in Logic from Computer Science,
Proc Workshop held Nov 13-17 1989,
ed. Y N Moschovakis, Rathmatical
Sciences Research Institu Publications 21,
(1992), Springer-Verlag, pp. 287-293

NO COUNTER-EXAMPLE INTERPRETATION AND INTERACTIVE COMPUTATION

Jan Krajíček

ABSTRACT. No counter-example interpretation for bounded arithmetic is employed to derive recent witnessing theorem for S_2^{i+1} , functions \Box_{i+1}^p -computable with counterexamples are shown to include all \Box_{i+2}^p -functions, and two separation results for fragments of $S_2(\alpha)$ are proved.

Buss [1,2] has shown that functions $\exists \Sigma_{i+1}^b$ -definable in S_2^{i+1} or T_2^i are precisely \Box_{i+1}^p -functions. This was in [3] generalized in the following way.

Assume $T_2^i \vdash \exists x \forall y \exists z A(a,x,y,z)$, where A is a \sum_{i+1}^b -formula. Then function F assigning to a some b such that $\forall y \exists z A(a,b,y,z)$ is computable by a \Box_{i+1}^p -algorithm which may ask constantly many times for counterexamples to $\forall y \exists z A(a,b,y,z)$ (i.e. for c such that $\neg \exists z A(a,b,c,z)$). In these questions b varies but a is fixed.

Pudlák [6] has recently proved similar theorem for S_2^{i+1} : the assumption $S_2^{i+1} \vdash \exists x \forall y \leq a A(a,x,y)$ (A again Σ_{i+1}^b) implies that function F assigning to a some b such that $\forall y \leq a A(a,b,y)$ is computable by a \square_{i+1}^p -algorithm which may ask for any (polynomial) number of counter-examples to $\forall y \leq a A(a,b,y)$. Here is a simple proof of this statement.

Extending the language of S_2^1 by some \Box_{i+1}^p -functions and adding some universal axioms about them we may form theory $S_2^1(PV_{i+1})$, a conservative extension of S_2^{i+1} . We may also assume that A is existential.

As a formula implies its Herbrand's form, the assumption

$$S_2^{i+1} \vdash \exists x \forall y \le A(a, x, y)$$

implies

$$S_2^1(PV_{i+1}, f) \vdash \exists x, f(a, x) \leq a \supset A(a, x, f(a, x)),$$

where f is a new function symbol.

By (relativization of) Buss's witnessing theorem there is functional F(a, f) which satisfies:

$$f(a, F(a, f)) \leq a \supset A(a, F(a, f), f(a, F(a, f))),$$

and which is computable by a deterministic algorithm which may ask for values of some \Box_{i+1}^p -functions (from the language of $S_2^1(PV_{i+1})$) and for values of f(a,x). Moreover, if f is of polynomial growth then the algorithm computing F runs in time polynomial in |a|. We may therefore call F a \Box_{i+1}^p -functional.

The algorithm computing F is the algorithm required in Pudlák's statement. This is because if f is a function computing some counter-examples:

$$f(a,b) := \begin{cases} \text{some } c \le a, \text{ s.t. } \neg A(a,b,c) \\ a+1, \text{ if } \forall y \le aA(a,b,y) \end{cases}$$

then formula:

$$f(a,b) \leq a \supset A(a,b,f(a,b))$$

implies:

$$\forall y \leq aA(a,b,y).$$

(The additional property that a is fixed in the queries follows as we can treat a as a constant.)

The same argument works also if y in $\forall y$ is not bounded. But the run time of an algorithm computing F is then bounded only by a polynomial in $|a| + \sum_i |f(a, u_i)|$, where $f(a, u_i)$'s are all function values f(a, x) asked for in the computation.

The statement clearly generalizes to arbitrary quantifier complexity: the assumption

$$S_2^{i+1} \vdash \exists x_1 \forall y_1 \ldots \exists x_k \forall y_k A(a, \vec{x}, \vec{y})$$

(bounds to y_j 's implicitly in A) implies existence of \Box_{i+1}^p -functionals $F_1(a, \vec{f}), \ldots, F_k(a, \vec{f})$ such that for any a and \vec{f} it holds:

$$A(a, x_{\ell}/F_{\ell}(a, \vec{f}), y_{j}/f_{j}(a, F_{1}(a, \vec{f}), F_{j}(a, \vec{f}))$$

The computation of F_{ℓ} 's with particular f_j 's computing counterexamples can be described again as an interactive computation.

