
The Journal of Symbolic Logic

Volume 72, Number 4, Dec. 2007

CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly

STEPHEN COOK† AND JAN KRAJÍČEK‡

Abstract. Weprove the following results: (i)PV provesNP ⊆ P/poly iffPV proves coNP ⊆ NP/O(1).

(ii) If PV proves NP ⊆ P/poly then PV proves that the Polynomial Hierarchy collapses to the Boolean

Hierarchy. (iii)S12 provesNP ⊆ P/poly iffS12 proves coNP ⊆ NP/O(log n). (iv) IfS12 provesNP ⊆ P/poly

then S12 proves that the Polynomial Hierarchy collapses to P
NP[log n]. (v) If S22 proves NP ⊆ P/poly then

S22 proves that the Polynomial Hierarchy collapses to P
NP.

Motivated by these results we introduce a new concept in proof complexity: proof systems with advice,

and we make some initial observations about them.

§1. Introduction. The theory PV [9] formalizes reasoning that uses only poly-
nomial time concepts. Similar theories (the so called bounded arithmetic theories)
exist for many other complexity classes [10, 11]. Separating theories (at appropriate
levels of quantifier complexity) corresponding to two complexity classes may not
separate the classes, but it could still carry great significance. In fact, the problem of
separating two such theories is often closely linked with the problem of whether the
distinctness of two complexity classes is consistent with a suitable bounded arith-
metic theory. For example, theories PV and S12 are different if coNP 6⊆ NP/poly is
consistent with PV. Another prominent example is this: Theory S2 is not finitely
axiomatizable (i.e., theories S i2 are all different) iff it is consistent with S2 that PH
does not collapse [17, 4, 19].
It is therefore interesting to study the consistency with bounded arithmetic theo-
ries of various standard conjectures separating complexity classes. A good example
is the conjecture P 6= NP. Showing this is consistent with PV is a major open
problem. In more detail, P = NP is equivalent to the existence of a polynomial
time function F such that F (A) is a satisfying assignment for A whenever A is a
satisfiable propositional formula. This can be formalized in the language of PV by

∀T,A, SAT (T,A) → SAT (F (A), A) (1)

where F is a PV function and SAT (T,A) is an open PV formula expressing that
T is a satisfying assignment for formula A. Showing consistency of P 6= NP with

Received October 31, 2006.
This research was begun while the authors were visiting the Isaac Newton Institute for Mathematical

Sciences (program Logic and Algorithms), in Cambridge.
†Supported in part by the Natural Sciences and Engineering Research Council of Canada.
‡Supported in part by grants A1019401, AV0Z10190503, MSM0021620839, 201/05/0124, and

LC505.

c© 2007, Association for Symbolic Logic

0022-4812/07/7204-0018/$2.90

1353



1354 STEPHEN COOK AND JAN KRAJÍČEK

PV is the same as showing that (1) is not provable in PV for any polynomial time
F . (A natural way to do this would be, for every F , construct a model of PV in
which (1) is false.) This would mean that even if a polytime F satisfying (1) exists,
its correctness could not be proved using only polynomial time concepts.
It is known that PV proves P = NP iff PV proves NP = coNP iff PV defines a
polynomial time algorithm that assigns to a propositional formula either a satisfying
assignment or an Extended Frege proof of its unsatisfiability. The same holds for
S12 . In particular, the consistency of P 6= NP 6= coNP with these theories would
follow from a super-polynomial lower bound for Extended Frege proofs. This is one
of the reasons why lower bounds for Extended Frege systemswould be so important
(and presumably why they seem so difficult).
In this paper we are concerned with whether the conjecture NP 6⊆ P/poly (some
NP problem cannot be solved by any polynomial size family of Boolean circuits) is
consistentwith the theoriesPV , S12 , S

2
2 . Awell-known consequence ofNP ⊆ P/poly

is that the polynomial hierarchy PH collapses to the second level [13, 14], i.e.,

NP ⊆ P/poly =⇒ PH = Σp2 ∩Π
p
2 .

(The conclusion has been improved in various ways, including PH ⊆ ZPPNP.
See [8] for a discussion.) Here we show that stronger collapses can be inferred
from stronger assumptions of the form NP 6⊆ P/poly is inconsistent with various
theories. In particular, if the theory is PV , then the collapse is to the Boolean
hierarchy (i.e., the bounded query hierarchy). If the theory is S12 , then the collapse
is to PNP[O(log n)] (polynomial time withO(logn) queries to anNP oracle). If the
theory is S22 , then the collapse is to P

NP. In all cases, the collapses are provable in
the corresponding theories.
We also show two other intriguing results: PV provesNP ⊆ P/poly iff PV proves
coNP ⊆ NP/O(1), andS12 provesNP ⊆ P/poly iffS12 proves coNP ⊆ NP/O(log n).
(Here the notation /O(1) refers to a constant number of advice bits, and /O(logn)
refers toO(log n) advice bits.) In the final section we introduce the notion of proof
systems with advice.

§2. Preliminaries. We presuppose basic knowledge of bounded arithmetic (see
for example [16] or [5]). However we formulate our results in the two-sorted
setting [10, 11], where PV becomes VPV, S12 becomes V

1, and S22 becomes V
2. In

this setting lower case letters x, y, z,m, n, . . . range over N, and upper case letters
A,B,C,X,Y,Z, . . . range over finite bit strings (technically over finite subsets of
N). The two-sorted vocabulary includes the symbols 0, 1,+, ·,=,≤ of first-order
arithmetic, and also the length function |X |, where the length of the finite setX ⊆ N

is 1 plus the largest element of X , or 0 if X is empty.
For the two-sorted theoryVPV, the vocabulary also includes symbols for all poly-
nomial time functions, both number-valued functions f(~x, ~X ) and string-valued
functions F (~x, ~X ). (Here “polynomial time” means time polynomial in the length
of the inputs, where inputs and outputs of the number sort are written in unary
notation: e.g., 5 is written 11111). The axioms for VPV include definitions for all
of these functions, based on Cobham’s Theorem. Also VPV proves the number
induction scheme for open formulas.



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1355

It is an important fact that VPV is a universal theory (i.e., it can be axiomatized
by purely universal formulas).
Bounded quantifiers for strings have the form ∃X ≤ tϕ, which stands for

∃X (|X | ≤ t ∧ ϕ), or ∀X ≤ tϕ, which stands for ∀X (|X | ≤ t → ϕ). Here t is
a number term which does not involve X .
ΣB1 formulas have the form ∃X1 ≤ t1 · · · ∃Xk ≤ tkϕ where ϕ has no string quanti-
fiers, but may have bounded number quantifiers. More generally ΣBi formulas begin
with i blocks of bounded string quantifiers, in which the first block is existential,
the second is universal, etc. ΠBi formulas are the same, except the first block is uni-
versal. Note that ΣBi formulas correspond to strict Σ

b
i formulas in the single-sorted

case, because we require that all string quantifiers are in front.
The theories V i , i ≥ 1, have the finite two-sorted vocabulary mentioned above.
For these theories, ΣBi and Π

