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Jan Kraji&ek

In (8] we proposed a set theory MST formelized in modal lo-
gic. The aim of this lecture is to announce new consistency
result concerning MST (ihese form Part II). For completeness .
of a presentation we recapitulate the motivation of MST and
some definitions end results (without proofs) from [g8] (these
form Part I).

We do not mention here connections with other related sys-
tems (see [1],...,[6]); this is done, in detail, in [8].

We thank to P.Pudlék for many valuable discussions and for
his assistance to our work.

Part I, §0. Introduction

Cantor‘a comprehension (cC )
ay Vt; kf’('t,)?itey

where (f is any property, is a very elegant principle. Its
substance describes Cantor’s naive éet-univepse; Unfortunately,
in the most customary formalization, where eny formula of the
set-theoretical language is accepted as a property, is CC con-
troversial.

In most set-theories the motivation lies in Cantor’s univer-
se. They replace CC by a list of weaker axioms (e.g.ZF) or re-
strict it (e.g.NF). |

At the same time they lose important features of CC: homo-
geneity, simplicity and elegance or apparent intuitive picture.

We think that these features of CC justify the search for
other possible reformulations of CC.

The modification of CC which is formalized by MST covers so-
me mathematics (it interprets PA) and, on the other gide, some
of its considerable fragments are proved to be consistent.



§1. Theory MST

Let us imagine the following situation. There exists some
Set-universe which is the object of our consideration. The
only atomic predicates are "to be equal" and "to be element
of"., Each atomic sentence and hence each sentence is true or
false in the Set-universe.

Our wish is to recognize the truth, i.e. the sentences true
in the Set-universe. So some true sentences are known to us,
are in our knowledge. ‘

For formalizing the modal operator "to be known" we extend
the usual classical set-theoretical language by adopting a new
unery logicel connective @ which should be an epistemic moda-
lity. Thus our language (the modal set-theoretical language)
is the modal predicate calculus with identity (see [7]) with
a binary predicate € as the only non-logical symbol.

1.1 When we decide to try to understand the Set-universe we

- can, already, teke the fact of looking for the knowledge
as a part of the knowledge. Put otherwise, we may accept assum-~
ptions which manifest the principles and the correctness of
our knowledge. Hence the following two axiom schemas and one
deduction rule should be accepted:

(1) o¥—F¥ \ }
(ii) U(‘f '4’\") "7(0% - _J T-axioms
(iii) Eg% necessitation rule (N-rule)

This extension of the classical predicate calculus is cal-
led T in [7].
l.2 The main idea of MST is that CC does not refer to the
. whole Set-universe but only to its known part, to our
finiverse of ditourse". That means: it seems to us from the
point of view of our knowledge that the Set-universe behaves
as if CC were sound.

In the chosen language this modification of CC (Modal cC
or shortly MCC) can be described as follows:
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MCC : for LF(t,al,.,.,ak) any formula of the modal set-theo-
retical language with free variables among t,,as\l,...,ak
the universal closure of the following formula holds:

| ay'Vt; (Oklo(t,al,...,ak)‘i Utey) & '

& (D"l(ﬂt,al,...,ek)z C]t¢y) e
The ay ‘s are called parameters and will be omitted fur-

ther.

1.3, The last but one principle we adopt is the extensionali=-
ty in the usual formalization: . ) :
e (Vt;t Ex=te »y) > x=y .
One reason for it is simply our usage in thinking about Set-
universe. It also helps to prove various properties of a given
set a: it suffices to define, in some useful way, a set b with
the same extension as a (see 3.7). On the other side, many con-
cepts and results using extensionelity can be interpreted with-
out it (see [3]). ‘
1.4 So far we have not accepted any concrete "theory of knowm
ledge”, any non-logical epistemic essumptions. The last

principle of MST is of this kind. As usual \O‘f abbreviates
1o TP, The principle is: '
IP : O x=y = Ox=y
or equivelently : .
(i) (x=y-90x=y) 8¢ (x#y - DOx3 ) or (11) Ox=yv Ox{y - .

