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Ve connect a propositional provability in models of weak arithmetics with
the existence of A?—elementary, non—E?—elementary extensions. This is applied
to demonstrate that certain lower bounds to the length of propositional proofs

are not provable in weak systems of arithmetic (Corollary 4).

1. Introduction

S% is the fragment of bounded arithmetic introduced in [1]. The language

of this theory contains symbols 0, s(x), x +y, x - ¥, [x], Ig; , x#vy and
=, ¢, vhere the meaning of |[x| is "logy(x + 1)" and x #y is glxl- Iyl
The theory is axiomatized by 32 open axioms BASIC and the induction scheme

PIND:
8(0) & ¥x(g(g7) — 4(x)) — V¥xgx,
vhere ¢(x) is a E?—formula.

E?—formulas define in the standard model w exactly NP-predicates

Scheme PIND is slightly weaker than the usual scheme of induction.

‘The work was performed while the first author was visiting Department of
¥athematics, University of Illinois at Urbana.
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Theory Sé is closely related to the equational theory PV introduced ip
[4]. Using the scheme of limited recursion on notation one can define in PY
a function symbol for every PTIME-function. Since predicates can be
represented by their characteristic functions, all universal statements about
PTIME-predicates are represented in PV. In fact, using witnessing functions,
one can represent statements of higher quantifier complexity too. In [1] it is
shown that a VE?—sentence is provable in S; iff the corresponding equation
(containing the witnessing function) is provable in PV. Thus Sé is in a
sense partially conservative over PV.

In (1, 4] it vas demonstrated that PV and S% are rather powerful
theories, e.g. one can formalize syntax and the notion of Turing machine and
prove their basic properties there. Note also that PV, from [12] is fully

conservative over PV.

Qur aim here is to investigate what can be proved about the problem
NP = coNP? in theories like PV and S% and, in particular, how strong
scheme of induction is consistent with NP = coNP. There are two important

results which should be mentioned here.

-The first one is a result of Cook [4] which can be roughly stated as
follows: If PV proves NP = coNP then propositional tautologies TAUT have
polynomially long proofs in the extended Frege system EF. This means that we
know in advance which NP-algorithm would accept the coNP—complete set TAUT, if
NP = coNP would be provable in PY. The system EF is the usual textbook
axiomatic propositional calculus augmented by the extension rule allowing to

abbreviate long propositions by new atoms, for details see (5].
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Via the simulation described above Cook’s result transfers to S%. Note

that ¥ilkie [13] proved this result for Sé directly, cf. [10] for a

discussion.

This result can also be stated more sharply as follows: If S% (or PYV)
proves that an NP-set X 1is contained in TAUT then there is a polynomial bound
to the length of a shortest EF-proof of each T in X. This means that it is
not possible to prove in S; a super—polynomial lower bound to the length of
EF-proofs for any simply defined sequence of tautologies. For details and

discussion see [10].

The second result, due to Buss [1], states that P = NP n coNP is in a
sense consistent with Sé: If S; ~ @#(x) — 19(x), where both ¢(x) and
¥(x) are E?—formulas, then ¢(x) actually defines a PTime-predicate.
Hovwever, this does not seem to imply the consistency in the classical sense as
ve do not have any model of S% in which P = NP n coNP is true. In an

earlier paper DeMillo and Lipton (7] showed that Herbrand’s theorem gives such

a result for theory PT, which is the set of true universal statements about
Plime-predicates. However, this is rather weak result as in their model

induction fails very badly: standard numbers are PTime-definable.

This paper attempts to pinpoint which consistency results are possible
vith the present means. Ve are not able to show that Sé is consistent with
NP = coNP but we shall show that in a theory slightly weaker (extending PV) no

Superpolynomial bounds to the length of EF-proofs are possible.
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82. Results

Ve shall describe a natural construction which produces a propositional
formula (= proposition) [@]™ from a TT?—formula w(xl,...,xn) and an
integer m > 1. This comstruction is, essentially, only an extension of the
construction of Cook [4] and it is used in [10], where it is denoted by *[ I
As the construction and its properties havebeen treated in [10] we shall

concentrate on details which are important for this paper.

(1) The translation [¢]™ for ¢ atomic is given by natural boolean
circuits computing the corresponding predicate for integers at lemgth < m;
thus [¢ﬂm has a string of length m of propositional variables for each
variable of ¢, moreover it has propositional variables which code the value
of the gates during the computation, hence once we substitute propositional
constants 0, 1 (False and True) for the former ones the values of the latte:
ones are uniquely determined.

