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FRAGMENTS OF BOUNDED ARITHMETIC
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ABSTRACT. We characterize functions and predicates 1:ý+ ,-definable in Si. In
particular, predicates 1:Ý+,-definable in Si are precisely those in bounded query

class P1:f[O(logn)] (which equals to LogSpace1:f by [B-H,W]). This implies
that Si # Ti unless p1:f [O(log n)] = I1f+,. Further we construct oracle A

such that for all i?; I: p1:f(A)[O(logn)] # I1f+,(A). It follows that Si (a) #
Ti(a) for all i ?; I. Techniques used come from proof theory and boolean
complexity.

Bounded arithmetic, a subtheory of Peano arithmetic with induction axioms
only for bounded formulas, was introduced in [Pa]. Later several other systems
were considered, varying in their language or underlying logic, or restricting
induction axioms even to a subclass of bounded formulas. Bounded arithmetic
is relevant to topics like nonstandard model s of arithmetic, interpretability of
theories, computational complexity and complexity of propositionallogicl.

Fragments of bounded arithmetic in which we are interested bere are theories
Si and Ti, subsystems of theory S2 introduced in [B 1]. The language of these
theoriesconsistsofsymbols: 0,1, +, o,.$:, =, l1J, Ixl (= rlog2(x+l)1) and
x#y (~ 2IxloIYI). Both theories contain 32 universal axioms BASIC defining
most elementary properties of functions represented in the language. Ti is
axiomatized over BASIC by an induction axiom scheme IND:

A(O) &\ix(A(x) -+ A(x + 1)) -+ \ixA(x)

restricted to bounded }:;~-formulas A, while in Si the induction axioms are
replaced by seemingly weaker scheme LIND:

A(O) &Ax(A(x) -+ A(x + 1)) -+ \ixA(lxl)

restricted also to ~~-formulas.
lt holds that si ~ T~ ~ S~+l for i?: I and S2 = U Si = U T~. AII Si and

T~ are finitely axiomatizable and thus the important open question whether S2
is finitely axiomatizable reduces to a question whether S2 = S~ or S2 = Ti for
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some i ~ 1. This natural1y leads to attempts to show that actually S~ # Ti
and Ti # S~+l for all i ~ 1 .

The relationship between Ti and S~+l is better understood than the re-
lationship between S~ and Ti. In [B2] it is proveï that S~+l is V1:t+l-
conservative over Ti while in [K-P- T] it was shown that Ti # S~+l provided
that 1:f+2 # nf+2. As S~+l can be V1:t+2-axiomatized these two results seem to
fumish rather complete understanding of the relation of Ti to S~+l (provided
that the polynomial-time hierarchy PH does not collapse).

About the relation of S~ to Ti considerably less is known. Conservativity of
Ti over S~ was in [K-P and K- T] equiva1ently restated as certain combinatorial
proof-theoretic problems but neither of them was solved. Problem whether S~
and Ti are equivalent was in [P] reduced to a problem in complexity theofy but
for rather unusual mode of computation: interactive computations with coun-
terexamples, see also [K] for another presentation. A hierarchy theorem for
such computations was proveï in [K-P-S] but unfortunately not strong enough
to separate S~ from Ti. Also a relation of this problem about counterexam-
ple computations to standard conjectures in complexity theory is unknown at
present.

The main objective of this paper is to show that S~ = Ti would imply
that p1:f[O(logn)] = d.f+l. Here p1:f[O(logn)] is (a straightforward general-
ization of) a class introduced in [Kre], cf. [W]. It consists of those languages
recognizable by a polynomial-time oracle machine quering a 1:f -oracle at most
O(log n )-times, n the length of an input. d.f+ 1 is the familiar class of languages
recognizable by polynomia1-time oracle machines quering a 1:f -oracle with no
restriction (other than the obvious polynomial one) on the number of queries.

