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Abstract

Any valid Ramsey statement n −→ (k)22 can be encoded into a DNF
formula RAM(n, k) of size O(nk) and with terms of size

(

k

2

)

.
Let rk be the minimal n for which the statement holds. We prove

that RAM(rk, k) requires exponential size constant depth Frege systems,
answering a problem of Krishnamurthy and Moll [15].

As a consequence of Pudlák’s work in bounded arithmetic [17] it is
known that there are quasi-polynomial size constant depth Frege proofs
of RAM(4k, k), but the proof complexity of these formulas in resolution
R or in its extension R(log) is unknown. We define two relativizations
of the Ramsey statement that still have quasi-polynomial size constant
depth Frege proofs but for which we establish exponential lower bound
for R.

The problem that motivates the present investigation is the following one:

• Find a sequence of formulas in DNF (preferably with narrow terms) that
have short constant depth Frege proofs (in DeMorgan language) but require
long proofs in R(log).

Proof system R(log), introduced in [11], operates with clauses (i.e. disjunctions)
formed not only of literals but also of terms (i.e. conjunctions of literals) via
natural inference rules. The size1 of an R(log) proof is the minimal s such that
the proof has at most s symbols and all terms have size at most log(s).

The problem has several facets and interesting consequences. We do not
require the sequence of formulas to be uniform in any way: the existence of any
sequence of formulas with the required properties implies (via a known technique
using the relation of reflection principles to simulations among proof systems,
cf.[10]) the existence of a first-order principle that translates into a sequence
of DNF formulas with the same properties. The existence of such DNF formu-
las implies also a non-conservativity result for bounded arithmetic T2(α) over

∗Supported in part by grants IAA100190902, AV0Z10190503, MSM0021620839, LC505
(Eduard Čech Center) and by a grant from the John Templeton Foundation.

1Some later authors have used a more naive definition, see the end of the introduction.
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T 2
2 (α), either a non-∀Σb

2(α) conservativity or even a non-∀Σb
1(α) conservativity,

if the terms in the formulas are narrow. Furthermore, several of the so called
no-gaps theorems [3, 18] would then yield the same non-conservativity of even
T 3

2 (α) over T 2
2 (α), and that R(log) does not simulate the next higher fragment

of constant depth Frege systems (of the so called Σ-depth 1 of [9, 10]). Finally,
such a proof complexity separation can be usually turned into a non-reducibility
result for corresponding NP search problems, cf.[4, 7, 8, 14].

For these consequences of the solution of the problem to hold we need to in-
terpret the qualifications narrow, short and long as follows: narrow term should
mean poly-logarithmic in the size of the formula, short proof in constant depth
Frege systems should mean quasi-polynomial in the size of the formula, and
long R(log)-proof should mean not quasi-polynomially bounded. In fact, one
may expect that there should be such formulas with terms of constant size,
having polynomial size constant depth Frege proofs and requiring exponential
size R(log)-proofs.

The DNF formulas that were proposed in [3] (in the language of bounded
arithmetic) as suitable candidates for the problem formalize a Ramsey state-
ment. Consider a valid Ramsey statement

n −→ (k)22

expressing that every graph (tacitly undirected) with vertices [n] = {1, . . . , n}
contains a homogeneous subgraph, a clique or an independent set, of size at least
k. This can be encoded into a propositional tautology RAM(n, k) in a DNF form
as follows. The formula is built from atoms xe, one for each of potential

(

n
2

)

edges e ∈ [n](2) (the set of unordered pairs of different elements of [n]), and for
each subset A ⊆ [n] of size k contains two terms

Cli(A) :=
∧

e⊆A

xe

and
Ind(A) :=

∧

e⊆A

¬xe

as disjuncts. Hence RAM(n, k) has 2
(

n
k

)

disjuncts each of size
(

k
2

)

.
Denote by rk the minimal n for which the statement is valid. It is known

that 2k/2 < rk < 4k, cf.[6]. These critical formulas RAM(rk, k) were first con-
sidered as candidate hard formulas for resolution in [15], where the authors
established an rk/2 width lower bound and an exponential lower bound for the
Davis-Putnam procedure. We note in Section 1 that the method from [11], re-
lating proof complexity of Ramsey statements to that of the so called (weak) pi-
geonhole principle (PHP), can be straightforwardly modified to show that these
formulas are too hard for our purposes: they require exponential size constant
depth Frege proofs. No bounds were known for the formulas previously2.

