Zeitschr. . math. Logik und Grundlagen d. M ath.
Bd. 34, 8. 123-134 (1988)

SOME RESULTS AND PROBLEMS IN THE MODAL SET THEORY MST

by Jax KrAJISEK in Prague (Czechoslovakia)?)

Introduetion ‘ \ ’ ‘ N

Modal set theory MST was introduced in [6], where were also developed some basic
notions of the theory, in particular the notion of natural numbers. Further results
were obtained in [7] and [8]. Several partial consistency statements are also proved
there. In this paper we construct an arithmetical structure on natural numbers in a
way which was sketched in [6]. This structure will be a model of PEaNo’s axioms.
We introduce an axiom of absoluteness (A) and deduce some of its consequences, in
particular that natural numbers form a set in the theory. This is supplemented by a
list of some most important problems concerning MST. Almost all results of this paper
are contained in the thesis [8] which are, however, written in Czech. -

‘We do not recapitulate the motivation and the axiomatization of the system MST;
for the notions, the definitions and the basic results the reader should consult [6].
There is only one difference in notation: almost all results in this paper are proved
in MST together with the assumptions S4 + BF; so it is suitable to consider S4 and
BF as axioms of MST itself as is done in this paper. In [6] 84 + BF were considered
only as possible additional axioms and not as a part of MST.

In [6] and [8] connections with other related systems, namely those of FEFERMAN
Frrcr and GILMORE, are discussed. : .

Chapter 1. Basic set-theoretical notions

In this chapter we define the notions of ordered pair, relation and function.
We begin with a simple extension of the definition of decidable set.

1.1. Definition. A set z is 1-decidable (D'(x) in symbols) iff D(x) & (Vy € ) D(y),
and 2-decidable (D?(x) in symbols) iff D(z) & (Vy € x) D!(y). Sometimes we call a decid-
able set 0-decidable and write D%x) instead of D(x).

The reason for this definitign is rather pragmatic one: decidable sets are manage-
able hence if 2 will be 1-decidable also its members will be manageable, etc.

It can be easily observed that all notions introduced in this chapter are translations
of the usual ones. They are only restricted to an appropriate domain to make them
manageable and written in a carefull way.

2.1. Definition.

Pair(a, b,¢c) = (3¢,,1,) t,ec&t,ec&act, &aect, &bet,
' &(Vs) (sec—s=t vs=1t,)
& (Vs)(set; > s=0a)&(Vs)(set, > (s=avs=D)).

1) T would like to thank Paver PupLixk for his assistance to my work.
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2.2. Lemma. I-D‘(c) D (Pair(a, b, ).
Proof.-It can be easily calculated:
| +D(c) & Pair(a, b, ¢) — [IPair(a, b, ¢),
since ‘D‘(c)' implies D(¢,) ancll‘D(tz). It remains to show:
FD'(c) & —1Pair(a, b, ¢) - (] Pair(a, b,c).

We now formulate a general (meta)sublemma which stands behind the formula
above and analogical formulas in the proofs of 3.2, 4.2 and 4.4.

Sublemma. If FD({) = D(p(t)), then +D(c) — D((It € c) @(t)).
The proof of this statement is easy: It is enough t6 show that
FDYc) & (At ec) pt) = OBt €c) p(t)
and
FD(c) & (Vtec) T1g(t) = O(VEec) p(t).
For the proof of the first formula it is enough to observe. that
»_ FD(e) & (3t e c) ¢(t) = (At ec) (D(t) & g(t)). .

We deduce the second formula. Ev1dently

FVtec) —up(t) (Vi) t¢cv (t ec & ¢t)).
Hence

FDYc) & (VEec) () > (Vi) (¢ gcvilec&DE) & —up(t)))
From the hypothesw of the sublemma then follows .