The problem whether P1:~[O(logn)] = d.~ seems to be quite extensively stud-
ied, cf. [Kre, B-H, and W]; the case i> 1 was considered in [W]. In particular,
the class P1:~[O(logn)] was in [B-H and W] equivalently characterized in many
different ways, most notably as the class of predicates log-space Turing reducible
or truth-table reducible (via formulas or circuits) to SAT, or as predicates com-
putable by polynomia1-time 1:~ -oracle machines which are allowed only one
round of parallel queries, or as the class of predicates definable by 1:~ n n~-
formulas (i.e. formulas whose syntactic form puts them simultaneously to 1:~
and n~).

The arguments from [B-H and W] readily generalize to any oracle of the
form 1:~(A) in place of 1:~, and in particular to 1:f(A). This gives completely
analogical characterizations of the classes p1:f (A) [O(log n)] .

Although the conjecture that p1:~ [O(log n)] # d.~ appears to be closer to
standard conjectures about PH than is the conjecture about counterexample
computations needed for separation of Sl from Ti (see [P and K-P-S]), no
such reduction is in fact known. In particular, it is an open problem whether
any p1:f [O(log n)] = d.f+ 1 would imply the collapse of PH. (In [Kre] it is
observed-for i = l-that such an equality for classes of function instead of
predicates would imply P = N P, and d.f = 1:f for genera1 i ~ 1. Unfortu-
nately, this does not seem to be relevant at all to the case with predicates.)

However, we construct oracle A separating p1:f(A)[O(logn)] from d.f+l(A)
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for all i;::: 1. The existence of such an oracle implies that theories S~(a) and
Ti(a) are different for alt i ;::: 1. Such oracle for i = 1 was constructed in
[B-H]. That Sl(a) ~ Tl(a) and S?(a) ~ Tf(a) was already proveï by other
means in [P and K], and by Buss (unpublished).

1. MODlFIED COMPUT A TIONS WITH ORACLES

We first give the definitions for the case of }::;f -oracles which generalizes easily
to }::;f -oracles.

(1.1) Let M be a polynomial-time oracle machine and A(u) == 3vB(u, v) a
}::;f -oracle, where B is a polynomial-time predicate. We shall always assume that
a polynomial time bound is a part of the specification of M and a polynomial
bound to v, lvi.$: lulk, is a part of B.

An a(M, A, t(n))-computation is a computation obtained by the following
modification of ~~-computations. On input x of length n M computes quer-
ing oracle A with the restriction that there are at most t(n) oracle queries in the
computation, but with the addition that if the oracle returns affirmative answer
to a query [A(u)?] it also provides M with a witness to it, i.e. with some v
such that B (u, v). The witness is provided in the same computational step.

Clearly there might be more a(M, A, t( n) )-computations on a given input
as the oracle might have several options to choose witnesses from.

(1.2) A function j: (J) -+ (J) is a(M, A, t(n))-computable iff for any x all
a(M, A, t(n))-computations on x output j(x). A predicate is a function
assuming only values O, I .

(1.3) Proposition. Given machine M and oracle A as in (1.1), anda constant
c, the following is provable in Sl :

"For arbitrary x there exists an a(M, A, c. log(n))-computation on x."

Proof. We may assume that both M and Bare defined by d~-formulas. Let
nk be the time bound of M. Consider formula 1jI:
ljI(a, h, w):=

(a) "w = (WI , ... , Wt) is a computation of length t $ laik on input a", and
(b)"h isasequence ((il,jl),...,(ir,h)) forsome r$c.llall suchthat

il < i2 < ... < 4 $ t and ji, .. . , jr = O, 1 (we think of h as coding oracle

answersinsteps il, ...,4)", and
(c) "w correctly follows oracle answers coded in h and all oracle queries are

answered in h", and
(d) "whenever [A(us)?] is the query in step is (s $ r) and js = I then Wj,

codes a witness Vs such that B(us, vs) is trne".