2I pointed out this lower bound in various talks but never wrote it up. I use this occasion
to give a finitary version of the original model-theoretic argument of [11].
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Fortunately if we replace the optimal parameter rk by 4k the proof com-
plexity decreases dramatically: by [17] it is known that RAM(4k, k) have quasi-

polynomial size (i.e. 2kO(1)

) constant-depth Frege proofs (the estimate to the
depth resulting from the argument in [17] has been optimally counted in [1]).
In the direction of lower bounds we know that RAM(4k, k) requires width of
resolution proofs at least 1

24k/4 and that R∗(log)-proofs (i.e. tree-like R(log)-
proofs) require exponential size, cf. [11]. Moreover, it is known that a lower
bound for resolution proofs of RAM(4k, k) would follow from a lower bound for
R(2)-proofs of the weak PHP with n4 pigeons and n holes, cf.[11].

Thus our original problem can be reduced to:

• Show that formulas RAM(4k, k) require long (at least more than of a quasi-
polynomial size) R(log)-proofs.

No lower bound is known for R either. In this paper we do not prove the
lower bound for R(log) but we make a bit of a progress. We shall define two
relativizations of the formulas, to be denoted RAM

U (n, k) and RAM
f (n, k), and

we show that while they are still easy for constant depth Frege systems, they
both require exponential size R-proofs.

We use only standard concepts of proof complexity; the reader may find
any relevant background in [10, 11]. More details on the link to conservativity
problems in bounded arithmetic can be found in [18]. Here we only remark
on the definition of R(log). In [11] a system R+ was defined, operating with
clauses of terms via natural rules, and for a function f on N one defined the
R(f)-size of an R+-proof: the minimal s such that the proof has at most s
symbols and uses terms of size at most f(s). Some later authors interpreted the
definition as saying that terms have size at most f(n), where n is some canonical
parameter of the formula, e.g. its number of variables. In this sense one can
have an exponential lower bound for R(log)-proofs while they use only terms of
size log(n). Such a result says nothing about bounded arithmetic independence
from T 2

2 (α); to maintain the correspondence between proof systems and bounded
arithmetic one has to use the original definition.

1 A lower bound for the critical parameter

Recall that the size of formulas RAM(n, k) is O(nk). In particular, the size of

RAM(rk , k) is at most O(4k2

) due to the bound rk ≤ 4k.

Theorem 1.1 For every d ≥ 2 there is ε > 0 such that for k ≥ 1 every depth d
Frege proof of RAM(4k, k) must have the size at least 2rk

ε

.

Proof :
We shall use the idea of an argument from [11]. Put n := rk −1, and let pi,j ,

i ∈ [n + 1], j ∈ [n] be (n + 1)n atoms of the usual pigeonhole principle formula
PHPn:

∨

i

∧

j

¬pi,j ∨
∨

i1 6=i2,j

pi1,j ∧ pi2,j ∨
∨

i,j1 6=j2

pi,j1 ∧ pi,j2
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where i, i1, i2 ∈ [n + 1] and j, j1, j2 ∈ [n].
Let π be a depth d size s Frege proof of RAM(rk, k) and let the variables

of this formula be xe, e ∈ [rk ](2). By the definition of rk there exists a graph
G = ([n], E) that has no homogeneous subgraph of size k. Use it to define
the following substitution for variables xe in terms of the variables of the PHP

formula:
σ(x{u,v}) :=

∨

{i,j}∈E

pu,i ∧ pv,j .

The following claim is established by induction on t.