FD(c) & (Vi€ c) m1g(t) > (V8) (Ot ¢ e v (Ot € ¢ & Co(t))).
But

F(Ve) (Ot ¢cv (Dt €c & Oe(t) = OVt ec) T9(t),
80 we are done.
We write now the formula Pair(a, b, ¢) in the form (3t,,¢, ec)(ty,t,, a, b, ¢),

where 9 is an appropriate formula from 2.1. Using the sublemma we obtain
FD(c) - ED(Pair(a, b,c)). O : '

3.1. Definition. A set r is a relation (Rel(r) in symbols) iff (Vc e r) (Ea, ) Pa,ir(a, b, ¢).
3.2. Lemma. FD2?(r) - D(Rel(r)). '
Proof. Observe that ’

’ FRel(r) = (Ve) (Fa, b) (cér v (c € r & Pair(a, b, c)))

So 1f cer, then the 2-decidability of r implies the 1-decidability of ¢. Using 2.2 we
easily caleulate FD2(r) & Rel(r) - CIRel(r) and also FD2(r) & —1Rel(r) — [1-1Rel(r).

4.1. Definition. (i) A set f is a function (Fuc(f) in symbols) iff
Rel(f) & (Ve,,¢5,a, b4, 8,) (cy ¢ f ve gf
v 1 Pair(a, b, ¢,) v "1 Pair(a, b,, ¢;) v ¢y = ¢,).
(ii) A set d is a domain of f (Dom(d, f) in symbols) iff
(Va) (a ¢ d v (3b, ¢) (ce f & Pair(a, b, ¢))) & (Vc, @, b) (c ¢ f v 1 Pair(a, b, ¢) vaed):

Q) F

(1)

(i)

(i)
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H

4.2. Lemma. ‘ s S ‘ .
@) FD(f) > D(Fuc(f)). | |
(ii) FD2(f) & D(d) - DDom(, f)). )

“We skip the proof of this lemma since it is analbgical to those of 2.2 and 3.2.

4.3. Deflmtlon , 3 |

(i) Relations r, s_are inverse (Inv(r s) in symbols) 1ff
(Ve) (cer = (', a, b) (¢’ € s & Pair(a, b, ¢') & Pair(b, a, c)))-
(i) A set fis a 1—1 function (MFuc(f) in symbols) iff .
- Fue(f) & (Vey, c; € f) (Vay, b, a,) (Pair(a,, b, ¢;) & Pair(a,, b, ¢;) - a; = a,)..
(iii) A-set d contains a range of f (Rng(d, f) in symbols) iff
(Ve, a, b) (c € | & Pair(a, b,c) » bed).
We mention (without the evident proof):
'4.4. Lemma. _ ‘ = ‘ - i

(i) FD(r) & D*(s) - D(Inv(r, s)). o
(i) FD(f) - D(MFuc(f).
(ii) FD(d) & D2(f) > D(Rug(d, ).

The following three results are proved for the purposes of chapter II.

4.5. Lemma. i -
F(Vf, d) (D3(f) & Fue(f) & D(d) & Dom(d, f) L

— (Ya ¢ d) (V) (3e, g) (Pair(a, b, ¢) & Dl(c) &ceg & D?(g) . T
- & Fuce(g) & (3d") (D(d’) & Dom(d’, g) & (V) (ted =tedvit = a))).

Informally: Any 2-decidable function with decidable domain can be p'rolo'nged by one new
pair to a 2-decidable function with decidable domain.

Proof. Let us argue 1n_'formally Let f be a 2-decidable function, d its decidable
domain, a ¢ 4 and b any sets. By [6], 4.6. (iii), there exists a 1- declda,l%le ¢ such that
Pair(a, b, ¢). Again using [6], 4.7. (iv), we add ¢ into f and a into d to obtain a 2-decid-
able g and a decidable d’. ]

4.6. Lemma. o
FYa(N(x) - (Vf) (D(f) & MFuc(f) & Dom(x, f) — (3g) (D*(9) & MFuc(g) & Inv(f, 9)))).

Informally: Any. 2-decidable 1—1" function whose domain is a natural number has a
2-decrdable 1—1 invers.

