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A stetement mey heve severel .simi18r~ proofe end,

eurely, eeverel non-"eimiler" ones. Aleo different etete-

mente may be provable in e t'similar" way. Dne point of

penerelizetione of proofs ie to find, when heving e proof,

"eimilar" proofe of "eimilar" conclueione.

There sre different approaches to the Question whet

.. similar" means-see e .g.

not to be s definite msthemsticsl concept o~ it.

The Bim of this note is to collect and to compare

verioue reBults which Vlere obtainea during the attemptB

to prove well-known Kreisel'B conjecture - see e.g. [Fr,

Problem n~.34J (recently ~.Be8Z ennounced e proof of the

conjecture).

The note does not contein new results but eddresses

eome questione. The definitions end the results below are

sometimes on ly sketched, the proofs are omitted - the

reAder cen find sll detei1s in the pspers listed in the

lir'eferences.

We do not discuss sll connections of the results to

other problems concerning the complexity of proofs. These

connections caD be found in the particular papers where

other reference s are mentioned.

I profit e lot from the conversetions with M.Baaz,
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Kreisel'e con.;ecture

For sny formulA A (x) snd sny k < <4: if for sIl n < (.J.)"

PA proves A (~) wi thin st most k steps then PA proves ""flxA (x).

The ide~ behind the conjecture is thet e short proof

01' sn instance AlE) ofA(X) for large n (large w.r.t. k)

cennot use the whole informetion sbout n end thus should

thet it

~enerelize to other numbers too.

The importence of the conjecture is, et leest,

is e simply and definitely given mathematical problem which

stimuletes 8 work possibly leeding to e better understend-

ing o~ the question mentioned in the introduction (end to

the structure of ~irst order proofs generellY). The results

which heve been obteined have a150 their own app1ication5,

to problems concerning complexity-of-proofs questions.e .g.

We shell touch this later.

§2. Reaul ta concerning Kreiael ' a con.iecture

Almost s11 results below cen be given in the form:"Ir

1:or 811 n < ldthere ie e proof of A(n) 1 in theory T satie1"y-- ,

ing then T provee 1tXA{x)." They differ in the renge

of theories for which they are valid and in the conditions

w~ich ere put on the assumed proofe or A(E)'s.

The most important restrictions on the theories are

typicelly given by some condition on their lenguege. The

condition~ thet the proofs are to setisfy.ere typicelly:

the bound to the number of steps end some restriction to
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used rules end schemes.

The first result obteined wes

Theorem 1 (R.Perikh-(pe)): Let PA
, be PA with ~unctions +

end . repleced by ternery reletions G) (x,y,z) end

0(x,Y,z stsnding for "x+y=z" end "x.y=z" resp.

end obviouely trensleted axioms. Then Krei8el~s con-

jecture ie true ~or PA'.

A result covering the previous one end having other

interesting conclusions WBS found by T.Miyeteke. It is for-

muleted for' Gentzen systeme but this is not importent.

Importent in the result ie the condition put on terms which

are ellowed to occur in proofs.

To be able to explain the result we must define some

notions. For eny term t let _e (t) be the number of occuren-

ces of bound varisbles in t. For R, sn sxiom Bcheme of the

theory, we cell those occurences of s (the successor sym-

bol) in R ~cri tical. which are not in the scope of eny other

function symbol. If A is an instance of R then those occur-

ences of s in' A corresponding to criticel occurences of s

in R are called criticel too.

Fragment Tk of theory T is defined: instance A of a~

pluscriticel occurences of s in A.. (the number 01'

mex (e(t) I- . t e term in A}" ~ k.

Finelly, we sey that T is complete w.r.t. Presburger

erithmetic iff the lenguege of T conteins O,s end for some
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:formule A(x,y,z) T proves the properties of (t)(x,y,z),

i.e. +lx,y =J IzA(x,y,z) A-V'XA(:x,O,X) A , And T

proves 811 C transletions of ) ~ormulas velid in (~+,s,O).

Theorem 2 (T.Miyteke~[MiJ): Let T be complete w.r.t. PreBB-

burger erithmetic. Assume that for some k < L•f theory

Tk proves A(!!) in ~ k steps for sny n <~. Then T

proves "tIxA(X).

The theorem hAs st lesst two easily stated importsnt con-

clusions.

Corollary of Th.2 : If T is complete w.r.t. Pressburger

arithmetic then under one of the folloYling conditions

Kreisel's conjecture is true for T.

(i) T is f'inite.

(ii)The lsngusge o~ T do not contsin sny f'unction eym-

bol of arity ~ 2.
In f~ctt eerlier related results were found by V.P.Orevkov

end T.Yukemi.. Orevkov's result is closely connected with

Theorem 2.

