Open problems

In the following sections, we distinguish between fundamental problems
and other problems, the former which currently seem to be beyond exis-
tent techniques, but form the motivation for the latter which seem more
accessible. This problem list was largely drawn up with the help of all
participants during a problem session held during the conference held in
Prague. We thank S. Buss and P. Pudlak for extensive comments on pre-
liminary versions of this list. Attributions of problems are given to the best
of our knowledge.

Peter Clote
Jan Kraji¢ek

1 Bounded Arithmetic

The study of theories of bounded arithmetic was largely begun by work
of R. Parikh [51] and the ground-breaking work of J. Paris and A. Wilkie
(54, 73, 58, 57, 72, 25]. Especially with the work of S. Buss [10], proof
theoretic problems of weak theories of bounded arithmetic were seen to be
connected with problems of computational complexity theory. For instance,
a recent result of Kraji¢ek, P. Pudlak and G. Takeuti {47} shows that if the
theory S2 of {10] (or equivalently, the theory IAg + Q2 of [73]) is finitely
axiomatizable then the polynomial time hierarchy collapses. See work of
A. Wilkie [72] and A. Woods [75] for discussion of a result related to the

question of collapse of the AON hierarchy, or equivalently of the linear time
hierarchy.

1.1 Fundamental problems in bounded arithmetic

A. (Paris, Wilkie) Is IAg or [Ap + Q; finitely axiomatizable? Buss
[10] defined a finite conservative extension S» of IAg + 2y and its
subtheories S} C S C ... whose union is S». Each S} is finitely
axiomatizable and hence I A¢+ is finitely axiomatizable iff S} = S,
for some i. By the theorem of [47] the answer is negative assuming
that the polynomial hierarchy does not collapse.
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B. Which theorems of finite combinatorics, number theory and complex-

ity theory can be proved in IA¢ and IA¢ + ;7 In particular, which
counting techniques are available in these theories? Here are four
specific questions.

(a) (Wilkie) Does A, prove the existence of infinitely many primes?
Note that in [55], it is shown that [A¢ + Q) (or equivalently S3)
proves the existence of infinitely many primes.

(b) (Wilkie, Wilmers) Does S} prove the little Fermat theorem (a?~! =
1 mod p, for p prime not dividing a) where the latter is formalized as
a first order statement by using repeated squaring? A.J. Wilkie and
G.M. Wilmers have observed!® that an affirmative answer to this
question implies the existence of a polynomial time integer factor-
ization algorithm, which appears most unlikely. In [69], G. Takeuti
introduces second order systems U " which are essentially equiva-
lent to the S3, and then shows that for all n, U;"* does not prove
Fermat’s little theorem, and U,"™ does not prove Wilson's theorem
(p -~ 1)! = —1 mod p, for p prime, where both are expressed using a
(second order) relation symbol.

(c) (Macintyre) Does IAg or IAg + 2y prove the pigeonhole principle
for bounded functions, i.e. that there is no Ag - definable injection of
n + 1 into n? By Paris, Wilkie and Woods [53] /Aq + 2, proves the
weak pigeonhole principle (with 2n in place of n 4+ 1). The answer is
negative, if the language is extended by a binary predicate R (a graph
of the function) and induction for all Ag(R)- formulas is allowed, see
(3. 8, 48, 60]. It is also open whether 1A or IAg(R) prove the weak
pigeonhole principle. ;

(d) (Paris, Wilkie) Is the Matijasevi¢ theorem for bounded formulas
provable in IAp? That is: Is every bounded formula equivalent in
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Krajicek and Wilkie (independent, unpublished proofs) showed that
the I19-conservativity of IAg + 2, over IAp would imply that I Ao is
not finitely axiomatizable.

2. Characterize the functions which are T?-definable in the theory T.

A more difficult problem is to determine those functions which are
~-deﬁnable in T3, for j < i. This seems to be related to ques-
tlon whether T} is somehow conservative over Si. Characteriza-
tions of functions T2 -definable in Si*! . T§ and S} are known by
(10, 16, 39]. Also, Buss and Krajicek [13] showed that T3(a) is not
VE?(a)-conservatlve over Si(a), and they characterized functions 8-
definable in T4 in terms of polynomial local search problems.