Clearly forrnula IfI is ~~ in Sl

Claim. S~ proves formula
"3 maximal m = Ul , ... , h)3h, w; " h is of the form

((il,jl), ..., (ir,jr))&IfI(a,h,w)".

(Observe that maximal m means the same as lexicagraphically maximal 0-
sequence Ul, ... , jr).)
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Proof ofthe c/aim. Denote by \}!(a, m) formula

3h, w; "h is ofthe form «il, ji), ..., (ir, jr»)
where m = (jI, ..., jr) and If/(a, h, w)".

Clearly \}! is 1:~ in S~ . As m is implicitly sharply bounded:

m ~ 2r ~ 2c.llall ~ lalc,

the existence of maximal m s.t. \}!(a, m) follows by 1:~-LIND.
To conclude the proof of the proposition observe that in h, w witnessing

\}!(a, m) for the maximal maIl negative oracle-answers (and therefore all an-
swers asthe affirmative ones are witnessed) must be correct. Otherwise a O in m
could be changed to 1 leaving the earlier bits unchanged and setting the later bits
to O, and thus increasing m. Therefore w is a wanted a(M, A, c. log(n»-
computation on a. O

(1.4) Remark. Analogically, a(M, A, t(n»-computations exist for every in-
put provably in S~ + "\1'x3y; Ilyll ~ t(lxl)" (such y's are needed to code h's).
For t(n) = 10g(n)C this is Sl.

(1.5) P(M, A, t(n» -computations are defined as a(M, A, t(n»-computa-
tions with the change that a witness to a positive oracle-answer is provided only
in the last query of the computation and not otherwise.

(1.6) Proposition. Forany M, A, and t(n) asin (1.1) therearemachine M'
and 1:f -orac/e A' such lhal for every input x it ho/ds: the set of outputs of
P(M', A', t(n) + 1)-computations on input x is nonempty and is inc/uded in
the set of outputs of a(M, A, t(n»-computations on x.
Proof. Machine M' by binary search constructs maximal 0-1 sequence m =
(jI, ... , jr) such that \}!(x, m). This requires Iml = r ~ t(n) queries to oracle
AI (u) := 3v\}!(x, u~v).

Having such maximal m, M' asks [\}!(x, m )?]. The answer must be affir-
mative and a witness to it contains a correct a(M, A, t(n»-computation w on
x , therefore also the output of w .

Oracle A' is composed of AI and \}!. O

(1.7) CoroUary. lf a function f: w -+ w is a(M, A, t(n»-computab/e for
some M, A, t(n) as in (1.1), it is a/so P(M', A', l(n) + 1)-computab/e for
some M', A' . O

(1.8) Proposition. The c/ass ofpredicates which are a(M, A, c.log(n»-com-
putab/e for some M, A as in (1.1) and c < w equa/s the c/ass pI:~ [O(log n)] .

Proof. a(M, A, c. log(n»-computability of fI:~[O(log n )]-predicates is trivial.
Assume now that predicate P(x) is a(M, A, c. log(n»-computable and

so-by (1.7)-also P(M', A', c.log(n) + 1)-computable. In the computation
of M' change the last query-see the proof of (1.6)-to:

[(\}!(x, m) & "w witnessing \}!(x, m) outputs 1 ")?]

and do not require a witness to it. Clearly affirmative answer to this query is
equivalent to the validity of P(x). O

(1.9) Generalization to i > 1. Clearly all preceding definitions and propo-
sitions generalize to i > 1: consider ai- and pi-computations which differ
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from a- and ft -computations in that we allow A to be a ~f -oracle. Then B
is required to be df -predicate.

In particular, (1.3) generalizes to "Si proves that aj (M, A , c. log( n) )-com-
putations exist on aJI inputs" and (1.8) gives equivalence between pI:f [O(log n)]
and the class of aj (M, A, c. log( n) )-computable predicates, c < (1J.

