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§ 0. Introduction

In [4] J.Mvoisiski introduced a very general notion of multidimensional local
interpretability of first ordet theories. If we define the relation < between theories
T,8 by T-< 8 iff T is multidimensionaly locally interpretable in S, then <-is a pre-
ordering. The induced partial ordering is a lattice ordermg, it is called the lattice of.
local interpretability types.

We consider theories formalized in the flrst order logic without equality; equahty
is considered as a congruence and hence need not be interpreted absolutely. The lan-
guages of the theories are considered without function symbols, i.e. an n-ary function
has to be included as an (n + 1)-ary relation. We regard two theories as equal iff they
have the same theorems.

A theory T is locally interpretable in a theory S, in symbols T < 8, iff each theorem
of T' is interpretable in 8. Equivalently: T < § iff each finite part of 7 is interpret-
able in 8. The interpretation may have parameters, variables may be translated as
k-tuples of variables (then we speak about k-dimensional interpretations).

By definition different theorems of 7' may have different interpretations of atomic
relations in 8. If there is an interpretation of atomic relations common to all theorems
of T, we speak about global interpretation of T in §; in symbols T' <, S. If each theorem
of T is interpretable k-dimensionally in 8, we write 7' £, S.

The class of all theories T such that 7 < 8 and 8§ < 7T forms the local interpretability
type of S, denoted by |S|. So T'e|S|iff ' < Sand § < T

If we replace in the previous paragraph < by <, (resp. by <), we obtain the defini-
tion of global (resp. k-dimensional) mterpretabzhty type of 8.

The relation < determines a partial ordering of the local mterpretablhty types
which is a distributive and complete lattice. The largest type is the type of the in-
consistent theories, the lowest type is the type of the theories whose each theorem has
a l-point model. Among the types which do not contain inconsistent theory, there is
the largest type which is the type of theory Th(w, +, -) (as it is well known that for
every consistent sentence we can. define a model in arithmetic). There also exists the
lowest type among the types which are not the lowest in the whole lattice. It is the
type of theories having locally (i.e., each theorem has) finite models but which do not
have 1-point models. Hence it is, for example, the type of the theory based on the
axiom (3z, y) (P(x) & 1.P(y)).

The sublattice of the lattice of the types which we obtain by tearing off the largest
and the lowest types is therefore also a distributive and complete lattice. Let us (ac-
cording to [1]) denote it by .#. More details can be found in [4], [6] and in the joint
manuscript [1] (a revised version of it is being prepared for publication), where one
can find also a number of first results and problems about the lattice .#. For com-
pleteness of the text some of these results are recapitulated in § 1.
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In [1] J. MYcIELSKI conjectured that all mathematically interesting theories are
prime, i.e., their types are joint-irreducible, and he proved that the theory of linear
order Wlthout maximal element is prime. In [5] P. PUDLAR essentially confirmed
MYCIELSKI'S conjecture by proving that each sequential theory (see [5]) is prime; in
particular PA, ZF, GB, Th(w, +, *) are prime. In the same paper he stated the prob-
lem whether Th(w, <) is prime. § 5 of the present paper is motivated by this problem;
we study there mutual interpretability of various theories of order.

In‘[1] A. EERENFEUCHT studies the -dual notion of coprime theory, i.e. a theory with
a teet-irreducible type, and he proves that many “strong” (i.e. high in the lattice .#)
theories are not coprime. Namely he proves this theorem: Each consistent recursively
enumerable extension of PA is not coprime. In the same paper the problem is posed
whether something similar holds for ““weak”’ theories. In § 2 we will prove the follow-
ing characterization: A theory T is coprime iff T’ has the same type as some complete
theory. It follows that there exist many “strong” and many “weak” theories which
are coprime. ‘

In [4] J. MycieLsKI asked whether in each type there is a theory with a finite lan-
guage. We solve this problem affirmatively in § 3. This result and the above mentioned
characterization of coprime theories were independently proved by A.STERN in his
thesis (Berkeley, 1984). In § 4 we prove a few technical lemmas which are needed for
§ 5. In § 6 we state a number of open ‘problems.

This is also a suitable place to thank P. PupLAK without whose help this paper
would never have come into existence. Especially in § 3 P. PUDLAX suggested to us
how to extend our earlier result to the final theorem. We thank also J. MYCIELSKI
for his remarks which we used in the final preparation of the paper. In his new termi-
nology a local interpretability type should be called a chapter.