B
i formulas are restricted to this vocabulary, but in

the context of VPV we allow these formulas to have the full vocabulary of VPV.
The theory V i proves the number induction scheme for ΣBi formulas. The theory
V i (VPV) has the vocabulary of VPV and proves the number induction scheme for
ΣBi formulas over this larger vocabulary. V

i(VPV) is a conservative extension of
V i , but V i (VPV) is not conservative over VPV unless the polynomial hierarchy
collapses.
An important fact is that a set of strings is in NP iff it is represented by a ΣB1
formula ϕ(X ) with one free string variable X . This is true whether or not we allow
ΣB1 formulas to have the full vocabulary of VPV.
The class P/poly consists of all problems solvable in polynomial time with poly-
nomial “advice”. That is, for each input length n there exists a string Yn of length
nO(1) (the advice) such that when the polytime algorithm is supplied with Yn in
addition to the input string of length n, the algorithm obtains the correct answer.
An equivalent definition ofP/poly is the class of all problemsL solvable by a family
〈Cn , n ∈ N〉 of Boolean circuits such thatCn has size nO(1) and solves the restriction
of L to inputs of length n.
It is straightforward to verify that VPV can prove the equivalence of the two
definitions of P/poly.
To formalize the assertion NP ⊆ P/poly as a VPV formula, we start by noting
thatVPV can prove theNP-completeness of the propositional satisfiability problem
in the following sense. For every ΣB1 formula ϕ(X ) there is a VPV string function
Fϕ(X ) which takes a string X to a string Fϕ(X ) encoding a propositional formula
such that

VPV ` ϕ(X ) ↔ ∃T SAT (T, Fϕ(X )) (2)

where SAT (T,A) is an open VPV formula which holds iff truth assignment T
satisfies formula A.
Thus NP ⊆ P/poly is equivalent in VPV to the assertion that the satisfiabil-
ity problem can be solved by a polynomial size family of Boolean circuits. By
the “self-reducibility” of satisfiability, it follows that this is again equivalent to
the existence of a polynomial size family of Boolean circuits such that the n-th
circuit C ′

n in the family, given a satisfiable propositional formula A (coded as a
bit string of length at most n) as input, outputs C ′

n(A), a satisfying assignment
for A.



1356 STEPHEN COOK AND JAN KRAJÍČEK

Further, VPV proves self-reducibility in the following sense. We define a VPV
formula Correct(C, n), asserting that the Boolean circuit C correctly solves the
satisfiability problem for formulas A of length at most n, as follows:

Correct(C, n) ≡ ∀A ≤ n, C (A) = 1↔ ∃T SAT (T,A).

Then there is a VPV function CIRC (C, n) which, given a circuit C satisfying
Correct(C, n) gives a Boolean circuit C ′ which outputs a satisfying assignment
C ′(A) for every satisfiable formula A of length at most n. We claim that

VPV ` Correct(C, n)→

∀T,A ≤ n, SAT (T,A) → SAT (CIRC (C, n)(A), A). (3)

For each i , the circuit CIRC (C, n) finds the i-th bit of the satisfying assignment by
asking C whether A remains satisfiable when the i − th variable of A is set to 1,
given the values it has previously found for the first i − 1 variables. Then (assuming
Correct(C, n) and SAT (T,A)) VPV proves by induction on i that A instantiated
by the first i truth values is satisfiable, according to C . The claim (3) follows.
The claim (3) justifies coding the assertion NP ⊆ P/poly by the following ΣB2
formula:

∀n∃C ≤ t∀A ≤ n∀T ≤ n, SAT (T,A) → SAT (C (A), A) (4)

where t = t(n) is a VPV number term (we may assume it has the form n`), C (A)
is a VPV term expressing the output of circuit C on input A, and SAT (T,A) is a
VPV open formula which asserts that truth assignment T satisfies formula A.

§3. Results for universal theories. A useful tool for studying universal theories is
the KPT witnessing theorem [17]. This is a form of the Herbrand Theorem, and
can be stated in a general first-order context as follows.

Theorem 3.1 (KPT). Let T be a universal theory over a vocabulary L which
contains at least one constant or function symbol. Let ϕ(x, y, z) be an open L -
formula and suppose T proves ∀x∃y∀zϕ(x, y, z). Then there exists a finite se-
quence t1(x), t2(x, z1), . . . , tk(x, z1, . . . , zk−1) of L -terms (containing only the dis-
played variables) such that

T ` ∀x∀~z, ϕ(x, t1(x), z1) ∨ ϕ(x, t2(x, z1), z2) ∨ · · · ∨ ϕ(x, tk(x, z1, . . . , zk−1), zk).

Proof from [12]. Let b, c1, c2, . . . be a list of new constants, and let u1, u2, . . . be
an enumeration of all variable-free terms built from symbols of L together with
b, c1, c2, . . . , where the only new constants in uk are among {b, c1, . . . , ck−1}. It
suffices to show that

T ∪ {¬ϕ(b, u1, c1),¬ϕ(b, u2, c2), . . . ,¬ϕ(b, uk , ck)}

is unsatisfiable for some k.
Suppose otherwise. Then by compactness

T ∪ {¬ϕ(b, u1, c1),¬ϕ(b, u2, c2), . . . } (5)

has a model M . Since T is universal, the substructure M ′ consisting of the
denotations of the terms u1, u2, . . . is also a model for (5). It is easy to see that

M ′ |= T + ∀y∃z¬ϕ(b, y, z)



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1357

and hence T 6` ∀x∃y∀zϕ(x, y, z). a

The following is an easy consequence of this KPT theorem in the two-sorted
setting.

Corollary 3.2. Let TVPV be VPV , or any universal theory with the same vo-
cabulary as VPV. If TVPV proves (4) then there are VPV functions C1, · · · , Ck
whose values are Boolean circuits such that TVPV proves

∀n∀A1, · · · , Ak , T1, · · · , Tk ≤ n, [SAT (T1, A1) → SAT (C1(n)(A1), A1)] ∨

[SAT (T2, A2) → SAT (C2(n,A1, T1)(A2), A2)] ∨ · · · ∨

[SAT (Tk , Ak) → SAT (Ck(n,A1, · · · , Ak−1, T1, · · · , Tk−1)(Ak), Ak)]. (6)

Definition 3.3. Let k = k(n) be a function on natural numbers. A language
L ⊆ {0, 1}∗ is in the class NP/k(n) (NP with k(n) bits of advice) iff there is a
polynomial time relationR(X,Y, i) such that for all n ∈ N there exists i ≤ 2k(n) (the
advice) so for all X ∈ {0, 1}n

X ∈ L⇔ ∃Y ≤ nO(1) R(X,Y, i). (7)

The assertion coNP ⊆ NP/O(1) is equivalent to saying that for every ΣB1 formula
ϕ(X ) there is a ΣB1 formula ø(X, i) and a constant k such that

∀n

k∨

i=1

∀X, |X | = n → [¬ϕ(X ) ↔ ø(X, i)]. (8)

Theorem 3.4. Let TVPV be VPV, or any universal extension of VPV with the
same vocabulary. Then TVPV proves NP ⊆ P/poly as in (4) iff TVPV proves
coNP ⊆ NP/O(1) as in (8).