(2) If ¢ i8 a— f, 1a etc. then
(1" is [e]" — (A" 1[a]"

etc.; further we assume that in case of binary comnectives the translations are
chosen in such a way that the common propositional variables of [a]™ and
[AI® are only those which correspond to common free first order variables of
a and f.

(3) If ¢ is (Vx ¢ t)a(x) resp (3x ¢ t)e(x) and it is not sharply

bounded quantification then [¢]™ is
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[x ¢t — a(x)]" resp. [x<tk a(x)]"
vhere m’ is sufficiently large to code numbers less than or equal t
evaluated on numbers of length ¢ m.

(4) I ¢ is (¥x ¢ |t])a(x) resp. (3x < |t[)e(x) then [o]® is

cA @ <t = el )]

[(g < [t| — a(9)) A
resp
[(e ¢ 1t & a(g) v -+ v (& < Itl & @],

vhere m’ is the maximum of m and |t| evaluated on numbers of lemgth

¢m, n denotes the dyadic numeral.

The main property of [¢ﬂm is that it expresses the validity of
w(kl,...,kn) for all ky,...,k; such that |k1|,...,|kn| < m, where ve
assume that, ¢ has no other free variables than XyeeeaXy Ve assume that
0, 1 are constants of our propositional calculus, so instead of taking, say,
[¥(X)]" wve can take [#(x)]™ and substitute in it the sequence of 0’s and
1’s which codes k (i.e. vhich represents the dyadic numeral k). There is :

short proof in EF that these two formulas are equivalent and this is

provable in Sé. Ve shall need the following facts about this tramslation.
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b
Lemma 1  Suppose w(xl,...,xn) € 21’ P € TT? and ¢ does not contain any

free variables of 4. Then Sé proves:
$(by, b)) & (BR F [9(x},...,x,) — ¢]°) &
& c > max([by|,...,]b,]) — (ER F [¢]%).

Proof: First assume that provably in Sé, if we have an EF-proof of
proposition a(pl,...,pk) — f, vwhere Pys---»Py are all free variables of
a and do not occur in f, and another EF proof of a(cl,...,ck) for
Cyreresly propositional constants, then ve have also a proof of J. This
follows, for instance, from the substitution rule, which EF simulates (see
[10]), and Nodus Ponens.

Also provably in Sé, if a(cl,...,ck) is true, then it is provable in
EF. This is because a(cl,...,ck) does not have fréévvariables, hence its
truth value can be simply computed and this computation can be presented as a
proof in EF. ' '

Ve reduce the lemma to the above situationm, i.e. let a(pl,...,pk) be
[w(xl,...,xn)]C and § be [¢]°. Suppose we work in S% and let by,...,b
be given such that w(bl,...,bn), |b1|,...,lbn| < c. As in the definition of
[.], part (4), we can replace sharply bounded quantifiers of w(bl,...,bn)
by conjunctions and disjunctions. Then there remain only bounded quantifiers
which are essentially existential. Thus we can take witnesses for these
quantifigrs, say dl""’dm‘ Ve substitute 0-1 codes (i.e. bits of dyadic

numerals) of byyeeasbp, dl""’dm into a(pl,.u.,pk). The remaining free
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variables are those which correspond to the values of gates of the circuits
which compute the atomic formulas, so they are determined easily too. The
resulting variable free proposition must have the same truth value as
w(bl,...bn), hence it is true and we can apply the above argument to get the

proof of [¢]S. b
Lemma 2 Let ¢(xq,...,x ) € TT? and suppose that:
st (a a)
2 " Plagy..03y
Then:
sl (EF F [o(x,,...,x)]1%h
2 P(XgseeenXy
Proof: This follows from the simulation of PV, Cook [4}, using the fact that
Sé is VTT?—conservative over PV, cf. Buss {1, Thm. 6.7]. The translation of
arithmetical formulas obtained in this way is slightly different than the one

described above, however EF is not semsitive to such modificationms. -

The following theorem is our main tool
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Theorem 1: Assume N k= S;, ael and o(x) € 2? Then (i) and (ii) are This means that there are E?—formulas wl(x, ¥y .,yk),...,¢h(x, yl,...,yk)
equivalent: and bi""’bk € ¥ such that
(i) There is an extemsion N of ¥ which preserves E?—formulas and
satisfies: (1) | B ¢1(a, bl" "bk) L. & ¢h(a, by ""bk)’
Nk S+ ga) and
2 .
(ii) X satisfies: () Sé = (A Y(x, Yheeoyy))  16(x)
1

a
Nk "EF [1¢(%)]I I By Lemma 2, (2) implies that it is provable in Sé that formula

Remark: The condition on the extension N in (i) means precisely that if [(2 $i(xs ¥ys 1)) — 1¢(x)]|z|
¥(x) is any ED-formula and b€ K then Xk y(b) implies that Nk 9(b).

