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SOME.RESULTS AND PROBLEMS 1N THE MODAL SET THEORY MST

by JAN KRAJièEK in Prague (Czechoslovakia)l)

Introduetion

Modal set theory MST was introduced in [6], where were alBa developed some baBic
notions of the theory, in particular the notion of natural numbers. Further results
were obtained in [7] and [8]. Several partial consistency statements are also proved
there. In this paper we construct an arithmetical structure on natural numbers in a
way which was sketched in [6]. This structure will be a model of PEANO'S axioms.
We introduce an axiom of absoluteness (A) and deduce some of its consequences, ~n
particular th~t natural numbers ~orm a set in the theory. This is supplemented by a
list of some most importantproblems conceming MST~ Almost all results of this paper
are contained in the thesis [8] which are, however, written in Czech. -

We do not recapitulate the motivation and the axiomatization of the system MST;
for the notions, the definitions and the baBic resu1ts the reader should consult [6].
There is only one difference in notation: almost all results in trus paper are proved
in MST together with the assumptions S4 + BF; so it is suitable to consider S4 and
BF as axioms of MST itself as is done in trus paper. In [6] S4 + BF were considered
only as possible additional axioms and not as a part of MST. ,

In [6] and [8] connections with other related systems, namely those of FEFERMAN,
FITCH and GILMORE, are discussed. ,

Chapter I. Basic set-theoretical notions

In this chapter we define the notions of ordered pair, relation and function.
~ begin with a simple extension of the definition of decidable set.

1.1. Defini tion. A set x is I-decidalile (DI (x) in syrnbols) iff D(x) & (Vy E x) D(y),
and 2-decidable (DZ(x) in symbols) iff D(x) & (Vy E x) DI(y). Sometirnes we call a decid-
ablé set O-decidable and write D()(x) instead of D(x).

The reason for tjlis definiti9n is rather pragrnatic one: decidable sets are rnanage-
able hence if i will be l-decidable also its members wíll be rnanageable, etc.

lt can be easily observed that all notions introduced in this chapterare translations
of the usual ones. They are only restricted to an appropriate domain to rnake th~rn
manageable antl written in a carefull way.

2.1:. Definition.

Pair(a, b, c) == (3tI, tz) (tI E c& tz E c& a E tI & a E tz & b E tz
& (Vs) (s E C -to S = tI V S = tz)
& (Vs) (s ~ 4 -to S = a) & (Vs) (s E tz -to (s == a v s = b)).

1) I would like to thank PAVEL PUDLÁK for his assistance to my work



124 J. KRAJiÈEK

(i) f-

(i)

2.2. Lemma. I- Dl(C) ~ ';t) (Pair(a, b,c»). (

Proof.-It can be easily ca!culated:

I- Dl(C) & Pair(a, b, c) -+ OPair(a, b, c),

since Dl(C) implies D(t1) and D(tz). It remains to show:
. I-Dl(C) & -,Pair{a, b, c) -+ O-,Pair(a, b, c).

We now formulate a general (meta)svblemma which stands beIiind the formlilá
above and analogical formulas in the proofs of 3.2, 4.2 and 4.4.

Su blemma. 111- D(t) -+ ';t)(cp(t)), then I- Dl(C) ,-+ ,!)((3t E c) ~(t)).

The proof of this statement is easy: It is enough tó show that

I-Dl(C) & (3t E c) cp(t) -:-t O(3t E c) cp(t)

(ii)

and

(i)

f-Dl(C) & (Vt E C) IqJ(t) -+ D(Vt E C) IqJ(t).

For the proof of the first ~ormula ít iB enough to observe that

f- Dl(C) & (3t e c) qJ(t) -+ (3t E c) (D(t) & qJ(t).

We deduee the second formula. Ev:idently,
00

f-(Vt E c) l•P(t) = (Vt) (t ~ cv (t E C & IqJ(t»).
Hence

fo Dl(C) & (Vt E C) -'cp(t) -+ (Vt) (t ~ C v (t E C & D(t) & -'-, qJ(t~))
. ,;

}"'rom the hypothe~lS of the subleI:!lma then follow~

fo Dl(C) & (Vt E c) -, cp(t) -+ (Vt) (Ot~ C v (Ot E C & Dcp(t))).

But
f-(Vt) (Ot ~ c v (Ot E C & O<p(t))) -+ O(Vt E C) -'<p(t),

so we are done.