We leave out the question whether LP has logical or empiri-
cal character, '

<

It is a kind of & finitistic assumption. There are also clo-
se connections to leibniz’s principle: "No two moneds are .exacte
ly alike", from his theory of monads (see [9]). This may be
formalized as Qx=y ~> x=y (where Ox=y simulates indistingui-
shability) or equivalently xty —> 0Ox3$y. Thus Leibniz’s principle
coincides with the second conjunct of (i). Surely, the first is
a trivial consequence of the substitution prop‘erties of identity.
Hence the neme LP seems to be justified for this aximm.



conjunct of (i) is called LI and the second INI there.
1.5 Let us summarize the definitions. The formal theory MST
is formalized within modal predicate calculus with iden-
‘tity. The axioms of identity are assumed. The underlying logi~-.
cal system is T. The only non-logical assumptions are: exten-
gionality, MCC and LP.
Let us stress explicitly that N-rule is applicable generally
(1n contrast to theories of [2) end [3:» In particular, all
‘instances of MCC are "known". This gives to the whole system
features of a *logical calculus". :
We will use freely various results about modal loglcs which
are proved in [7].

. In the whole text we do not discuss possible extensions of
MST (see [8)). Also in consistency results, by way, stronger
theories are proved to be consistent then is explicitly stated,
but these are irrelevant to our discussion. | ‘ ‘

_ _§2. Russell’s paradox

Let us discuss Russell ‘s paradox formally. <Apply1ng MCC to
Russell s formula t¢ t we obtain :
Jy¥i;ptét=ntey = atets 0t¢y
and hence :
Jy;oyeyEnydy .
Now surely :
(Dyey »yey) & (Qy¢y->yéy) 1,
and the only escape from the contradiction gives :-
Jyi(Oyeyzaydy)x Oyey x Ooydy .
Fortunately, this situation does not leed to inconsistency
because y€y v Ny4y is not a theorem of T.
We even profit by this trivial but important corollary:
2.1 Corollary: dy; OyeEy % Oydy .
The reader could calculate himself that other modifications
of Russell ‘s paradox (e.g.Curry's) also fails for MST.




§3., Decidable and small sets

In this Chapter we develop two importent notions of MST.
It is not surprising that "known formulas" or "known sets”
will have pleassnt properties. This stands behind the follow-
ing definitions and results. |
3.1 Metadefinition : Call a formula “f [J-decidable iff

af v o1¥ holds.
Other equivalent conditions are : Mo -n1Y, OLP“?DLP
or ((‘7—7 D‘P)& (I"f’—% 'ﬂ‘f). Note that decidability of 4 (i.e.
usT ¥ or MsTH 1%) implies (by N-rule) [-decidability of
it butthe converse does not generally holds.

Some of the following results are proved using additional
assumptions; namely: Barcen’s formula Vx F.\(f(x) éU'Vfo(x) (BF)
and Brouwer ‘s axiom QY Y (B) (for deteils see [8]) .
This will always be indicated in brackets before a statement.
3.2 Theorem: (i) Boolean combination of D -decidable formulas -

' is (O-decidable.

(ii) (BF) A1l formulas built up from O-decidable
ones are [J-decidable.
3.3 Corollary: Boolean combination of equalities is O-deci-
dable.
3.4 Definition: Call a set y decidable (D (y)) iff
Vt;ntey v Dtéy holds.

Next results show that the domain of decidable sets is rich

and behaves reasonably.
3.5 Theorem: If “f(t) is J-decidable then there exists a de-~
cidable set y s.t. 'Vt;tey?-(f(t) .
3.6 Corollary: (i) dyVt;téy (i) JyVistey
e (11D IyVtstey= lt=ayv ... vit=a,)
Gv) dyVistey=(tda & ... X ta))
and for g, b decidable:
v JyVi;teys(teax ten)
(vi) Jy¥t;tey= (teav teb)
(vii) AyV t;tey= téa
(viii) Jy¥Vt;tey= (tea v t=c) .
Moreover, y is decidable in each case.




3.7 Theorem (BF) : Let & be a decidable set. Then?:
(1) (the union) (¥ve a;D(b))—-v-:lc'Vt',te c=Bb e ajté b)
(ii) (the power) -Je¥ t;D(t) > (t €c= tSa)
(iii) (the replacement) 1f P(x,t) is Q-decidable
then Jb¥t;t€ bi(3x§ a; ‘f(x,t))

The result 3.6 (iii) (and extensionality)"'%‘fx‘at all sets fi-
nite from outside of Set-universe are decidable. Hence the
following
3.8 Definition: Call a set y small (S(y)) iff 'Vx;‘xgy - D(x),
should substitute finiteness.

Observe that 2.1 implies existence of a set which is not
smell.

3,9 Theorem (the comprehension): Let & be a small set and et
eny formula. Then: JdyVt;teys (re aktf(f))
(and y is small).
3,10 Theorem: (i) (BF) The union of a small set of small sets
| is a small set.