Theorem 3 (v.p.Orevkov-[Or3J): Let the lenguege of T con-

teins O,s end let T p~oves; -\!x(x=o V~y(x= s(y»)

Assume thet for some k <UJ there is e proo~ dn in T

~ k steps end sll

terms occuring in instances of

have the deuth

axiom Bchemes in dn

~ k too. Then T proves V'XA(X).

The result of T.Yukemi does not deel with theories axioma-

tized only by schemes.
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Theorem 4 (T.Yukemi-LY I)) : Let T be e theory whoBe 1engu-

ege conteins function symbols: O,s,+ and predicate

<:) (x,y,zsymbol end, possibly, sny number of other

predicete eymbole but no othe~ function eymbole. The

axioms of' T are:

aj ~initely meny 8xioms steting the baBic properties

o:r O , s , +, 0 ( ~ ,y , ~

b)

C)

A(z) e :formule,

d) s=t. where s=t is equetion vslid in (u.r,+,s,o).

Assume thet :for some k <c.ï end :for sIl n<U)"" T proves

A(~)

(i) -< k steps ,

for sny inBt~nce B of the induction Bcheme in

which some other predicate symbol then = occurs

it holds: mex {sít) ft e term in B] ~ k.

Then ~ proves lIxA(X).

Leter T.Yukemi, using Metijeseviè's theorem, proved e result

somehow completing the preceeding Dne.

Theorem 5 (T.YUkami-lY2))~ Kreisel's conjecture is not true

for theory T from Zheorem 4.

A result of' e di~~erent shepe W8S proved by D.Richerdson.

He considered the deduction system besed on Beth's sementic

trees. He oefined B cannonicel procedure how e sementic

tree is in steps exp~nded until ell its brenches are closed.
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step in thieD.BichprdBon proved thpt for thiB notion cf

deduction system Kreise1~s conjecture is true for 811 sys-

tems complete w.r.t. Presburger erithmetic.

A stretegy in the proofs of eome reeulte of this chep-

ter ie roughly the following. First one shows thet there ie

essentielly only e :finite number 01' di1'1'erent '.types" 01'

proofs if the n~ber of steps in them is bounded. Then the

fect of the existence of e prccf cf A(n) cf e perticuler

~type" is turned to the f8Ct that e perticuler system of

linear equtions has p solution. This trensforms the stete-

ment" t/n, A(~) is probeble" in T within ~ k steps" into

eome true sentence of Presburger erithmetic which cen be it-

sel! proved in T. Then using e pertiel truth definition for

formules of 8 b,ounded depth (end previouely showing thet e

bound to the number of steps in proofs of A(n>'S implies a

tems of lineer eQuations itself, "generalizes" their soluti-

ona, end these turns beck into "generelized" proof's. For sIl

the deteils see the pepers.

§3.
,

Kreisel s conjecture 8nd ~ener81iz8tions of proofs

The results on Kreisel's conjecture neturelly leed to

generelizetion-of-proofs results. G.Kreisel himself sherpe-

ned his originel conjecture to the following one. CIt will

eupeer in the eecond edition of G.Tekeuti'e '~roof theory~



in the eppendix by G .Kr_eieel, footnote 3 on p.402. See

there e1eo :for :further diBCUBBion..

Sherpened Kreieel' e con.iecture : For sny formule A (x) end

sny k«Jjthere ie M < U.Te.t. for sny n?M it holde:

new"generel" etetement hAS A proof' cf e "simi-

ler" logicel type se the sterting proof of A(~).

There are pertiel results on this nev! conjecture too.

Some of them cen be derived from (the proofe of the re~

suIta of Chapter 2.

Theorem 6 (R.perikh-[Pe)): Sherpened Kreisel's conjecture
. ,
1.S true for PA .

Using the unificetion algorithm the following wes es-

tablished.

Theorem 7

theory. Then for sny formule A(X) snd sny k<UJthere

ie M<W'e.t. for sny term t of the lengusge

cesearily e numerel ) it holde: if the depth of t

is ~ M end A(t) hes a cut-free proof in T having

~ k steps then there iB e term r s.t.:

T proves V.' i thin ~ k steps A(r ,
(ii) t is a substitution instance of r

~(iii)the depth oj' r is M.

Corollery of Th.7 : Sherpened Kreisel's conjecture is true

for eny finite theory T whose lsngusge contsins: O,s,
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end which proves, :for ~ll m< ~

x=o v x=! v ... 'v x=!. \I =3 y (s (. . . s (y) ...) =x ),
s m-times.

