result in the next exercise.

(2) Suppose Σ ⊇ N is consistent. Then the set pTh(Σ)q is not Σ-representable, and
there is no truth definition for Σ. (Here a truth definition for Σ is an L-formula
true(y) such that for all L-sentences σ,

Σ ` σ ←→ true(Sn0), where n = pσq.

5.8 Undecidable Theories

Church’s theorem says that any consistent theory containing a certain basic
amount of integer arithmetic is undecidable. How about theories like Th(Fl)
(the theory of fields), and Th(Gr) (the theory of groups)? An easy way to prove
the undecidability of such theories is due to Tarski: he noticed that if N is
definable in some model of a theory T , then T is undecidable. The aim of this
section is to establish this result and indicate some applications. In order not to
distract from this theme by boring details, we shall occasionally replace a proof
by an appeal to the Church-Turing Thesis. (A conscientious reader will replace
these appeals by proofs until reaching a level of skill that makes constructing
such proofs a predictable routine.)

In this section, L and L′ are finite languages, Σ is a set of L-sentences, and
Σ′ is a set of L′-sentences.

Lemma 5.8.1. Let L ⊆ L′ and Σ ⊆ Σ′.
(1) Suppose Σ′ is conservative over Σ. Then

ThL(Σ) is undecidable =⇒ ThL′(Σ′) is undecidable.

(2) Suppose L = L′ and Σ′
r Σ is finite. Then

Th(Σ′) is undecidable =⇒ Th(Σ) is undecidable.
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(3) Suppose all symbols of L′
r L are constant symbols. Then

ThL(Σ) is undecidable ⇐⇒ ThL′(Σ) is undecidable.

(4) Suppose Σ′ extends Σ by a definition. Then

ThL(Σ) is undecidable ⇐⇒ ThL′(Σ′) is undecidable.

Proof. (1) In this case we have for all a ∈ N,

a ∈ pThL(Σ)q⇐⇒ a ∈ SentL and a ∈ pThL′(Σ′)q.

It follows that if ThL′(Σ′) is decidable, so is ThL(Σ).
(2) Write Σ′ = {σ1, . . . , σN} ∪ Σ, and put σ′ := σ1 ∧ · · · ∧ σN . Then for each
L-sentence σ we have Σ′ ` σ ⇐⇒ Σ ` σ′ → σ, so for all a ∈ N,

a ∈ pTh(Σ′)q⇐⇒ a ∈ Sent and 〈SN(∨), 〈SN(¬), pσ′
q〉, a〉 ∈ pTh(Σ)q.

It follows that if Th(Σ) is decidable then so is Th(Σ′).
(3) Let c0, . . . , cn be the distinct constant symbols of L′

r L. Given any L′-
sentence σ we define the L-sentence σ′ as follows: take k ∈ N minimal such
that σ contains no variable vm with m ≥ k, replace each occurrence of ci in σ
by vk+i for i = 0, . . . , n, and let ϕ(vk, . . . , vk+n) be the resulting L-formula (so
σ = ϕ(c0, . . . , cn)); then σ′ := ∀vk . . .∀vk+nϕ(vk, . . . , vk+n). An easy argument
using the completeness theorem shows that

Σ `L′ σ ⇐⇒ Σ `L σ
′.

By the Church-Turing Thesis there is a computable function a 7→ a′ : N → N
such that pσ′

q = pσq
′ for all L′-sentences σ; we leave it to the reader to replace

this appeal to the Church-Turing Thesis by a proof. Then, for all a ∈ N:

pThL′ (Σ)q⇐⇒ a ∈ SentL′ and a′ ∈ pThL (Σ)q.

This yields the ⇐ direction of (3); the converse holds by (1).
(4) The ⇒ direction holds by (1). For the ⇐ we use an algorithm (see ...) that
computes for each L′-sentence σ an L-sentence σ∗ such that Σ′ ` σ ↔ σ∗. By
the Church-Turing Thesis there is a computable function a 7→ a∗ : N→ N such
that pσ∗

q = pσq
∗ for all L′-sentences σ. Hence, for all a ∈ N,

a ∈ pThL′(Σ′)q⇐⇒ SentL′(a) and a∗ ∈ pThL(Σ)q.

This yields the ⇐ direction of (4).

Remark. We cannot drop the assumption L = L′ in (2): take L = ∅, Σ = ∅,
L′ = L(N) and Σ′ = ∅. Then ThL′(Σ′) is undecidable by Corollary 5.6.6, but
ThL(Σ) is decidable (exercise).

Definition. An L-structure A is said to be strongly undecidable if for every set
Σ of L-sentences such that A |= Σ, Th(Σ) is undecidable.
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So A is strongly undecidable iff every L-theory of which A is a model is unde-
cidable.

Example. N = (N; <, 0, S,+, ·) is strongly undecidable. To see this, let Σ
be a set of L(N)-sentences such that N |= Σ. We have to show that Th(Σ) is
undecidable. Now N |= Σ∪N. By Church’s Theorem Th(Σ∪N) is undecidable,
hence Th(Σ) is undecidable by part (2) of Lemma 5.8.1.

The following result is an easy application of part (3) of the previous lemma.

Lemma 5.8.2. Let c0, . . . , cn be distinct constant symbols not in L, and let
(A, a0, . . . , an) be an L(c0, . . . , cn)-expansion of the L-structure A. Then

(A, a0, . . . , an) is strongly undecidable =⇒ A is strongly undecidable.