Claim 1: For any t such that 1 ≤ t ≤ n and any size t subset A ⊆ [rk] there
are constant depth Frege proofs of size nO(t) of both formulas

σ(Cli(A)) ∧ ¬PHPn −→
∨

B⊆[n],|B|=t

∧

{i,j}⊆B

E(i, j)

and
σ(Ind(A)) ∧ ¬PHPn −→

∨

B⊆[n],|B|=t

∧

{i,j}⊆B

¬E(i, j)

Because G has no homogeneous subset of size k, both conjunctions

∧

{i,j}⊆B

E(i, j) and
∧

{i,j}⊆B

¬E(i, j)

have value 0 for |B| = k. This entails the next claim.

Claim 2: For each A ⊆ [rk] there are constant depth Frege proofs of size nO(k)

of both formulas
σ(Cli(A)) −→ PHPn

and
σ(Ind(A)) −→ PHPn .

Combining the proof σ(π) of σ(RAM(rk , k)) with the proofs from Claim 2, we
get a constant depth proof of PHPn of size at most

O(sn2) + 2

(

rk

k

)

nO(k) ≤ O(sn2) + nO(log(n)) .

It is known ([2, 13, 16]) that PHPn requires constant depth Frege proofs of size

2nδ

, δ depending on the depth. This entails the lower bound.

q.e.d.
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2 Relativisations and constant depth Frege up-

per bounds

In this and the next section we concentrate on formula RAM(n, k) with the
non-optimal parameter n := 4k. From now on n is fixed to denote this value.

We define two relativisations of formula RAM and show that they are still
shortly provable in constant depth Frege systems. This will be complemented
in the next section by exponential resolution lower bounds for both of them.

The first relativisations RAM
U is simpler to define but it appears less flexible

for the hopeful attack on R(log) than the second relativisation RAM
f . The latter

formula has also a trivial upper bound proof for constant depth Frege systems
while for the former one has to check that the proof of the upper bound for
RAM in [17] will work here as well.

Relativisation in proof complexity appeared in [12] in connection with model-
theoretic methods and lead to the question how relativisation of first-order prin-
ciples influences the proof complexity of their propositional translations. For
resolution this was answered by a beautiful theorem of Dantchev and Riis [5].
Ramsey principle does not fall under the scope of this theorem but we shall be
able to use the random restriction method from [5] on our formulas RAM

U and
RAM

f nevertheless.

The first relativisation RAM
U (n, k) formalizes the following principle:

• Let n = 4k, let G = ([n], E) be any graph and let U ⊆ [n] be arbitrary.
Then either the induced subgraph with vertices U or the induced subgraph
with vertices Ū := [n] \U contains a homogeneous subgraph of size k − 1.

At east one of the subgraphs has size m ≥ n/2 and the validity of RAM
U (n, k)

thus follows from the validity of the Ramsey relation m −→ (b log(m)
2 c)22 as

k = log(n)
2 .

Definition 2.1 Let k ≥ 2, n = 4k, and let xe and ui be atoms, where e ∈ [n](2)

and i ∈ [n]. Formula RAM
U (n, k) is the disjunction of the following 4

(

n
k−1

)

formulas:
∧

i∈A

ui ∧ Cli(A)

∧

i∈A

¬ui ∧ Cli(A)

∧

i∈A

ui ∧ Ind(A)

∧

i∈A

¬ui ∧ Ind(A)

where A ranges over subsets of [n] of size k − 1.
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The size of formula RAM
U (n, k) is O(k2nk), its terms are narrow of size k− 1+

(

k−1
2

)

≤ k2.

The second formalization RAM
f (n, k) formalizes the following principle:

• Let n = 4k, G = ([n], E) be any graph and let f : [n/4] → [n] be an
arbitrary injective function. Then the induced subgraph whose vertex set
is the range Rng(f) of f contains a homogeneous subgraph of size k − 1.

This is valid as the induced subgraph has 4k−1 vertices.