(ii) (BF,B) A small set has a power set.
§4. Arithmetic

Using familiar von Neumenn’s definition we mey introduce
ordinals. Then the "natural" cendidates for natural numbers
are the small ordinals. Since it is not evident why there
could not be a limit small ordinal, we use the following
4.1 Definition: & is a natural number (N a)) iff a conjuncti-

on of the following holds:
(i) a is trensitive _
(ii) 8 is strictly well-ordered by €
(ii) g is small
(iv) V¥ be aac; c=maxeb
(where b%a and c=maxe¢b are obvious abbreviations).
Then, trivially, empty set is natural number ,"element and
asuccessor of a natural number is a natural number and natural
numbers are strictly ordered by € .
4.2 Metadefinition: A formula Lf(t) is called a_cut in N iff
a conjunction of the following holds:




@) Y fw—ornw
i1) (Prz bca) > P
(iii)( Y ca) & "b is a successor of a")-
>fwy .
A cut qct) is called a nontriviel iff aelso:
Gv) Ja,b; ‘(Ca)&']"((b)& N(b) .
‘Now we are ready to state '
4.3 Theorem (the induction) : There are no nontrivial cuts
' in N,
Let us now sketch how to introduce the arithmeticel struc-
ture on N. Define in some reasonable way addition. For example:
a + b‘; ¢ iff "there exists a small sequence S ,...,8y S.te

858y 8y=atl,e..,sp=C (u+l abbreviates a successor of u) "

(the "sequence" will be defined as usual). So we easily pro-
ve a+0=a and a+(b+1)=(a+b)+1l . Then, using 4.3, we prove that
+ is defined for any two natural numbers. The same can be do-
ne for multiplication and 4.3 will guarantee the wanted ari-
thmetical properties of + end . . Observe that 4.3 glso implies
that this cen be done uniqueli.

____ Through erithmetic and through the notion of "small set"
theory MST formelizes some properties of finiteness.

On the other side, result 2.1 suggests that it is also possi-

ble to introduce some infinity in MST. Let us sketch one

approach.

The "infinite" sets will be "non-small® ones but the dif=-
ferent "degree" of infinity of two infinite sets &,b will lay
rather in their different "complexity" (in the sense of know-
ledge) than in the different cardinality. Thus we may define
amb iff "there exists a decidable bijection f such that
‘Vx; axe aZ nf(xledb " <there is, clearly, a number of other
possibilities). It is easy to prove, for example, that there
are infinite sets of different "degree" ( e.2.Russell ‘s and
universal).



§5. Two consistent fragments

In this Chepter we present two consistency results which
are both proved by construction of an eppropriate Kripke-sty-
le model. :

5.1 Theorem: The theory MST without extensionality end with
MCC restricted only to nonmodal formulas is con-

sistent.
(a formula is nonmodal iff it does not contain,n) ,
5.2 Theorem: The theory MST with MCC replaced by a scheme:
Jy¥ei (ntey — afe,z)) »
. & (nté¢y — of&,Z))  is consistent.

Various consistency results concerning fragments of MST
with restricted applicability of N-rule can be proved, in
particular using interpretation into the Fefermen’s theory

from [j} (see [8)).
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Part I1I, §6. New consistency result

In this Chapter we prove consistency of the following sub-
theory S of MST. Theory S has N-rule generally applicable
and the following axiom schemas over those of predicate cal-
culus : (1) Q¥ —=Y |

(2) a(¢—¥) - (of -n¥

Ox=y —> Ox=y
(4) extensionality
(5) for (‘F(t,“z‘) any formula:

‘ Y23y W (f,2) > tey ) &
2 (aMe,2 »téy )

The proof will be done by interpreting S in Peano’s arithmetic
‘PA. | . “
There exists a provability predicate P(x) in PA
s.t. for eny srithmetical formulas ¢,% holds:
) if PAY then PAle P( '*7) o
lii) PAl- H(T=%)—(P(F) > P(F))
(iii) PAF(x=y = P(x l))’- (x#y —_ P(x#l ))
v} PAl 1B(F)v 12 ()
(Remark we use usual formalization of syntax in PA' thus (f
denote a code of a formula (f Prf @ '~/) means "d is a proof
of "f in PA", for b a number b denotes an appropriate numeral
and so on. )
Proof (m PA) A proof 4 is a sequence of formulas whlch will be
called steps of d. Letters d, dyy Qyyee.. are reserved i:qr |
proofs. Define in PA : '
8) d%qg " Y is a step in 4"

b d@‘? dﬁ "the sequence which is a prologation of 4 by
adding "f as a new step"
¢ "d is inconsistent" ._Q_._i *from set (?ld»q} is the for-
mula x$x derivable in predicate calculus only"
d) a* £ mpin X4" » where X; is a set of all d@®F - which
satisfies a conjunction of: . 4

