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Abstract

Krajíèek, J., P. Pudlák and G. Takeuti, Bounded arithmetic and the polynomial hierarchy,
Annals of Pure and Applied Logic 52 (1991) 143-153.

(1) T~ = S~+l implies If+l ~ i1f+l/poly.

(2) Sz«<) and li1o(f) are not finitely axiomatizable.
The main tool is a Herbrand-type witnessing theorem for 3V3n)'-formulas provable in T~
where the witnessing functions are Df+l'

There are two main systems of bounded arithmetic, IL1o and 82 studied in
[9,10] and [2] respectively. The major open questions in this area are whether
IL1o or 82 are finitely axiomatizable and whether various fragments of these
theories are somehow conservative one over another.

The known results relevant to these questions are the following:
(a) ff IL1o (resp. ~) proves that the polynomial hierarchy PH collapses, then

IL1o (resp. 82) is finitely axiomatizable, cf. [9].
(b) 8~+1 is VI~+l-conservative over T~ (i ~ 1), cf. [3].
(c) VIJ-consequences of T~ are finitely axiomatizable (i ~ 1, j ~ 2), cf. [8].
(d) 8g* Tg, cf. [12].
(e) ff ~ is m -conservative over IL1o (even over IL1o augmented by a form of

the pigeonhole principle), then IL1o is not finitely axiomatizable, cf. [8].
There is ap evident similarity between fragments of ~ and levels of PH, and

between the separation problems for them. This is supported by the theorem of [2]
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that .l'~-definable functions in S~ are precisely Df-functions. However, no relation
of the problem whether ~ is finitely axiomatizable (i.e., whether the hierarchy of
fragments S~ collapses) to the problem whether PH collapses was known.

Here we prove such a relation; we show that T~ = S~+l implies .l'f+l ~

L1f+l/poly. The later inclusion implies that .l'f+2 = IIf+2' cf. [6], and thus the
collapse of ~ implies the collapse of PH.

For this result we use a Herbrand-type witnessing theorem for 3'v'3n?-
formulas provable in T~ where the witnessing functions are in Df+l. This theorem
extends the main theorem of [2].

The whole proof easily relativizes and as there is an oracle A such that PHA
does not collapse (cf. [5] or [14]), it follows that ~(a) is not finitely
axiomatizable. However, it is considerably simpler to construct an oracle
sufficient for separation of T1(a) and S~(a), and we present this construction too.

The paper is organized as follows. The witnessing theorem is proved in Section
1. We actually prove a stronger statement than is needed later and we give two
independent proofs of it, a proof-theoretic and a model-theoretic.

In Section 2 we study a computational principle suggested by the witnessing
theorem and we show that it implies .l'f+l ~ L1f+l/poly. In this section we also
construct an oracle for which an instance of the principle is false.

In the last section we show that T~ = S~+l implies that the computational

principle is trne which entails the results.
We use the notation of [2] and we assume familiarity with that paper. In

particular, recall that Df+l-functions are functions computable by a polynomial
time Turing machine using a .l'f-oracle.

,.'~~l),

and -,cp(r~l),

h(b,u):=(

2

1. Herbrand-type witnessing theorem

Buss [3] has shown that S~+l is V.l'~+l-conservative over T~ by showing that
OY+l-functions are in a natural way .l'~+l-definable in T~. As axioms of T~ are
V.l'~+l it follows that Skolem functions for T~ are °Y+l and that T~ is equivalent to
a universal theory with function symbols (infinitely many) for OY+l-functions. It is
not difficult to give an explicit axiomatization of such a theory-cal1 it PVi+l-in
the style of Cook's theory PV [4]. PVi+l has (inductively defined) characteristic
functions of ,l'f-predicates, is closed under the definition by cases and under the
limited recursion on notation, and contains BASIC and al1 equality axioms.
Moreover, PVi+l contains a form of induction; for cp(x) an open formula define

function h(b, u) by:
(a) h(b, O) = (O, b),
(b) if h(b, L!uJ) = (x, y) and u >0, then put:

I rx+Y l ' rx+Y l (\ 2 ' Y, if 2 < Y and cp

( rx+Y l) . rx+Y := x, - rlx< 2

:= (x, y) otherwise.
2
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Then PVj+l contains an axiom:

«p(O) /\ o<p(b) /\ h(b, b) = (x, y»- (x + 1 =y /\ <p(x) /\ o<p(y».