§1. Preliminaries

In this part we repeat a few results from [1], [4]. The proofs can be found in those
papers.

1.1. Let o , o7 be two 1nterpretatlons of a sentence « in the language of a theory 8
and let S F af vl hold. Then & £ S.

1.2. For a model M k S we denote by Th(M) the theory of M in the language of S (i.e.
without the absolute eqiia.lity of M). Then T <, 8 iff T' <, Th(M) for each model M & 8.

1.3. The type |T| A |S] is the type of the theory {xvBlaeT, ﬂ €S8}

1.4. # is a complete distributive lattice.

1.5. The compact types are exactly the types of finitely axiomatizable theorles
- 1.6. In each type there is a countable theory.

“1.7. The lattice .# is algebraic of countable character, i.e., every type is a join of
countably many-compact types.

§ 2. Coprime theories

2.1. A theory T' is coprime iff its type is meet ureduclble So T is coprime iff
(Va,beH) (@,bZ|T|&anb=|T|—>a=|T|vb=|T|), or equivalently (because
A is a distributive lattice) (Va,be A) (and Z |T| - a < |T|vd £ |T)).

2.2. Theorem. A type t € M is meet-irreducible iff it contains a complete theory
(¢.e. a theory T is coprime iff it has the same type as some complete theory).
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Proof. (a) Let Set and S be complete. Let further be ¢ = |S;] A [S,]|. By 1.3,
18] A |85 = |S3], where 83 = {xVvB|xeS;, fe8,}. If |8, £¢, then there exists
& such that 8; F &y and «y £ S. Then, for each interpretation I of x, in the lan-
guage of 8, 8 F «f. By completeness of § it is surely S I —1(x}). Since by assumption
18] < 18|, in particular, S, F § implies x, v < 8§ for each f. Therefore for S, F
there exists an interpretation I 5, of the language of S, in the language of S such that
S F (oo v B)» and so also S+ alp v pls. But we know that S F —1(x{#), hence S I f's
must hold. Therefore |S,| < |S]. '

(b) Suppose that the type ¢ € 4 is meet-irreducible. Let us take a countable theory
S et (by 1.8) and let 64, 0;,... be a list of all sentences in the language of 8. We
will construct theories T, ¢ = 0,1, ..., such that |T| = |S]. Define T, = 8 (s0
|T| = |8]). Suppose |T;| = |8| and construct T';;, as follows:

T, + g T, +0, =T,

Tire = ‘ T+ o, 7T+ 0, 2T,.

If both cases are ‘possible, choose arbitrarily one. Always at least one is possible since

IT, + oy ATy + 0| = {avo |laeT}u{fv o el }v
vi{xvp|a,pel}viov o}l =IT.

By induction hypothesis‘ |7 = |8| (= f), hence |T,| is meet-irreducible. Therefore
Ti+¢, ST or T + "oy < T, holds. Take T' = UT Then |T| = |8| and T is complete.

2.3. Remark. If in the preceeding proof the theory S is finitely axiomatizable,
then we can search for an interpretation of 7', + o, (resp. T'; + —0,) in some sys-
tematic way. Hence the resulting theory 7' will be decidable.

By an analogical construction for § such that [S| < ¢ and ¢ is meet-u'redumble, we
can obtain a complete extension T of § such that |T| < ¢. If 8 is finitely axiomatiz-
able and in the type ¢ there is some recursively axiomatizable theory, then we can
construct such an extension in decidable way.

2.4. Corollary. If S is a f@mtely axiomatizable and essentially undecidable theory
and R is its recursively axiomatizable extension, then R is not coprime,

2.5. Remark. The theorem of A. EHRENFEUCHT in [1] (see § 0) follows from 2.4.

Proof. By [6] the theory Q, RoBINSON’s arithmetic, is essentially undecidable and
also Q £ PA.

2.6. Theorem. Let S be a countable theory and x a sentence (not necessarzly in the
language of S). Let also « § 8. Then there exists a complete extension T of S such that
o £ T still holds.

Proof. It is enough to construct extensions T, ¢ = 0,1, ..., of S such that « £ 7,
and UT, is a consistent and complete theory. This can be done analogically as in the
proof of 2.2.

N

2.7. Corollary. Lett, s € M be types such that s £ t. Then there exists a meet-irreduc-
tble type t' = t such that still s £ t' holds.