. (Krajicek, Pudlak. Takeuti) If Sy proves that the polynomial time

hierarchy (PH) collapses then Sy is finitely axiomatizable, and by
(47], if S is finitely axiomatizable then PH collapses. In fact. T: =

.',“ implies that PH collapses. Buss found recently another proof
of this theorem which does formalize in S». In particular, he showed
that T3 = Si*! implies that T} proves that PH collapses and Ti = Sa.
Formalize in Sc_; the original proof of [47]. In particular. does S» prove
the “tournament principle”. which states that given any tournament
of n players (a directed graph G = (V. E) with |V| = n, such that
for all distinct i.j from V, (i,j) € E iff (j,i) € E) there exists
a “dominating” set D of size log(n), where the dominating set D
satisfies: For all i € V' \ D, there exists j € D such that (j,1) € E.
For the formalization one needs a hypergraph version of this principle.
Note that Pudlak [63] proved in IAg + 2y a related Ramsey theorem.

. Does Si = T3, some i, imply that PH collapses? Krajicek {39] showed

that the assumptlon implies that LY = AP, | but it is unknown
whether the latter equality imply the collapse of PH. Also, does
Si = T3 imply that S3 = S5 ?

5. (Wilkie) Show that I:\g is not finitely axiomatized, provided that the
linear time hierarchy does not collapse. By [47] this is true with the
polynomial time hierarchy in place of the linear time hierarchy. Note
that it is an open problem whether these two hierarchies coincide.

IAg to an existential formula? A.J. Wilkie observed in [72] that an
affirmative answer to this question would imply that NP = co— NP.

1.2 Other problems in bounded arithmetic

The following problems seem to us to be not intractable and should give
information about the above main problems.

1. (Paris,Wilkie) Show that the theory /Ao + {2y is not I19-conservative 6. (Ajtai) Show with respect to 2 and “counting’ modulo ¢, one
over Iy, possibly assuming some hypothesis from complemt\ theory cannot “count” modulo p, for distinct primes p,q. Specifically, let
(such as whether the linear time hierarchy is properly contained in 0,(R, S, X) say”
the polynomial time hierarchy). Show the same result at least for the . .
case where a new predicate symbol has been added to the language. (l) 0 G.‘\ .. , . .

(ii) R is a partition of X into classes of size p

(iii) S is a partition of X \ {0} into classes of size p.

OUnpublished correspondence from spring 1984.
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Then show that the theory
[Ao(R, S, X)+0,(R, 5, X)+{-0,(R,5,X) R,5,X € Ao(R,5,X)}

is consistent, for p, ¢ distinct primes. Here, Ag(R, S, X) denotes the
collection of A¢-formulas with parameters R, S, X. Ajtai (4] showed
that IAg(R, S, X) + O2(R, S, X) is consistent with the pigeonhole
principle for Ag(R, S, X) - definable functions.

(Wilkie) Let PP be the theory of Peano arithmetic with a “top” el-
ement. Formally, PYP has the relational language 0, max, S, F, 7, <,
with constant symbols for zero and a maximum element (top), binary
predicate symbol S for the graph of the successor function, ternary
predicate symbols +, for the graphs of addition and multiplication
and the usual ordering relation. The axioms of P!°P are the rela-
tional variants of the usual recursive axioms for the functions (here
understood as partial functions), together with axioms stating that
0 is the least element, that max is the largest element, and that < is
a total ordering which satisfies z < y < (32)(F(z, 2, 7)), together
with the scheme of induction (or equivalently of bounded induction).
[s PP finitely axiomatizable?

Pudlék, Krajicek-Takeuti) Form the theory JA§P%™ from IA, by
he iteration of the following step countably many times:

For every predicate ., which is Ag-definable in previously
introduced function symbols, add a new function symbol
fx and an axiom stating that fx “counts” X; i.e. the
following axioms

0€X — fx(0) = 1

0¢ X — fx(0) =

(Vn)(ne X — fx(") =1+ fx(n—- 1)) A
(n ¢ X — fx(n) = fx(n—1))).

and then add induction axioms for all bounded formulas in the lan-
guage resulting from first step. Characterize the I19-consequences of
the theory TASP¥ME. Note that all II? consequences of TASOUM are
provable in the theory U! of [10], a second order extemsion of S,
and also in [Ag + Ezp, and that IAg¢ + Exp is not 1%-conservative
over TA§OU™ (see [41] for related results). It is unknown whether
U} is I}-conservative over JAS?U™. Note that by [49] U} is not
['I‘I)-conservatlve over [Ag.
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9. (Takeuti) Let S; > be the equational theory involving equations s =

L0.

11.

12.

13.

14.

t, where s, t are closed terms in the language of S5, with natural rules
based on recursive definitions of the functions symbols. Show that

Sz if Con(S7 ).

