This paper considers the minimization of the $\ell^\infty$-induced norm of the closed loop in linear multirate systems when full state information is available for feedback. A state-space approach is taken and concepts of viability theory and controlled invariance are utilized. The essential idea is to construct a set such that the state may be confined to that set and that such a confinement guarantees that the output satisfies the desired output norm conditions. Once such a set is computed, it is shown that a memoryless nonlinear controller results, which achieves near-optimal performance. The construction involves the solution of several finite linear programs and generalizes to the multirate case earlier work on linear time-invariant (LTI) systems.
AMS: 93C;
BACK to VOLUME 35 NO.5