2. WITNESSING S~-PROOFS

This section aims at proving the following proposition.

(2.1) Theorem. For i ~ I, a predicate is >:Ý+I-definable in S~ iffit belongs to
class pI:; [O(log n)] .
ProoJ. The ir-part follows from (1.3), (1.8) and (1.9). Therefore it remains
only to prove the only ir-part of the theorem. This is done by a witnessing type
argument.

Let lJI(x, y) be a >:Ý+I-formula such that for all x < (1J either lJI(x, O) or
lJI(x, 1) holds but notboth, and assume that S~ proves Yx3y; lJI(x, y)l\y $ 1.
We want to show that the predicate IJI (x, 1) is in pI:; [O(log n)] .

Adding possibly to the language some polynomial-time functions (coding and
decoding sequences) we may assume, by cut elimination, that we have an S~-
proof d of the sequent - 3YIJI(a, y) in which every sequent has the form
rl,dl-r2,d2 where

(i) r I, r 2 are cedents of >:ý- and ný-formulas,
(ii) dl is a cedent:
3YI(JI(h, YI)' ..., 3Yr(Jr(h, Yr) and d2 is a cedent:
3zIPlI(h,zl),...,3zsPls(h,zs),where (Jj'sand Plj'sare ný-formulasand

bounds to Yj'S and Zj'S are part of (Jj'S and Plj'S respectively.
We say that u is a witness to r I , dl for parameters h if u has the form

u = (h, YI , ... , Yr) and conjunction /x\ rl(h)& /x\ j~r(Jj(h, Y j) is trne.

We say that v is a witness to r 2, d2 for parameters h if v has the form
v = (h, Zl, ..., zs) and disjunction wr2(h)v Wj~sPlj(h, Zj) is trne.

Claim. For every sequent in d of the above form there is a polynomial-time or-
acle machine M, a >:f -oracle A, and a constant c < (J) such that: if u is a wit-

-. .
nessof rl, dl forparameters band v lsanoutputofany a'(M,A,c.log(n))-
computation on u then v is a witness of r 2 , d2 for parameters h.
ProoJ oj the claim. The proof of the claim goes by induction on the number of
sequents in d above the sequent, distinguishing several cases according to the
type of the inference giving the sequent. We treat only two nontrivial cases:

3 $: left and !ý-LIND (see [B1, K], or [P] or other witnessing arguments).

3 $: left case. We consider two subcases according to the complexity of the
principal formula of the inference. If the princi pal formula is !ý+I but not !ý
then the machine remains (essentially) the same: only a parameter becomes a
bounded variable and hence a part of the witness u.

Assume now that a !ý-formula 3té.(h, t) was inferred from é.(h, bo), bo
not among h. Assume M witnesses the upper sequent in the sense of the
claim. Construct new machine M': on input u' = (h, ...) it first asks a auerv~



JAN KRAJÍtEK592

[3t<:(b, t)?]. ff the answer is negative, M' outputs O and stops (u' is not a
witness or r 1 , ~1)' ff the answer is affirmative then M' is also provided with
a witness t to it, i.e. <:(b, t) is trne. Then M' rorms u:= (b~t, ...) and rnns
as M on input u.

!.f-LIND case. Assume the inference is of the form

f.(bo) -+ f.(bo + 1)
c;-(O) ~ c;-(lt(b)l)

omitting the side formulas. We may also assume that ho is not among h. Let
M be a machine witnessing the upper sequent.

Machine M' on input u' = (h, ...) first computes value w = It(h)j and
asks [C;(w)?]. If the answer is affirmative it outputs O and stops (any v' is a
witness to the succedent). Ifthe answer is negative it asks [C;(O)?]. Ifthe answer
to this query is negative, it outputs O and stops.