It follows that N is A?-elementary extension of M then. Recall also that

b L has an EF-proof for every z.

each PTime set is A,-definable in Sq» thus PTime predicates are absolute. . .

b b b 1 By Lemma 1, in M there is an EF—proof of
(131 means equivalent to 21 and Ny in S5 <)

Proof: Suppose (i) holds true. The fact that [1¢(g)]|a| expresses the b o )]c
1¢(3)4 .
truth of 1¢(a) is provable in Sé, cf. Lemma 3.2 of [11]. Further the

reflection principle for EF proofs (denoted O-RFN(EF) in [11]) is also
P L P P ( (EF) - [11]) Finally, as ]a] < ¢, the implication:
provable in S,, see Theorem 5.1 in [11]. If there were an EF-proof of

E1¢(§)]|a| in M, then it would also be an EF-proof in N and thus we would
[6(2)1° — Go(2)112!
get a contradiction.

Now assume that there is no such an extension, i.e. . L. . .
holds in M and ve get a contradiction with (ii)

(*) 5 Disg_,(K) » 19(a)-



202

Let Taut(x) be a TT? formula which formalizes: "x is a propositional
tautology".
The following corollary extends a lemma from [13]}.
Corollary 1 Let ¥ F Sé and T € ¥ such that:
¥k "r is a propositional formula" & EF H r.
Then there is a A?—elementary, cofinal extension N of

satisfying

Nk Sé + 7 Taut(7)

Proof: Take ¢(x) := 1 Taut(x) and apply Theorem 1 together with the

following fact:
St - ((BF ~ Clawt(p)1l | — BB -7,

see Lemma 3.4 (ii) in [t1] The cofinality of M in N is achieved by
possible shortening of N. a
Torollary 2. Let ¥ be a countable model of Sé. Then there is a
A?—elementary, cofinal extension N of M satisfying

(i) Nk vebsh),

(ii) N F Vx((EF ~ x) = Taut(x)).
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Proof: Under suitable enumeration of all elements of M and newly arrising
elements we can construct—via Corollary 1—a chain of A?—elementary, cofinal

models of Sé:

=1, b< 9 b( K <

Al,cf Al,cf
having the following property: if r ¢ I isa propositional formula then for
some j > i, lj contains either an EF-proof of T or a truth assignment
satisfying 4.

Thus N := U X, will satisfy (ii). Condition (i) follows from obvious

[

Remark: By VE?(S;) ve denote the set of all sentences of the form Vx¢(x),
¢ a E?—formula. Because of the Buss’s Theorem [1] these sentences are

equivalent with VHE?(S%). PY, of [12] is fully conservative over VE?(S;).

Since the proof that EF is complete for propositional tautologies can be
easily formalized in Sé + Exp, any model of this theory satisfies (ii) above
too. ("Exp" is an axiom saying that the expomentiation is a total function,
one can take as Exp e.g. the formula V¥x3dy, x = |y|.) Thus interesting

applications of this Corollary are only in the case when Exp fails in N.

Qrollary 3: There is nonstandard model N satisfying (i) and (ii) of

Corollary 2 and moreover: T

(iii) There is a € N such that for any b € N there is k < w and it
holds:
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Nk b < Jafk.

Proof: Apply Corollary 2 with ¥ nonstandard countable model of Sé

satisfying (iii). a

In such a model N, in particular, the length of each EF-proof is bounded
by some standard polynomial in |a]. Bovever, we cannot claim that this shows
NP = coNP in N since for différent proofs ve must take different |
polynomials. To obtain a uniform bound we have to take a function f(x) which-
is (provably in Sé) superpolynomial. Then, of course, 2f(]x|) is not
provably total in S%, which diminishes the importance of such a result.

¥ore appropriate interpretation is given in terms of the unprovability of

certain lower bounds to the length of EF—proofs in VEE(S%). In order to

compare it with a former result of Cook and Urgquhart [6] we use similar

terminology.

For a function f(x) (with PTime graph definable in Sé) take the

following formula:
Bound(f) 7 [Vx3r » x; Taut(r) A (Vd, |d| < £(l7]). —
— "d is not an EF-proof of +")].
Thus Bound(f) formalizes that f is a lower—bound to the length of EF—proofs.