We write now the formula Pair(a, b, c) in the form (3tl, t2 E c) 1jI(tl, t2, a, b, c),

where 1jI is an appropriate forÍnula from 2.1. Using the sublemma we ob.tain
f- Dl(C) -+ 'l)(Pair(a, b,c)). O

3.1. Defini tion. A set r is a relation (Rel(r) in symbol s) iff (Vc E r) (3a, b) Pair(a, b, c).

3.2. Lemma.. f- W(r) -+ 'l)(Rel(r)).

Proof. Observe that

f-Rel(r) == (Vc) (3a, b)(c ~ r V (c E r & Pair(a, b, c))).

80 if c E!, then the 2-decidability of r implies the l-decidability of c. Using 2.2 we
easily calculate f-W(r) & Rel(r) -+ ORel(r) and also f-W(r) & -,Re](r)-+ O-,ReI(r).

~

4.1. Definition. (i) A set t is a tunction (Fuc(t) in symbols) iff

Rel(t) & (VCl, c2, a, bl, bv (c, ~ t V C2 ~ t
v -,Pair(a, bl, Ci) v -,'Pair(a, b2, Cv V cl = C2).

(ji) A set d is á domain 01 t (Dom(d, /) in symbols) iff

(Va) (a ~ d v (3b, C) (CE t & Pair(a, b,c))) & (Vc, a, b) (c ~1 v -,Pair(a, b, c) v a E dl;
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4.2. ~emma. I .
(i) I- D2(/) -+. ;t)(Fuc(/»).

(li) I- D2(/) & D(d) -+ ;t)(Dom(d, /)). )

\Ve skip the proof of this lemma since it is a~alogical to those of 2.2 and 3.2.
I

4.3. Definition.

(i) Relations r, s_are inverse (Inv(r, s) in symbols) iff

(V6) (c e r == (3c', a, b) (c' e- s &Pair(a, b~c') & Pair(b, a, c)~).

(ii) A set I is a 1-1 lunction (MFuc(/) in symbols) iff

Fuc(/) & (V~, C2 E /) (Val' b, a2) (Pair(al ,b, CI) & Pair(a2' b, c2) -+ al = a2).

(iii) A set d contains a range 011 (Rng(d, /) in symbols} iff

(Vc, a, b) (c E I &Pair(a, b,c) -+ p eid).

We mention (without the evident proof):

4.4. Lemma.

(i) I- D2(r) & D2(S) -+ ;t)(lnv(r, s).

(ii) f- D2(/) -+ ;t)(~uc(/).

(iii) I- D(d) & D2(/) -+;t)(Rng(d, /)). i

The following threeresults are proveï for the purposes o.f chapter li.

4.5. Lemma.

I-(V/, d) (D2(/) & Fuc(/) &D(d) & Dom(d, /) ,
\

-+ (Va ~ d) (Vb) (3c, g) (Pair(a, b, c) & J?l(C) &c E g &D2(g) J '•

& Fuc(g) & (3ï) (D(ï) & Dom(ï, g) & (Vt) (t E ï == t E d v t = a))))..

Informally: Any 2-decidable lunction with decidable domain can be prolonged by Dne new
pair to a 2-decidable function with decidable domain.

Proof. Let us argue informally: Let I be a 2-decidable function, d its decidable
domain, a ~ d and b any setBo By [6], 4.6. (iii), there exists a I-decidable c such that

(Pair(a, b, c). Again using [6], 4.7. .(iv), we add c into I anda into d to obtain a 2-decid-
able g and a decidable ï. O

4.6. Lemma..

I-VlX(N(lX) -+ (V/) (D2(/) & MFuc(/) & Dom(lX, /) -+(3g) (D2(g) & MFuc(g) & Inv(/, g)))).

Inforlli~lly: Any 2-decidable I-I-lunction whos~ dom.ain is a natural number has a
2-decidable 1-1 invers.

Proof. By induction on lX. li lX is decidable empty, then the statement is clear.
Let the statement hald for lX, lX' be i, successor of lX (i.e. Suc(•x., lX'), see [6], 4.9) and I
be a 2-decidable 1-1 function with domain lX'. Let cEl such that Pair(lX, Xi c). By
[6], 4.7, there exists a 2-decidable 1-1 function g with domain lX which is a
"shortening" of I by the pair c. By induction hypothesis there exists a 2-decidable
1-1 invers of g, say h. Using 4.5 we can prolong thisfun?tion h to a f\mction k by
.a I-decidable set c' such that Pair(x, lX, c').; The lunction k is the required one. [j
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4.7. Lemma.
I-(ViX) (N(iX) -+ (Vf, g) (DZ(f) & W(g) & MFuc(f) & MFuc,(g) & Rng(iX, f) & Dom(iX, g)

-+ (3h) (W(h) & MFuc(h)
& (Vc) (c E h = (3al' az, a3) (3cí E f) (3cz E g!) (Pair(al' az, CI)

& Pair(az, a3, Cz) & Pair(al' a3, c))))).
- . ~ "".Informal1y: Any 2-,decidable 1-1 tunctions t, g with range resp. domazn IX fl,ave a ~-ae-

cidable 1 - 1 composition. .
, \

(The lemma sureiy holds also for Don 1-1 functions but the proof is more cQm-
plicated and trus version suffices for al1 our purposes.)