Proof. Assume that TVPV proves NP ⊆ P/poly. It follows from Corollary 3.2
that TVPV proves (6). Since VPV proves that the propositional unsatisfiability
problem is complete for coNP (see (2)), it suffices to prove (8) for the case ϕ(X )
is ∃T ≤ |X | SAT (T,X ). Let the constant k be as in (6). Given n, the ad-
vice in for n is the smallest number j ≤ k such that (6) holds for this n and all
A1, · · · , Ak , T1, · · · , Tk , with k replaced by j. Note that VPV easily proves the
existence of in, since k is a constant and only order properties of N are needed.
We define the ΣB1 formula ø(A, i) in (8) to assert the existence of A1, · · · , Ai−1
and T1, · · · , Ti−1 which falsify the first i − 1 disjuncts in (6) and also falsify

SAT (Ci (n,A1, · · · , Ai−1, T1, · · · , Ti−1)(A), A).

Tomake clear the application of Corollary 3.2 we use the same symbols as in (6) but
note thatA1, . . . , Ai−1 as well as T1, . . . , Ti−1 are existentially quantified in ø(A, i)
and hence their occurrences are not free. By the definition of the advice in given
above, it is easy to verify in TVPV that if A is a propositional formula of length n,
then ø(A, in) holds iff A is unsatisfiable.
Conversely, suppose that TVPV proves coNP ⊆ NP/O(1) as in (8). For fixed n,
define

U ={X | ϕ(X ) ∧ |X | = n},

Vi ={X | ø(X, i) ∧ |X | = n}, i = 1 · · ·k.



1358 STEPHEN COOK AND JAN KRAJÍČEK

Then by (8) we conclude in TVPV that at least one Vi is the complement of U :

∨

i

[U ∩ Vi = ∅ ∧U ∪ Vi = {X : |X | = n}].

It follows that (writing U (X ) for X ∈ U and Vi(X ) for X ∈ Vi ) for any I ⊆
{1, . . . , k}, TVPV proves (for X1, · · · , Xk , Y ranging over strings of length n)

∧

i∈I

U (Xi ) ∧ Vi (Xi ) →
∨

j /∈I

U (Y ) ∨ Vj(Y ). (9)

This is because the conditions in the antecedent imply thatVi is not the complement
of U while the condition in the succedent for j is implied if Vj is the complement.
The prenex form of this formula is ΣB1 (with additional free variables), so the
Herbrand theorem provides us with polynomial time functions

FI (X̃i1 , · · · , X̃i` , Y ),

one for each I = {i1 < · · · < i`} which from witnesses X̃i ’s to the validity of
the conjuncts in the antecedent (i.e., X̃i is Xi ∈ U ∩ Vi together with the two NP
witnesses for the membership in the two sets) and from Y finds a j /∈ I and an NP
witness of the membership of Y in either U or Vj .
Now we show how to compute U in polynomial time using polynomial size
advice. For a given length n we get the following advice:

• I = {i | U ∩ Vi 6= ∅}.
• For each i ∈ I a witness Ãi to the fact that U ∩ Vi 6= ∅, i.e., a string Ai of
length n in the intersection and the two NP-witnesses of its membership in U
and Vi .

If we want to decide whether or not B ∈ U , |B | = n, we simply compute

FI (Ãi1 , . . . , Ãi` , B).

The output is either a witness to B ∈ U or a witness to B ∈ Vj for some j /∈ I . In
the latter case, necessarily B /∈ U by definition of I . a

The Boolean Hierarchy BH is the smallest class of sets that contains NP and is
closed under the Boolean operations of intersection, union, and complement. It
coincides with the bounded query class PNP[O(1)] of sets which can be computed
in polynomial time with a constant number of queries to an NP oracle (see [1]).
Thus

NP ⊆ BH ⊆ PNP[log n] ⊆ PNP ⊆ Σp2 ∩Π
p
2 ⊆ PH

where PH is the polynomial hierarchy and PNP[log n] is the class of sets solvable
in polynomial time by making O(log n) queries to an NP oracle. It is not known
whether any of these inclusions is proper.

Theorem 3.5. Let TVPV be VPV or any universal extension of VPV with the
same vocabulary. If TVPV proves NP ⊆ P/poly as in (4), then TVPV proves that
the polynomial hierarchy collapses to the Boolean Hierarchy.

Proof. As in the proof of Theorem 3.4, we may assume that TVPV proves (6).
To show PH = BH it suffices to show that Σp2 ⊆ BH . Thus suppose that L ∈ Σp2 ,



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1359

so

X ∈ L ⇔ ∃Y ≤ f(|X |)∀Z ≤ g(|X |)ϕ(X,Y,Z) (10)

where f and g are polynomials and ϕ(X,Y,Z) is an open formula of VPV. Since
the satisfiability problem is NP-complete, there is a VPV function F (X,Y ) such
that F (X,Y ) is a satisfiable propositional formula iff ¬∀Z ≤ g(|X |)ϕ(X,Y,Z).
Further, the equivalence is provable in VPV (see (2)).
Now suppose C is a circuit such that for every satisfiable propositional formula
A of length at most n, C (A) is a satisfying assignment for A (n will be specified
later). Then for all X,Y such that |F (X,Y )| ≤ n we have

∀Z ≤ g(|X |)ϕ(X,Y,Z) ⇔ ¬SAT (C (F (X,Y )), F (X,Y )). (11)

We can find a suitable circuit C by using (6) and computing the advice in used
in the proof of Theorem 3.4. We can compute in by successive NP queries, for
j = 1, 2, . . . , k

∃T1, A1, · · · , Tj , Aj ≤ n

j∧

i=1

[SAT (Ti , Ai ) ∧ ¬SAT (Ci (n,A1, · · · , Ai−1, T1, · · · , Ti−1)(Ai ), Ai )].

Then in is the smallest j such that the answer to the query is ‘NO’. (VPV easily
proves the existence of in because there are only a constant k number of possible
choices for it.) Now one more NP query suffices. Thus, setting j = in, X ∈ L iff

∃Y ≤ f(|X |)∃T1, A1, · · · , Tj−1, Aj−1 ≤ n

j−1∧

i=1

[SAT (Ti , Ai ) ∧ ¬SAT (Ci (n,A1, · · · , Ai−1, T1, · · · , Ti−1)(Ai ), Ai )]

∧ ¬SAT (Cj (n,A1, · · · , Aj−1, T1, · · · , Tj−1)(F (X,Y )), F (X,Y )).

Finally we can set n = h(|X |) for a suitable polynomial h.
It is easy to see that this argument can be formalized in TVPV. a

It turns out that Theorem 3.5 can also be proved as an immediate consequence
of Theorem 3.4 and the following complexity-theoretic result.

Theorem 3.6 (Jer̆ábek).1 If coNP ⊆ NP/O(1) then the Polynomial Hierarchy
collapses to the Boolean Hierarchy. The proof can be formalized in VPV.

Proof. As in the proof of Theorem 3.5, to show PH = BH it suffices to show
that the language L satisfying (10) is in the Boolean Hierarchy. Let F (X,Y ) be as
in that proof.
Assume that coNP ⊆ NP/O(1), so UNSAT is in NP/O(1). Then there is a ΣB1
formula UNS(A, i) and a number k such that for every length n there is advice
i ≤ k and for every propositional formula A of length at most n,

A is unsatisfiable iff UNS(A, i) (12)

1We are grateful to Emil Jer̆ábek for supplying the proof of this theorem, in response to an open
problem stated in an earlier version of this paper.



