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OENERALTZATIONS OF PROOFS

Jan Krajifek

A statement may have several "similar®™ proofs end,
surely, several non-"similar" ones. Also different state-
ments may be proveble in s "similar" way. One point of
generalizations of proofs is to find, when having a proof,
*gimiler" proofs of "similer" conclusions.

Thefe ere different appfoaches to the question what
*"gimilar" means-~-see e.g. [Kr], [Pr], {Sz:]-and there seems
not td be & definite mathematical concept of it.

The eim of this note is to collect and to compare
verioue results which were obtained during the asttempts

to prove well-known Kreisel's conjecture - see e.g. [Fr,

Problem nb.3é](recen§1y M.Béaz ennounced & proof of the
conjecture).

The note does not contain new results but sddresses
some questions. The definitions snd the results below ere
sometimes only sketched, the proofs esre omitted - the
reader can find s8ll deteils in the papers listed in the
references.

we do not discuss all connections of the results to
other problems concerning the complexity of proofs. These
connections cen be found in the perticuler pspers where

other references sare mentioned.

I profit 2 lot from the conversstions with M.Baaz,
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Kreisel s conijecture

For eny formules A(x) end eny k< W: if for 8ll n< U

PA proves A(g) within at most k steps then PA proves'V&A(xL

The ides behind the conjecture is that a short proof
of an instance A(n) of A(x) for lerge n (1arge w.r.t. k)
cennot use the whole informafion about n and thus should

generalize to other numbers too.

The imﬁortance of the cdnjecture is, ot least, that it
is o simply and definitely given mathematical problem which
stimulates & work possibly leading to a better understend-
ing of the question mentioned in the introduction (and to
the structure of first order proofs generally). The results
which have been obtained have also their own applicetions,
e.g. to problems concerning complexity-of-proofs questions.

We shall touch this later.

§2. Results concerning Kreisel’'s conjecture

Almost ell results below cen be given in the form:"If
for 211 n< UY there is e proof of A(_g), in theory T, satisfy-
ing «.... then T proves *7XA(x).“ They differ in the range
of theories for which they are vealid and in the conditions
which ere put on the essumed proofs of A(n)’s.

The most important restrictions on the theories are
typicelly given by some condition on their languege. The
conditions that the proofs ere to satisfy ‘are typically:

the bound to the number of steps end some restriction to



used rules and schemes.

The first result obteined was

Theorem 1 (R.Parikh-[Ps)): Let PA” be PA with functions +

and * replaced by ternsry relations @ (x,y,z) end
o (x,y,2) stending for "x+y=z" end "Xe.y=2" resp.
and obviously trenslated axioms. Then Kreisel's con-

jecture is true for PA .

A result covering the previous one end having other

interesting conclusions wes found by T.Miysteke. It is for-

mulated for Gentzen systems but this is not important.
Importent in the result is the condition put on terms which
gre allowed to occur in proofs.

To be eble to explain the result we must define some
notions. For eny term t let a(t) be the number of occuren-
ces of bound varisbles in t. For R, en axiom scheme of the
theory, we cell those occurences of s (the successor sym-
bol) in R critical which are not in the scope of eny other
function symbol. If A is an instance of R then those occur-
ences of s in A corresponding to criticel occurences of s
in R are celled critical too.

Fregment T, of theory T is defined: instance A of an
exiom scheme of T is accepted as an axiom of Ty iff
"(the number of critical occurences of s in A) plus
t a term in A} " £ k.

—

Finelly, we ssy that T is complete w.r.t. Presburger

erithmetic iff the language of T contains O,s anfl for some



formule A(x,y,2z) T proves the properties of ®(x,y,2),

i.e. Vx,y gsz(X,y,Z) A'VXA(x,o,x)/\ ceeee , 8nd T

proves all (translations of ) formules velid in (U.J',+,s,0).

Theorem 2 (T.Miytake;[Mi]): Let T be complete w.r.t. Press-
burger erithmetic. Assume thet for some k < (J theory
T, broves A(n) invs k steps for eny n <&J". Then T
proves *fo(x). '

The theorem hes at least two easily steted importent con-

clusions.

Corollery of Th.2 : If T is complete w.r.t. Pressburger

srithmetic ihen'unéer»one of the'following conditions

Kreisel s conjecture is true for T.

(i) T is finite.

(ii) The lengusge of T do not contsin eny function sym-

bol of earity ?-2.

In fact, earlier related results were found by V.P.Orevkov
end T.Yukemi. Orevkov's result is closely connected with
Theorem 2.