Proof. By induction on IX. If IX is decidable empty, it is trivial. Let the statement
hold for IX, let IX' be a successor of IX and t, g 2-decidable I-I functions such that
Rng(IX', t) and Dom(IX', U). Let Ci E t, Cz E g be pairs with second resp. first coordinate IX;
If they do not exists we are, by induction hypothesis, done. If there exist at least ODe
such pair, we shorten t by Ci resp. g by Cz. This caD be done by [6],4.7. Let 1, g be
t~e resulting functions having;range resp. domain in IX. By induction hypothesis there
exists their composition ò. Using 4.4 we prolong ò by an appropriate pair. The result-
ing function h is the required composition of t and g. O
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Chapter II. Arithmetical structure
In this chapter we carefully construct an arithmetical structure on the domain N

as was sketched in [6]. Recallthat letters 1X,,8, . . . range over natural numbers.

1.1. Defini tion. ,
(i) 1X ~N,8 iff (3/) (D2(/) & MFuc(/) & Dom(1X, /) & Rng(,8, /».
(ii) Ix =N,8 iff 1X ~N,8 &,8 ~N 1X.

1.2. Lemma. For 1X,,8, y natural numbers

'(i) a) 1X ~N 1X, b) 1X ~N,8 &,8 ~N Y -+ 1X ~N y, c) 1X ~N,8 v,8 ~N 1X;

(ii) a) 1X=N1X, b) 1X=N,8&,8=NY-+1X=NY' c) 1X=N,8-+,8=N1X;
(iii) a) 1X =N,8&1X~NY-+,8 ~NY'?) 1X =N,8&Y ~N1X-j.Y ~N,8.

Proof.'We argue informally. (i) a) By induction 'on 1X one proves that there is a
2-decidable identity function on 1X. b) follows from I.4.7. c):By induction on 1X.-1f 1X
is decidable empty, it is evident. Let the statement hold for 1X, let 1X' be a successor
of li and,8 any natural number. By induotionhypothesis we know: ,8 ~N1X V 1X ~N,8;
In the firl't oase also ,8 ~N 1X'. Let 1X ~N,8 and f be the witnessing funotion. "~t us
conBÍder two possibilities: The range of f is not resp. is the whole ,8. In the first situa-
tion we can prolong f, by I.4.5, to a 2-decidable 1-1 function from 1X' into ,8. In the
second situation, by I.4.6, there exists a 2-decidable 1-1 invers g of f which witness
,8 ~N 1X'. The rest of lemma easily follows from the facts justproved. O

We now define addition and mu1tiplication. Let us write F(f, a,b) instead of

(3c e /) Pair(a, b,c).

2.1. Definition.
(i) ~ is zero (Nul(1X) in symbols) iff- D(1X) & (Vt) t ~ 1X.
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(ii) Y is a sum 01 lX and tJ (1:(lX, tJ, y) in- symbols) iff

(3/, lX') (D2(/) & MFuc(/) & N(lX') & SUC(lX, lX') & Dom(lX', I)

& ('Ili1, li2 E lX') ((Nul(li1) -+ F(/,cS1 , tJ))
& ('11]1,1]2) (Suc(li1, li2) & F(/, 61,1]1) & F(/, li2, 1]2) -+ SUC(1]1,1]2)))

& F(/, lX,y)). \

(iii) Y is a product 01 lX an-d tJ (lI(lX, tJ, y) in symbols) iff

(3/, lX') (D2(/) & MFuc(/) & N(lX') & SUC(lX, lX') & Dom(lX', /)

& ('Ili1, li2 E lX') ((lITul(lil) & F(/, lil, li2) -+ Nul(li2))
,

& ('11]1,1]2) (SUC(,jl' li2) & F(/, ,jl , 1]1) & F(/, li2, 1]2) -+ 1:(1]1' tJ"'12)))

& F(/, lX, y)).
,

To finish the construction of arithmetical structure it would be necessary to prove:

(i) =N' ~N' Nul, 1: and 11 have the ustlal recursive proJ?erties,

(ii) =N is a congruence w.r.t. ~N' Nul, 1: and 11,

(iii) ('Ix, y) (N(x) & N(y) -+ (3u, v) (N(u) & N(v) & 1:(x, y, u) & 1I(x,y, v))).