Proof. By induction on . If o is. decidable empty, then the statement is clear.
Let the statement hold for «, &’ be a successor of « (i.e. Suc(x, &’), see [6], 4.9) and f
be a 2-decidable 1—1 function with domain «’. Let ¢ € f such that Pair(x, «, ¢). By
[6], 4.7, there exists a 2-decidable 1—1 function g with domain x which is a

“shortening” of f by the pair ¢. By induction hypothesis there exists a 2- decidable
1-—1 invers of g, say h. Using 4.5 we can prolong this fung:tlon h to a function k by
a 1-decidable set ¢’ such that Pair(z, &, ¢’). The function k is the required one. []

‘
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4.7. Lemma.
F(Va) (N(&) — (¥, 9) (D?(f) & D?(g) & MFuc(f) & MFuc(g) & Rng(s, f) & Dom(x, g)
- (3k) (D*(k) & MFuc(h) .~
& (Ve) (ce b = (Jay, ay, as) (3c; € f) (e, € g) (Pair(ay, a;, ¢4)
& Pair(a,, as, ¢,) & Pair(a, , as, ¢)))))-

Informally: Any 2-decidable 1—1 functions f, g with range resp. domawn x have & Z-de-

cidable 1 —1 composition. .

(The lemma surely holds also for non 1—1 functions but the proof is more com-
plicated and this version suffices for all our purposes.) :

Proof. By induction on «. If x is decidable empty, it is trivial. Let the statement
hold for «, let &’ be a successor of & and f,g 2-decidable 1—1 functions such that
Rng(«', f) and Dom(’, g). Let ¢, € f, ¢, € g be pairs with second resp. first coordinate o
If they do not exists we are, by induction hypothesis, done. If there exist at least one
such pair, we shorten f by ¢, resp. g by ¢,. This can be done by [6], 4.7. Let f, Z be
the resulting functions having range resp. domain in . By induction hypothesis there
exists their composition A. Using 4.4 we prolong h by an appropriate pair. The result-
ing function % is the required composition of f and g. O :

Chapter II. Arithmetical structure

In this chapter we carefully construct an arithmetical structure on the. domain N
as was sketched in [6]. Recall that letters «, B, . . . range over natural numbers.

1.1. Definition. ‘ '
(@) o Snp iff 3f) (D*(f) & MFuc(f) & Dom(w, f) & Rog(§, M-
(i) & = B iff & SxB &P Sy :

1.2. Lemma. For «, B,y natural numbers
i) a) x Sno b) x SNB&P Sy > x Enps ©) & SNBVB Sna;

(ii) a) &« =no&, b) 6 =xf &S =ny 2> & =NV c) & =nP - B =no&;
(i) a) & =xf & & Sxy = B Eny, D) 6o =xf &Y Exax >y Snp. ,

Proof. 'We argue informally. (i) a) By induction on & one proves that there is a
2-decidable identity function on «. b) follows from 1.4.7. ¢) By induction on «.-If &
is decidable empty, it is evident. Let the statement hold for «, let o’ be a successor
of o and B any natural number. By induction hypothesis we know: B Sy va Snp-
In the first case also B Sy«'. Let o <xf and f be the witnessing function. Let us
consider two possibilities: The range of f is not resp. is the whole 8. In the first situa-
tion we can prolong f, by 1.4.5, to a 2-decidable 1—1 function from &’ into §. In the

‘second situation, by 1.4.6, there exists a 2-decidable 1—1 invers g of f which witness
<n&'. The rest of lemma easily follows from the facts just proved. [J

We now define addition and multiplication. Let us write F(f, a,d) ihs_tead of
(3c € f) Pair(a, b,c). o ‘

2.1. Definition. |
(i) « is zero (Nul(x) in symbols) iff: D) & (V) t ¢ .
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(i) y is a sum of & and B (Z(x, B, y) in symbols) iff
3, &) (D) & MFuc(f) & N (') & Sue(x, ') & Dom(a, ]‘)
& (V0,, 8, ea ) (Nul(d,) — F(f, 6, 8)
& (Y1, 75) (Suc(dy, ;) & F(f, 8;,m;) & F(f, 6,,79,) - Sue(yy, 7,))
& F(f, x,y)). . | \
(iii) y is a product of x and g (II(x, f,y) in symbols) iff
3f, «') (D?(f) & MFuc(f) & N(a') & Sue(x, o) & Dom(a’, f)
& (V04,6 € o’) (Nul(d,) & F(f, 6,, 6,) - Nul(,)) v
& (Y1, m5) (Sue(dy, 82) & F(f, 8;,7m:) & F(f, 6,,72) = Z(n, B, 1))
& B(f, «, ). | | |
" To finish the construction of arithmetical structure it would be necessary to prove:
(i) =N, Sy, Nul, 2 and IT have the usual recursive properties,
(ii) =y is a congruence w.r.t. <y, Nul, X and I7,
(iii) (Y2, y) (N(2) & N(y) > (Qu, v) (N(v) & N(v) & Z(=, y, u) & (=2, y, v))).