Theorem 3 (V.P.Orevkov-[br3]): Let the langusge of T con-
tains O,s &nd let T pi;oves; 'Vx(x=0 vay(x= s(y)))

Assume thset for some k £ there is s proof d in T
of A(n) for all n<wrs.t. d has £ k steps &nd sall
terms occuring i axiom schemes in dn
have the deoth £ k too. Then T proves t/xA(x).

The result of T.Yukami does not desl with theories axioms-

tized only by schemes.



Theorem 4

(T.Yukami-[! 1]): Let T be a theory whose langu-

age contains function symbols: 0,s,+ and predicate

symbol @(x,y,z) end, poseibly, any number of other

predicete symbols but no other function symbols. The

exioms of T are:

finitely meny exioms steting the basic properties
of 0,8,+, @(x,y,z)

the induction scheme (for any formula)

o

the scheme of idéntity: X=y — A(z/x)EfL’;,'(z/y),
A(z) e formula,

8=t , where s=t ie equetion velid in (C—U",-c-,s,o).

Assume thet for some k <(J snd for all n<(> T proves

A(n)
G)
(ii)

by & proof dn s.t.:

d  hes £ k steps ,

for any instence B of the induction scheme in
which some other prediéate symbol then = occurs

it holds: mex {a(t) ‘ t a term in B} £ k.

Then T proves 'VxA(x).

Laeter T.Yukami, using Matijasevié “s theorem, proved & result

somehow completing the preceeding one.

Theorem 5 (T.Yukami-[!Z]);_‘ Kreisel’s conjecture is not true

for theory T frém fheorém 4.

A result of e different shepe wes proved by D.Richardson.

He considered the deduction system based on Beth s semsntic

trees. He defined & cannonicel procedure how & sementic

tree is in steps expended until all its branches are closed.



D.Richerdson proved that for this notion cf step in this
deduction system Kreisel’s conjecture is true for all sys-

tems complete w.r.t. Presburger erithmetiec.

A stretegy in the proofs of some results of this chap-
ter is roughly the following. First one shows thet there is
essentially only & finite number of different "types® of
proofs if the number of steps in them is bounded. Then the
foct of the existence of & proof of A(n) of a perticuler
*type" is turned to the fact that e perticular system of
linear equtions has ¢ solution. This transforms the state-
ment " Vn, A(_g) is probable'in T within < steps" into
some true sentence of Presburger srithmetic which can be it-
self proved in T. Then using & partiel truth definition for
formules of & bounded depth (and previously showing that e
bound to the number of steps in proofs of A(g)'s implies a
bound to the depth of some proofs of A(g)'s ) one conclude
with: T F-t#LACx). A different epproach works with the sys-
tems of lineer equations itself, "generslizes®™ their soluti-
ons, end these turns back into "generalized" proofs. For ell

the deteils see the papers.

§3. Kreisel s conjecture end generalizations of proofs

The results on Kreisel's conjecture naturally lead to
generalization-of-proofs results. G.Kreisel himself shearpe-
ned his originel conjecture to the following one. (It will

appeer in the csecond edition of G.Tekeuti s *proof theory"



in the sppendix by G.Kreisel, footnote 3 on p.402. See

there glso for further diecuasion,)

Shearpened Kreiael'é conjecture : For eny formule A(x) and

eny k< (W J there is M < (W s.t. for eny n2M it holds:

if PA proves A(n) in = £ k steps then there is N&M

s.t. PA proves Vx (xE n(Mod N)— A(x)) . Moreover,
new"general” stetement hes a proof of & "gimi-

ler" logical type 88 the starting proof of A(B).

There ere pertiel results on this new conjecture too.
Some of them cen be derived from (the proofs of ) the re-

sults of Chapter 2.

Theorem 6 (R.Parikh—[Pa]): Sherpened Kreisel s conjecture

is true‘for PA’.

Using the unification algorithm the following was es-
tablished.

Theorem 7 (P.Pudlék,J.Krejifek-[K-P)): Let T be & finite
theory. Then for any formula A(x) and any k < (U there
is M<Ws.t. for any term t of the lenguage (not ne-
cessarily e numeralb) it holds: if the depth of t
is 2 M end A(t) hes & cut-free proof in T heving
£ k steps then there is = term r s.t.:

T proves within £ k steps A(r) ,
(ii) t is o substitution instence of r
(iii) the depth of r is £ M.

