INTERACTIVE COMPUTATIONS OF OPTIMAL SOLUTIONS

Jan Krajicek, Pavel Pudlak and Jif Sgall

Mathematical Institute, CSAV
Prague, Czechoslovakia

0. Introduction

Recently we have discovered an interesting connection between

optimization problems and logical theories which formalize the principle of
induction for certain classes of formulas. This research has suggested a new

type of interactive or oracle computations. We shall call this type of

computations counterexample computations.
Assuming P*¥?P there are no polynomial time computable functions which
solutions for optimization problems connected with

construct optimal

NP-complete problems. In the counterexample computations one can get extra
information, thus some optimization problems connected with #P-complete
problems are computable in polynomial time. In particular the optimization
problem CLIQUE is computable in such a way. We conjecture that not all
optimization problems are in this
conjecture it for TSP (TRAVELLING SALESMAN PROBLEM).

solve an open problem about the logical theories.

computable way, in particular we

This conjecture would

The paper is organized as follows. First we define the concept of
optimization problems and discuss other formalizations of this concept. We
define the counterexample computations of optimization problems. We mention
briefly the connections to some questions about logical theories. Then we
prove the main result, which is a hilerarchy theorem for counterexample
computations. In the last section we define reductions between optimization
problems which preserve counterexample computations. We prove that there are
complete optimization problems, in particular TSP is complete. We prove that
CLIQUE is complete in the class of optimization problems whose value is at

most polynomial in the size of the input.

1 Optimization problems
Definition

Let £ be a finite alphabet An optimization problem is a binary relation

il

49

REZ*xZ*, a function p:Z* 5 N and a polynomial p such that R is decidable ir
polynomial time and p(y) 1s computable in polynomial time in the size of y.
(We assume that numbers are coded in binary notation, thus the Vélue ply)
can be exponential in the size of y.) We call Yy a feasible solution to input
x, if R(x,y) and lyisp(Ixi). If y an y’ are feasible solutions, we say that
y’ if p(y’)>p(y).
there is no better one.

is better than y, A feasible solution y is optimal if

In order to simplify the exposition we shall
additional technical assumptions.

make the following

(1) A is always a minimal feasible solution, i.e. R(x,A) and p(A)=0 for
every X. '

(2) We shall assume that p(n) is just the trivial polynomial n.

Example 1. CLIQUE
R(x,y) is the relation "y is a clique in x",

ply) is "the size of the clique y", (if y 1s not a clique, then it is 0)

Example 2. TSP

R(x,y) is the relation "x is a graph with edges labelled by numbers and y is
a tour in x",

ply) is "the length of the tour y". (if y is not a tour then it is 0).

There are several alternative definitions of optimization problems. An

unessential generalization is obtained by letting p depend not only on

feasible solutions but also on inputs. There 1is a less trivial

generalization in which the function is replaced by a polynomial time
decidable quasiordering on the set of feasible solutions to x. A different

definition was used by Krentel [K]: An #P metric Turing machine N is a
nondeterministic polynomially-time bounded Turing machine such that every
branch writes a binary number and éccepts. The binary number is the value of
the particular feasible solution implicitly computed by the computation
branch. Since we need the actual feasible solutions, not only their values,
this definition is not suitable for us. Another approach was considered by
Papadimitriou and Yannakakis [PY]. They represent optimization problems by
formulas y(x,y,G,S), where ¥ is a first order formula with second order
variables G and S. The goal is to maximize

max |{ x ; 3y ¢(x,y,G,S) }|.
S

50

2. Counterexample computations

Interactive computations have Dbeen introduced by Babai [B] and
Goldwasser, Michali, Rackoff [GMR]. The basic ldea there is to generalize
the concept of nondeterminism. Nondeterministic computation is viewed as a
proof. One can use also a dialogue to persuade someone about the truth, this
is called an interactive proof. Our approach is based on a different idea.
In counterexample computations there is also interaction, but perhaps, they
are closer to oracle computations.