{Observe that since by [6], 7.7 (i.e. induction), induction holds for all formulas we
have no special problems with “arithmetical” one.)

The way of such a proof-is evident (and already sketched): The results of chapter I
enable us to manlp}llate sufficiently with functions and so to prove induction steps
for any required property. Induction then will lmp]y the general satlsfa,ctlon of the
properties. B

Let us content with an informal summa,ry:

3.1. Theorem. The formulas =y, <y, Nul, 2 and IT define an arithmetical structure
on the domain of natural numbers N which satisfy Peano’s arithmetic.

Chapter III. Absoluteness

- We proved in Chapter I that a number of important formulas are [-decidable (if
they speak about 2-decidable sets). On the other side a lot of useful notions, e.g. decid-
ability, fulfil only the weaker condition D(x) —» [JD(x).

1.1. Metadefinition. A formula ¢ is absolute iff ¢ — [J¢ holds. ‘

We shall use the abbreviation %63(¢) for ¢ — [Jg. The nation absolute corresponds
with W. REINHARDT’s ““weakly decidable” and S. FEFERMAN’s “persistent”, see [9]
and [3]. Trivially: ¢ is [J-decidable iff both ¢ and —1¢ are absolute.

The main result of this chapter is that all X-arithmetical sentences are absolute.

1.2. Lemma. For any formulas @, y
(i) FUAB3(p) & %é”(w) — WAbd(p v ) & Ab3(¢ & ) & Nb3(Axp) & QIbé’»(V:mp)
(i) FBE(CTIg).

1.3. Lemma. For i = 0,1, 2: Fb8(D!()).

14, Proposition. FIB(N(z)).

This proposition was proved in [6]. .
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Already before Chapter I was reader willing to believe that it is possible to define

correctly such notions as pair, relation or function and prove their most basic prop-
erties. Boring work done in preceeding two chapters will be now used for the result
that all these notions are absolute; the result to which it would be difficuit to believe
without a proof. ‘

"2.1. Metadefinition.

(i) The class of X3-arithmetical formulas is the least class X of formulas which satisfies
the following conditions: :

a) Xz, y, z); H(x Y, 2), 7 -Ny, x <N y and Nul(x) are in X,
b) if @, y are in X, then " g, <p&1p, VY, q)—mp and ¢ =y are in X,
¢) zf @ is tn X, then (ery) @ and (Vxey) @ are in X.
(ii) The class of Z'D-amthmetwal formulas is the class of all formulas of the form
@z, .. 2) N@) & .. & N(@z) & ), where ¢ is a X9-arithmevical formula.

.2.2. Theorem. Let ¢ be a formula and,xlrr,r ..., @y, all its free variables. Then the
followmg holds: ' ’

(i) If @ is Z-arithmetical, then FN(x;) & - - . & N(x,) — Ab3(g).
(i) If ¢ s Z9-arithmetical, then FN(z,) & . . . & N(z,) > D(gp).
Proof. The proof will be divided into several steps and sublemmas.
" Sublemma A. o ‘
FN(e) & N(B) & N( y) - Abd(x <nP) & %Ibé(or =N13) & AH3(Nul(x))
& W63(Z(x, B, )} & UB3(L1(x, B, ¥))

This sublemma, follows by a detailed inspection of the formal definitions. From
Chapter I we know that all notions used in the definitions of formulas above are in
natural number-instances absolute. The formula ‘D2(x) is absolute by 1.3 and finally
N(x) —» D?(x). ~ X

Let us define x <y by (x Sxy & 1z =x¥).

Sublemma B. Let @ be a Z3-arithmetical formula without 1 and with free variables
among y, ..., %. Then there erists a Z8(x <y y)-arithmetical formula v withouf
and with the same free variables as ¢ such that N(z,) & ... & N(z,) - (M) = v).