The characterization of the witnessing functions in the T_2^i case was in [3] used for a conditional separation of T_2^i and S_2^{i+1} . The motivation for studying the S_2^{i+1} case is the problem of separation of S_2^{i+1} and T_2^{i+1} . Here however, a sceptical tone comes from the observation that any \Box_{i+2}^p -function can be computed in the interactive manner associated with S_2^{i+1} , while Skolem functions for T_2^{i+1} are also \Box_{i+2}^p . This is seen as follows.

For M a deterministic oracle machine and $B(u) = \exists v C(u, v)$ a \sum_{i+1}^{p} -oracle take formula $D(a) = \exists x \forall \langle i, y \rangle A(a, x, \langle i, y \rangle)$ (bounds to v and $\langle i, y \rangle$ are implicitly in C and A resp.) where formula A is the conjunction of:

- (i) $|x| \leq |a|^k$ ($|a|^k$ a time bound),
- (ii) "x is a computation of M with some oracle",
- (iii) "if the *i*-th step of computation x is a negative answer to an oracle query $[B(u_i)]$? then either $\neg C(u_i, y)$ or $(\exists j < i, "j$ -th step of x is also a negative answer to oracle query $[B(u_i)]$ but $B(u_i)$ holds"),
- (iv) "all positive answers to oracle queries are correct".

Formula A is clearly \sum_{i+1}^{b} .

Now consider the following algorithm. Take b_0 the computation of M on input a where we answer all oracle queries negatively, and ask for a counterexample to $\forall \langle i,y \rangle A(a,b_0,\langle i,y \rangle)$. If counterexample $\langle i_0,y_0 \rangle$ is provided then the negative answer to oracle query $[B(u_{i_0})?]$ in step i_0 was the first incorrect one (and y_0 witnesses the positive answer). Construct computation b_1 identical with b_0 till step i_0-1 , answering oracle query $[B(u_{i_0})?]$ positively and all later queries negatively. Then ask again for a counterexample to $\forall \langle i,y \rangle A(a,b_1,\langle i,y \rangle)$. If $\langle i_1,y_1 \rangle$ is provided, step i_1 is the first incorrect one (a negative answer to an oracle query $[B(u_{i_1})?]$) and so take b_2 identical with b_1 till step i_1-1 , answering $[B(u_{i_1})?]$ positively (with y_1 a witness to it), and all later queries, negatively.

In this way construct computations b_0, b_1, b_2, \ldots , with b_m correct at least till step m. Thus for $m := |a|^k$, b_m is the correct computation of M^B on input a. Output of M^B is read from b_m .

If unable to separate S_2^{i+1} from T_2^{i+1} , a natural problem to look at is a separation of relativized versions of S_2^{i+1} and T_2^{i+1} . Buss (unpublished) showed that $T_2^1(f)$ is not $\sum_1^b(f)$ -conservative over $S_2^1(f)$ and Pudlák [6] employed his witnessing theorem to show that $S_2^{i+1}(\alpha) \neq T_2^{i+1}(\alpha)$, for i=0,1. Here I give an alternative proof of Buss's result and a strengthening of Pudlák's result for i=1.

Theorem.

(a) The following sequent is provable in $T_2^1(\alpha, f)$ but not in $S_2^1(\alpha, f)$:

$$\alpha(0,0), \forall x, y \le a((\alpha(x,y) \land x \le y) \supset (\alpha(f(x,y),y+1) \land f(x,y) \le y+1)) \rightarrow \exists u \le a \ \alpha(u,a).$$

(b) The following sequent is provable in $T_2^2(\alpha)$ but not in $S_2^2(\alpha)$:

$$\forall u, v < a^2 \forall w < a(\alpha(u, w) \land \alpha(v, w) \supset u = v),$$

$$\forall u < a^2 \forall v, w < a(\alpha(u, v) \land \alpha(u, w) \supset v = w) \rightarrow \exists x < a^2 \forall y < a \neg \alpha(x, y).$$

Remark. The sequent from (b) is $\sum_{1}^{b}(\alpha)$ while $S_{2}^{2}(\alpha)$ -axioms are $\sum_{3}^{b}(\alpha)$; in this respect (b) improves upon Pudlák's result.

Proof. In both cases we use a relativization of Buss's witnessing theorem.

