
4ECM Stockholm 2004
c© 2005 European Mathematical Society

Proof Complexity

Jan Kraj́ıček

Abstract. This note, based on my 4ECM lecture, exposes few basic points of
proof complexity in a way accessible to any mathematician.

In many parts of mathematics one finds statements asserting that a finite object
with a particular, feasibly verifiable, property does not exist. Such statements
include, for example, the unsolvability of an equation, the non-existence of a
combinatorial pattern or of an algebraic object, or the non-existence of a com-
putation solving a problem. The qualification “feasibly” will mean throughout
the paper “in polynomial time” (shortly, p-time).

A universal statement of this form is a statement that a propositional
formula cannot be satisfied by any truth assignment or, equivalently, that the
negation of the formula is a tautology. The qualification “universal” means, in
particular, that proving statements about the non-existence of particular finite
objects can be reduced to proving that particular propositional formulas are
tautologies.

The ultimate goal of proof complexity is to show that there is no universal
propositional proof system allowing for efficient proofs of all tautologies. This
is equivalent to showing that the computational complexity class NP is not
closed under the complementation (and it implies the famous conjecture that
P differs from NP).

By the universality propositional proof systems subsume methods from
other parts of mathematics used for proving the non-existence statements. Be-
cause of this, even the partial results known at present (lower bounds for some
specific proof systems) revealed interesting links of proof complexity to logic,
algebra, combinatorics, computational complexity,. . . .

I shall attempt to explain some basic points of proof complexity in a
coherent manner accessible to any mathematician. I will first give few informal
examples (Section 1) in order to motivate the main concepts and problems of
proof complexity (Section 2). After that I will discuss two particular topics in
proof complexity, one classic (Section 3) and one quite recent (Section 4), in
some detail.

The author is also member of the Institute for Theoretical Computer Science of the Charles
University.

Partially supported by grant # A 101 94 01 of the Academy of Sciences and by project
LN00A056 of The Ministry of Education of the Czech Republic.

222 J. Kraj́ıček

The informed reader will notice that I do not discuss here at all any
lower bounds for particular proof systems although these are generally the most
difficult and appreciated results in proof complexity. This is chiefly because of
a lack of space (and time in the 4ECM lecture) as one needs a substantial
background to appreciate that even results about particular proof systems say
something about the original fundamental problems.

1. Examples of proof systems

Let pi(x1, . . . , xn) = 0, i = 1, . . . , k, be a system of polynomial equations over
Fq. We want to know if the system is solvable in the field. We do not necessarily
want to decide this by some algorithm but rather we want to “prove” that the
system is either solvable, or to prove that it is unsolvable.

If the system is solvable then as a “proof” of the solvability will serve any
solution a = (a1, . . . , an) ∈ (Fq)n. The soundness of any such proof is verified
easily by checking that indeed all equations pi(a) = 0 are satisfied. This can
be done in p-time (as long as the polynomials are represented well, e.g., in the
so-called dense notation as an explicit sum of monomials).

If the system is unsolvable we can take as a “proof” polynomials qi ∈
Fq[x1, . . . , xn], i = 1, . . . , k + n, such that in Fq[x1, . . . , xn] it holds:

∑

i≤k+n

qi · pi = 1

where pk+j := xq
j − xj for j = 1, . . . , n. This equality can be again checked in

p-time. For any a ∈ (Fq)n that would be a solution of the system it would hold
that pi(a) = 0 for all i ≤ k + n. But that is impossible by the equality. Hence
our “proofs” are sound: Whenever suitable qi’s exist, the system is unsolvable.
In fact, by Hilbert’s Nullstellensatz such qi’s always exists as long as the system
is unsolvable in the field; hence this “proof system” is also complete.

Note that while we can bound the size of the proofs in the first case by the
size of the polynomial system itself (i.e., of the problem instance), no similar
bound is a priori possible (in general) for the proofs in the second case. The only
bound on the size of some “proofs” is about qn (this can be exponential in the
size of the problem instance). This trivial bound is achieved by an exhaustive
search of all potential solutions. When we later use the phrase that there is no
a priori bound we mean a bound better than the trivial exponential one.

Our second example is from graph theory. Let G be a graph (finite, un-
ordered). The issue is whether G is 3-colorable or not. Again we are not inter-
ested in an algorithm deciding this but in “proof systems” that would allow us
to prove that it is or it is not, respectively.