Proof. Let T' be a countable theory such that |T| = £. Since s £ ¢, there exists
a sentence y of some theory 8, [8| = s, such that y £ T. By 2.6 then there exists a
complete extension 7" of T such that still y £ 7". So t' = |T"} is the required type.
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Immediately from 2.7 it follows:

2.8. Corollary. Above each type t < |Th(w, +, *)| (= 1.4) there exists a meet-irreduc-
tble type t' such that still ' < |Th(w, +, )|

2.9. Remark. It follows from 2.7 that there exist many ‘“weak’ theories and also
(explicitly from 2.8) many ‘“‘strong” theories which are coprime.

§ 3. Theories with finite languages are in each type

In [4] J. MYcIELSKI posed the problem (see [4], problem 5) whether in each type
there exists a theory with a finite language. According to [4] it is only known (by
results of R. L. VAuGHT) that each recursively enumerable theory is globally inter-
pretable in finitely axiomatizable one. In this part we will solve this problem affirm-
atively.

For any sentence ¢ we define the sentence ¢_ by

¢ = ¢ & “axioms of equality with a new binary predlcate symbol with
respect to the predicates of ¢”

3.1. Lemma. |¢| = |@|.
" Proof. Define the relation of indiscernibility.
3.2. Let & = {D, T, L, R} a finite language, where D, T are unary and L, R are
binary predicates.
3.3. Lemma. For each sentence vy there exists a sentence y' in the language £ of the
same type. ‘

Proof. By 3.1 we can suppose that ¢ is a sentence with equality. Let R
(k £ k,, n < ng) be all predicates in p of arity n, where n, is the greatest arity. Define
an interpretation I of the predicates R} in the language % in the following way:

i) choose parameters ck (k < k,, n < no);
p n 0

() RE@y,..., %) = @Y1, - -5 Ya) (Ll@1, 91) & Blxz, y1)

& L(y,, y,) & B(x3,9,) &....

& L(Yn-2> Yn-1) & B(Zys Yu-1)

& L(Yn-1> Yn) & B(ch, ) & T(yn));
(iii) relativize the quantifiers of ¢ to the domain D.

Let ' be the formula obtained from p in this way. So obviously y < ' and it re-
mains to show that ¢’ £ v holds too. For this purpose we will define an interpreta-
tion J. We will need enough mutually different parameters. But using multidimen-
sional interpretation we can guarantee this even for sentences with a two-point model.
Thus from now till the end of the proof we will assume that this is already done.
(Because our aim is to prove that in the type of ¢ there is a sentence with a finite
language and this is known for sentences with the lowest type in 4, we can alter-
natively assume that all models of y are infinite.) Let us define an (n, + 2)-dimen-
sional an 1nterpretat10n J of the language % in the language of y as follows:

(i) choose mutually different(!) parameters b,, ..., b, +1, k(b <k, m £ no);
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(ii) for an (n, + 2)-dimensional vector z of variables “x(i) = a” stands for “a is the
1th coordinate of x’’; define:
D(x) = z(ny + 2) = by,
Lz, y) = , Vi [z +2)=0b&yn, +2) =b, & /\ x(j) = y()l,
Ligng
R@,y)= V *[xne +2) = b & ylne +2) = b &w(l) = y(®)],
2gisng+1
T(y) = ka [¥(mo + 2) = byss & yln + 1) = ok & RE(y(L), . . ., y(n))].
ngn;

Now, since we choose all parameters mutually different (and, since the above assump-
tion that y has only infinite models, it is provable from y that there exist sufficiently
many different elements), for all k¥ < k,, n < n,, and for all vectors from domain D
the following holds: '

RE(z, (1), ..., 2,(1)) = [[REVY (1, ..., 2, ¢1,..., c::o, by, by
Hence y! < p, and we are done.
34. Theorem. In each type there is a theory in the language .

Proof. For the type f € # choose any countable theory S et. Let #,,7,,... be
the axioms of S. Define o; =7, & ... &7, and y; = (0;)- (see lemma 3.1). For the
equality in the y,’s we take the same symbol for each i€w. The theory T = {p! |7 e w}
is in the language . and evidently S < 7'. On the other hand, clearly y{,,; — %/ holds
for all i € w. Hence for all r e, {40, ..., 9!} < {y!}. Butalso ¢/ <y, <0, < S and
so T £ 8 holds, and we are done.