We shall describe a counterexample computation as a two player game.
One will be called STUDENT, the other one TEACHER. A model situation is an
oral examination. STUDENT has limited ability, he can perform only
polynomial time computations; TEACHER has unlimited ability, she even knows
tﬁe strategy of STUDENT. The goal of STUDENT is to compute an optimal
solution to a giyen input x. He can make the conjecture that a .feasible
solution y (he cah always test its feasibility) is optimal and present his
conjecture to TEACHER. TEACHER has to tell STUDENT whether y is an optimal
solution and, if it 1s not, she must show him a better feasible solution,
i.e. a counterexample to his conjecture. Then STUDENT can compute another
conjecture etc. The computation ends, when STUDENT finds an optimal
solution. The objective of TEACHER is to help STUDENT as little as possible
(in order to test his knowledge).

We are interested only in computations in which the total computation

time of STUDENT is polynomial in the input size.

Example 3
To compute an optimal solution for CLIQUE, STUDENT can use the trivial
strategy: the first conjecture is A, and then STUDENT just repeats the
answers of TEACHER. Clearly such a trivial strategy does not work for TSP,
since there can be exponentially many feasible solutions with different

values.

We have only the following, a little artificial, example of an
optimization problem solvable using a nontrivial strategy of STUDENT. Let G
be a 3-regular graph (i.e. each vertex has degree 3). Then, by a well-known
theorem, for every edge e of G, there are an even number of Hamiltonian
circuits through e. Moreover, if e and a Hamiltonian circuit through e is

given, then another Hamiltonian circuit through e can be constructed in

51

polynomial time.
Example 4
R(x,y} is the relation "y is a string of at most 2 Hamiltonian circuits in a
graph x"
p(y) is "the number of circuits in y".
By the result mentioned above, STUDENT needs just one query to find an
optimal solution.

It is possible (but we cannot prove it) that TEACHER can always force
STUDENT to play the trivial strategy. TEACHER knows what STUDENT can compute

from her answer y, thus she can pick up a better solution, if STUDENT is
able to improve y. :

3. Applications to weak arithmetical theories

Here we shall very briefly describe a relation of the above concepts to
some research into logical theories formalizing arithmetic. Usually these
theories are called fragments of arithmetic, (because by G&del’'s theorem
there is no recursive theory in which all true arithmetical theorems are
provable). There have been defined many fragments of arithmetic. From the
point of view of complexity theory the following two theories belong to the
most important ones. In order to introduce them we need a class Zb of
formulas which define all #? sets. We shall not define this class here. }oth
theories consist of some finite set of simple basic axioms and an induction
schema for Z? formulas. Roughly speaking they formalize induction for NP
sets.

The first one is denoted by S; and has the schema for Z? formulas

¢#(0) & (Vx)(¢(Lx/21) » ¢(x)) » (vx)o(x).

The second one 1is denoted by T and has the usual schema of induction
for Z? formulas :

#(0) & (Vx)(@(x) = ¢(x+1)) » (Vx)o(x).

The theory S; is strong enough to define polynomial time computable
functions and prove many basic properties of them. In a sense the induction
schema of S; is more constructive. Suppose we are able to verify the
assumption ¢(0) & (Vx)(¢(Lx/21) » ¢(x)). Then in order to verify that ¢
holds for some number a, we need to apply our verification procedure about
log a times, which is the size of the representation of a. Hence if ¢(0) &
(Vx)(¢(Lx/21) =2 ¢(x)) can be verified In polynomial time, then ¢(a) can be
verified in polynomial time too. 1In T; we would have to apply the

rerification procedure a times, which is exponential in the input size.
It is well known that S; is contained in T;, but it is an open problem,
thether they are equivalent. The following conjecture implies that they are

10t equivalent.

Conjecture
There exists an optimization problem whose optimal solutions cannot be

somputed by counterexample computations in polynomial time.

We shall show below that TSP is a complete optimization problem with
‘espect to reductions which preserve counterexample computations, hence the
onjecture is equivalent to the statement that TSP cannot be computed in
such a way.

The counterexample computations that we have introduced are closely
elated to Herbrand’s theorem and no counterexample interpretations of

{reisel.