Definition 2.2 Let k ≥ 2, n = 4k, and let xe and fi,j be atoms, where e ∈
[n](2), i ∈ [n/4], and j ∈ [n]. Formula RAM

f (n, k) is the disjunction of the
following formulas:

1.
∧

j ¬fi,j , any i,

2. fi,j1 ∧ fi,j2 , any i and j1 6= j2,

3. fi1,j ∧ fi2,j , any i1 6= i2 and j,

4. fi1,j1 ∧ . . . ∧ fik ,jk
∧ Cli({j1, . . . , jk}), any ordered k-tuples of different el-

ements i1, . . . , ik ∈ [n/4] and j1, . . . , jk ∈ [n],

5. fi1,j1 ∧ . . . ∧ fik,jk
∧ Ind({j1, . . . , jk}), any ordered k-tuples of different

elements i1, . . . , ik ∈ [n/4] and j1, . . . , jk ∈ [n],

where i, i1, i2 ∈ [n/4] and j, j1, j2 ∈ [n].

Note that RAM
f (n, k) has nO(k) terms which, due to item 1., are not narrow

anymore, and total size nO(k) too.

Theorem 2.3 Let k ≥ 2 and n = 4k. Formulas RAM
U (n, k) and RAM

f (n, k)

have both quasi-polynomial size (i.e. size 2kO(1)

) constant depth Frege proofs.

Proof :
We start with the upper bound for RAM

f . Assume for the sake of contra-
diction ¬RAM

f (n, k). Define a graph H with vertices [n/4] by pulling back
the edges of G via map f . As f is injective H is well-defined. As we assume
¬RAM

f (n, k), graph H has no homogeneous subgraph of size k−1. But this can
be brought to a contradiction in a constant depth Frege system: take a short
proof of RAM(n/4, k − 1) in the system (it exists by [17]) and substitute in it
for the edge variables the definition of the edges of H . This will increase the
depth by a constant and the size by a factor of O(n2).

For RAM
U (n, k) there does not seem to be such a simple proof by substitution

into a known proof of RAM but it suffices to look how RAM(n, k) is proved in
[17]. The argument there rests on the following construction. Given a graph
with vertex set V which has no homogeneous subgraph of size `, a mapping
F : V → {0, 1}` is defined (by short constant depth formulas) that is injective.
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This is then brought into a contradiction with the weak PHP if ` is too small
(i.e. 2` ≤ |V |/2).

In our case we apply this construction to both induced subgraphs of G with
the vertex sets U and Ū respectively, getting two injective maps

F1 : U → {0, 1}k−1 and F0 : Ū → {0, 1}k−1 .

They combine to an injective map from [n] into {0, 1}k which is then brought
to a contradiction with the weak PHP as before.

q.e.d.

3 Resolution lower bounds

The strategy of the lower bound argument is analogous to that of [5]: we
show, employing a random restriction, that if either relativisation RAM

U (n, k)
or RAM

f (n, k) had a short R-proof then the unrelativized RAM(n, k− 1) would
have a narrow R-proof, contradicting the width lower bound from [11]. We start
by recalling the latter, stating it in the form we need later.

Theorem 3.1 ([11]) Any R-proof of RAM(m, `) must have the width at least

1

2
2`/2 .

Lemma 3.2 Let k ≥ 2 and n = 4k. Assume that there is an R-proof of

RAM
U (n, k) of size s ≤ 2n1/11

. Then RAM(n, k − 1) has an R-proof of width at
most n1/5.

Proof :
Let π be a size s R-proof of RAM

U (n, k). Substitute for all atoms ui a
random value σ(ui) ∈ {0, 1}, independently and with probability 1/2 of each
value. Put U := {i ∈ [n] | σ(ui) = 1}.

After σ is chosen define a partial evaluation of variables xe as follows:

• If e ⊆ U or e ⊆ Ū leave xe unassigned.

• Otherwise give xe randomly value 0 or 1, independently and with equal
probability 1/2.

Denote ρ ⊇ σ the substitution thus defined.
A clause C in π has the form

v1 ∨ . . . ∨ vs ∨ `e1 ∨ . . . ∨ `et

where v1, . . . , vs are literals ui or ¬ui and `e is literal xe or ¬xe.