A proof of the affirmative case is simple: Any 3-coloring will do, as its
correctness can be checked in p-time. To prove the non-colorability we may
use a method devised by Hajós [7]. He showed that there is a finite number
of initial graphs, all non-3-colorable, and a couple of elementary rules how to

Proof Complexity 223

obtain a new graph from two graphs already constructed, such that the class
of graphs constructible in this way coincides with the class of non-3-colorable
graphs. In particular, a sequence of graphs H1, . . . , Hk which are constructed
from the initial graphs by Hajós’s rules and such that Hk = G is a “proof” of
non-3-colorability of G. The soundness of this proof system is obvious from the
definition of the rules, the completeness is provided by Hajós’s theorem [7].

Similarly as before, while we have a trivial upper bound on the size of
proofs in the affirmative case we have no a priori subexponential upper bound
for the sequences H1, . . . , Hk.

The third example I shall discuss is the most important one. Let ϕ be a
propositional formula in some fixed complete language for propositional logic,
e.g., the DeMorgan language 0, 1,¬,∨,∧. We want to prove that ϕ is, resp. is
not, satisfiable.

The satisfiability can be proved easily: Any satisfying assignment will do
as a “proof”. For the unsatisfiability we also have an elegant way of proving it:
Note that ϕ is unsatisfiable iff ¬ϕ is a tautology, and hence any proof of ¬ϕ
in some propositional calculus will serve well. Again we have no a priori upper
bounds on such proofs that would be better than exponential (in the size of ϕ).

I shall conclude this set of examples by an example of a different nature.
Let f(x, y) = 0 be a Diophantine equation in Z, and let B ∈ N be a parameter.
We want to prove, resp. to disprove, that the equation has an integer solution
bounded in absolute value by B. The affirmative case is proved by simply
producing such a solution. But now - and this is the point of this example - we
do not seem to have any elegant way of proving unsolvability other than simply
proving it in Mathematics, and then take as a proof its formalization in some
theory used for formalizing Mathematics (e.g., in set theory). The soundness
of such a proof comes from the soundness of the theory, and of course we have
no a priori subexponential upper bound on its size.

Note that the key property that it can be verified in p-time whether some-
thing is a proof or not is maintained (this is due to the fact that axioms of set
theory are given by a finite number of schemes and so it is p-verifiable if a
string is an axiom or not).

2. Basic concepts and problems

We now leave behind classes of particular finite objects (polynomials, graphs,
formulas, etc.) and enter the abstract framework usual in theoretical computer
science. Finite objects are encoded by binary words, i.e., elements of {0, 1}∗.
Decisions problems are identified with the set of those problem instances for
which the problem has the affirmative answer. That is, decision problems are
languages L ⊆ {0, 1}∗ and the original query is replaced by a query of the form
x ∈? L. The size of a problem instance x becomes the length |x| of the word x.

224 J. Kraj́ıček

Definition 2.1 (Cook-Reckhow[6]). A proof system for L ⊆ {0, 1}∗ is a binary
relation P (x, y) satisfying the following three conditions:

(1) Completeness: x ∈ L → ∃y; P (x, y).
(2) Soundness: ∃y; P (x, y) → x ∈ L.
(3) p-verifiability: P (x, y) is a p-time decidable relation.

The important distinction between the affirmative cases and the negative
cases, the existence of a priori short proofs, is formalized by the following
definition.

Definition 2.2 (Cook-Reckhow[6]). Proof system P (x, y) is p-bounded iff there
exists k ≥ 1 such that for all x, y ∈ {0, 1}∗:

P (x, y) → ∃z(|z| ≤ (|x| + 2)k); P (x, z) .

That is, the size of proofs in a p-bounded P can be a priori bounded by a
polynomial in the size of the problem instance.

Definition 2.3. NP is the class of languages L admitting a p-bounded proof
system. coNPis the class of complements of NP-languages.

In our examples, the sets of instances for which the problems has affir-
mative answer form NP-sets (solvable polynomial systems, 3-colorable graphs,
satisfiable formulas, etc.), while the sets of instances with the negative answer
form coNP-sets (unsolvable polynomial systems, non-3-colorable graphs, un-
satisfiable formulas or tautologies, etc.).

The following problem, the so-called NP versus coNP problem, is the
central problem in proof complexity. It formalizes the question whether or not
there are efficient ways to prove the negative cases in our, and in many other
similar, examples.

Problem 2.4.

NP =? coNP
That is, does the implication L ∈ NP → {0, 1}∗ \ L ∈ NP hold for any L?