v




4, 1.,

(i) a®Y¥ is a proof in PA
(i) a®Y 1is not dinconasistent
(iid 1a>—% | |
e) "d is good”g "there exists a sequence (so’el’”"’u)'
s.t. 8 = X=X, ‘Vi(u;si+l=s; end s,;=d * -
Now we are ready to défine provability predicate P(x):
p( & Ja; pre(@,F) e "a is good” .
Sublemma (i) : Predicate P(x) satisfies 6.1(i). _
Proof: Let ¢ be any formula s.t. PA ¢ . We prove PAV-P(Y)
by metainduction on the number of steps in the shortest proof
of f .“Thus suppose that for all steps "fi's before ¢ in the
shortest proof of_? holds PA}-P(’Y’i) . Let 4  be a good ‘
proof s.t. do>—- 'Yi ‘s (such _c_}early exista). If also dg—-? we
ere done so suppose 1d >—<f . Consider good proofs 4 24, s.t.
d*< A@YP . There is only finitely meny formulas bellow F _
hence we may choose d; the least good proof 2 d, s.t. d{;dlﬁ)‘{'.
Now, by choice of 4, (and by consistency of PA), doe}?e X5
thus, by definition of 4y, also ;@K €X, . °
Hence dI=d1®E'{ , i.e. PAFP(¢) and we ate done.
Sublemma(ii): Predicate P(x) satisfies 6.1 (ii).
Proof (in PA):Let d be the greatest of good proofs of a4
and ¢ . Thus 4 »¥=¥end d >~ ¢ . Consider d, the least good
proof s.t. d;Zd_ and 477 d,@&¥ . If not d;>F then clearly
d@¥F €Xy hence d;_:dl@’?" and P (¥ ) follows. We are done.
Sublemma(.ltii): Predicate P(x) satisfies 6.1(iii).
Proof(in PA) : For any numbers a,b: a=be>g=h . Clearly all re-
cursive properties of + and*®* which are needed for proving
true equality (or inequality) have good proofs. Then the sta=
temen’lt".""g?y induction on max(a,b). We are done. '
Sublemma iv : Predicate P(x) satisfies 6.1(iv).

Proof (in PA): Let P(%)end P(7?) end choose d, to be the

greatest of good proofs of ¥ ,7Y . Then do is inconsistent-
-contradiction. We are done.

This completes also the proof of 6.l.
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6.2 Definition (in PA)

@) TFle(y) £ "y is a code of some ?-formula Pt (po-
ssibly with parameters) with one free varia-
ble t (thus also y=T(t)) *
{r(x) is a S -formula)
(11) Yz g Fle(y) & Fle(z) & "if y-'f(t) and z="10 then
I ANNCEMOI
" (This is possible to define in PA since the formulas 7,7‘"
have bounded complexity.) '
(ni) S(u,v) = & wthere exists a sequence (8 yes0,8, ) s.t.
<, Vi< u;Fle(s, ;) end VwevyFletw) »3Jig u;s W
and Vi2j < u; 78 >~s. . end g=vV "
(iv) xey .= Jdv; s(y,v)x "if v-?cv then Yexr "
6.3 Lemma: PAf (Vt;texztey)—> x=y .
6.4 Theorem: The theory S is consistent relative to PA.
Proof: Define the 1nterpretat10n QI of eny modal set-theore-
tical formula (f as follows:
a) € interpret according to Definition 6.2 (iv)
b) = interpret absolutely ' |
¢) (a) L [p(Fhrx ¢17] :
d) I commutes with 77 ,% end Y.
Now we cleim: If S} then PA - (PI
By 6.1 and 6.3 this is clear for exiom schemas (1),e..,(4)e
For (5) let "f(t Z) be any modal set~-theoretical formula and
a any parameters (i.e. numbers) Then choose b, s.t.
s(b,{{&,5)%)) . By definition 6.2: Yt;t€ b= AT e, 0T ena
hence: Vt;P(%&, E)I):\Cf(t Ty > tedb ,
By 6 1(1v) PTG, ) I)—-)'?P(‘f(t a)I) , so also :
PIG(t,E ¢t,8) )-) t ¢b. Hence PC'I‘((t a) )g'l‘f(t a) —> t¢b,
Thus I-interpretation of any instence of (5) is provable
in PA. The proof of the claim is completed by showing that
PA l-—LfI 1mp11es PA!—Q:‘()I . But this is immediate by 6.1(1).

Since (x#x) = (x3x) this also completes the proof of:
theorem. - ' '

\)
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