3.5. Remark. Using an easy coding we can replace the language % by a language
with exactly one binary predicate.

§ 4. Some technical lemmas

In this part we wijll introduce some notions and we will prove some lemmas about
them which will turn out to be useful in § 5.

"4.1. Let 8, T be theories, S with equality, and let I be a global interpretation of §
in 7'. Let » be the dimension of I, §; the domain of I and let M k T be any model of 7',
Consider I with fixed parameters from M. We shall denote by M% the structure with
universe (M" N 8;)/=;, where =, translates the equality. The relations of M% are the
translations of the predicates from S. So M% E 8 holds.

4.2. Let S, T, M, I denote the same as in 4.1 -and let Aut!(M) be the gi‘oup of all
automorphisms of the model M which preserve the parameters of 1. For f e Aut’(M)
define f1: M% — M% as follows:

]d(<x1’ cea ) = f(@y)s - f@))
Since f preserves the parameters of I, fI preserves all the I-relations (in particular
the domain §;) and hence it is an automorphism of structure M%.

4.3. Lemma. Let (N, <) be a model of linear order and x € N. Then for f € Aut(N),
f(@) £ x implies {® *+ x for each k > 0.

Proof. Obvious.
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4.4. Corollary. Let M be any model and I an interpretation of linear order in M.
Let f € Aut! (M), = € 6; be such that for some k 2 1, x = [®(x). Then x = f(x) holds.

Proof. Immediate from 4.3. :

4.5. For a theory T and M a model of 7, let us denote by D"(M) the system of all
subsets of M" definable with parameters (from M"). D*(M) ,with ordering by inclusion

is a lattice. Let again S be a theory and I its global n-dimensional interpretation inT
with absolute equahty (if equality is in S).

4.6. Observation. The lattice D(MY) is embeddable into the lattice D"(M ).
Proof. Obvious.

47. Corollary. If 8 is finitely axiomatizable and 8 < Th(w, <), then there exists
a countable model M k 8 such that the lattice D(M) is embeddable info the lattice D™(w),
for suitable n.

Proof. Since S is finitely axiomatizable, it is also globally interpretable in Th(w, <).
Since " 1s lexicographically well-ordered, the equality may be trans]ated absolutely.
By 4.6, ws is the required model.

4.8. Let us consider a structure M and let 2<% be the set of all finite words on the

alphabet {0, 1}. For £, 7 € 2<® we define:
& < q iff (Jg) &"¢ =7 (" denotes concatenation).

A set A e DM(M) is called breakable iff there exists a function f: 2<® — D"(M ) such
that for every &, o: .

§)) fla)y =4 (/l'denotes the empty Word), (i) f(§) is infinite,

@)  fEN0)Nf(E7) =8, (iv) f(&"0) < (&)

49. Observation. Ij S T, M, I are as in 4.5 and D(ML) contains a breakable set,
then D*(M) too.

§ 5. Mutual interpretability of theories of order
This part deals with mutual interpretability of some theories of partial and linear
order. All theories from 5.1 are in the language {=, <} (“="" the equality).
5.1. In the following theories we assume implicitly the axioms of equality and
“x < y” stands for “x =yvar <y”.
PO = {(Va)z <z, (Ve,y,2) (x <y&y<z-z<2), (Vo) Ay z < y}s
POS = PO + {@!z) (Vy)z S ¥,
' V) (Vy>2) (>0 (V> (g2e&yt-t2a2),
. (V) (Vy < «) (3= <x)(Vt<x)(y<z&(y<t—+t<z)}
POD = PO + {(Va) (Ay) > ¥, (V) (Vy > ) (3¢t) (x<t&t <y}
"LO=PO + {(Vz,y) (xS yvy < a};
~ LOS = LO + POS; LOD = LO + POD.
It is well known (see [2], for example) that LOS = Th(w, <) and LOD = Th(Q, <),
where Q are the rational numbers. )
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5.2. The main program of the remaining paragraphs is to prove the validity of the

following diagram (7' — S denotes 7' < 8, T— — ——8 denotes the incomparability
of Tand 8, and T'+«+------- S denotes that we do not know the relation):
oS s - ————= LoD

5.3. Lemma. Let M = (Q, <) be a countable model of LOD (i.e. up to an isomor-
phism the rationals). Then for arbitrary natural numbers n, k and for arbitrary
ay, ..., 0 €Q the structure (M;ay,...,a,) realizes only finitely many n-types of the
language {=, <} {¢1, ..., ¢} (the ¢,'s are mew constants).