It is not difficult to show that PVj+l is conservative over T~ (see also the second
proof of Theorem A).

Theorem A. Let i ~ 1 and let qJ(a, x, y) be a 3m-formula. Suppose:

T~f- 3x Vy ((1(a, x, y).

Then there'are Df+l-funclions ft(a), /2(a, bJ,
variables displayed such lhal

. , fk(a, hl, . , bk-J with the free

. , bk-J, bk).T~l-cp(a,h(a), bJ v cp(a,h(a, bJ, b2) v... cp(a,fk(a, bl,

For i = O the same is true with PVI (=V.l'~(Sh) replacing Tg.

Recall that in T~ we caD talk about Df+l-functions. We give two independent
proofs of this theorem.

Proof f. Let cp(a, x, y) be of the form

3z 1/I(a, x, y, z),

where 1/1 is m. 1/1 is in PVi+l equivalent to g(a, x, y, z) = 1, where g is the
characteristic function of 1/1.

From the assumption of the theorem we have:

PVi+l f-3x Vy 3zg(a, x, y, z)= 1.

PVi+l is a universal theory and thus we caD apply Gentzen's midsequent theorem,
cf. [13], (or equivalently Herbrand's theorem) to find PVi+l-terms tu and su,v such
that (after possible renaming of free variables) the disjunction:

(g(a, tl(a), bl, Sl,J = 1 v . . . v g(a, tl(a), bl, Sl,n) = 1)

v... v
(g(a, tk(a, bl, . . . , bk-J, bk, Sk,J = 1 v . . . g(a, tk(a, bl, . . . , bk-J, bk, Sk.n) = 1)

is provable in PVi+l (terms su.v generally depend on all a, h, and tu depends only
on a, bl, . . . , bu-J.

Now existentially quantify terms su,v and contract occurrences of
3z g(a, tj, bj, z) = 1, for 1 ~j ~ k. The required functionsjj are those defined by

terms tr O

For the second proof we shall need the following lemma.

Lemma 1.1. Let an be a model o/ T~ (or o/ V.l'~(S~) in the case i = O) and let
an* ~ an be a subset closed under all (standard) Or+l-functions detlnable in an with
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parameters from Wl*. Then
(1) Wl* is a substructure ofWl and Wl* <~Wl,
(2) Wl* 1= T~ (or V.l'~(S~)).

Proof. (1) is obvious as Skolem functions for .l'~-formulas are .l'~+l-definable in
T~ and thus are in Df+l"

For (2) take cp(x) E.l'~ with parameters from ftR* and b E ftR*. We want to show
that:

Wl* FIq>(O) V q>(b) v 3x < b (q>(x) /\ 1q>(X + 1».

Since Wl* <Jo1'Wl it suffices to find a Of+l-function f such that if cp(O) 1\ -'cp(b),
f(b) is such an x < b where the induction for cp fails. Put f(b) : = 'first component
of h(b, b )', where h is the function defined before Theorem A. O

Proof II. Assume on the contrary that for no tI, . . . , fk e Df+l, T~ proves the
disjunction required by the theorem.

Take some enumeration fo, tI, /Z, . .. of all Df+l-functions having the

properties:
(i) The jth function.tj depends on ~j arguments.
(ii) Each Df+l-function occurs in the list infinitely many times.

