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ABSTRACT. No counter-example interpretation for bounded arithmetic is

employed to derive recent witnessing theorem for S‘.+1 functions Df+1-

computable with counterexamples are shown to include all D‘ "+o-functions,
| and two separation results for fragments of Sz2(a) are proved.

Buss [1,2] has shown that functions 3X%, ,-definable in S3+' or Tj are
precisely OF, ,-functions. This was in [3] generalized in the following way.

Assume T} + 3zVy3zA(a,z,y,z), where A is a £, -formula. Then
function F* assigning to a some b such that Vy3zA(a, b,y, z) is computable
by a O0f,,-algorithm which may ask constantly many times for counter-
examples to Vy3zA(a, b,y, 2) (i.e. for ¢ such that ~32A4(a, b, ¢, 2)). In these
questions b varies but a is fixed.

Pudlék [6] has recently proved similar theorem for Si*1: the assumption
Sit! - 32Vy < aA(a, z,y) (A again T,,) implies that function F assigning

‘h T ( 0w /) U/Ze y3 : to a some b such that Vy < aA(a,b,y) is computable by a O ;-algorithm
. ‘ | which may ask for any (polynomial) number of counter-examples to
-y Lu Oy A ¢k p Md d/ oy / 3~/ 7‘ /97 &9 ) | Vy < aA(a, b,y). Here is a simple proof of this statement.

Extending the language of S} by some [17, | -functions and adding some
universal axioms about them we may form theory S1(PV;11), a conservative

ecl- Y U Moschovahis  Jratfivwmptcal
S, . / g extension of Sit!. We may also assume that A is existential.
Ct e AU A'QMWA [ I3 m Z;A- / JML‘C&//Y(WS Z 1 Y, As a formula implies its Herbrand’s form, the assumption

r ‘ v s 7 - i
. 1972 )/ S/Jf hg - > — t//ﬁ /J,&J T~ — _}:[3 5771k 3a¥y < Afa,z,)

l

implies
S%(P‘/H'hf) - 3:z:,f(a,_:z) -<— a> A(G,I, f(av 12)),

where f is a new function symbol.
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By (relativization of) Buss's witnessing theorem there is functional F(a, f)
which satisfies:

f(a,F(a, f)) < a > Aa, F(a, f), f(a, F(a, f))),

and which is computable by a deterministic algorithm which may ask for
values of some O0f, ;-functions (from the language of S} (PVit1)) and for
values of f(a,z). Moreover, if f is of polynomial growth then the algorithm
computing F runs in time polynomial in |a|. We may therefore call F a
0%, ,-functional.

The algorithm computing F is the algorithm required in Pudlik’s state-
ment. This is because if f is a function computing some counter-examples:

! some ¢ < a, s.t. ~A(a,b,c)

a,b) =
f(a,b) a+1, if Vy < ad(a,b,y)

then formula:
f(a,b) < a D> A(a,b, f(a,b))

implies:
Yy < aA(a,b,y).

(The additional property that a is fixed in the queries follows as we can
treat a as a constant.)

The same argument works also if y in Vy is not bounded. But the run
time of an algorithm computing F is then bounded only by a polynomial
in |a] + 37, |f(e,u;)|, where f(a,u;)’s are all function values f (a,z) asked
for in the computation.

The statement clearly generalizes to arbitrary quantifier complexity: the
assumption
S5t 3z Wy, . .. 3e Yy Ale, £, §)

(bounds to y;’s implicitly in A) implies existence of Of,,-functionals

R (a,f), e ,Fk(a,f-) such that for any @ and f it holds:
A(av . I[/F[(ﬂ, f-)r . )yj/fj(a” Fl(a’ f-)v . sF:i(ar f-))a

The computation of Fy’s with particular f;'s computing counterexamples
can be described again as an interactive computation.
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The characterization of the witnessing functions in the Ti case was in
[3] used for a conditional separation of T§ and Si*!. The motivation for
studying the SZ,“ case is the problem of separation of S;"“ and T;“.
Here however, a sceptical tone comes from the observation that any 07, ,-
function can be computed in the interactive manner associated with S3*!,
while Skolem functions for T;*! are also OF, ,. This is seen as follows.