In the case that the answers to [C;(w)?] and [C;(O)?] were negative resp. af-
firmative, M' finds by binary search t < w such that: C;(t) holds but C;(t + 1)
does not; this takes log(w) = O(log(log(lu'I))) = O(logn) queries. Having such
t, M' forms u = (h~t, ...) and runs as M on input u. Anyoutput v is a
witness to the succedent of the upper sequent but as C; (t + 1) fails it is also a
witness to the succedent of the lower sequent.

This proves the claim.
Clearly, the claim together with (1.8) and (1.9) completes the proof of the

theorem. O

Remark. Similar witnessing theorem remains trne even if Si is extended by a
certain version of induction for 1:~+l-formulas arising in a connection with sec-
oDd order bounded arithmetic, offering thus (with (1.4)) a conservation result.
This will be considered elsewhere.

(2.2) Corollary. Let i ~ and assume S~ = Tl Then

This with (2.1)

pIf[O(logn)] = Af+l'

Proof. By [B2] every Af+l-predicate is 1:~+l-definable in T~
implies the corollary. O

(2.3) Corollary. Assume there is an oracle A such lhal

p1:f(A)[O(logn)] =1 df+i(A)

for all i? 1. Then S~(a) ~ Ti(a) for all i?: 1.
Proof. The proof of Theorem (2.1) re1ativizes as does a1so a proof in [B2] char-
acterizing ~~+1-definab1e functions of Ti. Therefore (2.2) re1ativizes too. O

3. A CONSTRUCTION OP AN ORACLE

In this section we construct oracle A separating p~(A)[O(logn)] from ~f+l(A)
for all i 2:: I. For i = t such oracle was constructed in [B-H] and we shall
l:1t~r in (112) m:lk~ ",,~ nf th:lt con"truction.
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Theorem. There exists oracle A such lhal for every i:?: 1 it holds lhal

p1:f(A)[O(logn)] # ~f+l(A).

(3.2) The proof of the theorem occupies the rest of the paper and is summa-
rized in (3.13). MethodologicaIly we foIlowa construction of an oracle separat-
ing the levels of the polynomial hierarchy as presented in [Hl], foIlowing [S].
The strategy is the foIlowing.

We define predicates 'l'i(x) contained always in ,1.f+l(a), a straightfor-
ward generalization of ODDMAXSAT problem. From a characterization of
p1:f(a)[O(logn)] as tt-reducible to 1:f(a) in [B-H, W] we deduce that con-
tainment of 'l'i in p1:f(a)[O(logn)] would imply that corresponding boolean
functions (deciding truth-value of 'l'i(m) for m fixed and a variable) are
computable by boolean circuits of certain type. Utilizing a switching lemma we
then show that this is impossible. (Predicates 'l'i are defined in a way aIlowing
a direct use of a switching lemma as formulated and proveï in [Hl, 2].) This
wiIl imply that aIl tt-reducibilities to 1:f(a) can be diagonalized and alternating
this diagonalization for all i;:::: I wiIl give the required oracle.

(3.3) For i;:::: I define formulas

(a) IfII(X,YI):=YI=OVa((i,x,YI)),
(b) 1f12(X, YI) :=YI = OV'ltY2 < ý:X.log(x); a((i, x, YI, Y2)),
(c) lfIi(X, YI) := YI = O V'ltY2 < X3Y3 < x... Qi-IYi-1 < X

; a«(i,X,Yl,..',Yi))

Thus lili is a nø-1 (a)-formula. Consider predicate

'l'j(x) := "maxima! Yl < x satisfying l/fi(X, Yl) is odd"

and A C (J)Lemma. Predicate 'I'1(x) is in df+I(A) for all i ~ o

(3.5) Now we define depth i-I boolean circuites l[Ii(m, u) with input vari-
bl l" h . f d / i . m. log(m)a es XU,Y2,...,Yi-l,t loreveryc Olceo Y2, ..., Yi-1 < m an t < V 2 -. ,

computing the truth value of 'fIi(m, u) for every A c co under evaluation of
variables

iff (i, m, U, Y2,Yi-I,1 = 1 . , Yi-l , t} E AXU,Y2

Precise definition of circuits l[Ii(m, u) is by induction

(i) circuit Go(u) is just variable Xu,
(ii) circuit Gk+l(U) isconjunction /x\v<mGZ(v) withvariables XV,VI,...,Vk

replaced by XU,V,Vl ,...,Vk ' where GZ(v) is Gk(v) with AND's replaced
by OR's and vice versa,