By a compactness argument the theory

T~ + -'cp(c, h(c), dJ + +-'cp(c,Jj(c, dl, , dj-J, di) + .

is consistent, where c, dl, d2, . . . are new constants.
Let Wl be a model of this theory and let Wl* !;; Wl be

Wl* = {ft(c),h(c, dJ,f3(c, dl, d2),

As the projections are Df+l and as each function occurs infinitely many times we
have:

(a) c, dl, d2, . . . E wl*,
(b) wl* is closed under (Wl-definable, standard) Df+l-functions.

Hence by Lemma 1.1, wl* to T~ and wl* <I~Wl. But then it holds:

Wl* t:Vx 3y -'cp(c, x, y),

,dj-J take y:= dr This contradicts the hypothesis of thefor x = jj(C, dl,
theorem. O

As already mentioned we shall need Theorem A only for the case 3x Vy cp E

I~+2'
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2. A computational complexity principle

Consider the following type of computational problem. For some ftxed binary
predicate P(x, y), given a, find b such lhal:

(i) (lb I ~ lal /\ P(a, b» v b = O,
(ii) whenever lb I < Icl ~ lal then -'P(a, c).

A prominent example is when P(x, y) is the relation "y is a clique in graph x";
bere the problem is to find a clique of maximum size.

We will consider the following computational complexity principle associated
with the above problem. This principle is inspired by Theorem A. m denotes the
class of polynomial time predicates.

Principle !l(i). For any relation P(x, y) E nr there are Df+l-functions

h(a), h(a, bJ, . . . '!k(a, bl, . . . , bk-J

which solve the problem above in the interactive manner of Theorem A. That is,
if we write P*(x, y, z) for the conjunction:

Iyl ~ Ixll\ (y = O v P(x, y» 1\ (Iyl < III ~ Ixl-+-'P(x, z»

then the following is true:
either vz P*(a, h(a), z) is trne, or if bl is s.t. -'P*(a, h(a), bJ
then vz P*(a, h(a, bJ, z) is trne, or if bz is s.t. -,P*(a, h(a, bJ, bz)
then vz P*(a, !3(a, bl, bz), z) is trne, or . . .

then Vz P*(a, fk(a, bl, o, bk-J, z) is true.

Lemma 2.1. Principle Q(i) is implied by If+l = L1f+l

Proof. Use binary search. Principle .Q(i) holds with k = 1. o

More interesting is the next statement.

Lemma 2.2. Principle Q(i) implies l:f+l ~ L1f+l/poly and thus also .l1'+2 = lI't+2'

Proof. Let A(v) be a .l'f+l-predicate, i.e., A(v) can be defined by a •ormula o•
the {arm:

3w~vB(v, w),
where B is I1f.

We want to prove that for some function g E Of+l the following is true:
(*) Vn 3u lul ~p(n) /\ Vv [lvi = n- ((3w ~ v B(v, w»- B(v, g(u, v»)].

Here p(n) is some polynomial and u is a polynomial advice.
We shall say that w is a witness for v if w ~ v /\ B(u, w) holds.
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Define the relation:

,ws),thens~randR(a,b):="ifa=(Vl""'Vr) andb=(wl'

for alll ~ s, WI is a witness for VI'"

The relation R(a, b) is II': as well (and L1~ if i = O).

By principle Q(i) there are Of+l-functions A(a),... ,fk(a, bl,. .., bk-J
interactively computing b s.t. R(a, b) for which a is maxima!. (Observe that there
is no apparent way to combine functions .tj into ODe Of+l-function with the
argument a only, as it is difficult to search for 'counterexamples' bl, b2, )

Let n < co be given. We now describe how to find a po!ynomial advice u. the
computation o• the witness g(u, v) will then be clear.

Put ~ = {v Ilvl =n 1\ 3w~vB(v, w)}. Assign to any v E ~ a witness w(v).
To each k-tuple a = (VI' . . . , Vk) of different elements of VI (here k is the

number of functions guaranteed by Q(i» we shall assign a pair (I, w), 1 ~ I ~ k,
by the following procedure:

Step 1. Computeft(a).
Step 2. ff ft(a) = (w~, . . . , wj) wherej ~ 1 and R(a, ft(a» is trne

then put 1:= 1 and w:= w~ and Stop.
Else compute/z(a, (w(vJ» and go to Step 3.