Corollery of Th.7 : Sherpened Kreisel’'s conjecture is true

for eny finite theory T whose langusge contains: 0,s,



. -

and which proves, for ell m< %
x=0 v x=1 v N x=m dy (e(...e(y) ...)=x),
8 m-times.
This corollery is easily seen. First one epply the cut-eli-
mination to produce, with possibly greater bound to the num-
ber of steps, cut-free proofs of A(n). (Thus the bound M is
greater then in Th.7. In fact, ‘one needs elso to estimate
the depth of some pféof of A(g)-for this is used Corollary
of Th.8.) So if t is n for some n)M then the depth of t
is P M too. Hence the term r must be of the form s(..s(x))
s £ M-times. Thus T proves even VezM(@amx) .
ebove corollary éannbi be generelly extended to
infinite theories too. It wes observed, independently by

D.Richerdson end T.Yukeﬁxi, that there exists k<uys.t. PA

proves all true eque.tiohs’of" the form _xg+_g£g:_r_1 within £ k
steps (see [R] or [Y3]). Thus PA proves ) y(y+y=n) for ell
even n< (W within s(k+1) steps. But cleerly PA does not
prove Vx y ng (y+y=x). N

A work of M.Baez promisses to be a deep insight into

the generelizetion-of-proofs questions in s menner suggest~

ed by Sharpened Kreisel s conjecture.

§4. The skeleton of a proof

notion which is a-possible approximation of infor-
mel notion of "similarity"-type of & proof is the skeleton.
This terminology is teken from [Fel], it corresponds to the

proof-enelysis of [Pa], to the scheme of proof of [Orl,ZJ



end to the type of proof of

A skeleton is e sequence of letters Rl,...,Rk (in
the cese of Hilbert-type~aystems; in the case of Gentzen-
type systems one tekes & binary tree lsbelled by letters)
together with information, for all n £k, using which in-
ference rule or vhich exiom scheme, and using which pre-
misses Rio""’Ri. R io""’ij < n, in the cese of an in-
ference rule, Rn has to be derived.

A proof Al,..;,Aklhae the skeleton above iff A, for

mation given by the skeleton. For deteails see [K-g].

Now, two proofs (in e theory) ded &s "si-

milar” iff they have the seme skeleton.
A result concerning dq&hs of proofs and skeletons
wes proved in.[Kj.

Theorem 8 (J.Kréjiéek-[K]): Let d=A1,...,Ak be & proof in

a8 theory T. Then'there is = sequence d'=Bl,...,Bk of

formulas of the lénguage.extended by formula-varisb-

les s.t.:

(i) @ is m:substitution instence of 4@,

(ii) @ has the seme skeleton as 4d,

(iii) eny "ressonable” instence of @’ is g proof in
T similer to 4,

(iv) the meximel depth of B,, i=l,...,k, is < c-k,
where c is a constent depending on T only.

("Reesonable“ substitution in the theorem meens that the

substitution must teke cere of the used variables-cf.rk].

A0



1.

[Pa} conteins & result of this shape but without & bound.
The bound implicitely conteined in the proof given in [Pa]
is exponentialgfkecently I elso have lesrnt of the paper
[0r4] conteining a closely connected result)

A consequence of this result is:

Corollary of Th.8 : Let T be = theory and d=A1,...,Ak be &

proof in T. Theﬁ there is e proof of Ak in T which is
similar to d end whose o1l s{eps heve the depth
glcok +A<£he dépth of Ak), wvhere ¢ is a constent de-
vending on.T only.
This result has some applicetion to the cut-elimination;
one can obtein a bound to the number of steps in & cut-free

proof only from the informetion about the number of steps

in & proof (cf.[le

§5. Releted problems

We shell discuss here two types of problems naturslly
esrising through the work refered to in the previous chep-
ters.

k-provability problem

k-provability problem is & problem (for a given theory):
*"Does A heve & proof withls k steps?", A &and k paremeters.
mein question is for which theories the k-provebility
problem is decidable.
The result concerning this problem obteined R.Parikh.
Let us cell & theory unery iff its languege does not con-

: : oL e
tein function symbols of arity 2}2. A unary theory wha



langusge conteins et most one function symbol of erity 1

will be calle& simple.

Theorem 9 (B.Parikh-[?é}): k-provability problem is deci-

deble for PA . In fect, it is decidable for eny simple

theory.

In the k-provebility problem one cen ssk not only for en
algorithmkolving the problem but for e list of "most gene-~
rel proofs® with £ k steps, s.t. ell other proofs would be
4 "simple” instancesof them.

W.Fermer in his thesis [Fa i] hes extensively studied
this problem and he obtesined importent results. Among
other he constructed'pérticular axiometic systems of srit-
hmetic for which the k—pfo;ability problem is resp. is not
decideble.The deteils arguof the scope of this peper but
one result csn be eesily stated.

Theoren 10 (W.Fermer-[re i}): The k-provebility problem is

decidsble for ahy—unary theory (even with the require-
ment of e list of "most general proofs").
This result is besed onfthé'solution of weli-known *monoid
problem" (or "15b s problem® or "string unificetion prob-

lem",-the question of the decidability of word equation in

free semigroups) by V.Mekenin. (W.Farmer invented his own
slgorithm for the speciel ceses erising from the questions
ebout k-provebility.See [Fa l,iD.