Claim 1: Let C be a clause as above. In the random process defining ρ the
probability that ρ(C) 6= 1 is at most (3/4)

√
t/2.
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Consider the first edge e1. Decide randomly the membership of its endpoints
in U . The probability that ρ(`e1) ∈ {0, 1} is 1/2 and that it is not equal to 1
is 1/4. Hence 3/4 bounds the probability that ρ(`e1) 6= 1. In a general step
take e ∈ {e1, . . . , et} such that the membership in U has not been decided for
at least one end-point of e. Then again ρ(`e) 6= 1 with probability at most 3/4.
In each step we decide about at most two points their membership in U and p
points can cover up to

(

p
2

)

≤ p2 edges. Hence this process can go on for at least√
t/2 steps. This proves the claim.

Claim 2: The probability that all clauses in π not given value 1 by ρ have the
width less than n1/5 is positive.

The probability to fail to make true all clauses of width at least n1/5 is
bounded above by Claim 1 by

s · (3/4)
1
2 n1/10 ≤ 2n1/11 · (3/4)

1
2 n1/10

which goes to 0.

By Claim 2 we can take a ρ not leaving in ρ(π) any clause wider than n1/5.
Let |U | = m. Assume without a loss of generality that m ≤ n/2. The restricted
proof ρ(π) is a proof of a disjunction of two formulas

RAM(m, k − 1) ∨ RAM(n − m, k − 1)

written in disjoint sets of variables. Identify [m] with a subset of [n−m] of size
m, and consequently also the variables of RAM(m, k − 1) with some variables
of RAM(n − m, k − 1), turning ρ(π) into a proof of RAM(n − m, k − 1), i.e. of
RAM(n, k − 1) too.

q.e.d.

Now we prove an analogous statement for the other relativisation.

Lemma 3.3 Let k ≥ 2 and n = 4k. Assume that there is an R-proof of

RAM
f (n, k) of size s ≤ 2n1/11

. Then RAM(n, k − 1) has an R-proof of width at
most n1/5.

Proof :
Let π be a size s R-proof of RAM

f (n, k). Assign first to each i ∈ [n] a random
value σ(i) ∈ {0, 1}, independently and with equal probability 1/2 of the values.
Put V = {i ∈ [n] | σ(i) = 1}. Chernoff’s bound implies that n

4 ≤ |V | ≤ 3n
4 with

probability of failing at most e−n2/16.
Assuming |V | ≥ n/4 proceed as follows. Take for f an injective function

from [n/4] into V , selected from the set of all such functions in some canonical
way, and evaluate variable fi,j := ρ(fi,j) ∈ {0, 1} accordingly.

Then extend ρ to η ⊇ ρ by randomly restricting some of the edge variables
xe as follows:

• If e ⊆ V leave xe unassigned.
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• If e 6⊆ V , assign xe value η(xe) ∈ {0, 1}, independently and uniformly at
random.

A clause D in π has the form

g1 ∨ . . . ∨ gs ∨ `e1 ∨ . . . ∨ `et

where g1, . . . , gs are literals fi,j or ¬fi,j and `e is literal xe or ¬xe.

Claim 1: Assume |V | ≤ 3n/4. Let D be a clause as above. In the random

process defining η the probability that η(D) 6= 1 is at most (7/8)
√

t/2.

The claim is proved analogously to Claim 1 in the proof of Lemma 3.2,
noting that the assumption |V | ≤ 3n/4 implies that xe is not assigned a value
is at most 3/4.

This yields the next claim as before.

Claim 2: The probability that n/4 ≤ |V | ≤ 3n/4 and that all clauses in π not
given value 1 by η have the width less than n1/5 is positive.

Take a restriction η not leaving in η(π) any clause wider than n1/5. The proof
is concluded by noting that η(π) is a proof of RAM(m, k − 1) where m = |V |,
i.e. of RAM(n, k − 1) as well.

q.e.d.

Theorem 3.1 imply together with Lemmas 3.2 and 3.3 the lower bound.

Theorem 3.4 Let k ≥ 2 and n = 4k. Then every R-proof of RAM
U (n, k) or of

RAM
f (n, k) must have the size at least Ω(2n1/11

).
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