Thie corollery ie eseily eeen. Firet one epply the cut-eli-

minetion to produce, with possibly greeter bound to the num-

ber of steps, cut-free proofs of A(~). (ThUS the bound M is

greater then in Th.7. In fact, one needs a180 to estimate

the depth of some proof of A(~)-for this is used Coro11ary

of Th.8.) 50 if t is E for some n~M then the depth of t

is

8

ebove corollary cennot be generelly extended to

that there exists k<u)"s.t. PA

proves 811 true equetions of the form m+n=m+n within < k--- ""

steps (see [RiJ or [Y3J). Thus PA proves -:l y(y+y=!}) t'or 811

even n < (ff wi thin ~ (k+1) steps. But c1early PA does not
prove i/x ~ M ~ Y (y+y=x). .

A work of M.Beez promisses to be e deep insight into

the generelizetion-of-proofs questions in e menner suggest-

ed by Sharpened Kreiéel's conjecture.

notion which is e possible epproximetion of infor-

mel notion of "similarity"-type of a proof is the skeleton.

This terminology is taken from [Fel] , it corresponds to the

proof-analysis of (pe], to the scheme of proof of [orl,2J
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end to the type of proof of

! AKele~on is p sequence of letters Rl,...,Rk (in

the cese of Hilbert-type systeme; in the C8se of Gentzen-

type systeme one tekee e binery tree lebelled by lettere)

together yri th informetion t for sIl n ~ k t using which in-

ference rule or ~!hich exiom echeme, end ueing which pre-

misses Ri ,...,Ri.
o J

ference rule, ~

t iot...tij < nt in the C~8e of sn in-

hss to be derived.

A proof Al ,Ak hes the 8ke~e~on ebove iff An' for
. '. . . . . .

ell n~k, wee derived in the proof eccording to the infor-

:K - P J .

are re~erded ee "si-

metion given by the ekeleton. For detaile see

Now, t~'o proofe (i~ e theory, - - -

miler" iff they heve the ssme ekeleton.

A result concerning d~hs of proofs and skeletons

was proved in [KJ.
: Let d=Al,...,Ak be e proof in

-

. ,
e theory T. Then there ~S e sequence d =Bl'...'~ of

formules of the lenguege extended by formule-verieb-

les s.t.:

(i) d is B:,substitution instance of d' ,
has the seme skeleton es d,d

. I

l.nstence af d is a: proof ineny"reesoneble"

T similsr to d,

(iv) the meximel depth of 8., i=l,...,k, is < c.k,
1. where c is a conetent depending on T only.

"Reesoneble~ substitution in the theorem means thet the
,

substitution must teke cere of the usea veriables-cf.rKl.



[pe] cont~ins e result of this shepe but without e bound.

The bound implicitely contained in the proof given in [pe]

is exponentielJRecentlY I also heve leernt of the peper

[or4] conteining B closelÝ connected result.)

A consequence of this result is:

Corollery of Th.8: Let T be e theory end d=Al,...,Ak be e

proof in T. Then there ie e proof of Ak in T which ie

eimiler to d end whoee sIl stepe hsve the depth

~1here c is 8 constent de-

pendinp: on T only.

This result hes some Applicetion to the cut-eliminetion;

one cen obtein A bound to the number of steps in e cut-free

proof only from the informetion ebout the number of steps

in e proof (Cf.[KJ).

§5. Releted problems

We shell discuss here t~ro types of problems naturally

erising through the work refered to in the previou8 chep-

ters.

k-urovability prs>blem

k-provability problem is a problem (for a given theory):

~Does A heve e Droof wi th ~ k steps?" , A end k perameters.

mein question is for which theories the k-provebility

problem ie decideble.

The result concerninR this problem obteined R.perikh.

Let us call 8 theory_unery iff its languege does not con-
. ~~t

tein function symbole of Brity ~2. A unary theory wh~
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lenFU~pe cont~ins et most one ~unction symbol of arity 1
will be cslleO: eimple.

~~eorem 9 (R.Psrikh-[~: k-provebility problem ie deci-

~Bble ~or PA'. In fect, it ie decideble for sny eimple

theory.

In the k-provebility problem one cen eek not only for en

elgorithm~Olving the problem but for e list of "most gene~

rel proofe" with ~ k etepe t s.t. sll other proofs would be

P ttsimplett instanceso.f' them.

has extensively studied

this problem ano he obteinea importent results. Among

other he constructed perticular axiometic systeme o:f Brit-

hmetic for which the k-prov~bility problem is resp. is not
c.'-It

decideble.The det~ils are of the scope of this PBDer but

one result c~n be epsily etated.

Theorem 10 ("'.Fp.rmer-rFp ]1 : The k-provebility problem is

decidable for any unary theory (even with the require-

ment of e list of "most general proofs~).
. - .