Step m (1 <m <k + 1)
Iffm-l(a, (w(vJ), . . . , (w(vJ, . . . , w(vm-z») = (w~, . . . ,wj> where j~
m -1 and R(a, (w~,..., wj» is trne
then put 1:= m -1 and w:= W:"-l and Stop.
Else compute fm(a, (w(vJ),. .., (w(vJ,. .., w(vm-J» and go to Step
m+l.

Step k + 1. ff we have reached this step, then it necessarily holds that

fk(a, (w(vJ),

R(a, (w~, . . .
(w(vJ, , W(Vk-J» = (W~,

w~) and
, w~» is trne

Pot 1:= k and w:= w~ and Stop.

The point of this computation is that having witnesses w( Vi) for all j < 1 enables
us to compute some witness (namely w) for VI.

For Q a (k - l)-element subset of v. and VE v.\Q we shall say that the pair

(Q, v) is good if for some arrangement {VI' . . . , VI-I, VI+I' . . . , Vk} of Q and
V = VI, (I, v) is assigned to (VI' . . . , Vk) in the procedure above.

Define a sequence of subsets of v.: VI 2 ~ 2 VJ2. . . having ~ = I~I elements.
~+l is chosen as follows: find a (k - l)-element subset Qj ~ ~ such that

N. - k + 1
I{v e ~ I pair (Qj' v) is good} I ~ /

k
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and take

\'1+1: = \'1\ { V E \'I I pair (Qj, V) is good}.

We have to show lhal such a Qj ~ \'I always exists. The procedure above
constructs a good pair from each k-element subset of \'I and this mapping is
one-to-one, since the k-element subset is determined by the good pair. Thus
there are at least ('Xi) good pairs. On the other band there are (k~1)
(k - l)-element subsets Q of \'I, so at least ODe such Q must form good pairs with

at least

(~)/(k~l
N.-k+

=-L-- elernents.
k

AD easy computatioD shows that

(k - l )i
~+1< -:- N1+kk

Hence we get Nt ~ k after t steps, for

t = O(~~(k/~k-=-i)) .log2(NJ) = O(lOg2(2n» = O(n).

We take the polynomial size advice u to be alt elements v of

QI U Q2 U . . . U Qt-l U V;

along with their witnesses w( v).
Then we have: if v E VI, then either v EV; (and hence we have a witness for it

in u) or, by the construction of QI, . . . , Qt-l, for some j, 1 ~j ~ t - 1, (Qj, v) is
a good pair. Then the procedure above constructs a witness for v from witnesses
for the elements of Qj- This concludes the proof of the first part of the lemma.

.l'f+2 = IIf+2 now follows easily by the following argument. Take A(a) E IIf+2 of

the form

Vx ~a 3y ~a C(a, x, y),

C a llf-formula. Define

B«a,x>,y):=(x~a~(y~a /\ C(a, x, y»).

Let g E Of+l and a polynomial p(n) satisfy (*) as guaranteed by the first part of
the lemma. Then we caD write predicate A(a) in the following .l'?+2-form (as g is

.l'? + l-definable ):

A(a) = 3u [Iul ~p(lal) A Vx C(a, X, g(u, (a, x»))]

(polynomial bounds for x are omitted). O

By Lemmas 2.1 and 2.2 it is apparently difficult to decide whether principle
,Q(i) is trne or not. As the oroofs of these lemmas easilv relativize we c~n TP.dnrp
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the relativized principle Q(i) to the question whether the relativized Polynomial
Hierarchy collapses. In [1] it is proved lhal pH = NpH for some oracle B, hence
the relativized Polynomial Hierarchy collapses to pH. In [5, 14] it is proved lhal
there is an oracle A such lhal the relativized Polynomial Hierarchy is proper.
Hence both -,Q(i)A and Q(i)B are possible:

Lemma 2.2. There are oracles A and B such that for each i ~ O:
(a) Q(i)A is false,
(b) Q(i)Bistrue.