It is a prevailing conjecture that NP 	= coNP. The universality of proposi-
tional tautologies mentioned in the introduction means precisely what is stated
in the following theorem. The theorem is a consequence of the so-called NP-
completeness of the set of satisfiable formulas (Cook [4]).

Theorem 2.5 (Cook-Reckhow[6]). NP = coNP iff the set TAUT of proposi-
tional tautologies (in DeMorgan language) admits a p-bounded proof system.

Proof complexity (tacitly propositional proof complexity) studies proof
systems for TAUT with the main aim to prove that none of them is p-bounded.
It is a many-faceted area where computational complexity theory overlaps with
mathematical logic.

Proof Complexity 225

Topics studied include:
• Connections with first order theories and central issues of mathematical

logic (bounded arithmetic, Gödel’s theorem, etc.).
• Lower bounds for particular proof systems (resolution, bounded depth

Frege systems, effective Nullstellensatz, polynomial calculus, cutting
planes, theory of discretely ordered modules, etc.).

• Upper bounds and various simulations between proof systems.
• Connections with computational complexity (boolean complexity, cryp-

tography, derandomization, communication complexity, etc.).
I shall say nothing about the middle two items (with the exception of a couple
of brief remarks at the end of Section 3) but I will discuss examples from the
first and from the last items in the next two sections.

3. Consistency statements

Let A(x, y) be a p-time relation. Given a ∈ {0, 1}n we want to express that

∀y ∈ {0, 1}m; A(a, y) .

For example, we can express in this way that a is an unsolvable polynomial
system, an unsatisfiable formula, etc. In these cases m ≤ poly(n), and we will
always assume this bound.

Consider an algorithm executed by a Turing machine running in time
poly(n, m) ≤ poly(n) and deciding A(x, y). Turing machine is the established
mathematical model of a computer but any other faithful model would work
just fine. At time t = 0 the tape of the machine (i.e., the memory) contains bits
of x, y, and additional bits, a finite number of them encoding the state of the
machine. Call all these bits w0

1 , w
0
2 , . . . , w

0
T . Generally, in time t, the memory

holds bits wt
i , for i ≤ T . The parameter T here is some universal bound deduced

from the time bound of the machine, so T ≤ poly(n).
The key observation is that any bit wt+1

i depends only on a finite num-
ber of bits wt

j , some j’s. This allows to write down propositional formula
CorrectA

n (x, y, w), the conjunction of all local conditions expressing that each
bit wt+1

i is correctly computed from wt
j ’s. Note that the number of bits wt+1

i

is poly(n) and so the size of CorrectA
n (x, y, w) is also poly(n).

The main property of this propositional representation is this:
• ∀y ∈ {0, 1}m; A(a, y) holds true iff the propositional formula

CorrectA
n (a, y, w) → wT

output

is a tautology.
Here wT

output is the bit representing the output of the machine, i.e., it is equal
to 1, true, iff the machine yields the affirmative answer. We shall denote the
implication by symbols:

||A||n(a, y) .

226 J. Kraj́ıček

This is a propositional formula that has bits of a substituted for bits x1, . . . , xn,
has bits y1, . . . , ym, and also bits wt

i that we do not show explicitly in this
notation.

With this general way of translating bounded universal statements into
propositional formulas we now define a formula expressing the soundness of a
proof system Q:

∀x, y, z(|x|, |z| ≤ |y|); Q(x, y) → Sat(x, z) .

We assume with a loss of generality that Q(x, y) implies |x| ≤ |y| (we can
always stipulate that a formula x is “a part” of a proof y). Sat(x, z) is the
p-time relation “z is a truth assignment satisfying x”, |z| ≤ |x| ≤ |y|.

Let ||RefQ ||n(x, y, z) be the propositional translation of this formula for
|y| = n. Assume that we have a proof σn of this tautology in a proof system
P . Given any Q-proof π of any tautology τ reason in P is follows:

(1) Q(τ, π) → Sat(τ, z)
[this is an instance of tautology ||RefQ ||n(x, y, z) proved by σn]

(2) Q(τ, π)
[this is a true instance and is proved by evaluating it]

(3) Sat(τ, z)
[from (1) and (2)]

(4) Sat(τ, z) ≡ τ(z)
[this is a general fact that is verified by induction on the logical complexity
of τ]

(5) τ(z)
[from (3) and (4)]

To summarize: Given a P -proof σn of ||RefQ ||n(x, y, z) we can transform any
Q-proof π of size n into a P -proof π∗ of the same formula, and of size

|π∗| ≤ O(|σn| + poly(n)) .