For M a deterministic oracle machine and B(u) = 3wC(u,v) a 37, -
oracle take formula D(c) = 3zV(i,y) A(a, z, (i,y)) (bounds to v and (,y)
are implicitly in C and A resp.) where formula A is the conjunction of:

(i) |z| < lal* (lal* a time bound),
(ii) “z is a computation of M with some oracle”,

(iii) “if the i-th step of computation z is a negative answer to an oracle
query [B(u;)?] then either ~C(u;,y) or (35 < i, “j-th step of z is
also a negative answer to oracle query [B(u;)?) but B{u;) holds”),

(iv) “all positive answers to oracle queries are correct”.

Formula A is clearly Zf 1

Now consider the following algorithm. Take by the computation of M
on input a where we answer all oracle queries negatively, and ask for a
counterexample to V(i,y)A(a, b, (i,y)). If counterexample (ig,yo) is pro-
vided then the negative answer to oracle query [B(u;,)?] in step ip was
the first incorrect one (and yp witnesses the positive answer). Construct
computation b; identical with by till step 4o — 1, answering oracle query
{B(ui,)?] positively and all later queries negatively. Then ask again for a
counterexample to V{(i,y)A(a, by, (¢,)). If (31,3) is provided, step i, is the
first incorrect one (a negative answer to an oracle query [B(u;,)7]) and so
take b, identical with by till step ¢, —1, answering [B(u;, )?] positively (with
y1 a witness to it), and all later queries, negatively.

In this way construct computations bg, by, bs, . . ., with b,, correct at least
till step m. Thus for m := |a|¥, b, is the correct computation of M2 on
input a. Output of M5 is read from b,,.

If unable to separate Sit! from T3, a natural problem to look at is
a separation of relativized versions of-S;*! and Ti*!. Buss (unpublished)
showed that T} (f) is not 3 °(f)-conservative over S3(f) and Pudlik [6]
employed his witnessing theorem to show that Si*!(a) # T3*'(a), for
1 =0, 1. HereI give an alternative proof of Buss’s result and a strengthening
of Pudlék’s result for 7 = 1.
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Theorem.
(a) The following sequent is provable in T} (e, f) but not in S}(a, f):

a(0,0),Vz,y < a((a(z,y) AT < y) D
(a(f(z,y),y + 1A f(z,y) Sy +1)) - 3u < aa(y,a).

(b) The following sequent is provable in T#(a) but not in S}(a):

Yu,v < a?Vw < a(a(u, w) A a(v, w) D u =v),

Yu < a®Vu, w < a(a(u,v) A alu,w) D v =w) — 3z < a®Vy < a—a(z,y).

Remark. The sequent from (b) is Eg(a) while $2(c)-axioms are Zg(a);
in this respect (b) improves upon Pudlék’s result.

Proof. In both cases we use a relativization of Buss’s witnessing theorem.

(a) The sequent is clearly provable in T} (, f) by induction for formula
Ju < a a(u,a). To show that the sequent is not provable in Si(a, f) it is
enough to show that for each polynomial time oracle machine M of there
exist &« € w?a € w and f : w? — w of polynomial growth such that
M*f(a) does nct witness the sequent.

Fix machine M*/ and take a € w sufficiently large. We start the com-
putation of M®f on a; when answering oracle queries we shall assign truth
values (resp. values) to some a(z,y) (resp. some f(z,y)), for z <y < a.
(0) Assign to a(0,0) TRUE.

(i) Query [o(z,y)?): If for all t < y, ¢ # z to a(t,y) is already assigned
truth value FALSE, assign to oz, y) TRUE and answer YES. Otherwise assign
FALSE and answer NO.

(i) Query [f(z,y) =7}: Consider three cases.

(1) To o(z,y) is assigned value TRUE. Choose some t < y + 1 such
that to a(t,y+ 1) is assigned TRUE if it exists, or otherwise choose
any ¢t < y + 1 such that a(t,y + 1) has not value assigned yet. Put
f(z,y) =t and assign to a(t,y + 1) value TRUE.