(Observe that since by [6], 7.7 (i.e. induction), induction holds for all formulas, we
have no special problems with "arithmetical" one.)

The way of su~h a proof-is evident (and already sketched): The res~ts of chapter I
enable us to manip}llate sufficiently with functions and so to prove induction steps
for any required property. Induction then will imply the general satisfaction of the
properties. . .

Let us content with an informal summa,ry:

3.1. Theorem. The lormula8 =N, ~N' Nul, E andlI deline an arithmeticalstructure
on the domain 01 natural numbers N which satisly Peano' s arithmetic.

Chapter III. Absoluteness .
We proveï in Chapter 1 that a riumber of important f,ormulas are D-decidable (if

they speak about 2.decidable sets). On the other side a lot of useful notions, e.g. decid-
ability,fulfil only the weaker condition D(x) ~ DD(x).

1.1. Metadefinitlon. A formula q; is absolute iff q; ~ Dq; holds.
We shall use the abbreviation 5}{b~(q;) for q; ~ Dq;. The notion absolute corresponds

With W. REINHARDT'S "weakly decidable" and S. FEFERMAN'S "persistent", sec [9]
and [3]. Trivially.: q; is D-decidable iff both q; and -'q; are absolute. '

The main result of this chapter is that all E?-arithmetical sentences are absolu~e.

1.2. Lemma. For any formulas q;, 1p-
"

(i) f-2U>~(q;) & 5}{b~(1p)~ 5}{b~(q; v 1p) & 5}{b~(q; & 1p) & 5}{b~(3xq;) & 5}{b~('v'xq;).

(ii) f-5}{b~(Dq;).

1.3. Lemma. For i = O, I, 2: f-5}{b~(P'(X)).

1.4. Proposi tion. f-5}{b~(N(x)).

This propoSition was proveï in .[6].
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As

3.1

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

Already before Chapter I was reader willing to beli~ve that it is possible to define
correctly such notions as pair, relation or functi<:>n and prove their most baBic prop-
erties. Boring work done in preceeding two chapters will'be now used for the result
that all these notions are absolute; the result to which it woqld be difficult to believe
without a proof. .
- 2.1. Metadefinition. '

{i) The class ojl::8-arithmeticaljormulas is the least class X of formulas which satisfies
the following conditions:

a) E(x,y, z), 11(x, y, z), X ~N y, X ~N Y and Nul(x) are in X,
b) if Ip, 1f are in X, then'.Ip, Ip & 1/', Ip v 1/', Ip -t 1/' and Ip = 1/' are in X,
c;:) ~jlp is in X~ then (3x E y) Ip and ('r/XE Y)1p are in X.

(ii) The class ojl::~ -arithmetic~l jormulas is the class of all formulas of the form

(3Xl' . . ., Xk) (N(Xl) & . . . & N(Xk) & Ip), where Ip is a l::8:'arithme"ical 'formula.

, 2.2. Theorem. Let Ip Ïe a jormula and Xl' . . ., Xk all its jree variables. Then the
jollowing holds:

(i) 1jlp is l::~-arithmetiéal, then f- N(Xl) & . . . & "!i(Xk) -t 2(b~(Ip).

(ii) 1jlp is l::8-arithmetical, then f- N(xJ & . . . & N(Xk) -:-+ '1'I(Ip).

Proof. The proof will be divided into several steps and sublemmas.

Sublemma A.

f- N(IX) & N(P) & N(y) -t 2(b~(IX ~N P) & mb~(O' =N P) & 2(b~(Nul(IX»

. & 2(bS(l::(IX,P, y») & 2(bs(11(IX, p, y»).

This sublemma follows by a detailed inspection of the formal definitions. From
Chapter I we know that all notions used in the definitions of formulas above are in
natural number-instanc~s absolute. The formula 'D2(X) is absolute by 1.3 and finally
N(x) -t D2(X).

Let us define X <N Y by (x ~N Y & .X =N y).

Su blemma B. ,Let Ip be a l::8-arithmeticaljormula without . and with jree variables
among Xl'.' .,Xk. Then there exists a l::8(x <Ny)-arithmeticaljormula 1/' withou~ .
and with the same jree variables a8 Ip suchthat N(Xl) &... & N(Xk) ~ ((.Ip) = 1/').