(a) The sequent is clearly provable in $T_2^1(\alpha, f)$ by induction for formula $\exists u \leq a \ \alpha(u, a)$. To show that the sequent is not provable in $S_2^1(\alpha, f)$ it is enough to show that for each polynomial time oracle machine $M^{\alpha, f}$ there exist $\alpha \subseteq \omega^2, a \in \omega$ and $f : \omega^2 \to \omega$ of polynomial growth such that $M^{\alpha, f}(a)$ does not witness the sequent.

Fix machine $M^{\alpha,f}$ and take $a \in \omega$ sufficiently large. We start the computation of $M^{\alpha,f}$ on a; when answering oracle queries we shall assign truth values (resp. values) to some $\alpha(x,y)$ (resp. some f(x,y)), for $x \leq y \leq a$.

- (0) Assign to $\alpha(0,0)$ TRUE.
- (i) Query $[\alpha(x,y)?]$: If for all $t \leq y$, $t \neq x$ to $\alpha(t,y)$ is already assigned truth value FALSE, assign to $\alpha(x,y)$ TRUE and answer YES. Otherwise assign FALSE and answer NO.
- (ii) Query [f(x, y) = ?]: Consider three cases.
 - (1) To $\alpha(x,y)$ is assigned value TRUE. Choose some $t \leq y+1$ such that to $\alpha(t,y+1)$ is assigned TRUE if it exists, or otherwise choose any $t \leq y+1$ such that $\alpha(t,y+1)$ has not value assigned yet. Put f(x,y) := t and assign to $\alpha(t,y+1)$ value TRUE.
 - (2) To $\alpha(x,y)$ is assigned value FALSE. Choose some $t \leq y+1$ such that to $\alpha(t,y+1)$ is assigned FALSE if it exists, or otherwise choose any $t \leq y+1$ such that $\alpha(t,y+1)$ has not value assigned yet. Put f(x,y) := t and assign to $\alpha(t,y+1)$ value FALSE.
 - (3) $\alpha(x,y)$ has no value assigned yet. Assign to it some value according to (i) and then define f(x,y) following (1) or (2) above.

The following claim is straightforward.

Claim. To $\alpha(x, y)$ cannot be assigned value TRUE during answers to first y oracle queries.

Hence obviously $M^{\alpha,f}(a)$ cannot find witness for the succedent. If the output is pair (x,y) such that $x \leq y \leq a$, $\alpha(x,y)$ is assigned TRUE then either f(x,y) is correctly defined $\leq y+1$ and to $\alpha(f(x,y),y+1)$ is assigned TRUE too, or f(x,y) is undefined. Then define it following (iii). Take α to be those pairs (x,y) such that to $\alpha(x,y)$ is assigned TRUE and f to be any extension of the partial function constructed during the computation. Clearly $M^{\alpha,f}(a)$ does not witness the sequent.

This proves clause (a).

(b) Assume $\alpha \subseteq a^2 \times a$ does not satisfy the sequent. Then α is a graph of a 1-1 map from a^2 into a. In Paris-Wilkie-Woods [5, Thm. 1] it is proved in $I\Delta_0 + \Omega_1$ that there cannot be a Δ_0 -definable, 1-1 map from a^2 into a. Their proof readily formalizes in $S_2^3(\alpha)$ and hence in $T_2^2(\alpha)$ too. (I do not know if this remains true if we drop the second formula from the antecedent.)

To show that $S_2^2(\alpha)$ does not prove the sequent it is enough to show that for any polynomial time oracle machine M^B , and any $\sum_{1}^{p}(\alpha)$ -predicate B there are $\alpha \subseteq \omega^2$ and $a \in \omega$ such that $M^B(a)$ does not witness the sequent.

Choose $a \in \omega$ sufficiently large. Assume that the $\sum_{1}^{p}(\alpha)$ -oracle B has the form:

$$B(b) = \exists w \le t(b) \ N^{\alpha}(w, b),$$

where $N^{\alpha}(w, b)$ formalizes

"w is an accepting computation of oracle machine N^{α} on input b".

We start the computation of M^B on a. During the computation we shall answer oracle queries and also construct partial approximations to $\alpha: \alpha_0^{\pm} \subseteq \alpha_1^{\pm} \subseteq \cdots \subseteq a^2 \times a$.

Put $\alpha_0^- = \alpha_0^+ = \emptyset$. Let $[B(b_i)?]$ be the *i*-th oracle query. Consider two cases.