1360 STEPHEN COOK AND JAN KRAJÍČEK

Then we claim that

X ∈ L ⇐⇒

k∨

i=0

[∃Y ≤ f(|X |) UNS(F (X,Y ), i)

∧ ∀A,T ≤ h(|X |), UNS(A, i) → ¬SAT (T,A)] (13)

where h(m) is a polynomial upper bound on |F (X,Y )| for all X of length m and
all Y of length at most f(m). It follows from this Claim that L ∈ BH , since the
RHS has the form

∨
i [Ri ∧ Si ] where Ri is in NP and Si is in coNP.

To prove the Claim, first assume that X ∈ L. Let n = h(|X |) and let i ≤ k be
the advice such that (12) holds for all A of length at most n. Then the RHS of (13)
holds by (10) and the stated property of F (X,Y ).
Conversely, suppose thatX satisfies the RHS of (13), let i satisfy the disjunction,
and let Y satisfy the existential quantifier for this i . Then the second conjunct
implies that this i gives “sound advice” for UNS(A, i), |A| ≤ h(|X |), and hence
X ∈ L by (10) and the stated property of F (X,Y ).
Note that VPV proves (13) from (10) and the properties of F (X,Y ) and
UNS(A, i). a

§4. Witnessing theorems. The notions surrounding definability of multivalued
functions (which we call search problems) in bounded arithmetic were introduced
in [7].
A search problem QR is a multivalued function with graph R(~x, ~X ,Z), so

QR(~x, ~X ) = {Z | R(~x, ~X ,Z)}.

Here the arity of either or both of ~x, ~X may be zero. We assume here that the search
problem is total, meaning that the set QR(~x, ~X ) is non-empty for all ~x, ~X . The
search problem is a function problem if |QR(~x, ~X )| = 1 for all ~x, ~X .

A (single-valued) function F (~x, ~X ) solves QR if

F (~x, ~X ) ∈ QR(~x, ~X )

for all ~x, ~X . More generally, a search problem QR′ solves QR if QR′ is total and

QR′(~x, ~X ) ⊆ QR(~x, ~X )

for all ~x, ~X .
We say that a search problem QR is ΣBi -definable in a theory T if there is a
ΣBi -formula øR such that

øR(~x, ~X ,Z) → R(~x, ~X ,Z)

and
T ` ∃ZøR(~x, ~X ,Z).

For example, a search problem is ΣB1 -definable inV
1 iff it is solvable by a polynomial

time function.
The standard notation PΣ

p
i refers to the class of decision problems solvable in

polynomial time by accessing an oracle for a problem in Σpi . P
Σpi [q(n)] is the same,

except that the number of oracle queries in a computation is limited to O(q(n)),
where n is the length of the input. We use FPΣ

p
i and FPΣ

p
i [q(n)] for the classes of

search problems solvable in the sameway. [7] introduced the notationFPΣ
p
i [wit, q(n)]



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1361

for the class of search problems solvable in polynomial time by making O(q(n))
witness queries to an oracle for some problem in Σpi . Here a witness query returns
1 together with a witness to the query if the answer is ‘YES’, and returns 0 if the
answer is ‘NO’. (Awitness to anNP query is a certificate which can be used to verify
a positive answer in polynomial time, and for i > 1 a witness to a Σpi query allows
a positive answer to be verified in Πpi−1.) When witness queries are allowed, the
machine must output a solution to the search problem no matter which witnesses
to the positive queries are returned.
Note that search problems inFPΣ

p
i [wit] are already inFPΣ

p
i ; i.e., witness queries do

not help if the number of queries is unrestricted. This is because by self reducibility, a
witness for a positive query can be found using polynomially many decision queries.
In terms of two-sorted theories, the following results (among others) are known,
or can be inferred from the corresponding single-sorted results. Here for i ≥ 1 the
theoryTV i [10, 11] is the two sorted analog ofT i2, andTV

0 is a finitely axiomatizable

theory for polynomial time (VPV is a conservative extension of TV 0) [10, 11].

Theorem 4.1. (i) [2] For i ≥ 1, a search problem Q is ΣBi -definable in V
i iff

Q ∈ FPΣ
p

i−1 . For the only if direction, V i proves the correctness of the oracle
algorithm.

(ii) [15, 16] For i ≥ 1, a search problem Q is ΣBi+1-definable in V
i iff Q ∈FPΣ

p
i [wit,

log n]. For the only if direction, V i proves the correctness of the witness oracle
algorithm.

(iii) [3, 10] For i ≥ 0, a search problemQ is ΣBi+1-definable in TV
i iff Q ∈ FPΣ

p
i .

(iv) [18] For i ≥ 0, a search problemQ is ΣBi+2-definable TV
i iff Q ∈ FPΣ

p

i+1 [wit, 1].

The case (iv) in the above theorem follows from Theorem 54 in [18], where the
‘only if ’ direction is proved by a cut-elimination argument. We are interested in this
direction for the case i = 0, so we give a simple proof of this case based on the KPT
theorem. Since VPV is a conservative extension of TV 0, it suffices to prove the
theorem for VPV. Since both directions are interesting, we prove the ‘if ’ direction
also.

Theorem 4.2. A search problem Q is ΣB2 -definable in VPV iff Q ∈ FPNP[wit, 1].
For the only if direction, VPV proves the correctness of the witness oracle algorithm.

Proof. For the direction =⇒, assume thatQ = QR is ΣB2 -definable in VPV , so

VPV ` ∃ZøR(~x, ~X ,Z) (14)

where øR is Σ
B
2 and

øR(~x, ~X ,Z)→ R(~x, ~X ,Z).

For some open formula ϕ, (14) can be written

VPV ` ∃Z∃Y∀Wϕ(~x, ~X ,Z,Y,W ) (15)

where all quantifiers are bounded. By Theorem 3.1 (KPT) there are VPV func-
tions F1, . . . , Fk and G1, . . . , Gk such that (thinking Z = Fi() and Y = Gi (), and
suppressing the arguments ~x, ~X )

VPV ` ϕ(F1, G1,W1) ∨ ϕ(F2(W1), G2(W1),W2) ∨ · · ·

∨ ϕ(Fk(W1, . . . ,Wk−1), Gk(W1, . . . ,Wk−1),Wk). (16)



1362 STEPHEN COOK AND JAN KRAJÍČEK

Now a polynomial time witness oracle machine with an NP oracle, given inputs
~x, ~X , can computeZ satisfyingøR(~x, ~X ,Z) as follows. First ask the oracle whether
∃W1¬ϕ(F1, G1,W1). If ‘NO’, then output F1. If ‘YES’, then let W1 be a witness,
and ask the oracle whether

∃W2¬ϕ(F2(W1), G2(W1),W2).

If ‘NO’, then output F2(W1). If ‘YES’, then letW2 be a witness, and continue. By
(16) we are guaranteed a ‘NO’ answer after some number i ≤ k queries, so output
Fi (W1, . . . ,Wi−1). Then VPV proves that the output satisfies the quantifier ∃Z in
(15), and hence solves the search problem QR.
For the direction⇐=, assume that the oracle Turing machineM solves Q(~x, ~X )
in polynomial time with at most k witness queries to the NP language L, for some
constant k. Let Comp(~x, ~X ,W ) be a ΠB1 -formula asserting thatW codes a halting

computation ofM on input ~x, ~X . ThusW codes the sequence of configurations of
M on input ~x, ~X , and for each query toL it provides the answer to the query. If the
answer is ‘YES’ it provides a witness for the query (the correctness of the witness
can be checked by a ΣB0 -formula). Note that a ‘NO’ answer can be verified using
the universal string quantifiers allowed for ΠB1 -formulas.
Now define

ø(~x, ~X ,Z) ≡ ∃W ≤ t, Comp(~x, ~X ,W ) ∧Out(Z,W )

whereOut(Z,W ) is a ΣB0 -formula asserting thatZ is the output of the computation

W and t = t(~x, ~X ) is a suitable bounding term. To show that Q is ΣB2 -definable in

VPV is suffices to show that VPV proves ∃Zø(~x, ~X ,Z). Since it is easy to show
that every computation W has an output Z satisfying Out(Z,W ), it suffices to
show

VPV ` ∃WComp(~x, ~X ,W ).