Recall the fact that TAg - Con(IA; ), since in IAg one can define
values of closed terms in the language {0, 1, +,-}. Values of terms of
the language of S, are not definable in S, since e.g. the value of term
t =27t ...#2 is exponentially large in its Gédel number.

(Buss, Krajicek, Takeuti) Within the framework of Gentzen’s sequent
calculus, let the A%-PIND rule be the inference: From the sequent

#(a) = ~¥(a)
where ¢, are ©? and the sequent
T, ¢(lz/2]) = ¢(z), A
infer the sequent
[, 6(0) — ¢(t), A.
(Note that this is different from the A%-PIND axiom, where the equiv-
alence of ¢ and —% is an antecedent of the formula.) In [14], it was

shown by a model theoretic argument that S} proves the A% | -PIND
rule. Give a proof theoretic proof of this fact.

(Buss, Krajicek, Takeuti) Is R.,"'1 T?, -conservative over Si? Note
that in {14], it was shown that R”’1 is X2, ,-conservative over Sj.

(Buss Ressayre) What is the strength of S%-replacement relative to
T;~! and S5™'? Note that R} proves L®-replacement, see (5] and
that & -deﬁnable functions in R} are exactly those computable in
the class NC of functions computable in polylogarithmic time with a
polynomial number of processers on a parallel random access machine
(5, 22].

(Buss, Krajicek, Takeuti) Assume that T3 proves (Vz)(3y)é(z,y),
where ¢ is £. Does there exists ¥ in Z¢ such that T} proves (Vz)(3'y)
¥(z,y) and T3 proves (Vz,y)(¥(z,y) — ¢(z,y))? Same question for
R

(Verbrugge) Let ¢ be a £9-sentence. Is it necessarily true that

Sk ¢— Pfsz(fﬂ)

Note that Parikh’s theorem implies that if this holds for formulas
instead of sentences then NP = coN P, see [71].
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(Kraji¢ek, Pudldk) Show that S}, or a stronger system. does not prove 2.1 Fundamental problems in complexity of proofs
superpolynomial lower bounds for extended Frege system proofs. It

. In this section, the most important and motivating open problems seem to
is known that the system VYE4(S}) does not, see [46]. ’ P gopenp

be the following.

2 Complexity of Proofs

As mentioned in the preface, in 1956 K. Gédel essentially raised the fol-
lowing k-symbol provability question, which is now known to be equivalent
to P = NP: Does there exist a polynomial time algorithm to determine,
given a first order formula F and integer k, whether there is a proof of F
with at most k symbols? In [50], as reported in [62], Godel as well raised
the question of determining, given theories §, T, the length of shortest
proof of “finitistic consistency” Conr(n) in S. Here Cont(n) is the first
order statement that there is no proof with at most n symbois of falsehood
0 = 1. See [62, 61] for some partial results. It is worth remarking that
a superpolynomial lower bound to the length of proofs of Cony(n) in S
implies that S does not prove NP = coN P. ‘

From Cook's seminal result that SAT is NP-complete, it follows that
NP = co— NP iff there exists a polynomially bounded, or in terminology of
[23] super, proof system for all propositional logic tautologies TAUT [23].
In [45] this problem was shown to be equivalent to Godel’s question about
finitistic consistency statements. In order to pinpoint the combinatorial dif-
ficulties arising in an attempt to prove NP # co — NP, to date there has
been a focus on proving superpolynomial and exponential lower bounds for
proof size (total number of symbols) of combinatorial families of proposi-
tional tautologies for ezplicit proof systems. Such superpolynomial bounds
are now known for semantic tableaux (folklore), resolution [30. 15], Gentzen
without cut [70] and constant-depth Frege systems [3, 4]. It is interesting to
note that M. Ajtai’s technique for proving a superpolynomial proof size in
constant-depth Frege systems uses combinatorics similar to those employed
in his lower bound {2] for boolean circuit depth. As well, unpublished work
of Beame, Impagliazzo, Pitassi [60] and of Krajitek, Pudldk and Woods [48]
(see [8]) uses Yao-Hastad style combinatorics in order to improve Ajtai's
work to obtain an exponential lower bound for constant-depth Frege proofs
of the pigeonhole principle. Exponential lower bounds for constant-depth
svstems and superpolynomial speed-up of depth d + 1 systems over the
depth d systems were proved earlier in [42]. »

C. Prove superpolynomial (and exponential) lower bounds to the size of
proofs of some combinatorial statements in any propositional proof
system stronger than bounded-depth Frege systems, in particular for
Frege and extended Frege systems. Not even superquadratic lower
bounds are known {or superlinear when proof-steps are counted).