- (i) There exist $\beta \subseteq a^2 \times a$ and $w \leq t(b_i)$ such that:
 - (1) $\beta \supseteq \alpha_{i-1}^+$ and $\beta \cap \alpha_{i-1}^- = \emptyset$,
 - (2) $N^{\beta}(w, b_i)$ holds,
 - (3) β is a graph of a partial 1-1 function from a^2 to a.

NO COUNTER-EXAMPLE INTERPRETATION

Answer YES. Computation w contains at most $|a|^k$ oracle queries about β (some fixed $k \in \omega$). Add pairs (c,d) to α_{i-1}^+ resp. to α_{i-1}^- to form α_i^{\pm} , according to whether the answer to oracle query $[\beta(c,d)?]$ in w was affirmative or negative.

In particular, card $((\alpha_i^+ \cup \alpha_i^-) \setminus (\alpha_{i-1}^+ \cup \alpha_{i-1}^-)) \le |a|^k$.

(ii) There are no such β and w. Answer NO and put $\alpha_i^{\pm} := \alpha_{i-1}^{\pm}$. Put $\alpha := \bigcup_{i \leq |a|^{\ell}} \alpha_i^{\pm}$ where $|a|^{\ell}$ is the time bound of M^B . α satisfies the antecedent and so if $M^B(a)$ should witness the sequent it must output $x < a^2$ such that $\forall y < a \neg \alpha(x,y)$. But then we can always find y < a, $(x,y) \notin \bigcup_{i \leq |a|^{\ell}} \alpha_i^{-}$ and add pair (x,y) into α .

The sequent from clause (a) is a herbrandization of induction axiom for formula $\exists u \leq a \ \alpha(u,a)$. It would seem natural to conjecture that a herbrandization of induction axiom for $\sum_{i}^{b}(\alpha)$ -formula

$$\exists x_1 \leq a \forall y_1 \leq a . \quad \alpha(\vec{x}, \vec{y}, a)$$

(i alternating quantifiers), namely:

$$\alpha(\vec{0}, \vec{0}, 0), \forall b, x_1, \dots, x_m, t_1, \dots, t_n \leq a[\hat{\alpha}(\vec{x}, y_j/f_j, b) \supset \hat{\alpha}(z_k/q_k, \vec{t}, b+1)] \rightarrow \exists u_1, \dots, u_m \leq a \; \hat{\alpha}(\vec{u}, v_\ell/h_\ell, a),$$

where:

(0) $m = \frac{r_i r_i}{2}$, $n = \frac{i}{12}$ and $\hat{\alpha}$ is the formula

$$(x_1 \leq b \land (y_1 \leq b \supset (. (\alpha(\vec{x}, \vec{y}, b).),$$

- (i) function f_i depends on $b, x_1, \ldots, x_j, t_1, \ldots, t_{j-1}$,
- (ii) function g_k depends on $b, x_1, \ldots, x_k, t_1, \ldots, t_{k-1}$,
- (iii) function h_{ℓ} depends on a, u_1, \ldots, u_{ℓ} ,

is not provable in $S_2^i(\alpha, \vec{f}, \vec{g}, \vec{h})$. However, this is not true. All these herbrandizations are provable already in $T_2^1(\alpha, \vec{f}, \vec{g}, \vec{h})$.

Remark. The problem whether S_2^{i+1} equals T_2^{i+1} was from a different perspective studied in [4]. Following that paper, Theorem above can be interpreted as results about structure of proofs in predicate calculus.

REFERENCES

- 1. S. Buss, Bounded Arithmetic, Bibliopolis, Naples, 1986.
- S. Buss, Axiomatization and conservation results for fragments of bounded arithmetic, Proc. Workshop in Logic and Computation, Contemporary Mathematics AMS (to appear).
- 3. J. Krajíček, P. Pudlák and G. Takeuti, Bounded arithmetic and the polynomial hierarchy, Annals of Pure and Applied Logic (to appear).
- J. Krajíček and G. Takeuti, On induction-free provability, Discrete Applied Mathematics (to appear).
- J. Paris, A. Wilkie and A. Woods, Provability of the pigeon-hole principle and the existence of infinitely many primes, Journal of Symbolic Logic 53 no. 4 (1988), 1235-1244.
- P. Pudlák, Some relations between subsystems of arithmetic and complexity of computations, this volume.

MATHEMATICAL INSTITUTE, CZECHOSLOVAK ACADEMY OF SCIENCES, ŽITNÁ 25, 115 67, PRAGUE-1