'J,'he l::8(x <N y)-arithmetical formulas are defined ln the sa,nie way as the l::8-arith-
metical formulas by adopting X <N yamong the baBic atomic formulas,i.e. belonging
to 2.1. (i).

..

The proof of truB sublemma goes by induction on the complexity of Ip. It is clear
that it suffices 'to considerthe following facts: ,-

.IX =NP ~ IX <NPVP <NIX, .IX ~NP= P <NIX,

.l::(IX, P, y) = (3~ E r) l::(~, p, ~) v (3~ E P) E(IX, ~, y) v (3~ E IX) l::(~,P, y),
/ ' .

.11(IX, p, y) = (3~ E y) 11(IX, p, ~) v (3~ E P) 11JIX, ~, y)

V (3~E P) (3(! E IX) .(31) E y) (11(IX, ~, 1}) & 1,'(1], (!, r)).

ThesfJ equivalences are proved by induction IOn IX, p, r.
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Sublemma Co f-N(tX} & N(P) 4 2!fj.s(~<NP);

For the p,roof we observe that .
tX <NP = [3/, y) (D2(/) & MFuc(/) & Dom(tX, /) & Rng(y, /)' & N(ý) & Suc(y, (/)).

, "
This can be proveï by induction on tX and p. ~ut the right-hanï side is absolute; this
!ollows from the results ofChapter I. ' '

Now we are readyto prove the theorem. At firstwe prove part (ii). BySublemmas
A and C and by 1.2 (i) we know that natural number-instances of all ,};;g(x '<N y)-
arithmetical formulas without .! are Q-bsolute; Subl~mma B implies th~t eachEg-
arithmetical formula is equivalent to such a formuJI!- and hence is ~l~o absol~te.
Using the trivial observation after the definition I.J we cQnGlude the p&rt (ii). of
the theorem.

The part (i) is an easy consequence of part (ii), 1.2 (i) and 1.4. O

2.3. Corollary. Let 1p,1p be E~-arithmetical lormulas with the same Iree variables
among Xl' . . ., Xk and "let be f- N(Xl) & . . . & N(Xk) -+ Ip = -, 1p. Then f- N(Xl) & . . . &
& N(Xk) -+ '!'J(Ip) & '!'J(1p). (Shortly: LJ.Y-arithmetical sentences are decidable.)

.
As an easy observation we obtain:

3.1. Lemma. f-2!lJ.s(Ip(t)) -+ (3y) (Vt) (Ot e y = Ip(t))~
,lil. the light of the preceeding results the following axiom is suggested:

Axiom of absoluteness.

(A) x e y -+ Ox e y.
The interestin this axiom is given bysome of its corrolaries, a few of which we will

discuss in this section.

Let us begin trivially:

3.2. Lemma. (A) f- 2!lJ.s(Ip(t)) -+ (3y) (Vt) (t e y = Ip(t)).

3.3. Corrolaries.
(i) (A) r (3y) (Vt) (t e y = N(t)):
(ii) (A) f- (Vx) (3y) (Vt) (t e y = (3z e x) t e z). '

(iii) (A) f- (Vx, y) (3z) (Vt) (t e z = t e x & t e y).

(iv) (A) f- (Vx, y) (3z) (Vt) (t E Z ::= t E xv t ey).

(v) (A) f- (Vx, y) (3z) (Vt) (t E z = t E X v t :;:: y).
(vi) (A) f- "I i~ a 2-decidable .1-: 1 lun~tion ~ I haS a 2-decidable 1-1 inverc'j ".

(vii) (A) f- "I, g are 2-decidable lunctions

~ there exists a 2-deti@ble composition 01 I and g".

(viii) (A)f- (3y) (Vt) (• E Y = DI.(t»)? for i~ O, J,2. .
(ix) . (A) f- (3y) (Vt) (t E Y = N(t) Ip(t»), whe~e 1p(1) is any E~ -arithmetical lormula with

the Qnly free variable t.

Observe that (in the presence of axioni (A») (i); (ii) and (v) opens the possibility of
construction of ordinals, i.e. of successors and supremes. Axiom (A) also considerably

9 ZtBCbr. f. math. Logik
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simplifies the constructioXJ. of the arithmetical structure, compare (vi) and (vii) with
the much more complicated 1.4.6 and 1.4.7. ..

We finish this chapter with
3.4. Lemma. Axiom (A) is not derivable in MST (provided MST is consistent).

Proof, For any formula Ip we define its duallpd as follows~ (i) (x E y)d = (x~ y),
(ii) (x = y)d = (x = y), (iii) d commutes with all connectives and quantifiers.

