This paper proposes a deterministic model for the spread of an epidemic. We extend the classical Kermack--McKendrick model, so that a more general contact rate is chosen and a vaccination added. The model is governed by a differential equation (DE) for the time dynamics of the susceptibles, infectives and removals subpopulation.
We present some conditions on the existence and uniqueness of a solution to the nonlinear DE. The existence of limits and uniqueness of maximum of infected individuals are also discussed.
In the final part, simulations, numerical results and comparisons of the different vaccination strategies are presented.
Keywords: SIR epidemic models; vaccination; differential equation;
AMS: 92D25; 37N25;
BACK to VOLUME 44 NO.5