D. In predicate calculus, prove lower bounds for the length of proofs of
naturally arising statements: in particular, improve lower bounds for
the finitistic consistency statements. Specifically, for some S strong
enough to meaningfully formalize syntactical notions and some T 2
S, both axiomatized schemes {e.g. S = [Ag + W, T = ZF), show
that there are no proofs of Conr(n) in S of size polynomial in n.
Note that this implies that S does not prove NP = coNP.

E. Prove Kreisel’s conjecture on “generalizing” proofs; i.e. if there exists
~ an integer k for which ¢(s‘™(0)) is provable in Peano arithmetic in
k lines, for all n € N, then Vro(z) is provable. This conjecture is
sensitive to the language chosen for the theory and its form of axiom-
atization. (The conjecture is formulated for the axiomatization based
on induction axioms and the language {0,1.s,+,-,=}.) It is true if
addition and multiplication are treated as ternary relations [52], for
any theory axiomatized by schemes with all function symbols at most
unary {43, 26, for any finite theory [44], and for L3, (the least num-
ber principle for existential formulas) in the language {0,1,s,+,-,=}
{T]. See the survey [40].

2.2 Other problems in complexity of proofs
The following problems seem somewhat accessible.

16. (Razborov) Let ®(a,d, N) be a Sg'b‘formula encoding the following
statement:

d < |N], a represents a Boolean circuit-of depth at most d
in |N| variables (along with truth-tables of all Boolean func-
tions appearing as intermediate results) and the top node of
this circuit outputs “SATISFIABILITY”.

Let £ = | ;50 £1°. Does there exist a £!**-definable function d(V)
such that N j= w(log|N]) < d(N) < |N| and V! + ~®(a,d(N), N)?
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In another words, can V! prove superlogarithmic lower bounds on the
depth of Boolean circuits (= superpolynomial lower bounds on the
formula size) for SATISFIABILITY? Note that by the main resuit
of [68, 67, 65] this is equivalent to the provability of an appropriate
formalization of the same statement in S§. Note also that V}! (or S}
if you prefer) is exactly the right theory to formalize proofs of lower
bounds known in Boolean complexity so in particular it proves that no
monotone circuit and no bounded-depth circuit over {A,V, M ODP}
of subexponential size can compute SATISFIABILITY.

A reasonable first step toward resolving this might be the following:
Show that V? t =®(c, d(N), N).

It is an easy corollary of the cut elimination theorem that V is E?‘b-
conservative over IAg(«), so this second question might be accessible
with the techniques mentioned in the introduction to this section.

(W. Cook et al.) An extension of resolution called cutting planes
proof system was investigated in {24]. Give a polynomial size family
of propositional logic formulas for which every cutting plane proof
family has superpolynomial length.

(Goerdt, Clote) A. Goerdt [28] has shown that Frege systems p-
simulate cutting planes proofs, and P. Clote [20] has shown that
a particular extension of cutting planes p-simulates constant depth
Frege proofs. Does cutting planes with limited extension p-simulate
constant depth Frege proofs?

. {Clote) For p a positive integer, let CP, denote the modification of

the cutting planes proof systems, obtained by restricting the division
rule to allow only division by p. For p, q relatively prime integers, is
it the case that CP, cannot polynomially simulate CP,?

. (Krajicek) Let PA denote the first order theory of Peano arithmetic

in the language {0,1,s, +,,=}. Is there a recursive function f(k, $)
such that

PAFy steps ¢=PA Ff(k, ¢) symbols ¢?

By [44] this is known for finitely axiomatized theories, and for schematic

theories whose language contains finitely many predicate symbols and
at most unary function symbols [43, 27).
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21

22.

23.

24.

25.

26.

(Baaz) What happens with known results concerning the number
of proof lines (Kreisel’s conjecture) if Gentzen sequent calculus (or
predicate logic) is augmented by the equality scheme, or when it is
modified to allow the introduction of an entire block of like quantifiers
in one step? See [6] for a partial result.

(Pudlak) Assume that (Vz)(3y)¢(z,y) is provable in predicate logic.
Introduce a new function symbol f and an axiom A, which states

(Vz)é(z, f(z)).

Does there exist formula ¢ such that the extended system gives a
superexponential speed-up over predicate calculus, with respect to
number of symbols in proofs?