4. A hierarchy theorem

~In this section we address the question: how many counterexamples
STUDENT needs to compute an optimal solution. For each function f:N - N, we
ronsider the class of optimization problems whose optimal solutions can be
romputed using at most f(n) counterexamples, where n is the size of the
.nput. We denote this class of optimization problems by B8(f(n)). Let us
‘epeat that we consider only counterexample computations which run in
olynomial time. (Thus the maximal number of counterexamples is always
.mplicitly bounded by a polynomial.) We should also stress that €8(f(n)) is
weither a class of decision problems nor a function class. We cannot define
8(f(n)) as a function class for two reasons: (1) optimal solutions need not
e unique, (2) the computation on x depends on the set of feasible solutions
.0 x, a feasible solution for a different input may provide a piece of

.nformation which is not available otherwise.

Theorem 1
et £>0 be given. Let f be a polynomial time copstructable function such
hat lsf(n)Snl'e for every n. Suppose that each o;timization problem which
‘an be computed with f{(n) counterexamples can also be computed with only

‘(n)-1 counterexamples, 1i.e. ®8(f(n))=€8(f(n)-1). Then A#P problems have

polynomial size Boolean circuits

By a result of Karp and Lipton {KL] we get the following corollary

Corollary 1
If ©8(f(n))=8&(f(n)-1), where f is as above then the Polynomial Hierarchy

collapses on the second level, i.e. Z:=ﬂ:

Proof of Theorem 1

Let ¢ and f be given; assume BE€(f(n))=88(f(n)-1). We shall prove the
following claim.

Claim. For every R(x,y) in ?, there exists a function g computable in
polynomial time with a polynomial advice such that

lyl=Ix[&R(x,y) = R(x,g(x))

for every x, yez*.

The computability with a polynomial advice means that there exists a
polynomial time computable function G{x,z) and a polynomial p(n) such that

(vm) (3z) (1z|sp(m) & (vx)(Ixi=m = g(x)=G{x,2)));

(z is a polynomial advice for inputs of size m). It is well-known that this
is equivalent to the condition that g has polynomial size Boolean circuits.
Since R has polynomial size circuits, it follows from the claim that every
N? set of the form { x ; {(Jy, lyisIx|)R(x,y) } has polynomial size circuits.
Now it {s an'easy exercise to conclude that every #P set has polynomial size
circuits. Hence the theorem follows from the claim.

We shall prove the claim. Let R be given. Define an optimization
problem S,p by:

S(u,v) = v=(v,,...,v), u=(u_,....ub,d). asb=f(|ul),
R(u_,v)&
p(v) = (for which v=(v1,...,va)). o
Here we assume that we have a suitable coding of sequences so that
lal = Ju f+ ... +lu 1+1dl,

(say, using an extended alphabet), and v=A for a=0. The optimization problem
S,p can be described as follows. An input u consists of f£(lul) "inputs" for
R and a padding d. The goal is to find as many elements v, with R(ul,vl) as
possible.

Clearly S,p ts solvable using the trivial strategy with f(n)
counterexamples. Hence, by the assumption ®8(f(n))=68(f(n)~1), it is

solvable with only f(n)-1 counterexamples. Let us take such a strategy for

STUDENT. Let m be given. Using this strategy we construct an advice z For
inputs of size m

-1q

. c
Let n=m Then n is at most palynomially larger than m and

Eln).a = £in).n% = n,

-
i
=

U] ={ % ; |x/=s & (Iy, |¥|six|IR(x,¥) }.

We choose some functlon wi{x)} such that Az, wix]) holds for every xe¥ . Let
b=r(n). We shall dafine a function & which asslgns a number k, k<b, to every

segquence uh{ul. .ub} with the following property:

(®*] There exists a polynomial time computable function B such that
if '_1=[1_1ll
vio="Blu wit)
¥ .3.Ll. e ,un,xnul..