The Z3(x <y y)-arithmetical formulas are defined in the same way as the Xg-arith-
metical formulas by adopting <y ¥ among the basw atomic formulas, i.e. belonging
to 2.1. (). |

The proof of this sublemma goes by mductlon on the complemty of . It is clear
that it suffices to consider-the following facts:

e =nf =« <Nﬂvﬂ <n&, x ZNB=p <N(x,
X, B, y) = - (3 ey) Z(a,6,8) v (@ e p) (e, 6, y)v(EIéeoc)Z((S B, y),
(. 6, ) = (30 E}/)U(fx,ﬂ d) v (38 € B) I(x, 3, )
v (38°€B) (e € ») (G e y) (T, 8,m) & 2, 0. ¥))-
These equivalences are proved by induction on «, §, y.

As
3.1

(ii)
(iii)

(iv)

v)
(vi)

(vii)

(vidi)

(ix)
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Sublemma C. FN(«) & N(B) - A3 (o <n B): ,‘
For the proof we observe that L
x <n B = [3f, y) (D*(f) & MFuc(f) & Dom(oc, ) & Rog(y, /) & N(y) & Stc(y, B))-

This can be proved by induction on o and B. But the right- hand’ 81de is absolute thls
follows from the results of Chapter I.- -~ = ‘ _ ",

Now we are ready to prove the theorem. At first we prove pa.rt (ii). By Sublemmas
A and C and by 1.2 (i) we know that natural number-instances of all D <y y)-
arithmetical formulas without —1 are absolute; Sublemma B 1mphes that each X9-
arithmetical formula is equlva,lent to such a formula and hence is also absolute.
Using the trivial observation after the definition 1.1 we conclude the part (ii) of
the theorem. ‘

The part (i) is an easy consequence of part (ii), 1.2 (i) a.nd 1. 4 []

2.3. Corollary. Let ¢,y be X0-arithmetical formulas with the same free varmbles
among &, ..., % and let be FN(x,) & ... & N(z,) - ¢ = "1p. Then IN(x) & ... &
& N(z,) —» SD(cp) & D(p). (Shortly: A?-arithmetical sentences are decidable.)

As an easy observation we obtain:

3.1. Lemma. FB3(g(6)) — @) (Vt) (Ot ey = p().

In the light of the preceeding results the following axiom is suggested:
’\Axmm of absoluteness. '
(A). zey->Ozey. '

The interest in this axiom is given by some of its corrola,nes a few of Whlch we will
discuss in this section.

Let us begin trivially: -

3.2. Lemma. (A) F %b3(¢(t)) - (3y) (V) tey = o(t)).
‘ /3.3: Corrolaries.
() (AF@E) M) ey =N@):
() (A)F(V2) y) (V) tey = (ex)ter).
(i) (A)F (Vz,y) () (V) tez=tex&icy).
(i) (A)F (Yo, ) 32) (Vo) fez = teaviey)
(V) (A F(Va,y) () (V) tez=texvi=y)
(vi) (A) F “f s a 2-decidable 1—1 fu'nctwn - [ has a 2- decidable 1—1 invers’
(vii) (A) F “f, g are 2-decidable functwns

— there exisls g 2- demdable composition of f and g’

(viil) (A) F (y) (Vt) ey = D'()), for i = 0,1,2.

(ix) -(A) F (Jy) (Vt) (tey = N(@) o(t), where @(t) is any X3-arithmetical formula with
the only free variable t. :
Observe that (in the presence of axiom (A)) (i); (i) and (v) opens the possibility of
construction of ordinals, i.e. of successors and supremes. Axiom (A) also considerably
9  Ztechr. {. math. Logik
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simplifies the construction of the arithmetical structure, compare (vi) and (vii) with
the much more complicated 1.4.6 and 1.4.7.

We finish this chapter with
3.4. Lemma. Axiom (A) is not derivable in MST (providéd MST is consistent).

Proof. For any formula ¢ we define its dual ¢® as follows () (zey) = (xéy),
(i) (x = gy)* = (x = y), (iii) d commutes with all connectives and quantifiers.
Claim. If ko then also Fo.