That is, “any” P proving tautologies ||RefQ ||n(x, y, z) by p-size proofs is “at
least as good as” Q. The concept “at least as good as” is called simulation:
P simulates Q iff P -proofs are at most polynomially longer than Q-proofs.
In particular, if Q is p-bounded, so is P . I remark without elaborating on
it that many Q do prove their own soundness in p-size, and so the formulas
||RefQ ||n(x, y, z) are actually the hardest tautologies that Q proves in p-size.
See [8, Chpt.9] for details.

The formula expressing the soundness of Q has the form ∀y; A(x, y) (we
leave out the bounds on y) such that it is universally true for all x and not
just for some instances x := a. For such formulas it seems more natural to
consider their proofs in a first order theory rather than to perform a redundant
translation, for each length of x, to propositional formulas and then to prove
all these formulas separately.

Proof Complexity 227

A relation between first-order theories and proof systems can be indeed
developed; the theory is called bounded arithmetic (the term comes from a
universal form of the theories one can take in this context). I shall not elaborate
on it but just informally state its main points. See [8] for details (original
references include [5, 15, 1]).

Proof systems P and theories T come in pairs such that:

(1) When T proves ∀x, y; A(x, y) then tautologies ||A||n(x, y) have p-size
P -proofs.

(2) T proves the soundness of P and if T proves the soundness of Q then P
simulates Q.

(3) A form of converse to (1) (this needs some background in model theory
that I shall omit).

One can view the relation between theories and proof systems as being anal-
ogous to the relation of algorithms and circuits; it is the uniform and the
non-uniform version respectively of the same concept.

Before leaving these issues we remark that it allows to interpret lower
bounds for particular proof system P as lower bounds to a whole class of proof
systems whose soundness can be proved in P . This is often the case when the
proof system is based on utilizing one combinatorial or algebraic fact (as was
the case in some of our examples and it is the case in most proof systems
studied so far).

Property (1) can be used to prove upper bounds on the size of P -proofs (it
is often much easier to see that T proves a universal formula than to construct
short P -proofs of its individual instances). Property (2) can be used for proving
simulations between proof systems. In fact, all more involved upper bounds or
simulations have been first proved via bounded arithmetic.

4. Proof complexity generators

The first issue one has to deal with when trying to prove lower bounds for a
proof system P , or a class of proof systems, is to formulate tautologies that
could be hard for the proof system. To produce sensible candidate tautologies
appears actually surprisingly difficult. The point is that the tautology should
be “hard” but should have also a clear intuitive meaning and structure in order
that we are able to devise a lower bound proof. I use the verb “devise” because
it can be showed that any lower bound proof amounts to constructing a model
(in a precise logical meaning) for the negation of the tautology.

We have, at present, three categories of such candidate hard tautologies:

(1) Formulas ||RefQ ||n(x, y, z) for “strong” Q.
(2) Combinatorial principles such as the pigeonhole principle.
(3) Complexity/logic motivated candidates.

228 J. Kraj́ıček

The first type of formulas is difficult to use for lower bounds because the ad-
jective “strong” is difficult to substantiate. The combinatorial formulas work
well but only for weaker systems.

I shall discuss in this section an example of candidates of the third type,
the so-called τ -formulas. I shall give enough details to informally explain main
ideas but I make no attempt for an exhaustive or for the most general exposition
(the interested reader may start with [12]). The rout to the τ -formulas went
via feasible interpolation [9, 16] and provability of the dual weak pigeonhole
principle in bounded arithmetic [10] (at least in my case). They have been
defined in [10] and independently in [2], and their theory is being developed
[11, 18, 12, 19, 13]. A more detailed discussion of background than I offer below
can be found in the introductions to [12] and [19].

Consider a p-time map g with restrictions

gn : {0, 1}n → {0, 1}m

with n < m ≤ poly(n). We assume that |g(x)| depends only on |x|. Hence
m := m(n) depends only on n and we will assume for simplicity of the notation
that m(n) 	= m(n′) if n 	= n′. As m > n, we have {0, 1}m \ Rng(g) 	= ∅. Let
b ∈ {0, 1}m \ Rng(g). Formula τb(g) expresses that b is outside of the range of
g, “g(x1, . . . , xn) 	= b”, i.e., it is

||g(x) 	= y||n(x, y/b) .