(iii) l[Ii(m, u) is Gi-2(U) with variables XU,Y2,...,Yi-l replaced by conjunc-
tion for i even respectively by disjunction for i odd of variables

t < / i.. m . log( m)

V 2-XU,Y2,...,Yi-l,t,
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Circuit cim is a disjunction or 1Tl conjunctions:

ljIi(m, u)& N\ -,ljIi(m, v),
u<v<m

one for each odd u < m. Clearly cim computes 'P1(m) for every Ac (J).
(3.6) (Bj)j is a partition ofvariables of CF consisting of mi-l classes

I / i. m. log(m)t < V-.XYI ,Yi-I,1 2

for every choice of YI , ... , Yi-1 < m. So these are classes entering a gate at
level I of Cf .

Rt, for O < q < 1, is a probability space of restrictions p (i.e. maps of
variables into {O, 1, *}) defined by

(i) with probability q: Sj = *, and Sj = O with probabi1ity 1 - q,
(ii) for every variable x E Bj, with probability q: p(x) = Sj, and with

probability 1 - q: p(x) = 1.

Space R; is defined analogically, interchanging the roles of O and 1 in the
definition of Rt (see [Hl, 2] for more details).

For restriction p from IRt, g(p) is a restriction and renaming of variables
defined as follows: For all Bj with Sj = *, g(p) gives value 1 to all XYI ,...,Yi E
B j given value * by p except Dne, say the Dne with minimallast index Yi, to
which g(p) assigns new name XYI ,...,Yi-1 . ff P is from IR;, g(p) is defined
identica1ly using O instead of 1.

Finally, if G is a circuit with variables among those of cim then (G r p)
r g(p) denotes a boolean function with variables XYI,...,Yi-1 computed by G
after applying to it successively pand g(p).

(3.7) Lemma (Hastad). Fix q:= J~i~~:i!!:l. Then it holds.
(a) Let G be a depth 2 subcircuit oj cim, so G is either an OR oj AND 's

oj size ~ J"!::~J~ or an AND oj OR's oj size ~ J"!:::;~J~. Then Jor
a random restriction p Jrom Rt in the Jormer case or Jrom R; in the latter
one the probability lhal (G r p) r g(p) is an OR (resp. an AND) oj at least
V(i-I).~.IOg(m) different variables is at least 1 - lm-i+l.

(b) For i ?: 3 and m sufficiently large and p random Jrom Rt iJ i is even or
Jrom R; iJ i is odd it holds: with probability at least j circuit (cim r p) r g(p)
contains C~ I ' i.e. Jor some renaming K oj variables

(Cm r p) r g(p) r K = Ci~1 .

(c) For i = 2 and p from R4 random, circuit (Cf r p) r g(p) contains

with probabi/ity at /east i circuit CI' for n = J~~~~.
Proof. This is Hastaïs lemma broken into parts which we willlater need sep-
arately. For completeness we outline the proof, for detail s see [Hl, 2].

(a) Assume G is an aR of AND' s and p is from R4. An AND gate
corresponds to a class B j of variables and takes value s j with probability at
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least

ý~
1 - (1 - q)IBjl =

1 -j. log(m) =

--e

6
> --m6

So with probability at least 1 - im-i+1 this is trne for all m AND's in G.
Expected number orAND's assigned Sj and not O (in the definition or p) is

m. q = ý2. i. m. log(m) and we can get with probability :?: 1 - im-i at least

vI(i-I).~.log(m) Sj'S assigned.
Thus with probability at least 1 - !m-i+1 (G r p) r g(p) is an OR or at

least vi (i-I). ~. log(m) variables.