Proof. For Z, ij € Q" we denote by z, (resp. y,) the ith coordinate of Z (resp. 7) and
define

2|7 ) MEa 'S,

(i) MkEz, £ a,

Now let %, § be such that # || 7. Clearly there exists an automorphism f of the structure
(M;ay, ..., a) such that f(x;) =y, for all i < n. It follows immediately that Z, §

realize the same n-type in (M;ay,...,a;). Now it is sufficient to notice that the
relation || is an equivalence with finitely many blocks.

5.4. Theorem. POS £ LOD.

Proof. Suppose there is an n-dimensional interpretation of POS in the model
(@, <) E LOD with parameters a,,." ., a,. Take some b e Q® from the domain of
this interpretation. For an_arbitrary x, from any model M k POS it is possible to
construct arbitrarily many different 1-types which are realizable in the structure
(M ; x,). For example we can define (for r € w):

4, S y; (1,7 £ n) and

ysa <njsh).

— €

(Y, 7o) = “y > %, and there are exactly r elements between x, and y”.

Each such formula v, is in (3 ; z,) realized by an other element. So in the structure
(@ @ys..., &, by,..., b, arbitrarily many (n + k)-types should be realizable. This
is a contradiction with 5.3.

5.5. Lemma. Let M be any model of POD. Then D(M) contains a breakable set.

- Proof. Each set of the form {gla<z < b} e D(M), for a < b, is infinite. There-
fore it is sufficient to “halve” the interval (a, b).

5.6. Lemma. Let (w, <) be the standard model of LOS and vy, . . ., y, be formulae

with n free variables x, . .., x,. Then there exists m € w such that the following holds:
WFE V2, ..., 2, Zm) A @y, ..., 0) =yple +1,...,2,+ 1),
isr

where x + 1 denotes the successor of x.-

Proof. Take a model M ELOS, M = & + (w* + w), where w* denotes the inverse
ordering of w (i.e., M is composed from the natural numbers which are succeded by
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the integers). Let us denote by f the automorphism of M which preserves the standard

elements of M (it must) and shifts nonstandard ones to their successors. Let z,, . . ., z,

be nonstandard elements of M. The automorphism f maps (v;,...,2,) on
(@, + 1,...,2, + 1) and so these n-tuples realize the same n-type in M. Choose
m € M nonstandard, so if £ = m, then z is nonstandard. But from this, in particular,
for the formulae o, , ..., ¥, it follows
MENZ, .. .0, ZmM)A\ py, .., 8 =ple, +1,...,2 + 1).
isr

Hence also M E (Im) (Voy, ..., 2, =2 m) A\ w2y, ..., %) = wlzy + 1,...,2, + 1).
Since M = w we are done. t=r

5.7. Corollary. Let for a formula vp(x) with one free variable x, w E (V) (y > x) p(y).

Then also o F (y) (Vz = y) p(x).
-5.8. Corollary. POD £, LOS.

Proof. Not only in this proof but in the whole part we use the fact 1.2, i.e. for
proving T £, S it is enough to find a model M F S such that T £, Th(M). It follows
from 5.7 immediately that in w there are not two definable disjoint infinite sets (in
definitions in @ we need not consider parameters because each element of w is in w
definable without parameters). In particular D(w) does not contain a breakable set.
By 5.5 and 4.9 we are done. )

'5.9. Becausee w have already used brief “arithmetical” notation (as  + 1 for the
successor of x) we continue with this in the fo]lowing selfexplanatory definition:
For vectors Z, jew® we write & ~ ¢ iff “o, —y, = const for ¢ =1, 8”

(e, z~z+ 1, (2,3) ~ (4,5) but not (2,3) ~ (4,6),...). This is no defmltlon in-

side w®. We will use this notion in the proof of lemma 5.11.
Define yet for , jew®: 2 < g iff “o; <y, for e =1,...,8".
Lemma (a) Let the set A < {a} x " be defmable mn w"+1 for @ e . (b) Let the set
={jea™' |b<j&b~ y} be definable in w™! for b € w™t. Then both sets A, B

are definable isomorphic in w to definable sets A’, B' € w", namely

A ={iecw"|(a,®)ed}, B ={Eecw"|@y) y 3 eB}.