Note that its size is poly(n, m) ≤ poly(n).

We will say that g hard for P iff
• For every k ≥ 1 and sufficiently large n, for no b ∈ {0, 1}m \ Rng(g) has

formula τb(g) a P -proof of size less than m(n)k.
For a fixed k ≥ 1 define Easyk ⊆ {0, 1}∗ consisting of those y such that

∃z(|z| ≤ |y|k); P (τy(g), z) .

The hardness of g means that all these sets Easyk are finite. So what we want
is a map g with parameters as above such that Rng(g) intersects all infinite
NP-sets.

This is akin to the definition of pseudo-random number generators from
cryptography (more precisely to that of hitting set generators): These are maps
that intersect all P/ poly-sets of non-negligible density. The relaxation from
infinite sets to sets of positive density would not be such a problem for us:
It would merely mean that perhaps not all τ -formulas are hard as we have
required, but the fraction of b’s yielding easy instances would be negligible.

What is difficult is the requirement that g should intersect NP-sets rather
than P/ poly-sets. Even the existence of pseudorandom generators is proved
only under other assumptions (like the existence of one-way functions) and
for the version with NP-sets we have nothing similar. There is a construction
of a weaker type of generators, the so-called Nisan-Wigderson [17] generators,

Proof Complexity 229

sufficient in derandomization. Their existence can be proved (even w.r.t. NP-
sets) from a plausible hypothesis in boolean complexity. But the problem here
is that the parameters achieved are insufficient for our purposes (the time
complexity of g, and hence the size of τb(g)’s, grows with the constant k ≥ 1).
[19] conjectures that original parameters suffice, while different parameters were
proposed in [12]. Detailed discussions of this can be found, from somewhat
different perspectives, in these two papers.

Instead discussing the technicalities more we shall consider another type
of results, showing that in a particular sense there is “the hardest” g. For that
we need to recall the notion of a boolean circuit. It is an object similar to
a propositional formula except that it is represented very economically: Any
subformula (or subcircuit) is written just once, even if it is needed in several
occurrences. It is easy to see that a circuit of size s can be encoded by O(s log(s))
bits.

Let C be a circuit with k inputs and of size at most 2k/3. By the above
it is encoded by a string of O(2k/3k/3) < 2k/2 bits. Denote by tt(C) the truth
table of the boolean function on {0, 1}k computed by C; it is an element of
{0, 1}2k

. The truth-table function

tt : C ∈ {0, 1}2k/2 → tt(C) ∈ {0, 1}2k

has the parameters n = 2k/2 and m = 2k we want from g, and it is p-time
computable.

The truth-table function will be the hardest one, but first we need to
modify a bit the definitions of hardness. I shall discuss this only informally.

An intuitive drawback in the definition of hardness is that although it
may be hard to prove that any particular b is outside of the range of g one still
cannot “consistently think” in P that g is onto. This is because it may be that
some disjunction of the form

g(x) 	= b ∨ g(x′) 	= b′ ∨ . . .

has a short P -proof, or bit more generally a disjunction of the form

g(x) 	= b ∨ g(x′) 	= b′(x) ∨ . . .

where b′(x) is a circuit computing b′ from x, etc. Define informally that g is
very hard for P if “no such” disjunction has p-size P -proof, for n >> 0. The
technical terms used here are pseudosurjectivity or iterability (cf. [12]).

Theorem 4.1 (Kraj́ıček[12]). If there is any g very hard for P containing reso-
lution then the truth table function tt is very hard for P too.

At least for the case of P being resolution we can prove the hypothesis of
the theorem.

Theorem 4.2 (Razborov[19]). There is a g that is very hard for resolution.

The theorems imply the following corollary.

230 J. Kraj́ıček

Corollary 4.3. The truth table function tt is very hard for resolution. In par-
ticular, it is also hard for resolution.

Formula τb(tt) expresses that b is a truth table of a function with large
(> 2k/3) circuit complexity (the size 2k/3 has been chosen for our discussion
but can be almost anything). Hence these formulas are indeed hard if it is hard
to prove circuit lower bound for any boolean function. This puts us in a bit
peculiar situation: Our program succeeds, i.e., the τ -formulas are very hard even
for strong proof systems, if it is hard to prove circuit lower bounds, i.e., it is hard
to carry other programs in complexity theory that reduce various conjectures
(like P 	= NP or universal derandomization of probabilistic computations) to
circuit lower bounds.