(Krajicek) For the theory RCF of real closed fields, is there a gen-
eralization result of the form: If there exists an integer & for which
&(1+ ...+ 1) (with n occurrences of 1) is provable in k& lines, for all
n € N, then Vz¢(z) is provable?

(Buss) Let LK. denote Gentzen's sequent calculus with equality. As-
sume LK. steps ¢, where the formula ¢ has no occurrence of the
symbol for equality. Does it follow that LK steps o7

(Montagna) Letting PA denote Peano arithmetic, does PA I, steps
O¢ — ¢ imply that P4 Fp steps ¢, where O¢ is the formalized
statement that ¢ is provable?

(Buss) Let f(n) be a polynomial (e.g. f(n) = n* or more generaily,
f(n) = n°M®). Find a sequence o, ¢y, P2, ... of formulas and integer
k such that

(i) LK + ¢;, for all 3,
(ii) for each ¢,

LK ’_f(k) steps ¢ = LK Fp steps i
(ii) {i : LK b}, steps ®;} is not recursive.
This is known for f(n) =n + 1 by a construction from {12}.

(Cook, Reckhow) Give a non-linear (resp. super-quadratic) lower
bound to the number of steps (resp. of symbols) for Frege proofs.
For instance find a family (¢, : n € N) of propositional tautologies,
¢n of length n, and positive rational ¢, such that for every family
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(P, : n € N) of Frege proofs of these tautologies, it is the case that
the number of steps (resp. of symbols) in P, is at least nl*< (resp.
n?*¢). In [23], the question was posed whether the pigeonhole prin-
ciple, as a scheme in propositional logic, requires superpolynomial
Frege proofs. In [11], S.R. Buss answered this in negative. With the
results of [11, 28, 20, 19], it is clear that most combinatorial results
proved by rudimentary counting have polynomial size Frege proofs.
Apart from somewhat unnatural propositional versions of consistency
statements of Peano arithmetic, ZF set theory, etc., there are cur-
rently few candidates of combinatorial tautologies requiring super-
polynomial size proofs. In [63], P. Pudldk proved that a certain
version of the finite Ramsey theorem has polynomial size constant
depth Frege proofs. In [20] Clote suggested propositional formula-
tions of the Paris-Harrington theorem [53] and related combinato-
rial independence results as candidates of tautology families requir-
ing superpolynomial size proofs. For instance, work of A. Kanamori
and K. McAloon [33] shows that (roughly) the Ackermann function
ack(m,m) is a lower and upper bound for the least N, such that
given any integer coloring of increasing pairs 1, j with ¢ < j satisfying
the property that the color of (¢,j) is at most 7, there is a size m
min-homogeneous set with the property that for all increasing pairs
drawn from that set the color only depends on the first coordinate.
This can be expressed in propositional logic as follows:

/\ VPi

0<i<j <N 0<k<i

—

\/ \/ /\ Pisin hn-

0<i1<...<irn SN k1 ity skon i 1€a<m,a<B<m

Krajicek suggested the following sequence of tautologies based on
theorem of Bondy as hard for Frege systems: for n let B, be the
formula with n? atoms p;;(i,j < n):

a.=(\/\ v<pszp,~k>) (\/ AV i ze

1<ni<j<n k<n k#l

AN ’

He showed that constant-depth Frege proofs of B, require exponential
size.

(Bonet) Assume that F is a Frege system. Does there exist a con-
stant ¢ (depending on F) such that F,¢ Fp o mpols ¥ implies that
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F Fe. k symbols ® = ¥ ? Inother words, if 7, ¢ ki, umpols ¥, then
does it follow that F !_O(k) symbols ® — v ? This 1s known to be

true with O(k?) in place of O(k), or if there is a tree-like proof with
k symbols of ¥ from ¢, see [9].

3 Fragments of Peano arithmetic

3.1 Fundamental problems in fragments

The main problems in the area of Peano arithmetic and its fragments which
currently seem to be beyond existent techniques appear to concern a thresh-
old for combinatorial independence results and the construction of model
extensions. In [32], C.G. Jockusch asked whether there is a recursive par-
tition of unordered pairs of integers into two classes, such that the r.e.
complete set K of the halting problem is recursive in every infinite homo-
geneous set (this problem is related to the so-called 2—3 problem in models
of arithmetic). Recently, D. Seetapun (unpublished) gave a negative solu-
tion to Jockusch’s problem, using a new forcing construction. See [37] for
related work.