The construction of an oracle such that the relativized Polynomial Hierarchy
does not collapse requires a deep result about boolean circuits. This is the case
already with I~ * ffl, which is needed for Q(l). In what follows we shall present
a direct construction of an oracle A such that Q(l)A fails. The existence of such
an oracle for Q(O) is an immediate corollary. We construct A such that there are
no (D~)A-functions witnessing a particular P(a, b) E (llf)A in the sense of Q.

We shall use the binary relation symbol a:(x, y) as the name for the yet
unconstructed oracle A. We take P"'(a, y) to be Vu:.s;a a:(y, u). Let cp be the
relativized P*, i.e.

cp(a, y, z):= [(Vu ~a a(y, u)) A (Z ~a A Iyl < Izl-+-3u ~a-'a(z, U))].

An f E (D~)A uses two oracles: A and a (.l'f)A-oracle (we will call it .l'-oracle).
The .l'-oracle is determined by a binary predicate BA computable in polynomial
time using oracle A. The machine computing f may construct a word w and ask
the .l'-oracle whether

3x Ixl ~p(lwl) 1\ BA(W, x),

where p is a polynomial. To simplify the notation we shall assume that the
polynomial bound to Ix I is implicit in pA(w, x).

Take an enumeration of all finite sequences fr, . . . ,ff of (D~) •r-functions.
Although we have not constructed A (i.e. a) we may ret assume that we have
polynomial bounds to the number of computationsl steps and queries. (A
2'-oracle caD ask exponentially many queries, but this will be resolved below.)

A will be constructed in co stages as

A=AoUA1UA2U Ao~A1~A2~.

At the ith stage we shall add to A only pairs (y, u) such that Iyl >ni-l.
Moreover, we shall add only polynomially many pairs with I y I > ni. At this stage

we diagonalize the ith sequence ff, . . . ,ff: this means that we will find some
a, bl, . . . , bk of length ~ni such that

-, cp (a, f1'(a), bJA, /\ , bk-J, bk)Ai(*) A -'cp(a, f:i(a, bl,
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and this property will be preserved at later stages. Hence it will hold for A as
well.

For definiteness take a:= O"i. We take the enumeration and the sequence
nI < n2 < . .. so that the number of words of length between ni-l and ni is

sufficiently larger than any polynomial bounds occurring up to this stage.
During the construction of A we not only add pairs into the oracle, but we also

proclaim some pairs to be 'non-elements' of A, i.e., they caD be never added to
it. Thus formally Ai is a partial function from N X N to {O, 1}.

We now describe the ith stage. Start the computation of ff on a = oni with

oracle Ai-I. We do not change Ai-l until we reach a state where the I-oracle is
asked "3xB"'(w,x)?". Then we try all 'consisten• extensions A' ofAi-1 (i.e.,
extensions which do not contain non-elements). If there is an extension A I for

which the answer is "Yes", then we take ODe x such lhal BA'(w, x) and add
elements and non-elements, which are queried during the computation of

A'B (w, x).
ff the answer is "No" for all consistent extensions, we do not add any elements

or non-elements.
In this way we have in both cases added only polynomially many requirements

so that any further consistent extension of the oracle will not alter the answer of
the I-oracle.