(b) There is mi-2 different subcircuits G Or depth 2 in C;n. Thus with
probability at least 1 - !m-1 :?: i all or them are restricted as required in (a).
Hence additional renaming K produces Ci~l.

(c) Ir i = 2, 1[I;(m, u) are just AND's or size at most ým. log(m) corre-
sponding to classes Bj, and there is m different or them. Thus, by (a), with
probability at least t they alt take value s j which is, again with probability at

least t, equal to * for at least J":i!!~~l or them. O

(3.8) A boolean circuit is 1:;:~ if it has depth i + 1 with top gate aR, with
at most S gates in levels 2, 3, ... , i + 1 , bottom gates have arity at most t
and variables are those of C jm .

A tt-reducibi1ity D = (f; E1, ... , Er) of type (i, m, k) is a boolean func-
tion l(wI, ... , wr) in r ~ log(m)k variables together with a list of r 1:; '~-circuits E1, ... , Er, where S = 21og(m)k, t = log(m)k. '

D natura1ly computes a boolean function on variables of C jm : first evaluates
Wj := Ej and then I on Wj's.

(3.9) The following switching lemma is crucial. For the proof we refer to
[H 1, 2].

Lemma (Hastad). Let G be an AND 01 OR 's 01 size ~ t 01 variables 01 cjm
and p a random restriction Irom R; URt. Then probability lhal (G r p) r g(p)
cannot be written as an OR 01 AND 's olsize < s is bounded by (6. q. t)s.

The same probability is lor converting an OR 01 AND 's into an AND 01
OR's. O

(3.10) Lemma. Let D be a tt-reducibi/ity oj type (i, m, k) and p a random

restriction Jrom Rq U Rt with q:= JI:::!:~{:i!!l.
Then with probabi/ity at /east !'

g(p) = (/; (El(D p) g(p) , , (Er tp) tg(p))p)

, m, k)is a tt-reducibility oj type (i-
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Proof. Lemma (3.9) with s = t = log(m)k gives probability of a failure to
convert one depth 2 subcircuit of any E j at most

log(m)k
/2. i. log(m). log(m)k

6.V m
(6.q.t)S =

which can be made sma11er than any 2-h'log(m)k increasing m sufficient1y.
There is at most 2Iog(m)k such subcircuits so taking h = 2 makes probabi1ity

of a fai1ure to convert any of them at most 2-log(m)k < !. When all such
subcircuits are converted, they can be merged with gates at 1eve1 3. O

(3.11) Lemma. Assume lhal there is a tt-reducibility Di oJ type (i, m, k)
computing 'P1(m) Jar every A C (J). Then there is a tt-reducibility Dl oj
type (1, m, k) computing 'Pf ( v'(m. 10g(m))/2) Jar every Bc (J).

ProoJ. 'P1(m) is computed by cim. By Lemmas (3.7) and (3.10) (and q as
there) a random restriction p from Rt if i is even or from R; if i is odd
converts simu1taneous1y Cm into C~l and Di into Di-l oftype (i-I, m, k)
with probabi1ity at 1east !. Therefore there exists such a restriction p. C1ear1y
(cim t p) t g(p) and (Di t p) t g(p) compute the same predicate.

App1ying this (i - 1 )-times, c1ause (c) of (3.7) in the 1ast app1ication, gives
the statement. O

(3.12) Now we comp1ete the chain of reductions by a 1emma which is essen-
tially an orac1e construction from [B-H].