Theorem 5.8.3 (Tarski). Suppose the L-structure A is definable in the L′-
structure B and A is strongly undecidable. Then B is strongly undecidable.

Proof. (Sketch) By the previous lemma (with L′ and B instead of L and A), we
can reduce to the case that we have a 0-definition δ of A in B. One can show
that in this case we have (1) an algorithm that computes for any L-sentence
σ an L′-sentence δσ, and (2) a finite set ∆ of L′-sentences true in B, with the
following properties:

(i) A |= σ ⇐⇒ B |= δσ;
(ii) for each set Σ′ of L′-sentences with B |= Σ′ and each L-sentence σ,

Σ ` σ ⇐⇒ Σ′ ∪∆ ` δσ, where Σ := {s : s is an L-sentence and Σ′ ∪∆ |= δs}.

Let Σ′ be a set of L′-sentences such that B |= Σ′; we need to show that ThL′(Σ′)
is undecidable. Suppose towards a contradiction that ThL′(Σ′) is decidable.
Then ThL′(Σ′ ∪∆) is decidable, by part (2) of Lemma 5.8.1, so we have an
algorithm for deciding whether any given L′-sentence is provable from Σ′ ∪∆.
Take Σ as in (ii) above. Then A |= Σ by (i), and by (ii) we obtain an algorithm
for deciding whether any given L-sentence is provable from Σ. But ThL(Σ) is
undecidable by assumption, and we have a contradiction.

Corollary 5.8.4. Th(Ri) is undecidable, in other words, the theory of rings is
undecidable.

Proof. It suffices to show that the ring (Z; 0, 1,+,−, ·) of integers is strongly
undecidable. Using Lagrange’s theorem that

N = {a2 + b2 + c2 + d2 : a, b, c, d ∈ Z},

we see that the inclusion map N → Z defines N in the ring of integers, so by
Tarski’s Theorem the ring of integers is strongly undecidable.

For the same reason, the theory of commutative rings, of integral domains, and
more generally, the theory of any class of rings containing the ring of integers is
undecidable.
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Fact. The set Z ⊆ Q is 0-definable in the field (Q; 0, 1,+,−, ·) of rational
numbers, and thus the ring of integers is definable in the field of rational num-
bers.

We shall take this here on faith. The only known proof uses non-trivial results
about quadratic forms, and is due to Julia Robinson.

Corollary 5.8.5. The theory Th(Fl) of fields is undecidable. The theory of any
class of fields containing the field of rational numbers is undecidable.

Exercises.
(1) Argue informally, using the Church-Turing Thesis, that Th(ACF) is decidable.

You can use the fact that ACF has QE.

Below we let a, b, c denote integers. We say that a divides b (notation: a | b) if
ax = b for some integer x, and we say that c is a least common multiple of a and
b if a | c, b | c, and c | x for every integer x such that a | x and b | x. Recall
that if a and b are not both zero, then they have a unique positive least common
multiple, and that if a and b are coprime (that is, there is no integer x > 1 with
x | a and x | b), then they have ab as a least common multiple.

(2) The structure (Z; 0, 1,+, |) is strongly undecidable, where | is the binary relation
of divisibility on Z. Hint: Show that if b+ a is a least common multiple of a and
a+1, and b−a is a least common multiple of a and a−1, then b = a2. Use this to
define the squaring function in (Z; 0, 1,+, |), and then show that multiplication
is 0-definable in (Z; 0, 1,+, |).

(3) Consider the group G of bijective maps Z → Z, with composition as the group
multiplication. Then G (as a model of Gr) is strongly undecidable. Hint: let s
be the element of G given by s(x) = x + 1. Check that if g ∈ G commutes with
s, then g = sa for some a. Next show that

a | b⇐⇒ sb commutes with each g ∈ G that commutes with sa.

Use these facts to specify a definition of the structure (Z; 0, 1,+, |) in the group
G.

Thus by Tarski’s theorem, the theory of groups is undecidable. In fact, the
theory of any class of groups that includes the group G of the exercise above is
undecidable. On the other hand, Th(Ab), the theory of abelian groups, is known
to be decidable (Szmielew).

(4) Let L = {F} have just a binary function symbol. Then predicate logic in L (that
is, ThL(∅)) is undecidable.

It can also be shown that predicate logic in the language whose only symbol is a
binary relation symbol is undecidable. On the other hand, predicate logic in the
language whose only symbol is a unary function symbol is decidable.
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To do?

• improve titlepage

• improve or delete index

• more exercises (from homework, exams)

• footnotes pointing to alternative terminology, etc.

• at the end of results without proof?

• brief discussion on P=NP in connection with propositional logic

• section(s) on boolean algebra, including Stone representation, Lindenbaum-
Tarski algebras, etc.

• section on equational logic? (boolean algebras, groups, as examples)

• solution to a problem by Erdös via compactness theorem, and other simple
applications of compactness

• include “equality theorem”,

• translation of one language in another (needed in connection with Tarski
theorem in last section)

• more details on back-and-forth in connection with unnested formulas

• extra elementary model theory (universal classes, model-theoretic crite-
ria for qe, etc., application to ACF, maybe extra section on RCF, Ax’s
theorem.

• On computability: a few extra results on c.e. sets, and exponential dio-
phantine result.

• basic framework for many-sorted logic.


