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Introduction

One of the most interesting open problems around bounded
earithmetic asks whether bounded erithmetic is finitely axiome-
tizable. This question is believed to be akin to the problem
whether Z&o—hierarchy resp. polynomial hierarchy collapse
(cr. [1,4]).

Another open problem is whether systems of bounded arith-
metic are somehow conservative one over snother. The affirma-
tive answer would have some interesting corollsries. For exam-
ple, Ez-conservativeness of IAO *'Ql over Iﬁo would imply
thet I/D  can prove the infinty of orimes (cf.[6]) end é-g—

2

conservativeness of 82 over S% would yield & new (logica¥) proof

thet linesr progremming is polynomisl -time solvable Ccf. [2])

Despite the considerable effort only pertiasl answers to

these problems are known. For example: if IZ)O can prove Msti-



jasevié's theorem ‘then it is finitely axiometizable <cf. [43),
. + .

IAO 4+ Exp is not TR -conservative over IAO (cf.[tt,sj).

Eti}-conservativeness of S;*l over S; was in [3] equivalently

resteted es certain polynomial—simulation—oroblems‘about per-

ticular propositional calculi.

There are two besic svstems of bounded arithmetic: IAO

and IQO +Ql , whiclr:. is equivelent to S, (cf. [1,5]) . (Axiom
—Ql says that "Vx,xl"gz‘x” existar

In this note we prove that at least one of the problems
above has & negastive sanswel for these systems: either IZ§° +S:21
is not IR’ -conservative over IZBO or I/> is not finitely
axiometizsble. The idee of the proof is to construct ']R+—for-

mulea Ai such that IEi'¢L Ai while IZBO *ngl F—*Ai . Formu-

les Ai will be certein consistency stetements

From Takeuti [:7] g similar result follows for 82 and

S2.n (defined there).

We assume knowledge of‘[4,5] .



§1. Preliminaries

We shell work with IAo defined in & sequential forma-
lism similer to that of 82 (cf. [1:{). Thus Zﬁo—induction

exioms are revlaced by [ﬁ O-induction rule

a ), [ — A, aces1

Aoy, [T —> A, ae)
and there are four special quentifier rules for introducing

bounded quentifiers as in S» (cfu Ll]).'Moreover we have the

substitution rule:

f7(a ——>ZXC&)
[T(a) —s A(n

where numerel n is substituted for all occurences of free va-

rieble a.
Numerels n ere inductively defined by: Q:=0, l:=1,

_2_’;1_:=((1+l)-_13) and 2n+l:= (g_g_ +1) .

It is obvious thet this definition of I;OO is equivslent
with the ususl one (cf.l:BJ) in the sense that the former

proves the sequent —> A iff the later proves the formula A.

We define IE. to be a fragment of I/y, with induction

rule restricted to E;-formulas only (cf\v[4J).

It is well-known (cf. L5D) that there is e Ao-f‘ormula

defining exponentiation such that elementerv proverties of it



are proveble 1in IA . Thus there is also a A -formula defi-
ning the relatlon "xlngx’ \< y ". We shall suggestively de-
note this A -formula by "U.J’(x)( y". 'Ql is an axiom

VXSV,"W(X)\ "o

a detailed formelization of syntex in IAO%SII
is developed (cf. also [l]) . The notions like term, formula,
proof, etc. are formelized there using extended positive ru-
dimentary formules: R{ (they are not Ao-formulas, they are
equivealent to E}{—formuias of [1])

However these notions can be defined - as pointed
out in [5] - using only positive rudimentary formulas: R'
(which sre A o—formulas) . The trouble with these definitions
is that one cennot - in some obvious way - prove in IAO their
basic proverties needed for the development of the formaliza-

tion of syntax. However, one can do so9 (:_?._.-T. via proving that

thev are eguivelent to those of [,,:]') with axiom Q Thus
if vwe hsve some "propertiy" § of these notio ﬁ te) =
"if a is 2 formula then 7a is also a formula®" then for some
j< W

IA " w{‘j>(a) exists" —> f(é)

(J %a) exists" is an abbreviation for a sequence (antecedent)

of A o-formulés :

afc (,t)‘(c:c)s~ CI”""’"CU(CJ-1>~<°‘"

o’ J

where ¢ are new free variables.