Lemma. Let k be arbitrary. Then Jar m sufficiently large there is no tt-
reducibility D oj type (1, m, k) computing 'P1( v'(m. 10g(m))/2) Jar every
Ac(J).
ProoJ. Let D = (J; Et , ... , E,) be type (1, m, k) tt-reducibi1ity and de-
fiate circuit Cf for n = v'(m. 10g(m))/2 by C. In successive steps we shall
construct sets Ai, A; and ls satisfying

(a) Ai nA; = 121 and both contain on1y numbers < v'(m. 10g(m))/2,
(b) IAil~s,IAiuA;I~s.log(m)k,
(c) at 1east ha1f of numbers ~ max(Ai) be10ng to A; UAi,
(d) Isc{1,...,r}, Ilsl=s,
(e) for every Bc (J) such that Ai c Band A; nB = 121, and every jE ls

it ho1ds: E! = 1.

Initiate At := AC; := 10 := 121 .

Step s + 1. Assume we have sets Ai, A; , ls satisfying the above conditions.
Put B := Ai ; therefore E! = 1 for all j E ls. Consider three cases

(1) DB = 1 but max B is even or DB = Obut max B is odd. Then STOP.
(2) DB = 1 and maxB = maxAi is odd. Take set

s = {x < 2Iog(m)k I max Ai < x , x is even, x ~ A;

S is nonempty by conditions (a), (b), and (c)
subcases:

There are two possible
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(2a) We can add some x E S to B to form B' := B u {x}, such that
DB' = DB = 1. Then put A;+l:= Ai u {x}, A;+l := A; and
STOP.

(2b) Not (2a). Take x := minS and form A;+l := Ai U {x}. As D
changes value some E jo for jo ct ls had to become trne. Take an
AND of E jo (containing x) which becomes trne and add indices
of all variables negatively occurring in it to A; to form A;+l (note
that none of them is in Ai). Put ls+l := ls U {jo} and GO TO
STEP (s + 2) .

Note that A;+l' A;+l ' ls+l satisfy the conditions (a)-(e); in
particular, (c) holds as we have chosen for x the minimal ele-
ment of S.

(3) DB = O and max Ai is even. Take set

S = {x < 210g(m)klmaxAi < x, x odd, x ct A;},

and proceed analogically with case (2).
If we do not stop at step s, necessarily ls is a proper subset of ls+l . Therefore
we stop in at most r ~ log(m)k steps. Take A := Ai for final s. Clearly DA
does not agree with CA. O

(3.13) Proofof Theorem (3.1). We constrnct oracle A such that for all i ?:
1, '1'1 (x) is not in ~ft (!.f(A)). Let (Mj)j enumerate all polynomial-time
machines. Considering successively all pairs (i, j) we shall build A in stages
assuring that Mj does not provide a tt-reducibilityof 'l'1(x) to ~(A).

Let As be an approximation to A constrncted in first s stages and let (i, j)
be the first pair not ret considered. Chaose m = ms+l so large that all numbers
considered up to now are small w.r.t. m. Mj outputs on input m a boolean
function f(Wl, ... , w,) and queries Zl, ... , Z, to a (canonical complete one)
1:f(A)-oracle (we do not have to worry how f is presented). A query Z to the
1:1 (a )-oracle naturally correspond to an evaluation of a 1:f:~g(S) -circuit on vari-
ables corresponding to atomic statements "n E a," where S = 2Iog(m)k , k a con-
stant. We first evaluate variables corresponding to "n E a" according to As and
then set equal to O all those for which n is not ofthe form (i, m, YI , ... , Yi),
as these are the only variables on which trnth-value of 'l'j (m) depends.

This leaves us with a tt-reducibility of type (i, m, k) and by Lemmas (3.11)
and (3.12) no such reducibility computes 'l'j(m) correctly for all a. Define
As+1 :) As in such a way that the tt-reducibility fails, i.e. Mj fails too. Then
proceed to the next pair (i, j) .

This completes the proof of the theorem. q
(3.14) Combining Lemma (2.3) and Theorem (3.1) gives

Corollary. S~(a)! T~(a) for all i?: 1. O
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