This result is baseo on the solution of well-kno~~ ~monoid

problem" (or ~Lob'B probiem~ or ~string unificetion prob-

1em",-the question of the decidabi1ity o.f ?lord equation in

free 8emigroups) by ~Mekeni~_. (~~~~~ invented hi8 own

e1gorithm for the epecie1 C8ses erieing .from the questione

ebout k-prov~bi1ity.See [Fa 1,21).

The k-provebility problem mey be further sherpened.

Dne mey eek ~or not only deciding ..'hether A has e proof

~.1ith ~ k Bteps but ~hether it has B proof of P. p-iven ske-
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leton. Since there ie only e ~inite number o~ ekeletone

with e ~iven number of steps the decidebility of this prob-

lem implies the decidability o• k-provebility problem es

we11. In fect, the sherpened prob1em is decideb1e for unery

theories (for simp1e ones it was estab1ished in [pe] too).

Theorem 10.1 (W.Farmer-[Fa1J): The prob1em y!hether A has e

proof of e given skeleton, A end the skeleton pereme-

is decidable for sny unary theory T.ters,

For e non-unery theory T it is not decideble whether

A hes e Droof in T of e given skeleton. In fect, it

holds: for sny recursively enumerable X:u1there ia

e skeleton (in the predicete calculus) Sx snd s formu-

AX(x) s. t. for sny n <úJ, n E:X if'f' AX(!!) hes s proof'

(in the predicete celculus )with skeleton SX'

Immediete conclusion to this theorem is thet in Sherpened

Kreisel's conjecture one cennot expect thet the ge-

ner~lized proofs will keep the skeleton of the ste~ting

proo1' 01' Ai!}). .
Let us a1so remark thet D.Richp,rdsonproved that the

k-provebility problem is decidable for his perticular system

ano his notion of "st~n"

Ho~.ever, genere11y~ this sherpened problem is undecideble.

This ~es ennounced i~ [Or I), steted without 8 proof in[or2]

And uroved in rK-p\.
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Prom-eteDe-to-the-len~th problem

Thie problem wee edd~essed in [K-P]. The problem esks,

~or e ~iven theory,~ le there e recureive ~unction ~(x,y

~ k steps then it has
. .

s.t. if e formul~ A has e proof with

e proof of the length ~ f(k,A) ?~. That is: estimete recur-

eively the length of e proof from the number of etepe.

cen consider three versions of the problem:

ft Find sn estimste to the length of some proof of A

.

(B

without sny sdditionsl requirement,

with the reQuirement to preserve the number of

steps of the originel proof,

with the requirement to preserve the skeleton of

the originel proof."

Problem (C) is feirly well understood. From Theorems 9,10.1

there~i8 e recursive bound in the C8se ofit :follo.'8 thet

unery theories end Theorem 11 implies thet there is no re-

cursive bound in the non-unary cese. In the caee of simple

theories e good bound ce~ be found (iiereted exponential-

cf.lK1). Thus it remeins to find some good bounds in the ce-

se of unery theories.

Problem (B) seems to be lese approached. Certainly the bound

from (c), in e perticu1er cese, is e1so e bound in (B). But

~enere11y the bounds in (B) mey be better than in (c).

problem is clee.rly connected wi th the k-provebili-

ty problem: if the leter is not aecideble then no recursive

bound cen be aerivea in (B) (for e pArticul~r theory) - ~--- R11~

for e ~enerel theory nothing ie known.
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Problem (A). Recursive boun~s cen be derived in the C8se

01" unery theories (sincein (B) end (C) there are too) .

There is one edditionel cese known: there is e primitively

recursive bound in the cese o~ ~inite theories-see [K-P].

We mey etete 811 known resu1ts in e joint theorem.

Theorem 12

elementery
. .

recursive bound cen be shown in e11 prob-

leme (A), (B) , (O) .

cen be shown in sll prob1ems (A),(B),(C)

.. .

There is no recursive bound for non-unery theories in

recursive bound for finite theories in problem (A

In ell CAses where bounds are known proofs of tbeir opti-

mality are lecking.

Kreisel's conjecture, its Sherpened version and the

problems of this chepter seem to be good questions stimule-

ting the work possibly leeding to better understanding of

structure o~ ~irBt order proo~s. Beside this ~ener81

Bim the results cen be epplied to other problems, toe .g.

speed-up-problems or to comp1exity-of-proofs prob1ems cf.

[Fa 1J or[K] .

problem (C
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Remerk : Durin~ the typing procese I heve leernt of pepers

[Or 3,4J. I tried to edd relevent references to them (see

Th.3 end the remerk e~ter Th.e). I think thet in the work

of V.P.Orevkov more informetion concerning the problems

mentioned here cen be ~ound but eince [ar 1,2,3,4J do not

offer proofs I WPS not eble to do it.
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