To do this, recall that k is an upper bound on the number of queries made by
M during any computation. We define, for 0 ≤ i ≤ k + 1, the ΠB1 -formula

Compi(~x, ~X ,W ) to assert thatW codes a partial computation ofM on input ~x, ~X
which is either halting, or includes at least i queries, and ends on an unanswered
query. It suffices to show that for each i ,

VPV ` ∃WCompi(~x, ~X ,W ) (17)

because by assumption Compk+1 is equivalent to Comp, so we may replace Comp
by Compk+1.
For i = 0, (17) follows from the fact that VPV proves the existence of a compu-
tation for any polytime (nonoracle) Turing machine. It suffices to show

VPV ` Compi(~x, ~X ,W )→ ∃W ′Compi+1(~x, ~X ,W
′)

Arguing in VPV, assume Compi(~x, ~X ,W ). IfW is a halting computation we are
done. Otherwise the answer to the final query ofW must be either ‘YES’ or ‘NO’.
If the answer is ‘YES’, then by definition there is a witness to the answer, and using
this witness the computation can be continued until the next query. If the answer is
‘NO’, then again the computation can be continued until the next query. a



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1363

§5. Results for V1 and V2. We now apply Theorem 4.1 to infer analogs of Theo-
rems 3.4 and 3.5 for the theories V1 andV2. We also note that Theorem 3.5 and the
only if direction of Theorem 3.4 for VPV follow rather easily from Theorem 4.2,
using the proof method of the next theorem.

Theorem 5.1. (i) V1 provesNP ⊆ P/poly iff V1 proves coNP ⊆ NP/O(logn).
(ii) If V1 proves NP ⊆ P/poly then V1 proves that the Polynomial Hierarchy
collapses to PNP[log n].

(iii) If V2 proves NP ⊆ P/poly then V2 proves that the Polynomial Hierarchy
collapses to PNP.

Proof. (i) (=⇒): Assume that V1 proves NP ⊆ P/poly as in (4). Let ç(n, C ) be
the formula

∀A ≤ n∀T ≤ n, SAT (T,A) → SAT (C (A), A). (18)

Then V1 proves ∃Cç(n, C ), and hence the search problem Q given by

Q(n, C )⇔ ç(n, C )

is ΣB2 -definable in V
1. Therefore, due to Theorem 4.1 part (ii) for i = 1, Q is in

FPNP[wit, log n], provably inV1. LetM be a polynomial time witness oracle Turing
machine solving Q by making O(log n) witness queries to some NP problem, such
that V1 proves that any circuit C output by M on input n satisfies (18). Here is
how V1 proves the existence of a correct computation ofM for each input n. We
distinguish between the decision part of a witness query, whose answer is 0 or 1,
and the witness part of the answer in case the decision answer is 1. Note that the
sequence of queries (and their answers) may not be determined by the input n,
because more than one witness answer to a positive witness query may be possible.
By the ΣB1 number-MAX principle, V

1 proves for each input n the existence of a
computation Z ofM in which the sequence of 0-1 answers to the decision part of
the queries is lexicographically the largest possible (here the ΣB1 formula verifies the
1 answers and their witnesses, but does not verify the 0 answers). It follows that
the 0 answers for this computation are correct, even though they have not been
verified (the first wrong 0 answer would yield a lexicographically larger sequence of
answers).
According to Definition 3.3, the assertion coNP ⊆ NP/O(log n) is equivalent to
saying that for every ΣB1 formulaϕ(X ) there is a Σ

B
1 formulaø(X ) and a polynomial

f(n) such that

∀n∃i ≤ f(n), |X | = n → [¬ϕ(X )↔ ø(X, i)]. (19)

As before, since the unsatisfiability problem is complete for coNP, it suffices to show
that V1 proves (19) for the case that ϕ(X ) is ∃T ≤ |X | SAT (T,X ).
Given n, the advice string needed to show that a given unsatisfiable formula A of
length n is indeed unsatisfiable is the lexicographically largest possible string of 0-1
query answers described above for the computation of M on input n. We define
the ΣB1 formula ø(A, i) in (19) to assert that some computation Z ofM on input
n, in which the query answers are those coded by i in binary, computes a circuit C
such thatC (A) is not a satisfying assignment forA. Then V 1 proves thatC satisfies
(18), and hence A is unsatisfiable.



1364 STEPHEN COOK AND JAN KRAJÍČEK

(i) (⇐=): Assume that V1 proves coNP ⊆ NP/O(log n) as in (19). We argue
that V1(VPV) proves NP ⊆ P/poly by a slight modification of the proof of the
‘if ’ direction of Theorem 3.4. (Note that V1(VPV) is a conservative extension of
V1.) The sets U and Vi are as in that proof, except that i ranges up to O(log n)
rather than the constant k. The set I in (9) is specified by a string variable I
listing its members. Instead of a separate function FI for every I , we now have
a single VPV function F (I, X̃ , Y ), where X̃ is an array giving witnesses to the
validity of all conjuncts in the antecedent of (9). (The existence of a polynomial
time such F now follows from the Buss witnessing theorem for V1.) The advice
required to compute U is the same as before, except longer (but still polynomial in
length), since it requires information for O(log n) values of i instead of a constant
k values.
(ii): Assume that V1 proves NP ⊆ P/poly as in (4). LetM be the witness oracle
machine described in the proof of (i) (=⇒) above. Thus on input n,M computes a
circuit C satisfying (18).
In order to show that V1(VPV) proves that the Polynomial Hierarchy collapses
to PNP[log n], it suffices to show Σp2 ⊆ PNP[log n]. We argue as in the proof of
Theorem 3.5, and assume that L ∈ Σp2 , so (10) holds. The idea is to use the
circuit C solving SAT computed by M , so that (11) holds for this C . However
there is a difficulty in finding C , because we are trying to show L is in PNP[log n],
so that only decision queries are allowed, but M requires witness queries to find
C . We proceed as follows. To determine whether a given string X is in L, we
start by asking a sequence of O(log n) NP decision queries to determine the lexi-
cographically largest possible sequence S of 0-1 answers to the witness queries of
the computation ofM (see the proof of (i) (=⇒)) on input n (where n is a suitable
polynomial in |X |). Now just one more NP decision query is needed. By (10)
and (11), X is in L iff there exists Y ≤ f(|X |) and there exists a computation of
M on input n such that the decision part of the answers to the witness queries of
the computation are the sequence S (only positive query answers and their wit-
nesses need be verified) such that if C is the resulting circuit computed byM then
¬SAT (C (F (X,Y )), F (X,Y )).
(iii): The proof is similar to the proof of (ii), but instead of part (ii) of Theorem4.1
we use part (i): If Q is ΣB2 -definable in V

2 then Q is in FPNP. a

Just as Theorem 3.5 follows from Theorem 3.4 and Theorem 3.6, an alternative
proof of Theorem 5.1 (ii) (except possibly the provability of the conclusion) can
be obtained from the conclusion coNP ⊆ NP/O(logn) of Theorem 5.1 (i) and the
following complexity-theoretic result.