To simplify the exposition we shall state an informal
claim
Cleim: A provability notion defined in §2 can be formalized

by en R -formuls and i < (J can be found such

o’jo
that:
for any "property"” @ (8 of the notion needed in §2

there is & term tea ) s.t

IEiOl-—. "w"jo)(t(é)) exists" — _(E(a) y and

for anyﬁproperty” ﬁf‘(g) of the formule "Wy(x)& y*

needed in §2 there is a2 term s(8) such that:

IEiof“ "(AJ(JO)(S(é)) exists" —%>‘j?(§)

It will be obvious that this Claim can be revlaced by & finite
list of properties ﬁ's,'f ‘s and for some io’jo <D™ cor-

rectlv proved.



§2. The construction

Definition 1: For i,j<c end A(& ) a formula with free

veriasbles among Ba:

d is en R(i,j)-proof of A(a) in IAO (denoted

oy 4 14, g AG) )

(i) 21l formulas occuring in 4 ere in E; v Uy
(in perticuler A€E; v Ui) y and
(ii) da is en I (\,-proof of a sequent of the form:
(,U’(J)( t(8)) exists" ' —> ACa)
for some term t(a)

Lemma 1 : For eny Ao-formulaﬂit holds:
(e) 1if IEil‘-A and AGE; v U; then IAO ‘WA ’

(v) if IAOH— A then IAO f-m’—o-)—A for some i< ¢,

) if I, + Q;F— A then Iéoln(i,j) A

for some 1,j< >

Proof: Use cut-elimination. D
Definition 2: R(@,j)-Con(a) 1is & \|R+-formalization of

'Vd$e,"l(d : IAO

Bl g
Lemma 2: For eny i,j<WJ:
1D, L2, — RG,j)-Conta)

Proof: For any E; o U; we have in IAO #_C)_l a partial truth

definition. Thus, working in IAO +.Q1 , we can prove



by induction on the number of inferences in d that

implies thet the end-sequent of d:
Ok %) t éco,"u:(coxscl",.‘..,"w(cj_l)scj" - 0=1

is true for all evalustions of the free varisbles of 4.
We mev essume thet t is & closed term (otherwise sub-
stitute O for all its free variasbles in the whole d - thev ere

distinct from'?) . The velue val(t) of t cleasrly satisfies:

(X¥%) vel(t)¢ 2/t &t & a,
! is the length of t. As we ere working under the
. 3 ]
hynothesis J:}'l’ numbers (W(d),..., &> J{d) exist. SO0 we may

substitute numereals w(k)(d) for ¢, O <k €, to get from (Xx):

&g"‘w(g)sw(d)",o..'l _..>O=1

But by (% X this is & false sequent. contradicing (%)

Thus (%) cennot hold. |

For the next lemme recell thet in §l we heve fixed io’jo < L
setisfving the claim.

Lemma 3: For 171

1AW \“mR(i,joi-l)—Con (a)

Proof: Let Pr(x,y ) abbreviste the RY-formuls formalizing:

Jagx, le 18, b, L yvr

ni,d,



By usual disgonalization there is an1R+-formula A(a) such
that:
= 3 r -
(D 1 Aol‘m’—O)A(a) = Tpr(e’, ACg) ) .
The R(i,0)-provebility of (1) follows from Lemma 1 as we may

assume that Pr € E; o U; . Similerily below.
o )

For some terms tl(a,b), tz(a) .
I AOIR(i,O) " 0530)&1 (a,b) )f?XiStS" " CAD(tZC a))€ b —>

r ~ ~ ¢
—  pr(ed, A(g?); pr(b, Pr(a>, Alg %)
The first pert of the entecedent comes from the claim of §1.
rest is a finitizeation of a LOb s condition.