We repeat this procedure for all queries of the I-oracle.
Let A I be the extension of Ai-l obtained after the procedure. Consider

y:= [1'(a).
(1) ffy >a, take bl:= O and AJ :=A'.
(2) ff Vz q;(a,[1'(a), Z)A' is trne, then ly I ~ni-l' because we have added only

polynomially many pairs with elements longer than ni-I' Thus we caD take an
arbitrary bl such that Ibll = ni-l + 1 and put

AJ=A'U{(bl,u)i Ilul~lal}.
(3) ff ni-l < Iyl ~ ni' then we can proceed similarly except that we take bl

different from y and we add (y, u) as fion-element for some suitable u. Thus we
have I(VU ~a a(y, u)), hence

líp(a, Hi(a), bJAi

and this will be preserved for all consistent extensions of A:.
For ff, . . . , ff the construction is similar with only a minor difference.

Consider y = f1" (a, bJ, where A" is the extension of A: obtained as above. Then
it may be that y = bl and (if (2) or (3) above holds):

Vu (bl, u) eA",

Hence in order to get

A2 A21<p(a,f2i(a, bJ, b2) i
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we most take b2 such that Ib21 > Ib.l. We caD always take Ibl+.1 = Ibll + 1 since we

assume that the number of elements of length Ibll is large.
Ai :=A• gives us (*) above; note Doly that we have added Doly polynomially

many pairs with elements of length >ni and hence the procedure caD be
repeated. O

3. The relation of Sz to principle Sl

Using Theorem A and the results {com Section 2 we now deduce a relation
between Sz and principle .Q.

Theorem B. For i ~ 1, T~ = S~+l implies lhal principle Q(i) is true. This in turn
implies If+l ~ L1f+l/poly and If+2 = IIf+2.

For i = O the same is true with PV 1 (=VIf(S~» replacing Tg.

Proof. Take a nf-fonnula B(a, b). By -l'?+I-LIND it caD be proved that there is
a largest t ~ lal such that:

3z ~ a B(a, z)- 3x ~ a (Ixl = t 1\ B(a, x».

Thus S~+l proves the following fonnula cp(a):

cp(a):= 3z ~ a B(a, z)- 3x ~ a Vy ~a B(a, x) 1\ (Ixl < IYI-,B(a, y».

Assume T~ = S~+l. Then T~ I- cp(a) and since cp(a) is a -l'?+2-fonnula we caD
apply Theorem A to get Of+l-functions ft(a), . . . , fk(a, bl, . . . , bk-J which
interactively compute x from a, as is required by principle Q(i).

The Test of the theorem follows from Lemma 2.2. O

Recall that ~(a) is ~ augmented by a new unary predicate symbol a(x) which
caD occur in induction axioms but there are no new axioms about a in BASIC, cf.
[2]. A similar theory IL1o(f), IL1o with a new unspecified function symbol f(x),
was considered in [11].

Theorem C. For all i~l, T~(a)*S~+l(a). Also VI~(S~(a»*S~(a).
neither ~(a) nor IL1o(f) arefinitely axiomatizable.

Thus

Proof. The proofs of Theorems A, B relativize and by Lemma 2.2 there is an
oracle making Q(i) false, for all i. This gives the statements about ~(tX). But if
~(tX) is not finitely axiomatizable, then neither is IL1o(f). D

By T21-If = IJf we mean that for each I~-formula A(a) there is a m-formula
B(a) such that T2I-A(a) = B(a). As there are complete If-problems, If=IJf
follows from ODe of its instances and then actually If = PH. Thus T2 fo If = IJf
implies that T~ fo If = PH, for some j ~ i, and hence T2 = T~ is then finitely
axiomatizable.
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" wo,ld bo im"",,", w koow wh"h" 'h, oppo"i" impli"'i," i" ,Iro 'ru,
O" w,y w pro., 'hi" wo,ld bo w '"'m'liw 'h, p,~, ul Th,m'm B i, T, Th,
o,""", w ',oh , ,"m,I",,;," '" 'h, d,",;,;," 01 'h, poly,o"",1 ,d.ire ;,

'h,oooo'i"",'m'mi"h,p,~'0ILomm,21
H"re i' "m';M ~ 'po, ,""io, whmh" 'h, Mromp';o, T," T' ;mpl;,"

T,"'f., " 111...
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