This can be expressed less formally by saying: if elulsk, then some v with

.ubj and «(ul=k, then RAlu l,;.rj holds far
s

.'-'I.'Jh.lil-

ﬁ[ukﬁi,y} can be constructed in polynomial time from
i T 1T AT LR Wi J.
1 B 1 3

To deflne @ we shall uge STUDENT's strategy. Let ull__.,uhevl be given,

We have
i+ oo ld] = Fflnlom = m
1 b
Take deE® so that iu||+ Rl ~!uh| + |dl = nand let u = [u] ,,,,, uh.a]. Thus
lul = n. We consider the counterexample computation on u In which TEACHER
uses & “minimal® strategy: If v=lv '?xJ iz STUDENT's last conjecture and
k<b, then TEACHER will produce inulﬁ...._ulu_lii as the next
1] i+

counterexasple. STUDENT must eventually construct some v=(v , ..., v), but

3 a2
since he can ask at most b-1 times, there must be same k., O=sk<b such that

after asking ¥ queries, he constructs a conjecture lvl,.__,v] with t larger

;
Lapilc:, Blnos ;UL“---V.] miist be & feasible solutien to u, we have, in

particular, H{utl.val?. We define =(ul=k. In order te obtain the condition
B .

[(*) we deflne
3[u:. i ,uh,wlu:}. : ,u#uk!? = Vk+f
Slnoe STUDENT's sirategy 1s pelynomlal time computable, so 1s f; [the value
of # for inputs which are not of this form is lrrelevant).
Let O be some b-1 element subset of ¥ and let xe¥ . We say that the
palr (Q.x) iz good, If there l5 an arder!ngtq__.. WU n; the elements of

b1
guch that

il s GHG XU | = k.
1 k

HIE e |
k+l k=1
Define a seguence V1,¥1_ ... of subsets of V. and a seguence 0] ,0

= 1 & 1 2

af b-1 element subsets of V1 as follows. Suppose Vl,... ,VJ and le
has already been defined. We take QJ to be a b-1 element set such that
I xev (Q.x) is good }| ’
iz maximal and define
= VN | erJ ; (QJ,x) is good }.

VJ*l bl
Wz shall show the following inequality

J=1] 1
-1 o -1
I%IS[TJ K :Z[bl
wnere K is the size of the alphabet . We shall use induction. For J=1 the

inequality is trivial. Suppose it holds for some j. First observe that there

AN
are at least good pairs This is because each b-element set
!ui,...,ub)SVJ produces the good pair ((u‘,...,uk_l,uk’l,..1,ub),uk) for
g:a(ul....,ub). (Different orderings of this set may produce more than one

good pair.) Dividing this number by the number of b-1 element subsets of VJ

we conclude that there is a b-1 element subset Q which forms good pairs with

at least
Vi v Vi-b+1
I 1}' | ,'] | Jl
b b-1 b
=lements of V. Thus
) IV =-b+1 b -1
v v] - -2 = IV + 1) s
b ’ b b
3-1 o 1]
b-1 -1 o b-1 _ {b-1 a b-1
- 5 () - LE] - B e LB
which ends the proof of the inequality. Hence for every
31
-1
lv]l = [T] .K.+b .
b-11° 1
Now we define the advice z. Put t:= b.m.In K. Since 5 < R

have th+1| < 1 + b. The advice z will be the sequence of pairs (x,w(x)),
«“here x runs through all elements of Q1 V] Q’ V... U Qt V) VAl Recall that

reh
t=fljuij=t(n) and n= m" , hence the advice has the size polynomial in m.

[t remains to check the condition of the claim, i.e. if z is given, then for

avery er1 we can compute in polynomial time some y, such that |y|=m and

flx,y). By the construction, every er1 either forms a good pair with some

?I, i=t, or xevt*l. if xevt.f then we can take y=w(x), and this is easily
zomputable, since (x,w(x)) is in z. If (Qx’X) is a good pair, then

a{u, ... ,u,x,u _,

1 k k+1

<here QX=(ul,...,ub_‘). Hence we have R(x,y) for

u)=k

_!h-__.

y = B(ul,

Such a y can be constructed in polynomial time from z, since the pairs

,ub,w(ul). - ,w(uk)L
(ul,w(ul)). .(uk.w(uk)) are in z and B8 is polynomial-time computable.
This finishes the proof of the claim, hence of the theoren. a

S. Complete problems
There are several possible definitions of reductions between
optimization problems which preserve counterexample computations, we shall
choose the most natural one. Different reductions between optimization

problems have been considered also in [K] and [PY].