Theorem 5.2. If coNP ⊆ NP/O(logn) then the Polynomial Hierarchy collapses
to PNP[log n].

Proof. We argue as in the proof of Theorem 3.6, except now the formula
UNS(A, i) needs O(logn) bits of advice instead of constant advice. Thus the
constant k in (13) becomes a function k(n) = nO(1) (where n = |X |). From this
we see thatL can be computed in polynomial time with polynomially many parallel
queries to an NP oracle. From results in [6] it follows that O(logn) serial queries
suffice, so L ∈ PNP[log n] as required. a



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1365

§6. Proof systems with advice. In this section we introduce propositional proof
systems with advice, a new concept in proof complexity suggested by results from
the earlier sections.
Before we give formal definitions let us explain one possible motivation in detail.
It is well-known that the provability of a ΠB1 formulaϕ inVPV implies the existence
of polynomial size Extended Frege EF proofs of the propositional translations 〈ϕ〉n
of ϕ (in fact, the proofs can be constructed by a p-time algorithm). This goes back
to [9] (a background for this can be also found in [16, 11]).
Using this relation between VPV and EF one can show that the provability of
NP = coNP in VPV would imply that EF is polynomially bounded, i.e., that it
proves all tautologies by proofs of polynomial size. Let us repeat the argument
for the reader’s benefit and a later reference. The assumption that VPV proves
NP = coNP implies (via the Herbrand theorem) that for some p-time function F
VPV proves

SAT (T,A) → SAT (F (A), A). (20)

Hence the propositional formulas translating this implication for all lengths

〈SAT (T,A)〉n,m(p, q)→ 〈SAT (F (A), A)〉m(q) (21)

have p-size EF proofs. Here p, q are tuples of atoms of lengths n andm respectively,
representing the strings T,A.
Now let B(p) be any tautology with n atoms. Combine the instance of (21) with
q := a where a is an m-tuple of bits representing the formula ¬B(p) with a short
proof of (by a straightforward evaluation)

¬〈SAT (F (A), A)〉m(a)

to deduce
¬〈SAT (T,A)〉n,m (p, a).

Then, using a general and shortly provable fact

¬〈SAT (T,A)〉(p, a) → B(p) (22)

deduce formula B(p).
As a corollary we get that proving any one lower bound for EF (i.e., proving that
EF is not “super”) implies unprovability of (20) for all possible functions F and
hence the consistency of NP 6= coNP with VPV.
What we are after in this section is definition of a “proof system” EF/O(1), EF
with finite advice, that would play a similar role for the non-uniform case coNP ⊆
NP/O(1) considered in Section 3. That is, the provability of the inclusion coNP ⊆
NP/O(1) would imply that EF/O(1) is polynomially bounded. In particular, a
lower bound for proofs in EF/O(1) of any one particular sequence of tautologies
would imply that coNP 6⊆ NP/O(1) is consistent with VPV .

Definition 6.1. Let k = k(n) be a function on natural numbers. A propositional
proof system with k bits of advice, abbreviated a pps/k system, is a binary relation
Q(X,Y ) such that

X ∈ TAUT iff ∃YQ(X,Y )

and Q(X,Y ) is computable in time polynomial in (|X | + |Y |) with k(n) bits of
advice, where n = |X | and the advice depends only on n.



1366 STEPHEN COOK AND JAN KRAJÍČEK

Here TAUT is the set of propositional tautologies in the DeMorgan language.

The restriction that the advice being used in computing Q(X,Y ) depends only
on n is motivated by Definition 3.3, where the advice allowed to determine whether
X ∈ L depends only on the length of X . Also, by allowing the advice to depend
only on n we keep in line with the general idea that complexity of proofs is measured
in terms of the length of the formula being proved.
In the classical Cook-Reckhow setting we can equivalently define proof systems
as functions. It turns out that the straightforward definition (Part 1 of the next
definition) is not necessarily equivalent withDefinition 6.1 in the presence of advice,
and one needs to define a variant of the usual concept (Part 2 in the next definition).

Definition 6.2. Part 1. Let k = k(n) be a function on natural numbers. A
functional proof system with k bits of advice is a function P(Y ) from the set of
all strings (in some finite alphabet of size at least 2) whose range is exactly the set
TAUT , and such that P is computable by a polynomial time algorithm using k(n)
bits of advice on inputs of length n.
Part 2. A length-determined functional proof system with k bits of advice, ab-
breviated a ldpps/k system, is the same as a functional proof system P, except there
is a function `(m) such thatP(Y ) has length `(m) for allY of lengthm, and further
the advice allowed to compute P(Y ) is k(`(m)) bits and depends only on `(m) (and
not otherwise on m).

When discussing functional proof systems at the same time as proof systems
according to Definition 6.1 we sometimes refer to the latter as relational proof
systems.

Lemma 6.3. Relational proof systems and length-determined functional proof sys-
tems are p-equivalent concepts. (In the case of relational systems Q, we interpret the
pair (X,Y ) to be a proof of X iff Q(X,Y ) holds.)

Proof. Given a ldpps/k systemP wedefineQ(X,Y ) by the conditionX = P(Y ).
Then Q is a p-equivalent relational system with k bits of advice.
Conversely given a relational system Q with k bits of advice, we want to define
a p-equivalent ldpps/k system P ′. To define P′(Z), the idea is to interpret Z to
be an ordered pair (X,Y ) and define P ′(Z) = X . However in order to make P ′

length-determined we need to use a pairing function with the property that the
length of the pair (X,Y ) determines the lengths of both X and Y . This can be
done by using a standard pairing function 〈n,m〉 on natural numbers (for example,
〈n,m〉 := (1/2)(n+m)(n+m+1)), and defining the ordered pair (X,Y ) for |X | = n
and |Y | = m to be the usual ordered pair padded by some canonical symbol so
the result has length 〈n,m〉. The resulting ldpps/k system P ′ p-simulates Q(X,Y )
because the padded pair (X,Y ) has length bounded by a polynomial in the sum of
the lengths of X and Y . a

In general it seems difficult to turn a functional proof system P with advice into
a p-equivalent length-determined system. However this can be done when P is a
classical Cook-Reckhow proof system (i.e., k = 0).

Lemma 6.4. For k = 0 (no advice) every functional pps/k system P is p-equivalent
to some ldpps/k system P ′.



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1367

Proof. Given P, let Q be as in the first part of the proof of Lemma 6.3: i.e.,
Q(X,Y ) iff X = P(Y ). Then Q is an equivalent relational system even if P is not
length-determined, because k = 0. Now let P ′ be defined as in the second part of
the proof of the Lemma. a

Next we relate pps/k systems to Definition 3.3.

Theorem 6.5. For every function k(n), TAUT ∈ NP/k(n) iff some pps/k(n)
system is polynomially bounded.

Proof. This is immediate from Definitions 3.3 and 6.1. a

Before we turn to the question of how to define an extension of a particular
classical proof system by allowing it to use advice, we make one general observation
showing that functional proof systems with advice are in principle quite powerful,
at least if we do not require that they be length-determined. The second part of the
theorem has been suggested to us by a question of P.Pudlák.