Proof. Obvious.

5.10. Remark. It follows from 5.7 and 5.9 that it is not possible in @ x n (with the
usual ordering) to define n + 1 disjoint infinite sets. If we define LOS, = Th(w x n, <),
it follows that LOS, <, LOS,,;. But in the lattice .# evidently all these theories are
in the type |LOS| (actually LOS, <, LOS,).

5.11. Lemma. For any n, D"(w) does not contain a breakable set.

Proof. We will prove this lemma by induction on n. For n = 1 we are (by the
proof of 5.8) done. Suppose that for # the lemma holds, and we prove it for n + 1:

1. Suppose the lemma does not hold for n + 1. Let 4 € D**(w) be breakable and
f be the function 2<® — D*+1(w) from definition 4.8, i.e. f(A1) = 4, ... and so on.

2. Let v, be the formula which defines f(£). We define m, to be the minimal m from
lemma 5.6 for the formulae y;, |£] < k (|£| denotes the length of £).

3. We define the sets K(m) and B,(m), i < n + 1, by

K(m) = {(z,, ..., ,,+1)|x12mf0rally<n+l}
Ri(m)—{xeK (m) | 2, = m}.
So K(m) is a quadrant and UR,(m) is its border
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4. For £ €2<® and 7 < n + 1 we define a function <£, £): 2<® x {r,...,n +1} -
— 2<% ag follows:

i) Consider the function g: 2<® — D"(w) which satisfies the following definition :
] g
15y egly) iff AZea™) @~ Uy, .., Yy, Mg Yoo - -+ Yn)
& % € Ry(myg~,) & & € f(£7)).

Observe that, since the m,’s are fixed, the right-hand formula is, in fact, a definition
inside w. So g(n) € D*(w). ‘

(ii) By induction hypothesis no set from D"(w) is breakable, so g does not satisfy
the conditions from 4.8 for breaking g(A). But g evidently satisfies (iii), (iv) of 4.8
(because f satisfies them). Hence condition (i) of 4.8 must necessarily fail, i.e., there
exists 77 such that g(x) is finite.

(iii) Define (&, 1) = ™y, where 7 is minimal with respect to the lexicographical
ordering of 2<® such that g(») is finite.
5. We define §; by &, = A, &4y =<&, ¢4+ 1) (@< n).
By the definition of the function (£, 1) we have f(&) 2 f(E4,), and f(&) N Ry(myg,))
is finite. !
6. By the conclusion of 5 the set B = f(£,,,) satisfies the condition:
(Vi) B ~ By(myg, ) is finite.
7. By definition 2 of m, now the following must hold:
(V15 ooy Bpeg 2 Mg, ) (@4, e ., Tpe) €EB = (2, +1,.. ., .41 + 1) eB.
So the set B K(my, ) is the union of finitely many (see 6) sets of the form
(a) {feK(mg, ) |5~ &}, for some Z e L;JRz(m;e“d)-
8. The set B\ K(my, ) is a part of the union of finitely many sets of the form
(b) \{g €w! |y =r}, forsome i <n+1and r < LTI
9. By lemma 5.9 each definable set of the form (a) or (b) is definable isomorphic to
a definable subset of " and hence it is not (by induction hypothesis) breakable.

10. It is not difficult to see that a finite disjoint union of unbreakable sets is un-
breakable, and also neither of its parts is breakable.

11. From this it follows that B = f(&,,,) is unbreakable. This is a contradiction
with assumption 1. : ‘

5.12. Theorem. POD £ LOS.

Proof. Suppose that I is an interpretation of POD in LOS and so, in particular,
in @. Because w is well-ordered, it is sufficient to consider I with absolute equality.
Further, because POD is finite, I is global. By 5.5, D(whep) contains a breakable set
and hence, by 4.9, D"w) too. This is a contradiction to lemma 5.11.

5.13. Lemma. If T is a theory, then LO = T implies LO £, T.

Altough this lemma is not a consequence of a “‘similar” MyCIELSKI’S lemma, (see
[1], 2.vi), but the idea of the proof is in fact identical. Therefore we omit the proof.
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5.14. Theorem. LO £ POS.