Definition
(1) An optimization problem R,p ls reducible to an optimization problem S,¢,
if there exist polynomial-time computable functions a:E* - I*, B,7:Z* 5 *
such that for every x,y,y’eZ*

(1) R(x,y) = S(a(x),B(x,y));

(2) Slalx),y’) = Rix,7(x,y’));

{3) R(x,y) & S(a(x),y’) & o(Blx,y)) 5 o(y’). =» p(y) 5 plrlx.y’)).
(i1) S,o is complete, if every R,p is reducible to S,o.

Proposition 1
(1) The reducibility is transitive.
(11) Let an optimization probiem R,p be reducible to an optimization problem
S,o, and suppose that optimal solutions for S, can be computed using
counterexample computations. Then optimal solutions for R,p can be computed
using counterexample computations too.

Proof
Both statements are easy to prove. Let us Just sketch the idea of (il). We
have a strategy for STUDENT on S, and we have some TEACHER for R,p. Use ¥
to translate STUDENT's conjectures to R,p and use B to translate TEACHER’s

counterexamples to S,c. a

We define more optimization problems.
MAXSAT
R(x,y) 1s the relation "x is a propositional formula in CNF and y is an
assignment to propositional variables which makes x true";

p(y) is the number whose binary expansion gives y.

MAX3SAT
is the same as MAXSAT with x being 3-CNF

Theorem 2
MAXSAT, MAX3SAT and TSP are complete optimization problems

We omit the proof, since it uses standard techniques and it is simila

to a proof in [K}. (Note that Krentel uses different concepts.)

Corollary 2
If there is an optimization problem which cannot be computed using
counterexample computations, then MAXSAT, MAX3SAT and TSP cannot be computed

using counterexample computations.

Definition
An optimization problem R,p is called a polynomial value optimization
problem, if there exists a polynomial p such that, for every x,yeZ*,
Rix,y) = ply) = p(Ixi).

Clearly, every polynomial value optimization problem 1is computable
using counterexample computations. CLIQUE 1s a typical example of such a

problem.

Theorem 3
CLIQUE is complete among the polynomial value optimization problems.
Proof

Using a similar argument as in the proof of Cook’s theorem, one can show

that the following version of MAXSAT is complete among the polynomial value

optimization problems:

R(x,y) is the relation "x is a propositional formula in CNF and y is an
assignment to propositional variables which makes x true” and y=(p,q),
Ipt=Tlog, Ixi1;

p(y) is the number whose binary expansion gives p.

Let us call this problem MAXSAT-LOG. We reduce MAXSAT-LOG to CLIQUE-VAL

which is the version of CLIQUE in which vertices have weights. The reduction

of CLIQUE-VAL to CLIQUE is obtained easily by blowing up the vertices.
Let x be a formula ¢(p,q) of the form

u

iel JEJi H
Let t=lp|=rlog2|¢|1. We define a graph G and a valuation on vertices of G.
The vertices of G are numbers 1,...,t, and pairs (i,]J) for iel, JeJl. The
edges are

(1) all (h,k) for 1sh, kst;

(i1) ((1,3).(a,b)) iff i=a & (Yhst)((u”,uab) 2 (ph,-nph});
(111 ((1,J),h) iff = p .
The weight of each vertex (i,J) is 2t

he{1,...,t} is 2". The verification of the properties of the reduction is

the weight of each vertex

left to the reader.]

Corollary 3

Suppose that Polynomial Hierarchy does not collapse. Then for each o.f the
problems MAXSAT, MAX3SAT, TSP and CLIQUE, there exists e>0 such that every

counterexample -€

computation requires least n' counterexamples

at for
infinitely many inputs, where n is the input size.

Proof

Suppose that Polynomial Hierarchy does not collapse. Then, by Theorem 1,
there exists an optimization problem which is computable using, say, rul/z'|
counterexamples, but which cannot be computed using than rnl/z"
A closer look at the proof of Theorem ! reveals that

actually there must be an infinite number of inputs which require m2

less
counterexamples.

counterexamples. Since the reductions preserve the number of counterexamples
and can increase the size of the input at most polynomially, we get the
statement of the corollary from Theorem 2. For CLIQUE we only have to check

that the optimization problem from Theorem 1 has polynomial values and apply
Theorem 3. a

Assuming our conjecture that there are optimization problems whose
optimal solutions are not computable using counterexamples, Corollary 3 is
interesting only for CLIQUE. However there is still a big gap between the
lower and the upper bounds for this problem.