Theorem 6.6. There is a functional proof system P with one bit of advice that
p-simulates all classical Cook-Reckhow proof systems.
In fact, P simulates all functional pps/O(logn) systems (i.e., it is optimal in this
class). The simulation of a functional pps/k(n) system ( for k(n) ≤ O(log(n))) by P
is computed by a polynomial time algorithm using k(n) bits of advice.

Proof. First a convention. Polynomial time Turing machines are assumed to
have an explicit clock limiting the time of the computation. Furthermore, if a
machine has a description encoded by natural number Q then its time bound is at
most nQ (this can be arranged by enlarging the description of Q in some canonical
way if necessary).
We define the functional pps/1 system P to operate as follows. Upon receiving
input w of length m it interprets m is an ordered quadruple 〈m1, m2, m3, m4〉 of
numbers and string w as being the concatenation of strings w1, . . . , w5 with |wi | =
mi for i = 1, · · · , 4 and |w5| = 〈m1, m2, m3, m4〉 − (m1 +m2 +m3 + m4). Then P
proceeds as follows:

1. It discards w4 and w5 (these are just strings of junk symbols that boost the
input length.)

2. It interprets m3 as an algorithm Q.
3. It writes down numberm2 in binary; we shall denote the resulting string a(m2)
to avoid a confusion between strings and their lengths. The length of a(m2) is
thus dlog(m2)e.

4. It checks thatm, the length of the input, satisfies m ≥ mQ1 .
5. If any of the conditions above fails, P halts and produces some default tautol-
ogy, e.g., 1.
Otherwise P gets the one bit of advice: The advice equals 1 iff
• Q encodes an algorithm that uses dlog(m2)e bits of advice on inputs of
length m1.

• Q using advice a(m2) is sound on inputs of lengthm1 (i.e., it outputs only
tautologies).

6. If the advice is 0, P outputs the default tautology 1. Otherwise it simulates
the run of Q on input w1 and advice a(m2) and outputs the output of this
simulation (a tautology).



1368 STEPHEN COOK AND JAN KRAJÍČEK

Note that this advice bit depends only on m, the input length. (We remark that the
bit can be computed in coNP.)

Claim 1. Algorithm P runs in polynomial time and on every input produces a
tautology.

It is clear that P produces a tautology because it produces either 1 or an output of
a sound (on given input length) proof system. The biggest contribution to the run
time of P is the simulation of Q which can be done in the square of the time of Q,
which is bounded by |w1|Q ≤ m.

Claim 2. The functional pps/1 system P simulates any functional pps/k(n) if
k(n) ≤ O(log n). The simulation is computed by a p-time function using k(n) bits
of advice (i.e., it is not a p-simulation if k 6= 0).
In particular, P p-simulates all Cook-Reckhow proof systems.

Given a functional pps/k(n) system Q with k(n) ≤ O(log n) we must define its
simulation f by P. On input v of length n the value f(v) is computed as follows:

1. Put w1 := v.
2. Let an be the advice string of length k(n) that Q uses on inputs of length n
(here the simulation function needs advice, if Q uses it).
Put w2 to be the string ofm2 ones, where m2 is the natural number encoded
by an. Note thatm2 ≤ 2k(n) ≤ nO(1).

3. Put m3 = Q (this is a constant) and put w3 to be the string of m3 zeros.
4. Putm4 = nQ and put w4 to be a string of m4 ones. (This guarantees that item
4 in the definition of P is satisfied, namely m ≥ mQ1 .)

5. Output f(v) := w, where w is the concatenation of w1, w2, w3, w4 followed
by 〈m1, m2, m3, m4〉 − (m1 + m2 + m3 + m4) zeros (so that the length of w
determines m1, . . . , m4). a

Now we turn to the question how to sensibly define an extension of a classical
proof system Q by k := k(n) bits of advice, a system that we would denote Q/k.
Although the definition can be given for a general “sufficiently strong” proof system
Q (see the remarks after Definition 6.7) we shall concentrate here on EF only.
Motivated by the proof of Theorem 3.4, the idea behind the definition is that the
advice will provide EF with a form of witnessing of its ΣB2 consequences. By virtue
of Theorem 3.1 the ∀ΣB2 consequences of VPV are witnessed by disjunctions in the
KPT form. As we want to define EF/k in an elementary way without a reference
to VPV or bounded arithmetic in general, we consider directly the EF-provability
of the (propositional translations of the) KPT disjunctions.
Let ϕ(X,Y,Z) be an open formula in the language of VPV. Fixing bounds t(n)
and s(n) on the lengths of Y and Z in terms of n := |X | respectively, symbol
〈ϕ〉n,t(n),s(n) denotes the propositional translation of ϕ for inputs of the respective
lengths. We shall assume that the bounds on the lengths of Y and Z are implicit in
ϕ and we shall skip an explicit reference to t(n) and s(n) in the notation.
Consider a propositional disjunction of the form

〈ϕ〉n(p,C1(p), q
1) ∨ 〈ϕ〉n(p,C2(p, q

1), q2) ∨ · · ·

∨ 〈ϕ〉n(p,C`(p, q
1, . . . , q`−1), q`) (23)



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1369

where p is an n-tuple of propositional atoms, q1, . . . , q` are s(n)-tuples of atoms (all
distinct), and C1, . . . , C` are circuits with t(n) output bits and with the indicated
inputs. In fact, there are other atoms - the so called extension variables - present
in the disjunction that we shall not show explicitly and we shall discuss them only
now. The propositional formulas translate VPV formulas (in particular, p-time
relations represented by canonical circuits) and also talk about circuits C1, . . . , C` .
For propositional logic, circuits are represented by a sequence of extension variables
e, one for each subcircuit, together with their defining relations. Let Ext(e) be the
conjunctionof all these defining relation for all variables in the tuple e corresponding
to all (sub)circuits occurring in the propositional formula. Then the actual form of
the propositional translation is

Ext(e) → D(p, q1, . . . , q` , e)

where D is the disjunction above (showing e explicitly). However, in order to avoid
extensive notation, we do not display the extension variables e and formula Ext(e)
in the notation in Definition 6.7.
Call any disjunction such as above an (n, `)-disjunction from ϕ.

Definition 6.7. Let a function k := k(n) be given. Put `(n) := 2k(n).
An extension of EF by k(n) advice bits is determined by an open VPV formula
ϕ(X,Y,Z) and a polynomial time function F that upon receiving inputs 1(n) and
1`(n), outputs anEF-proof of an (n, `(n))-disjunction from ϕ. Denote by EFϕ,F the
system determined by ϕ and F .
The advice used by EFϕ,F specifies, for each n, the minimal i ≤ `(n) such that
already the disjunctionBn,i of the first i disjuncts in the (n, `)-disjunction computed
by F is a tautology.
A proof of formula A in EFϕ,F is a triple (1(n), 1`(n),W ) where n = |A|, W is a
EF-proof of

B ′
n,i → A

andB ′
n,i is any simple substitution instance ofBn,i , i.e., only substitutions for (some)

atoms of constants or other atoms are allowed.