Proof. The proof of this theorem is rather long and therefore we will divide it into
claims: :

1. Let N be a the structure (2<®; ", <, A, ~), where the reduct (2<“; ", <) is
isomorphie to the structure from 4.8, & A7 denotes the <-meet of L,pand NEE~1
it |§ =Inl. _

2. We observe that N F (V&) (VY £ §) () (E ~e & ine =1).

3. We fix any proper elementary extension M of N, ie. N < M.

4. Let £ € M be a nonstandard element of M. Then there exists an automorphism
f e Aut (M) such that (i) f(§) = £"1, (ii) f(y) = n for all 5 such that EAneN.

Proof. (a) Suppose that £ is a sequence of 1’s (i.e. (Vn < &) 5”1 £ §). Each element
o € M can be written uniquely as (£ A 0)"0. Now we define the function f, as follows

0 - if EAgeN,
f1(0)={(§,\ n1n5 :
0)"17°¢ otherwise.
Evidently f, € Aut(M). :

(b) Clearly, for & general, there exists an automorphism g € Aut(M) such that
g(£71) is a sequence of 1’s. Now, using f, from (a) (constructed for g(£71)), we define
f = g~1f,9. Again fe Aut(M) and f satisfies the required conditions. Hence we are done.

5. Let I be a 1-dimensional interpretation of LO in POS and let us fix some para-
meters of I in N. Since N < M, these parameters are also the parameters of I in M.
Let =, interpret =, ; be the domain and <, interpret <.

6. We take all words B, . . ., fan-y of length n, where n — 1 is the maximal length
of the parameters of I. On at least one of the domains {&| & 2 B} the preorder <
is unbounded. So we can further suppose that §; < {£| & 2 Bo} and no parameter
of I is in d;. . ,

7. Evidently for £, € N we have: if &9 2 fo and £ ~ 7, then there exists an
automorphism f € Aut/(N) such that f(§) = n and (&) = &.

8. By 4.4 for such an f necessarily f(§) =, and from this (by 7) follows

NE (V&7 %ﬁo) E~n>(ted=ned & ned > E=1m).

9. Since the domain 8, is necessarily infinite (and N < M), for some nonstandard
o €M, Mk §, € ;. Further let &, be such a fixed nonstandard element of M.

10. We consider the formula w(x) defined by (3¢ €4 (ono=n&é; =10).
So, in particular, M E y(n) —» n £ &,. Since in N each definable (and surely nondefin-
- able too) subset has a <-minimum so it does in M. Thus let 175 be a <-minimum of
{n|v)n)} in M. | |

11. We prove that 7o = f,. Otherwise, since clearly 7o = fo, there exists a =-
predecessor d, of 7, such that 6, = 0. By 2, 8 and from N < M there exists a g, € M
such that Mk &g Ago = 0o & &9 =100, and hence M E p(do), too. But this is a
contradiction with the choice of 7.

12. Now let g, be such that

Mk Eonpo =Po& &6 =100-
For 6 = go also £, A8 = f,. By 4 then there exists an automorphism f € Aut!(M
such that f(£,) = &, and f(8) = 6"1. Hence it holds

ME (V6 2 o) (o =10 = o =r0"1) & (0 €8, = "1 €4y),
and therefore M k (3, 0€0;) (V6 = @) (§ =0 =& =,6"1) & (0edr = "1 edy)).
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13. Again from N < M, the last formula from 12 holds in N. Because 8 it means
for N that there exists an n such that for all &, neN: if |&, ][9] = n, then
NE(E,nedr— & =1n)

14. We are done, beca.use this is a contradiction with the infiniteness of NLO, ie.
/=1

5.15. Theorem. The diagram of 5.2 is correct.

The proof follows easily from 5.4, 5.12 and 5.14.

5.16. In addition to 5.15 a little more holds for LO:

‘Theorem. |LO| = |LOS| A |LODJ.

Proof. From 5.15 it is clear that |LO| < |LOS| A |LOD|. Hence we must prove
the inverse relation. To prove this, by 1.2 and 1.3, it is sufficient to interpret in each
model M kLO either LOS or LOD. Let M k LO. We call a closed interval {u, v)
isolated iff each its interior points is isolated in (u,v) (in particular each interval
{a, @) is isolated). A closed isolated interval which is maximal (with respect to in-
clusion) with this property will be called an MCI-interval (maximal closed isolated
interval). There are two possibilities:

1. M E “each closed isolated interval is contained in an MCI-interval”.

The property of x, y: “(x,' > is an MCIL-interval”’ can be easily expressed in the lan-
guage of linear order and clearly each MCl-interval can be represented by its left end-
point. Now we can define a 1-dimensional interpretation I of LOD in Th(}) by

d;(x) = “x is the left endpoint of an MCl-interval”, x <;y =z < y.
It is easy to see that the assumption of this paragraph implies M k LOD' .

