BACK to VOLUME 28 NO.2

Kybernetika 28(2):120-128, 1992.

On Estimable and Locally-Estimable Functions in the non-Linear Regression Model

Helena Koutková


Abstract:

The non-linear regression model $y = \eta (\vartheta ) + \varepsilon $ with an error vector $\varepsilon $ having the zero mean and the covariance matrix $\delta^{2}I$ $(\delta^{2}$ unknown) is considered. Some sufficient conditions of estimability and local estimability of the function of the parameter $\vartheta $ are obtained, whilst the regularity of the model (i. e. the regularity of Jacobi matrix of the function $\eta (\vartheta )$ is not required). Consequently, there are given -- in addition -- precisions of A. H. Bird's and G. A. Milliken's research [1] concerning local reparameterization of a singular model onto a regular model.


Keywords:


AMS:


download abstract.pdf


BIB TeX

@article{kyb:1992:2:120-128,

author = {Koutkov\'{a}, Helena},

title = {On Estimable and Locally-Estimable Functions in the non-Linear Regression Model},

journal = {Kybernetika},

volume = {28},

year = {1992},

number = {2},

pages = {120-128}

publisher = {{\'U}TIA, AV {\v C}R, Prague },

}


BACK to VOLUME 28 NO.2