Below, function f is Sé—provably superpolynomial iff for any k < w, S; -

Vudy > udx < y; f(x) =y A <K <y. Corollary 3 immediately gives:
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Corollary 4 Let £ be Sé—provably superpolynomial. Then
bsal
VEI(Sz) k- Bound(f). o
Similarly VZ?(S;) cannot prove the formula:

(Vx3t 2 x, Taut(7) A (¥d, |d| ¢ |‘r|lxl "d is not an EP-proof of

x|
(Note that the relation "[d| ¢ lrllxl" is ¥-definable even if 2!7l ~ doe
not exist in M.) This formula was in (6] shown to be unprovable in an

intuitionistic version of Sé.

Now we turn our attention to the question how strong induction is
available in VE?(S%) » (the axiomatization of this system IS% is
different from S;, for details see [6] ).

Theorem 2: The usual scheme of induction for A?—formulas (v.r.t. Sé) is

derivable is vED(s).

Proof: Buss [1] has shown that such a scheme is derivable in S% To see that

1t is equivalent to a VE? formula write it in the form:
Vady < x((9(0) A (w(y) — o(y + 1)))  o(x))
Finally, a formula A? w.I.t. S; is also A?, w.r.t. VE?(S;) a

Remark: As all PTime predicates are A?—definable in S% we have in ou

models induction for them.
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f}. Some seneralizations

Ve wish to extend the results from Sé to a stronger theory T. Then ve
must also take a stronger proof system P for propositional calculus. The
following conditions on T and P are sufficient for the derivation of

Theorem 1 and its corollaries.

(a) T is a consistent theory in the language of Sé {more generally we
may allow any PTime—computable functions in the language of T) and
T2 Sy,

(b) T has a TT?—axiomatization,

(¢) T proves the reflection principle for P,

(d) for every ¢(x) in if T+ Vxp(x) then
TFVy(PF tal?l )y,

(¢) THVx((EFFx)— (Prx)).

11

Such a proof system P can be constructed for any true, finitely
axiomatizable, T satisfying (a) and (b), see [10]. This covers the fragments
S; of bounded arithmetic for which the proof systems are naturally definea
fragments of the quantified propositional calculys, see [10, 8]. Moreover, for
any true, recursively axiomatizable theory T0 wve can find T and P
fulfilling the conditions such that T proves all Vv TT?—consequences of TO;*
take T := S; + ConTO.

(n the other hand these generalizations also show the weakness of our

results. A significant independence result must depend essentially on the
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theory, while here we can take for instance S; plus the consistency of

Zermelo—Fraenkel set theory and still get a result of the same kind.

t4. (pen guestiong

The model N constructed in Corollary 2 has a property which is

interesting from the point of view of model theory.
Theorem 3: Let N be a model of VE?(S;) satisfying:
(1) N F Vx(EF - x = Taut(x)).

Then any A?-elementary extension of N is already E?—elementary.

Proof. In Sé we have, for ¢(x) a TT?—formula:
) ¥, Tau(Lp(ga ) = px)

As this equivalence can be written in VE?—form, it holds in N. Hence we has
an EF-proof of [go(g)lla'I in N whenever ¢(a) is true in N. This proof
¥ill be in any z&?—elementary extension of N. As the reflection principle f«
EF is also provable in VE?(S;), the validity of ¢(a) will be preserved tc
(by (*)).

The validity of Eg—formulas is preserved automatically. a
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It would be very interesting to find a model N of Sé having the above
"saturation property" (f) and not satisfying Exp. This would entail the
unprovability of exponential lower bounds to EF-proofs in S%.

Problem i: Is theory
Sé + Vx((EF ~ x) = Taut(x)) + ¢ Exp

consistent?

Note that in the construction we can arrange model N to be a "weak

end-extension” of ¥ in the sense of [3], i.e. for any a € N there is b ¢ B

such that:
Nk |a] = |bi.

In other words: N does not introduce new lengths. However, we are not able X

to use this property for guaranteeing E?—LIND in N.

Problem 2: Does every countable model ¥ of S; have a A?—elementary

(Lt

extension N satisfying S; + Y¥x((EF F x) = Taut(x))?

The positive answer to Problem 2 implies the positive answer to Problem 1
as ve may take ¥ satisfying a E?—formula vhich is refutable in Sé + Exp.

The last problem proposes an improvement in another direction
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Problem 3: Is theory
vED(S3) + Vx((EF - x) = Taut(x)) + 1 Exp + BE,
consistent?

Above we have shown that without BEO this theory is consistent. But it
may happen that in each model N of it, for some a € N, the shortest
EF-proofs of tautologies 7 ¢ a are cofinal in N. Thus there is not function
total in N which bounds the length of the shortest proofs of tautologies. If
the collection scheme BEO were satisfied in N, we would have such a

function (and it would be subexponential).
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