BACK to VOLUME 43 NO.1

Kybernetika 43(1):61-74, 2007.

M-Estimation in Nonlinear Regression for Longitudinal Data

Martina Orsáková


Abstract:

The longitudinal regression model $Z_i^j=m(\theta_0,{\mathbb X}_i(T_i^j))+ \varepsilon_i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb X}_i(T_i^j)$ is a~predictable covariate process observed at time $T_i^j$ and $\varepsilon_i^j$ is a~noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta_0$.


Keywords: $M$-estimation; nonlinear regression; longitudinal data;


AMS: 62M10; 62F10; 60G55;


download abstract.pdf


BIB TeX

@article{kyb:2007:1:61-74,

author = {Ors\'{a}kov\'{a}, Martina },

title = {$M$-Estimation in Nonlinear Regression for Longitudinal Data},

journal = {Kybernetika},

volume = {43},

year = {2007},

number = {1},

pages = {61-74}

publisher = {{\'U}TIA, AV {\v C}R, Prague },

}


BACK to VOLUME 43 NO.1