Proposition 2

Optimal solutions for CLIQUE can be computed using n-vn+1 counterexamples

g

s arialnd

FET PPN S

[SN

Proof

tet G be a given graph. STUDENT will compute as follows. He constructs a
maximal clique (i.e. a clique which cannot be extended to a larger one),
deletes the vertices of the clique from G, constructs a maximal clique in
the remaining part etc. until all vertices are exhausted or an empty graph
(i.e. an independent set in G) remains. STUDENT’s first conjecture will be a
clique of maximal size from these cliques. In the next rounds he just uses
the trivial strategy (repeats TEACHER's answers). We shall show that in
n-vn+1 rounds a maximal size clique is constructed. Consider the following
cases.
(1)

clique has size <n-vn, hence there can be at most n-vn-1 interactions.

(2)
=vh, then again there can be at most n-vh interactions.

The remaining independent set has size >vn. Then the maximal size
If one of the maximal cliques constructed at the beginning has size

(3) Suppose each of the constructed maximal cliques has size <v¥n and the
remaining independent set has size <vn. Then the number of these maximal
Note that any maximal clique of G, ir

cliques must be at least V.

particular any maximal size clique in G, can contain at most one of the
constructed maximal cliques as a subset. Hence the maximal size of a clique

in G is at most n-vn+l and we can conclude as in the former cases.]

8. Conclusions
Our results indicate that optimization problems like MAXSAT and TSP are
more difficult than polynomial value optimization problems, like CLIQUE.
This supports our conjecture that there are optimization problems whose
optimal solutions cannot be computed using counterexample computations. In a
different setting Krentel shows that TSP is really more difficz::[t(.ha).l;
z(n

as follows. A function f is in #9°*T(2(n)], If f(x) can be computed in

CLIQUE (assuming, of course, P##P). He defines a function class 7

polynomial time using at most z{|x|) times an oracle for the AP-complete
problem SAT. He proves that the value of the maximal size clique can be
computed in ??SAT[O(log n)], while there are optimization problems for which
we need more. The point is that if we are interested only in computing the
values of optimization problems, we need only O(log n) bits to determine the

value of an instance of a polynomial value optimization problem. In our

setting we want to compute optimal solutions. Then we need more than
O(log n)} bits to

Krentel’'s results.

determine them even for CLIQUE. Hence we cannot use

60

We belleve that our hierarchy theorem should hold also for functions
f(n) which are closer to n or even larger than n. For f(n) growing faster
than every polynomial, we do not get new classes, since the number of
counterexamples is always implicitly bounded by a polynomial. Perhaps a
better definition of 68(f(n)) might be the following. Instead of requiring
that the total running time of STUDENT is polynomial, we should require that
there is a fixed polynomial such that the running time before the first
conjecture and between each two consecutive conjectures is bounded by this
polynomial. Then 1t might hold that TSP required exponentially many

counterexamples.

References

{B] L.Babai, Trading group theory for randomness, 17-th STOC, 1985, pp.
421-429.

{GMR] S.Goldwasser, S.Michali, C.Rackoff, The knowledge complexity of
.interactive proof systems, 17-STOC, 1985, pp.281-304.

[XL] R.M.Xarp, R.J.Lipton, Some connections between nonuniform and uniform

complexity classes, 12-th STOC, 1980, pp.302-309.

{KPT] J.Krajidek, P.Pudlak, G.Takeutl, Bounded Arithmetic and Polynomial
Hierarchy, Annals of Pure an Applied Logic, to appear.

{K] M.Krentel, The complexity of optimization problems, 18-th STOC, 1986,
pp. 89-75.

[PY] C.H.Papadimitriou, M.Yannakakls, Optimization, approximation, and
complexity classes, 20-th STOC, 1988 pp.229-234.