Claim. III-Ip then .alsa I-lpd.
The claim is proveï by induction on the number of steps in the proof of Ip. The

only nontrivial oase are the instances of MCA. But easily MCA(Ip)d = MCA('lpd),
where MCAtlp) stands for an instance of MCA for a formula Ip.

By claim I-(A) would imply I-x ~ y -+ Dx ~ y and hence I-,:!)(x E y). But this is in
contradiction with [6], 2.2. O
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Chapter IV. Some metamathematical observations

In this chapter we present a few metamathematical observations and define a se-
mantil;Js for MST. The results of this chap~r do not depend on the non-logicalassump-
tions of the theory MST. Theyare easy and well known. We present them for the sake
of completeness and for some technical reasons.

It is easy to observe that equivalence of two formulas q> and 1p, q> = 1p, does
not imply their mutual substituability into other formulas. Take, for example,
q> =' (x = x), 1p = (x E x) and (J = D'If. Ií I-q> = 1p -. (J = (J(q>/1p) were trne, then we

would have

~x E x = X = X -. Dx E x = Dx = x,

Let 1

cidabili

2.4.

MST +

Pro I
contra<

Ifw
probleI
rer, "
and ev

In ti
A sem:
with w
from F
while :

u*

and analogically

f-x ~ x = x = x ~ Dx ~ x = Dx = x.

Since (x e x = x = x) v (x ~ x' = x = x) is a tautology, the following would then hold:
.

f-(Dxex = Dx = x) v (Dx~x = Dx = x).
Using (LP) we obtain f-Dx e x v Dx ~ x which is a contradiction with [6], 2.2. 80
the sufficient conditibn ..•or the mutual substituability should be stronger.

1.1. Lemma. Let «p, "1', (J be any lormulas and (J' be a Jormula which arise Irom, (J

by substituting "I' lor som.e (one or more) occurrences 01 «p in (J, Then f-D(m) ~ (J = (J',
where ~ is the universal closure 01 «P = "1'. .

The proof is easy by induction on the depth of (J.

",Corollary. II f-«p = "1', then «p is substituable lor "1'.

The deduction lemma usually enable us to convert provability of «p in some finite
extension (say by axiom "1') of a theory to the provability of the implication "I' ~ «p

in the original theory. 8ince always «p f- D«p but not necessarily f-«p ~ D«p, i• is ex-
~ctable that the modal case is again~ little bit complicated.
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- 1.2. Lemma. For any sentence cp and any formula 11', cp I- 11'. iff 1-0cp -. 11'.

The proof goes by simple induction on the number of steps in the proof of 11'.
... In the following we assume that MST is consistent. Since MST contains PEANO'S

arithmetic it caD formalize its own syntax. Although the language of the theory does
not contain terms (in particulsr, numerals) it caD be constructed a predicate of prov-
ability based on "pseudoterms" (cf. [1]). ODe caD think of such a predicate Pr(x) in
the same way as of the usual ODe. Since Pr(x} fulfils conditions sufficient for GODEL'S
second incompleteness theorem ODe ,can prove:

2.1.. /-Pr(rx =F x')..
On the other side there is Jet another, informal, ,"predicate of provability", themodality O. It sstisfies .

(i) I-cp implies 1-0cp, (ii) 1-0(cp -. 11') -. (Ocp -. 011'), C (iii) 1-0cp -. DOCIl,

but also 1-. Dx =F x. Thus there is not an appropriate "diagonal" formula n~eded
for the GODEL'S proof.

Hence the interesting question arises: what is the relation between Pr(x)/and 01
The following two results contrlbute to this question. A relevant paper bere is [9].

2.2. Lemma. There is no (arithmetical) formula cp(x) suéh that I-cp(rOI) = DO
holds for any O, where ro, stands for a "pseudonumeral" 01 a Giidel number of O).

Proof. Suppose that cp(x) defines O, i.e. I-cp(rOI) = DO holds generally. Then cp(x)
satisfy LOB'S condition (i), (ii) and (iii) above. Also it is possible to find a diagonal
formula for .cp(x) (since cp is arithmetical) and so /-.cp(rx =F x'). But I-.Dx =F x.
A contradiction. O

2.3. Lemma. Jt is not the case that for all cp

1 I-Pr(rcp') -. Ocp.
"., Proof. I-:.,Ox =F x -. .Pr(rx =F XI). .0'c

:1~ 'It seems that the mod~lity O is nearer ~ the "real" provability than Pr(x).