The k-provability problem may be further sherpened.
One mey e&sk for not only deciding whether A has = proof

with < steps but whether it has & proof of e given ske-
N\ "



43.

leton. Since there is only & finite number of skeletons
with a given number of steps the decidebility of this prob-
lem implies the decidébility of k~-provebility problem as
well. In fact, the sharpened problem is decideble for unary
theories (fof simple ones it wes established in CPa] too).

Theorem 10.1 (w}Farmer-[Fai]): The problem whether A has o

proof of e given skeleton, A and the skeleton pereme-
ters, is decidsble for‘any unary theory T.
However, generelly, this sharpened problem is undecideble.

This wes ennounced in [br i}, steted without & proof in[0r2]
snd oroved in CK-—P]. |
Theorem 11 (V.P.Orevkov—[@r2], P.Pudlék,J.Krejiéek—CK—Ia>:

For & non-unsry theory T it is not decideble whether

A hes & proof in T of & given skeleton. In fsct, it

holdse: for any recursively enumerable xcuthere is

a8 skeleton (in the prediceate calculue) Sx and & formu-

Ax(x) s.t. for any ri<(;J, n €X iff Ax(g) hes & proof

(in the predicete calculus )with skeleton Sy
Immediste conclusion to this theorem is that in Sharpened
Kreisel s conjecture one cannot expect that the ge-
nerelized proofs will keep the skeleton of the stetting
proof of A(n). »

Let us eglso remark thet D.Richerdson proved that the

k-provebility problem is decidsble for his perticular system

end his notion of "sten"



From-steps-to-the-length problem

This problem wes sddressed in [K-f]. The problem sasks,
for e given theory,” Is there & recursive function f(x,!)
s.t. if e formule A.hée a proof with
g proof of the length RS f(k,A) ?". Thet is: estimate recur-
sively the length of & proof from the number of steps.
cen consider three versions of the problem:
*"Find an estimate to the length of some proof of &
(a) without eny additionsl requirement,
(B) with the requirement to preserve the number of
steps of the origihal'proof,
(C) with the requirement to preserve the skeleton of
the-original proof."
Problem (C) is feirly well understood. From Theorems 9, 10.1
it follows thet theredis & recursive bound in the case of
unary theories and Thebrem 11 implies that there is no re-
cursive bound in the non-unary cese. In the case of simple
theories & good bound cen be found (iferated exponential-
cf.[Kl). Thus it remasins to find some good bounds in the ca-
se of unary theories. -

Problem (B) seems to>be less approached. Certeinly the bound

from (C), in & perticuler case, is slso a bound in (B). But
generslly the bounds in.(B) mey be better than in (C).
problem is cleerly connected with the k-provabili-
ty problem: if the leter is not decideble than no recursive
bound can be derived in (B) (for a perticuler theory) . But

for e generel theory nothing is known.

A9.



Problem (k). Recursive bounds can be derived in the case

of unery theories (since in (B) &na (C) there ere too) .
There is one additionel case known: there is e primitively
recursive bound in the csse of finite theories-see [K-P].

We mey state all known results in.a joint theorem.

(i) (R.Parikh-[?e],J.Krajiéek-[Kﬂ: For simple theory ah
elementery' recursive bound cen be shown in 8ll prob-

lems (4),(B),(C).

(W.Farmer-[Fa lgﬂ): For unery theory & recursive bound
can be shown in all problems (A),(B).(C)
(iii) (v.P.orevkov-[or 1,2), P.Pudlék,J.Krajitek-[K-B)):

There is no recursive bound for non-unery theories in

problem (C)

(iv) (P.Pudlék, J.Krajiéek-[K?P]): There is & primitively

recursive bound for finite theories in problem (A)

In £11 cases where bounds are known proofs of their opti-
melity sre lecking.

Kreisel’'s conjecture, its Sherpened version end the
problems of this chepter seem to be good questions stimule-
ting the work possibly leeding to better understahding of

structure of first order proofs. Beside this general
aim the results cen be applied to other problems, e.g. to

speed-up-problems or to complexity-of-proofs problems cf.

[Fa 1] or[Kj .

A



Remerk : During the typing process I heve learnt of papers
[br 3,&]. I tried to edd relevent references to them (see
Th.3 end the remerk sfter Th.S). I think thet in the work

of V.P.Orevkov more informetion cdncerning the problems

mentioned here cen be found but since [pr 1,2,3,4] do not

offer proofs I wes not able to do it.
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