The role of function F is to replace an intended logic assumption that the ΣB2 -
formula ∃Y∀Zϕ(X,Y,Z) is provable in VPV; it is known that the latter implies the
existence ofF . The dependence ofF on1`(n) is in order to allow for superpolynomial
size proofs.
Although we have formulated the definition only for EF, analogously one can
define Q/k for any “sufficiently strong” classical proof system Q. The qualification
sufficiently strongwouldmean that (1)Q shortly proves the uniqueness of a compu-
tation of a circuit on an input (p-simulation of resolution byQ suffices for this), and
(2) that it is closed under a feasible weakening rule: a Q-proof of formula B → A
can by constructed by a p-time algorithm given a Q-proof of A and a formula B .
We shall call any system EFϕ,F an “EF/k(n) proof system”.
At the beginning of this section we outlined a proof that if VPV proves NP =
coNP, then EF is a polynomially bounded proof system. The following theorem
shows that under aweaker assumption, someEF/O(1) proof system is polynomially
bounded. This theorem is stated for the theory VPV, although it is clear that an
analogous result holds also for the theory V1 andO(log n) advice bits.



1370 STEPHEN COOK AND JAN KRAJÍČEK

Theorem 6.8. Assume that VPV proves that coNP ⊆ NP/O(1). Then some
EF/O(1) proof system has polynomial size proofs of all tautologies.

Proof. From the hypothesis of the theorem, we conclude from the “if” direction
of Theorem 3.4 that VPV proves NP ⊆ P/poly; i.e., VPV proves the ΣB2 formula
(4). Now from the proof of the “only if” direction we can obtain the desired
polynomially bounded EF/O(1) system.
To add detail to the second part of the argument, we can rewrite the formula (4)
in the form ∀X∃Y∀Zϕ(X,Y,Z), where ϕ is an open VPV formula, and we have
replaced n by |X |, C by Y , and coded the pair (A,T ) by Z. By applying the KPT
Theorem to this we see that VPV proves a version of (6), and the propositional
translation of this is a family of (n, `) disjunctions (23), where ` = 2dlog2 ke and k is
the constant in (6). Let F in Definition 6.7 be the polynomial time function which
gives EF proofs of the (n, `) disjunctions.
To obtain an EF/O(1) proof of a formula A, let n = |¬A|, let Bn,i be as in
Definition 6.7, and let B ′

n,i be the result of substituting the n-tuple of bits coding
¬A for p in (23) and suitable atoms r and constants for the other atoms of Bn,i so
that EF shortly proves

B ′
n,i → ¬〈SAT (Ti , Ai )〉(r, a)

Now we use the fact mentioned as (22) in the beginning of this section to conclude
EF shortly proves B ′

n,i → A.
To fix the slight glitch that we want n = |A| rather than n = |¬A|, simply replace
A by ¬A in the matrix of (4). a

Open Questions. Does Theorem 3.5 have a converse as in Theorem 3.4: If VPV
proves PH = BH can we conclude VPV proves NP ⊆ P/poly?
Is there a converse to either of Theorems 3.6 or 5.2? For example, doesPH = BH
imply coNP ⊆ NP/O(1), possibly with the additional assumption that NP ⊆
P/poly?
How strong are the finite advice extensions of classical proof systems like resolu-
tion or EF in terms of simulation?

REFERENCES

[1] Richard Beigel, Bounded queries to SAT and the Boolean hierarchy, Theoretical Computer Sci-
ence, vol. 84 (1991), no. 2, pp. 199–223.
[2] Samuel Buss, Bounded Arithmetic, Bibliopolis, 1986.
[3] , Axiomatizations and conservation results for fragments of bounded arithmetic, Logic and

Computation, Proceedings of a Workshop held at Carnegie Mellon University, ContemporaryMathemat-
ics, vol. 106, American Mathematical Society, 1990, pp. 57–84.
[4] , Relating the bounded arithmetic and polynomial time hierarchies, Annals of Pure and

Applied Logic, vol. 75 (1995), pp. 67–77.
[5] Samuel Buss, First–order proof theory of arithmetic, Handbook of Proof Theory (Samuel

Buss, editor), Elsevier, 1998, Available on line at www.math.ucsd.edu/~sbuss/ResearchWeb/

HandbookProofTheory/, pp. 79–147.
[6] Samuel Buss and Louise Hay, On truth-table reducibility to SAT, Information and Computation,

vol. 91 (1991), no. 1, pp. 86–102.
[7] Samuel Buss, JanKrajı́ček, andGaisi Takeuti,On provably total functions in bounded arithmetic

theories Ri3, U
i
2 , and V

i
2 , Arithmetic, Proof Theory and Computational Complexity (Peter Clote and Jan

Krajı́ček, editors), Oxford University Press, 1993, pp. 116–161.



CONSEQUENCES OF THE PROVABILITY OF NP ⊆ P/poly 1371

[8] Jin-Yi Cai, Sp2 ⊆ ZPP
NP , Proceedings of the IEEE Symposium on Foundations of Computer

Science (FOCS), 2001, pp. 620–628.
[9] StephenCook, Feasibly constructive proofs and the propositional calculus,Proceedings of the ACM

Symposium on Theory Of Computing (STOC), 1975, pp. 83–97.
[10] , Theories for complexity classes and their propositional translations, Complexity of Com-

putations and Proofs (Jan Krajı́ček, editor), Quaderni di Matematica, 2005, pp. 175–227.
[11] Stephen Cook and Phuong Nguyen, Foundations of proof complexity: Bounded arithmetic and

propositional translations, unpublished manuscript http://www.cs.toronto.edu/~sacook/, 2006.
[12] Stephen Cook and Neil Thapen, The strength of replacement in weak arithmetic, ACM Trans-

actions on Computational Logic, vol. 7 (2006), no. 4, pp. 749–764.
[13] R. M. Karp and R. J. Lipton, Some connections between nonuniform and uniform complexity

classes, Proceedings of the ACM Symposium on Theory Of Computing (STOC), 1980, pp. 302–309.
[14] , Turing machines that take advice, Enseignement Mathematique, vol. 30 (1982), pp. 255–

273.
[15] Jan Krajı́ček, Fragments of bounded arithmetic and bounded query classes, Transactions of the

American Mathematical Society, vol. 338 (1993), no. 2, pp. 587–598.
[16] , Bounded Arithmetic, Propositional Logic and Computational Complexity, Cambridge

University Press, 1995.
[17] Jan Krajı́ček, Pavel Pudlák, and Gaisi Takeuti, Bounded arithmetic and the polynomial

hierarchy, Annals of Pure and Applied Logic, vol. 52 (1991), pp. 143–153.
[18] Chris Pollett, Structure and definability in general bounded arithmetic theories, Annals of Pure

and Applied Logic, vol. 100 (1999), pp. 189–245.
[19] D. Zambella, Notes on polynomially bounded arithmetic, this Journal, vol. 61 (1996), no. 3,

pp. 942–966.

UNIVERSITY OF TORONTO

DEPARTMENTOF COMPUTER SCIENCE

TORONTO,M5S 3G4, CANADA

E-mail: sacook@cs.toronto.edu

ACADEMYOF SCIENCES

MATHEMATICAL INSTITUTE

ZITNA 25, PRAGUE CZ-115 67, CZECHREPUBLIC

and

CHARLES UNIVERSITY

FACULTYOFMATHEMATICS AND PHYSICS

SOKOLOVSKÁ 83, 186 75 PRAGUE, CZECHREPUBLIC

E-mail: krajicek@math.cas.cz