Let us repeat that the decidability of cp, i.e. I-fp or I-.cp, implies a provable O-de-
oidabilityof cp, i.e. I-~(cp). Let us call..-VJ e8sentially O-undeciilable i•f I-.~(cp). I

2.4; Lemma. Let cp be e8sentially O-undecidable. Then both theories MST + cp and
MST + . cp are inconsistent.

Proof. By the N-rule cp is provably O-decidable in both theories above. This is a
contradiction that cp is essentially O-undecidable in MST. O

If we could find such a formula cp we could call MST e8sentially incomplete. The
problem surely remains whether there is such a formula. .(The obvious candidate is
r er, where r is a set from RUSSELL'S paradox, but r isnot a constant of the language
and even cannot be consistently added into it, cf. [6]).

In the rest of this section we describe a semantics which'is complete w.r.t. MST.
A semantics for modal systems is usually formulated in !l\rms of KBIPKE'S models
with world~ and a relation of alternativeness. We will use a concept of [5] which differs
from KBIPKE'S original ODe in a different handling with free variables: For example,
while a formula dual to the' BARcAN's is derivable (in our sense) already in T in

a*
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... '

KRIPKE'S formulation it is not a theorem even of S5. Defiòition belowof a KRIPKE'S
universqm dif,fers also slightly frollic that of [5], we"will hay~ ;j. distinguisned world.

We will not go into detai)s since this material is familiar.

3.1. Definition. (W, 1=) is a model o{MST iff (W,I=) isa'KítIPKE"Suniversum,
o c'

'(i) whose worlds are first-order structure~ fo~ the language.<=" e) (= is ai1solute),

(ii) whóse alt worlds have the same dómain,

(iii) whose relation of altemativeness is reflexive and transitive,

(i v) w~ch has a distinguished world denoted by Wo,

(v) for anyaxiom q; of MST Wo 1= Di,:>; where i,:> is the universal closure aI'q;

(for details see [5]).
,

3.2. Theorem. Any {oTmula q; is a ccmsequence o{ MST i{{ q; holds in all modelsof MST. ' .)

Proof.. The "only if" part follows easily from the deduction lemma 1.2. For the
"if" part it is sufficient to prove the compactness. Let "Po ,"PI , . . . enumerate the
universal closures of all axioms of MST and let for any k ~ O, "Po & . . . & "P" & .q;
have a model W". On W"'s we can look as on manJ"-sorted first-order structures and
thus by standard argument we can produce their ultraproduct W such that
W 1= "Po &"PI & "P2 & . . .& .q;. D

Chapter Ý. Problems and 8uggestions

In this chapter we consider several problems and suggestions connected with the
development of the theory. Some of them are formulated strictly others are more or
less vague. \

1. Cohslstency. Surely, the main problem is to prove the consistency of the theory
MST. Without this result the wholeprogram is rather risky undertaking..

2. Models. The second baBic prohlem is to leam how to construct models of l\'IST.
In the semantics of IV.3 is clear the mean,ing of the modality Obut it gives n,O idea
what should be E. Some proof of consistency cortld lead to some more effective descrip-
tion of E. Such a description is necessary if semantics should help in solving some
problems about MST;

3. Power of thetheory. HQW stroi1g is the theory (w.r.t. some well-known sys-
tems)1 In partic~ar, does MST interpret at leaet ACAo 1

4. Extensions of the theory. With the above problem the question of possible
extensions of MST is connected. In the flavour of the theory new axioms of logical
nature are rather than some 4aving explicit matheniatical meaning. Kripke-style
semantics suggests to add axioms which would force some, intuitively satisfactory,
form 'Qf the universum of worlds, i.e. of the relation of alternativeness. E.g. the axioms
which force the relation of altemativeness to be a linear order. Another interesting
possibility is to exteDd the language of the theory by adding class.variables and the
assumptions by an appropriate class-existence axiom. Such á theory would eaSily,
in,terpret seco~d order arithmetjc;
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5. Modal complexity. Let usdefine the modal complexity mc(lp) of theformul~ Ip
as follows: '

(i) mc(lp) = O iff Ip is nonmodal, .
(ii) mc(1p v tp) = mc(1p & tp) = mc(1p ~ tp) = mc(1p :;: tp) = max(mc(Ip),mc(tp»,
(iii) ~c(-'Ip) = mc(3xlp) = mc('v'xqi) =.mc(Ip),

(iv) mc(OIp) :;= 1 + mc(Ip).