(2) To a(z,y) is assigned value FALSE. Choose some ¢t < y + 1 such
that to a(t,y+1) is assigned FALSE if it exists, or otherwise choose
any t < y+ 1 such that a(t,y + 1) has not value assigned yet. Put
f(z,y) :=t and assign to a(t,y + 1) value FALSE.

(3) a(z,y) has no value assigned yet. Assign to it some value according
to (i) and then define f(z,y) following (1) or (2) above.

The following claim is straightforward.
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Claim. To a(z,y) cannot be assigned value TRUE during answers to first
y oracle queries.

Hence obviously M*/(a) cannot find witness for the succedesit. If the
output is pair (z,y) such that z < y < a, alz,y) is assigned TRUE then
either f(z,y) is correctly defined < y+1 and to a(f(z,y),y+1) is assigned
TRUE too, or f(z,y) is undefined. Then define it following (iii). Take a
to be those pairs (z,y) such that to a(z,y) is assigned TRUE and f to be
any extension of the partial function constructed during the computation.
Clearly M/ (a) does not witness the sequent.

This proves clause (a).

(b) Assume @ C a? x a does not satisfy the sequent. Then « is a graph
of a 1 — 1 map from a? into a. In Paris-Wilkie-Woods [5, Thm. 1] it is
proved in IAp + £, that there cannot be a Ag-definable, 1 — 1 map from
a? into a. Their proof readily formalizes in S3(a) and hence in T%(a) too.
(I do not know if this remains true if we drop the second formula from the
antecedent.)

To show that S%(a) does not prove the sequent it is enough to show that
for any polynomial time oracle machine M2, and any Y }(c)-predicate B
there are & C w? and a € w such that M7 (a) does not witness the sequent.

Choose a € w sufficiently large. Assume that the }"7(a)-oracle B has
the form:

B(b) = 3w < t(b) N*(w,b),

where N*(w, b) formalizes
“w is an accepting computation of oracle machine N® on input 4”.

We start the computation of MZ on a. During the computation we
shall answer oracle queries and also construct partial approximations to
c:oefcCafc - Ca?xa.

Put ay = af = 0. Let [B(b;)?] be the i-th oracle query. Consider two
cases. .

(i) There exist 8 C a2 x a and w < t(b;) such that:
(1) B2af,and BNa, =0,
(2) NP(w,b;) holds,
(3) Bis a graph of a partial 1 — 1 function from a? to a.
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Answer YES. Computation w contains at most |a|* oracle queries about
B (some fixed k € w). Add pairs (c,d) to a} | resp. to a;_; to form
o, according to whether the answer to oracle query [8(c,d)?] in w was
affirmative or negative.

In particular, card((a} Ua; )\(a} , Uai_,)) < lal*.
(ii) There are no such 8 and w. Answer NO and put o
Put a := W & Where lajt is the time bound of M2. a satisfies the

+._ %
P =g

antecedent and so if MB(a) should witness the sequent it must output

z < a2 such that Vy < a—-a(z,y). But then we can always find y < g,

(z,y) ¢ U a; and add pair (z,y) into o.
i<laf¢ :

This proves clause (b). 0O

The sequent from clause (a) is a herbrandization of induction axiom
for formula 3u < a a(u,a). It would seem natural to conjecture that a
herbrandization of induction axiom for Z:’(a)-formula

dz; £ aVy; <a. alf,¥,a)
(i alternating quantifiers), namely:

a(0,0,0),Yb,Z1,. ., Tm,t1,-. -, tn < al@(F,y;/f5,b) D
6(zk/ gk, b+ 1)) = Jug, ..., um S a &(@,ve/he, a),

where:
(0) m= %, n= -} and & is the formula

(xl S b/\(yl S b> (‘ (a(:i:‘,;:}',b) )’

(i) function f; depends on b,z1,...,Zj,t1,.-.,¢j-1,
(ii) function g depends on b,Z1,...,Tk,t1,. .« tk—1,
(iii) function hs depends on a,u,. .., us,

is not provable in Si(e, £, fi). However, this is not true. All these her-
brandizations are provable already in T3 (e, £, §, h).

Remark. The problem whether S;H equals TZH'l was from a different per-
spective studied in [4]. Following that paper, Theorem above can be inter-
preted as results about structure of proofs in predicate calculus.
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