The claim is proved by induction on the number of steps in the proof of ¢. The
only nontrivial case are the instances of MCA. But easily MCA(@)* = MCA("¢Y),
where MCA({g) stands for an instance of MCA for a formula ¢.

‘By claim F(A) would imply b ¢y —» Or ¢y and hence FD(x € y). But this is in
contradiction with [6], 2.2. O

Chapter IV. Some metamathematical observations

In this chapter we present a few metamathematical observations and define a se-
mantics for MST. The results of this chapter do not depend on the non- logical assump-
tions of the theory MST. They are easy and well known. We present them for the sake
of completeness and for some technical reasons.

It is easy to observe that equivalence of two formulas ¢ and y, @ =1y, does
not 1mp1y their mutual substituability into other formulas. Take, for exa.mple
p=(x=2),p=(rez)and 0 =Oy. f tp=p 0= 0((p/1p) were true, then we
would have ’

trex=ac=2—-Orexr =T =2,

and analogically
tegr = =2 Oré¢z=Hr==x.

Since (xex = x = z) v (r ¢ 2= « = x) is a tautology, the following would then hold
I-(Dxex_[_jx—x) (|_‘_|x¢x_|:|x_x) '

Using (LP) we obtain F[Jxex v [Jo ¢ x which is a contradiction with [6], 2.2. So
the sufficient condition for the mutual substituability should be stronger. \

1.1. Lemma. Let @, v, 0 be any formulas and 0’ be a formula which arise_from 0
by substituting v for some (one or more) occurrences of @ in 6 Then Fl(p = v) — 50 = g,
where @ = y is the universal closure of ¢ = y.

The proof is easy by induction on the depth of 6.

Corollary. If bg = vy, then ¢ is substituable for yp.

The deduction lemma usually enable us to convert provability of ¢ in some finite
extension (say by axiom ) of a theory to the provability of the implication y — ¢
in the original theory. Since always ¢ + [1p but not necessarily +¢ — (g, it'is ex-
pectable that the modal case is again a little bit complicated.
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1.2. Lemma. For any sentence ¢ and any formula v, @ by iff FOe - »-
The proof goes by simple induction on the number of steps in the proof of y.

In the following we assume that MST is consistent. Since MST contains PEANO’s
arithmetic it can formalize its own syntax. Although the language of the theory does
not contain terms (in particular, numerals) it can be constructed a predicate of prov-
ability based on *“pseudoterms” (cf. [1]). One can think of such a predicate Pr(z) in
the same way as of the usual one. Since Pr(z) fulfils conditions sufficient for GODEL’s
second incompleteness theorem one can prove:

2.1. FPr("z £ 7).
On the other side there is yet another, informal, ‘“predicate of provability”, the

-modality []. It satisfies
(i) te implies FOp, (i) FO(p - v) > Q¢ ~» Oy), (i) FOp - OO,

but also F=1[Jx % 2. Thus there is not an appropriate “diagonal” formula needed
for the GODEL’s proof.

Hence the interesting question arises: what is the relation between Pr(z)‘and [1?
The following two results contribute to this question. A relevant paper here is [9].

2.2. Lemma. There is no (arithmetical) formula @(x) such that te(T67) = 06
holds for any 8, where "0 stands for a ““ pseudonumeral” of a Godel number of ).

Proof. Suppose that p(x) defines [, i.e. Fo(T67) = [16 holds generally. Then @(x)
satisfy LoB’s condition (i), (ii) and (iii) above. Also it is possible to find & diagonal
formula for —1¢(x) (since ¢ is arithmetical) and so F@("z + 7). But F [ + 2.
A contradiction. [J '

2.3. Lemma. It is not the case that for-all ¢
) FPr(Te™) — Oe-
Proof. F—1[x & z —» 1Pr(Tz &+ 2. O
"It seems that the moddlity O is nearer to the “real” provability than Pr(z).
Let us repeat that the decidability of ¢, i.e. kg or F—ig, imp]ies a grovable O-de-

.cidability of ¢, i.e. FD(p). >Let us call_g essentially [(1-undecidable iff F1D(p). .

2.4. Lemma. Let ¢ be essentially [J-undecidable. Then both theories MST + ¢ and

_ MST + —1¢ are inconsistent.