(Paris, Wilkie) Does every countable model M of [Ag + BE, have
an end extension to a model of [Ag [59] ? This is the most popular
problem in the area but appears to be difficult and several problems
below are related to it (and hopefully more tractable).

3.2 Technical problems in fragments

The following technical problems are perhaps accessible and should give
nformation about the above main problems.

29. (Paris, Wilkie) Does I Ap +—exp - BL,, where exp is the formula ex-
pressing (Vz)(3y)(2* = y). A positive answer is known, if one assumes
that the Matijasevié theorem is provable in IAg, cf. Problem B(d).
See [59] for partial results and discussion. An affirmative answer to
this problem implies a negative answer to the second fundamental
problem above.

30. (Krajicek) Is there an interpretation of JAg+—-BX, in IAe? An affir-
mative answer to this problem implies a negative answer to the previ-
ous problem, since [ Ag+ezp is not interpretable in JAq. (Here -BE,
means the negation of any instance of the £;-collection scheme.)
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31.

32.

33.

34.

35.

36.

37.
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(Kaye) Is there a countable rigid model of BT, + —I%;. Here, rigid
means having no nontrivial automorphisms. Or even, is there a
countable model of BE; + ~/Z; with at most countably many auto-
morphisms, or even having no proper elementary substructure. It is
known that countable rigid models of IAq + ~IT; exist. See [36, 38|
for current results.

(Wilmers) Let I E, (resp. IE; ) denote the theory of arithmetic whose
principal axiom scheme is induction for bounded existential formulas
(resp. bounded existential formulas without parameters). Is JE[ a
proper subtheory of IE;? Does IE] have the Tennenbaum property,
meaning that it has no recursive countable non-standard models. See
work of G. Wilmers [74], R. Kaye (35, 34], and Z. Adamowicz [1].

(Clote) For n > 1, if M is a countable model of BX, 41 then does
there exist an n + l-elementary end extension K of M such that
K = BZ,? See [18] for discussion and related results.

(Paris) For n > 1, is it the case that TA,, is equivalent to BX,? It is
known that BX, is equivalent to LA, (Gandy, see [29]).

(Clote) Does IAg + exp prove Con(BZny.) = Con(IS,)? See [21]
for a proof of 1 — Con(BZny1) =1~ Con(IZ,) over Ay + ezp.

(Hajek) J. Paris [56] and H. Friedman (unpublished) independently
proved that BX,,; is [I,.o-conservative over IZ,. A proof theoretic
proof of this result was given by W. Sieg [66]. Though not explicitly
mentioned in [66], for each fixed II,,5 formula ¢, Sieg’s proof can be
formalized to show that over IAg + exp, if BX, 1 F ¢ then IZ, F
¢. A newer model theoretic proof due to P. Hijek, easily admits a
similar formalization — see [21]. See also work of S. Buss [17] for a
proof theoretic proof of this conservation result using the “witness”
predicate. Give a sharp bound f such that for all II,,,, formulas ©, if
there is a proof in BE,; of © consisting of m symbols then there is a
proof in IZ,, of © consisting of f(m) symbols. Can f be polynomial?

(Quinsey) Let N —, (k)2 mean that for every partition F of the
unordered subsets of {0,..., N — 1} of size n into m classes, there is
aset Y C {0,..., N — 1} of cardinality max(k, min(Y)), all of whose
size n subsets are sent to the same class. With this notation, does
Peano arithmetic prove

VE)3n)n —. (k+ 1)k ?

|
|

e
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38.

In (64], the notion of ‘fulfillment’ is used to sharpen the original Paris-
Harrington result [53] to show that if ¥ +1 is replaced by k£ +2, or the
subscript 2 is replaced by 3, then the resulting combinatorial principle
is unprovable in Peano arithmetic.

(Kanamori) In [33], the following elegant partition relation is intro-
duced: N — (k)feg means that for every regressive partition F of the

size n unordered subsets of {0, ..., N —1} there is 2 min-homogeneous
set of size k. Here the function F is said to be regressive, if
F({al)' raﬂ})<a1

holds for all @y < --- < a, < N, and a subset Y C {0,.
said to be min-homogeneous if

F({al)a‘2’ ﬂ.,.}) = F({alv b21 rbn})

< b, drawn from Y. Does

yN -1} is

foralla; < ay <...a, and a; < by <
Peano arithmetic prove

(VE)En)n — (k + 2)keg

In (33], it is shown that Peano arithmetic does not prove the combi-
natorial principle resulting from replacing &k + 2 by 2k.
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