5. A broader perspective

Let me conclude with a look at proof complexity problems from a distance.
Around 1900 mathematicians were worried about questions as:

• Is the consistency of Mathematics provable?
• Is predicate calculus (i.e., what is true in all structures) algorithmically

decidable?
The first issue led to Gödel’s theorem and Gentzen’s proof theory analysis,
while the second led to the work of Turing, Church, Kleene and others (a
formal definition of the notion of algorithm, undecidable problems).

We can view the problems of complexity theory as quantitative versions
of the the above questions. In particular:

• Is the consistency of Mathematics w.r.t. proofs of size n provable in size
comparable to n?

• Is it feasibly decidable what is true in all structures of size n?
If “comparable” means polynomially bounded and “feasibly” means in p-time,
then the first problem is exactly NP =? coNP while the second one is
P =? NP .

The links with logic run deep. For example, there is a quantitative version
of Gödel’s theorem that, if true, would imply that no proof system can simulate
all other proof systems, and hence NP 	= coNP and P 	= NP. See [15]; there
is an exposition in [8] too or a brief and non-technical one in [14].

References

[1] M. Ajtai, The complexity of the pigeonhole principle, in: Proc. IEEE 29th Annual
Symp. on Foundation of Computer Science, (1988), pp. 346–355.

[2] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, and A. Wigderson, Pseudo-
random generators in propositional proof complexity, Electronic Colloquium on
Computational Complexity, Rep. No.23, (2000). Ext. abstract in: Proc. of the

41st Annual Symp. on Foundation of Computer Science, (2000), pp.43–53.

[3] S.R. Buss, Bounded Arithmetic. Naples, Bibliopolis, (1986).

Proof Complexity 231

[4] S.A. Cook, The complexity of theorem proving procedures, in: Proc. 3rd Annual
ACM Symp. on Theory of Computing, (1971), pp. 151–158. ACM Press.

[5] S.A. Cook, Feasibly constructive proofs and the propositional calculus, in: Proc.

7th Annual ACM Symp. on Theory of Computing, (1975), pp. 83–97. ACM Press.

[6] S.A. Cook and A.R. Reckhow, The relative efficiency of propositional proof sys-
tems, J. Symbolic Logic,44(1), (1979), pp. 36–50.

[7] G. Hajós, Über eine Konstruktion nicht n-farbbarer Graphen, Wiss. Z. Martin-
Luther-Univ., Halle-Wittenberg, Math. Natur. Reihe, 10, (1961), pp.116–117.

[8] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, En-
cyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University
Press, (1995).

[9] J. Kraj́ıček, Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic, J. Symbolic Logic, 62(2), (1997), pp.
457–486.

[10] J. Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathematicae,
Vol.170(1-3), (2001), pp. 123–140.

[11] J. Kraj́ıček, Tautologies from pseudo-random generators, Bulletin of Symbolic
Logic, 7(2), (2001), pp. 197–212.

[12] J. Kraj́ıček, Dual weak pigeonhole principle, pseudo-surjective functions, and
provability of circuit lower bounds, Journal of Symbolic Logic, 69(1), pp. 265–
286, (2004).

[13] J. Kraj́ıček, Diagonalization in proof complexity, Fundamenta Mathematicae 182,
(2004), pp. 181–192.

[14] J. Kraj́ıček, Hardness assumptions in the foundations of theoretical computer
science, Archive for Mathematical Logic, to app.

[15] J. Kraj́ıček, and P. Pudlák, Propositional proof systems, the consistency of first
order theories and the complexity of computations, J. Symbolic Logic, 54(3),
(1989), pp. 1063–1079.

[16] J. Kraj́ıček and P. Pudlák, Some consequences of cryptographical conjectures for
S1

2 and EF”, Information and Computation, Vol. 140 (1), (January 10, 1998),
pp. 82–94.

[17] N. Nisan, and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci.,
Vol. 49, (1994), pp. 149–167.

[18] A.A. Razborov, Resolution lower bounds for perfect matching principles, in: Proc.
of the 17th IEEE Conf. on Computational Complexity, (2002), pp. 29–38.

[19] A.A. Razborov, Pseudorandom generators hard for k-DNF resolution and poly-
nomial calculus resolution, preprint, (May’03).

Jan Kraj́ıček
Mathematical Institute
Academy of Sciences

Žitná 25
CZ-11567 Prague 1, The Czech Republic
e-mail : krajicek@math.cas.cz