Proof. By the N-rule ¢ is provably []-decidable in both theories above. This is a

. contradiction that ¢ is essentially [J-undecidable in MST. (]

If we could find such a formula ¢ we could call MST essentially incomplete. The
problem surely remains whether there is such a formula. (The obvious candidate is
r e r, where r is a set from RUSSELL’s paradox, but r is not a constant of the language
and even cannot be consistently added into it, cf. [6]).

In the rest of this section we describe a semantics which*is complete w.r.t. MST.
A semantics for modal systems is usually formulated in terms of KrrpkE’s models
with worlds and a relation of alternativeness. We will use a concept of [5] which differs
from KrIPKE’s original one.in a different handling with free variables. For example,
while a formula dual to the Barcan’s is derivable (in our sense) already in T in

ax
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Kr1pkE’s formulation it is not a theorem even of JS5. Definition below o'f,a KriPrE's
universum differs also slightly from that of [5], we_ will have a distinguished world.

We will not go into details since this material is familiar. _ P

8.1. Definition. (W, ) is @ model of MST iff (W, k) is a' KRIPKES universum,
‘(i) whose worlds are first-order structures for the languag‘eiv (= ,: e} ( = is abéolufce),
(ii) . whose all worlds have the same domain, . '
(iii)) whose relation of alternativeness is rejflexix.re and transiﬁve,
(iv) which has & distinguished world de‘noted‘by W,
(v)" for any axiom ¢ of MST W, k [1@; where @ is the universal closure of ("2
(for details see [5]). '

3.2. Theorem. Any formula ¢ 18 a consequence of‘MSTw'ff @ holds in all models
of MST. - AR . ' , o

Proof. The “only if” part follows easily from ‘the deduction lemma 1.2. For the
“if”'part it is sufficient to prove the compactness. Let Yo, Y1, ... énumerate the
universal closures of all axioms of MST and let for any k20, yo & ... &y, & ml
have a model W*. On W*s we can look as on many-sorted first-ofder structures and
thus by standard argument we can ‘produce their ultraproduet W such that

Wkwo&wl&wZ&"‘&_'¢"D

Chapter V. Problems and suggestions

In this chapter we consider several problems and suggestions connected with the
development of the theory. Some of them are formulated strictly others are more or
less vague. : b

1. Consistency. Surely, the main problem is to prove the consistency of the theory
MST. Without this result the whole program is rather risky undertaking.

2. Models. The second basic prohlem is to learn how to construct models of MST.
In the semantics of IV.3 is clear the meaning of the modality [ but it gives no idea
what should be €. Some proof of consistency could lead to some more effective descrip-
tion of €. Such a description is necessary if semantics should help in solving some
problems about MST. ) : : '

3. Power of the theory. How strong is the theory (w.r.t. some well-known sys-
tems)? In particular, does MST interpret at least ACA,?

4. Extensions of the theory. With the above problem the question of possible
extensions of MST is connected. In the flavour of the theory new axioms of logical
nature are rather than some having explicit mathematical meaning. Kripke-style
semantics suggests to add axioms which would force some, intuitively: satisfactory,
form of the universum of worlds, i.e. of the relation of alternativeness. E.g. the axioms
which force the relation of alternativeness to be a linear order. Another interesting
possibility is to extend the language of the theory by adding class-variables and the
assumptions by an appropriate class-existence axiom. Such a theory would easily.
interpret second order arithmetic: ‘
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5. Modal complexity. Let us define the modal complemty mc(tp) of the formula ¢
as follows:

(i) me(p) =0 iff ¢ is nonmodal, s

(ii) me(pvyp) = me(p & p) = me(p - ) = mc(q) ) = max(mc(qa) me(yp)),
(iii) me(1¢) = me(Frp) = me(Vry) = me(p),

(iv) me(Og) = 1 + me(p).