For some terms t3,t4:

I‘Abr§7zjg)"Lg{JO%%3ca>)exists" _

~ I
—>  pr(tte), ate> > Ter(ed, alay’))
Term t, is specified by the proof of (1) .

(4) For some terms tgitg it follows from
IL}OPETITE)"foJO%EB(a>5exists" —_
—> I:Pr(a3,FA(g)-') o)
> Pr(t6(a),r7Pr(_a_3_,PA(£>7)1)]

From (2) and (4) it follows for some term to:

I ﬁol R(-i'_,O)"C*gJO)(tl (2,b)) exists"," w(tzca Y<b",
"LU!jOV%5(8‘>)exists” —_—)

—> pr(ed, :i(ia_)j): Pr(t7ca,b) Jo=1")



veine (1), (5) can be turned to:
1B, lR(i,O)"OJ(JO)(teta,bs ) exists®, "cO(t ¢ @)¢ b s

— R(i,jo+l)-Con(L7(a,b)) > A(a

some term t8.

Assume now:
AN m) R(i,jo+1)-00n(a\ ,

also:
I /Aom)fz (i ,,jo"i-l)-Con(t.? ca,b))

From (6) and (%) we get for some term t9:

Ibom)tvw(JO*l)(tg(a)) exists" ] A(a)l
i.e.

(X x)

(as b does not occur in 4, "cu(tz(aﬂé b" of (6) is ebsorbed

into “c&;(Jo*y(’tgta)) exisﬁs“ for suitable term t9) .

(fs) Bv the substitution rule we cen derive from (% %) any

A(n). By & simple trick (replacing-t (ad&c, by

9
a=u,t9(u)$ Cq end similarily in AJ) we may assume that free
veriable & has only two occurences in the end-seauent of the
R(i,jo#l)-proof of (% &)

Thus for some r<uJ-:

"
and dn'\< r«n?



= 10 -

i | '
(?j In rparticular, for n:=r we have dr < z'j, iee. BlEo

16, |— pe(z?, Tated )
but by (‘l}
I&c,i——'_]b’r(f,rﬁfzg) -

This is o contrediction, so (X&) is felse.
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A+ Q) is 8"

L

>

then IA0 is not finitely exiomatizable.

Proof: Assums IA =IE;, i21i_. By Lemma 2, as R(i,j_ +1)-Con¢(a
0 i 0 )

o)
is en '7R+-formula, it follows from the hypothesis
of the theorem that
I AO=IEi \h— R(i,,jo*l)-Con (e)

By cut-elimination- see Lemma 1~ then

I"‘ao lR(‘i,O) RGL,JO*].)-COH(AJ) .
This contrasdicts Lemma 3, i.e. I AO#IEi, for all i< D . m

reacot

atomic formulas thgﬁxfzgg
"sevié ‘s theorem.
Proof':
5 theoren.

This implies that any A ,~lormuls equivalent to

a formuls of the form:
Y3, ptx.3)4 o57)
P,0 polynomisls. Thus conservativeness over IAO w.r.t., for-

mules of the form G(*X) implies 7R‘- (eVen ﬂg-)conserva—

tiveness over IAO. But conservetiveness w.r.t.
of the form (;*’,x} is obviously implied by conservativeness

w.r.t. the negated
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Thus, under (& ), the hypothegis of the corollery im-
plies the hynothesis of the theorem and so it also implies that
IQO is not finitely exiomatizable. But (M ) is known to imply
that Iﬂo is finitelv sxiomstizable (Cf. [4]). Hence (X, is

i

ineon=zistent with the hynothesis of tie corollary.

The proof of thelthea}em woulé be simplified if one
c6uld prove that IE. = BQC oﬂfIE ) , where BQCon(IEi) 1s
/3, 7(((3 1A o= 1)A(dCE v U, )) Note that S;b‘ BQCon(sg)
(*ﬁ'lt‘t‘. the reculrement ¢ Cé-‘) TTb ) -cf, Llj
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