2. M E “there exists a closed isolated interval {a, b)) which is not contained in any
MCI-interval .

Let, for example, there do not exist the right endpoint for such an MCl-interval. Then
we define a 1-dimensional interpretation J of LOS in Th(M) as follows:

85(x) = “b £ x & the interval <b, x> i8 iso]ate&”, r<yjy=2<y.
Again it is clear that M k LOS’. Thus we are done.

5.17. In this last section of this paragraph we will prove a lemma which will allow
us to use the preceding theorem for a small contribution to the problem whether LOS
is prime.

Lemma. Let the types a, b € # be incomparable and the type ¢ = a A b be join- zrreduc-
ible. If t, s < a are types such that s v ¢t = a, then (i) if 8 2 ¢ (resp. t = c), then s (resp. t)
18 not meet-irreducible and (ii) s Z cor t = c.

Proof. (i) Let s = ¢ and s be meet-irreducible. Then s = a Ab and so s 2 a or

s 2 b. Because s < a we have s = b. But from this follows a > b, which is a contra-

diction to the incomparability of a,b. (ii) By svt = a we have a b = SVvi)Ab =

= (8Ab)V (t Ab) = c. Since ¢ is join- -irreducible we have, for example, s Ab = ¢. But
~then immediately s = ¢. We are done.

Now we can apply this lemma to ¢ = [LOS|, b = |LOD| and ¢ = |ILO| (by [1] LO
is prime, see also § 0).
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§ 6. Problems

In this last paragraph we want to call attention to a few problems.

6.1. Results 1.5 from [4] about compact types, 2.2 about coprime types and paper
[5] about prime types promise that more lattice-theoretically defined properties of
types have also their “logical” characterizations. In particular: which types are co-
compact?

6.2. Examples of compact prime types ([LOJ, |I4,|, |GB|) or cocompact coprime
types (if they exist?) prove that in .# there are intervals of length 1. But no explicit
example is known! .

6.3. With regard to 6.2 we ask: are some of the intervals in the diagram 5.2 of
length 1?2 How do the intervals of the types between |[LO| and [LOS|, [PO| and
|LO], . . . look like?

6.4. To the “perfection” of the diagram 5.2 it remains to prove that POD < LOD
and that LO, POD are incomparable. Is it true?

6.5. Diagram 5.2 suggests that the position of LOS and LOD in this part of the
lattice . should be in a sense ‘“symmetrical”. So it is reasonable to ask: is LOD
prime? (In fact, if one considers only 1-dimensional interpretations, then it is so. See
(5].)

6.6. Many questions about the structure of the lower part of .# ‘“near” theories of
order are open. For example: how wide is the lattice .# here? (In [4] J. MYCIELSKI
proved, using R. MoNTAGUE’s work [3], that in .# there exists an antichain of length 2%.
But it follows from [3] that this antichain is at least above the type of 14,.)

' 6.7. Which are the differences between .# and the lattice of 1-dimensional inter-
pretation “near” theories of order? Remark: 5.10 proves that there are some.

References

[1] EERENFEUCHT, A., and J. MyorgLskr, . Theorems and problems on the lattice of local inter-
pretability. Manuscript.

[2] Cuawg, C.C., and H. J. KeisLEr, Model Theory. North-Holland Publ. Comp., Amsterdam—
London 1973. »

[3] MONTAGUE, R., Theories incomparable with respect to relative interpretability. J. Symb Logic
27 (1962), 195—211.

[4] MycIELSKI, J., A lattice of mterprebablhty types of theories. J. Symb. Loglc 42 (1977), 297 —305.

[5] PubLiK, P., Some prime elements in. the lattice of interpretability types. Trans. Amer. Math,
Soc. 280 (1983), 255—275.

[6] TaRrsk1, A., MoSTOWSKI, A., and R. M. RoBiNsoN, Undecidable Theories. North- Holla,nd Publ.
Comp., Amsterdam 1953.

J. Krajitek (Eingegangen am 5. September 1983)
5. Kvétna 19 .
14000 Praha 4 CSSR