Now we can define natural fragments MST;, ¢ < w, of the theory MST: MST, have
instances of MCA only for formulas of modal complexity at most ¢, e.g. MST, contains
only MCA-instances for nonmodal formulas. In [6] we proved that MST, is consistent.
"Problem: Does there exists an ¢ such that MST,; = MST, i.e. is the hierarchy MST,,
MST,, ... proper! Let us remark that everything important so far was proved in
MST, . Thus it is possible that MST; = MST. An argument for this claim could be
the following: Let MCA(g) be the instance of the scheme MCA for a formula ¢ such
that me(p) > 1. MCA(y) implies that [Jy is equivalent to some formula .of the form
[J¢t € y. In particular, try to replace subformulas of @ of the form [y, me(Cly) = 2,
by equivalent formulas of the form [J¢'€ y. Thus the modal complexity of ¢ would
be reduced until formula of the modal complexity 1 is reached. The fail in this argu-
ment is the point that for mutual substituability of two formulas ([]w and [Jtey
above) we need more than only their equivalence (see IV.1.1), they should be know-
able equivalent. Thus instead of MCA we would need a scheme (Jy) (V&) O((Clp(t) =
=[tey) & (O¢(t) = O ¢ y)) which is, however, inconsistent (cf. [6]). .

6. Terms. An important question is the prob]em about conditions under which
terms can be introduced.

7. Dis junction property. Many intuitionistic systems fulfil the condition that
if the disjunction @ v ¢ is provable, then one of the disjuncts ¢ or y is provable
(cf. [4]). The modal transform of this situation is: if (¢ v Oy is provable, then so
@ or y is provable. Does MST obey this (disjunction) property? Let us sketch an in-
teresting. consequence of the affirmative answer: By [8], FD(N(x)) implies that +D(y)
for any arithmetical sentence . By the disjunction property would be Fy or -1y for
any such sentence. Thus if MST were consistent and obeyed disjunction property,
then a recursively-enumerable completion of PA: could be found in its theorems. That
is evidently a contradiction. Hence the disjunction property for MST implies that
FON(=)). -

8. Infinity. The interpretation of PEANO’s arithmetic in MST brings into the
theory sufficient aparatus for an interpretation of finite mathematics.-On the other
side MST proves the existency of infinite sets in the usual classical sense, e.g. of the
‘universal set or (by presence of axiom (A)) of the set of natural numbers. However,
it seems that in the context of the modal caleulus the cardinality of a set is not a suf-
ficient expression of its ‘“infiniteness’’. The position of the decidable empty set and
of a decidable universal set in the set-universe is probably equivalently complex.
A more natural expression of ‘““infiniteness’ of sets seems to be their ‘‘complexity’
in the sense of the modality [J. Thus an undecidable set is more infinite than a decid-
able set. So the aim is to define some relation of order for complexities of sets. This
question was already touched in [7] and [8] where two definitions were suggested.
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Roughly speaking these definitions correspond to recursive invariance and m-reduci-
bility of sets from the recursion theory. Let us sketch the later one.

We define: a < b iff
| (3f, v) (D*(}) & Rel(f) & (V1) (t € v) & D(v) & Dom(v, f)
& (Y, 2', 4, ¥, 2) (7f ef & 2’ e f & Pair(z, y, ) & Pairlz, ', 2') > y = ')
& (Vz,y) (F(f, =z, y) » (Ozea = Oyed) & (Or¢a = Oy ¢d))).

Informally: a < b iff there exists a 2-decidable function on the set-universe which
translates the ‘‘elementhood’ of a into that of b in the sense of the formula above.

It is easy to prove, under axiom (A), that =< is a quasi-order and any two non-
empty decidable sets with nonempty complement are in relation =< (the slight modifica-
tion above of the notion of function is needed for the proof that there exists a 2-de-
cidable identity function on the set-universe).

Final remark. Our interest in the theory MST lies mainly in the problem of con-
sistency of some relatively unrestricted comprehension scheme which would have some
mathematical power. The aparatus of the theory together with the modal language
can be found to be suitable for formalization of some intuitive notions (without clas-
sical or intuitionistic counterparts, cf. [8]) and to contribute in this way also to under-
standing of their classical interpretations. As examples we can mention the results of
W. REINHARDT or S. SHAPIRO. Such applications of the theory lie in the means of
expression of the language of the theory and also in a point that some object exists
in a classical form and also in its ““decidable” version which often like to be a ‘“‘kernel”
of the classical concept.
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