Now we caD define natural úagments MSTj, i < w, of the theory MST: MSTj have
instances of MCA only for formulas of modal complexity at most i, e.g. MSTo contains
only MCA-instapces for nonmodalforÍnulas. In [6] we proveï thatMSTo is consistent.
Problem: Does there exists an i such that MSTt = MST, i.e. is the hierarchy MSTo,
MST 1 , . . . proper1 Let us remark that everything important so far was proveï in
MST l' Thus it is possible that MST 1 = MST. An argument for this claim could be
the following: Let MCA(ip) be the instance of the scheme MCA for a formula Ip such
that mc(lp) > 1. MCA(tp) implies that DV' is equivalent to sorp.e formula of the iorm
Ot E y. In par~~cular, try to replace subiormulas of Ip of the form 01p, mc(Otp) ~ 2,
by equivalent forlpulas of the form OtE y. Thus the modal complexity of Ip would
be reduced until formula of the modal complexity 1 is reached. The fail in this argu-
ment js t4e point thatjor mutual substituability of two formulas (Otp and DtE y
above) "Ve need more than only their equivalence (see IV.I.I), they should be know.,
able equiva,lent. Thus ,instead of MCA we would need a-scheme (3y) (Vt) O«(DIp(t) :;:
:;: Ot E y) & (O-'Ip(t) :;: Ot ft y» which is, however, inconsistent (cf. [6J).

6. Terms. An important question is the problem about conditions under which
1terms can be introduced.

7. Disjunction property. Many intuitionistic systems fulfil the condition that
if the disjunction Ip v tp is provable, then one of the disjuncts Ip or tp is provable
(cf. [4]). The modal transform of this situation is: if Olp v 01p is provable, then so
Ip or 1JI is provable. Does MST obey this (disjunction) property1, Let us sketch an in-
teresting consequence of the affirmative answer: By [8], 1-~(N(x» implies that I-~(tp)
for any arithmetical sentence tp. By the disjunction property would be I-tp or I--,tp for
any such sentence~ Thus if MST were consls~ent and obeyed disj.unction property,
then a recursively.enumerable completion of PA could be foundin its theorems. That
is evidently a contmdiction. Hence the disjunction property for MST implies that
..f~(N(x».

8. Infinity. The interpretation of PEÁNO'S arithmetic in MST brings into the
theory sufficient aparatus for an interpretation of finite mathematics.'- On the other
side MST proves the existency of infinite sets in the u8ual classical sense, e.g. of the
universal set or (by presence of a:xiom (A» of the set of natural numbers. How~ver,.
it seems that in the context of the modal calculus tbe cardinality of a set is not a suf-
ficient expression of its "infiniteness~'. The position of the decidable empty set and
of a decidable universal set in the set-unjverse is probably equivalently complE1x.
A more natural expression of "infiniteness" of sets seems to be their "complexlty"
in the sense of the modality O. Thus a.n undecidable set is more infinite than a decid.,
able set. So the aim is to define some relation of order for complexlties of setBo This
question was already touched in [7] and' [8] where two definitions were suggested.



134 J. KRmÈEK

Roughly speaking these definitions correspond to recursive invariance and m.reduci.
bility of sets from the recursion theory. Let us sketch the later Dne.

'Ye define: a ~ b iff .
(3/, v) (D2(/) & Rel(/) & (Vt) (t E v) ~ D(v) &, Dom(v, /)

& ('r/x, x', y, y', z) (xE'1 & x' EI & Pair(z, y, x) & Pair(z, y', x') -+ y = y/)
/

& ~Vx, y) (F(/, x, y) -+ (Dx E a = DY E tJ) & (Dx t a = DY t b»). ~

Informally.: a ~ b iff there exists a 2-decidable function on the set-universe which
translates the, "elementhood" of a into that of b in the sense of the formula above.

It is easy to prove, uÍlder axiom (A), that ~ is a quasi-order and any two non-
empty decidable sets with nonempty complement are in relation ~ (the slight modifica-
tion above of the notionof function is needed for the prpof that there exists a 2-de-
cidable identity function onthe set-universe).

Final remark. Our interest in the theory MST lies mainly in the problem of con-
sistency of some relatively unrestricted comprehension scheme which would ha,ve some
mathema,tiQal power. The a,pa,ratus of the theory together with the moda,lla,ngua,ge
ca,n be found to be suitable for formaliza,tion of some intuitive notions {without clas-
sical or intuitÍonistic counterparts, cf. [8]) and to contribute in this way also to under-
standing of their classical interpretations. As examples we can m:ention the results of
W. REINHAB.DT or S. SHAPIRO. Such applications of the theory lie in the means of
expression of the language of the theory and also in a, point that some object exists
in a classical form and a]so ih its "decidable" version which often like to be a" kernel "

of the classical cohcept.
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